JP2002122820A - Ophthalmic lens having hard coating layer and antireflection film - Google Patents

Ophthalmic lens having hard coating layer and antireflection film

Info

Publication number
JP2002122820A
JP2002122820A JP2000312398A JP2000312398A JP2002122820A JP 2002122820 A JP2002122820 A JP 2002122820A JP 2000312398 A JP2000312398 A JP 2000312398A JP 2000312398 A JP2000312398 A JP 2000312398A JP 2002122820 A JP2002122820 A JP 2002122820A
Authority
JP
Japan
Prior art keywords
layer
refractive index
sio
zro
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000312398A
Other languages
Japanese (ja)
Inventor
Toshihito Kanai
利仁 金井
Katsuyoshi Takeshita
克義 竹下
Hiroyuki Seki
浩幸 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000312398A priority Critical patent/JP2002122820A/en
Publication of JP2002122820A publication Critical patent/JP2002122820A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ophthalmic lens having antireflection films improved in scratching resistance without degrading their adhesion property and heat resistance. SOLUTION: The antireflection films consisting of the laminated films of, successively from a hard coating layer side, a SiO2 layer as ground surface layer, an intermediate-refractive index layer consisting, of equivalent films of an SiO2 layer, ZrO2 layer a high-refractive index layer consisting of a ZrO2 layer, and a low-refractive index layer consisting of an SiO2 layer, are increased in the film thickness of the SiO2 layer of the ground layer from 0.25λ to 0.5λ and are set in the physical film thicknesses ratio of the SiO2 layer and the ZrO2 layer so as to satisfy the relation 2.0:1<=SiO2 layer:ZrO2 layer<=3.0:1, thereby, the improvement in the scratching resistance and the maintenance of the adhesion property and the heat resistance are realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は反射防止膜を有する
眼鏡レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectacle lens having an antireflection film.

【0002】[0002]

【従来の技術】高い屈折率を有するレンズほど表面にお
ける光の反射率が上昇するため、屈折率の異なる薄膜を
積層させて光の干渉作用を利用した反射防止膜は眼鏡レ
ンズのような光の透過を目的とした光学部品には大変有
効であり、カメラのレンズなどにも広く利用されてい
る。
2. Description of the Related Art Since a lens having a higher refractive index has a higher light reflectivity on the surface, an antireflection film formed by laminating thin films having different refractive indices and utilizing the interference effect of light has the same effect as a spectacle lens. It is very effective for optical parts intended for transmission, and is widely used for lenses of cameras.

【0003】反射防止膜によく用いられる物質は金属酸
化物である。反射防止膜の成膜方法は、真空蒸着法やス
パッタ法などの乾式工程が多い。特に低屈折率層と高屈
折率層の膜厚を調節して交互に積層させて、広い帯域を
持つ反射防止膜は多く用いられている。一方、合成樹脂
を用いることの多い眼鏡レンズにおいて、金属酸化物で
構成される反射防止膜はハードコート層とともにレンズ
の強度を高める重要な役割も担っている。中でも、ハー
ドコート層の表面に構築される下地層は反射防止膜の特
性に関与するとともに、反射防止膜の硬さにも大きな影
響を与えることが知られている。しかし、膜の密着性は
反射防止膜を構成する各物質層同士、本発明においては
SiO2層とZrO2層の膜厚比や応力のバランスによっ
て影響を受けるため、望む反射防止機能を保ちつつ膜厚
比を変えて強度を高めることは容易ではない。
[0003] A material often used for an antireflection film is a metal oxide. As a method of forming the antireflection film, there are many dry processes such as a vacuum evaporation method and a sputtering method. In particular, antireflection films having a wide band are often used by alternately stacking low refractive index layers and high refractive index layers while adjusting the film thickness. On the other hand, in spectacle lenses that often use a synthetic resin, the antireflection film composed of a metal oxide also plays an important role in increasing the strength of the lens together with the hard coat layer. Above all, it is known that the underlayer formed on the surface of the hard coat layer affects the properties of the antireflection film and also has a great influence on the hardness of the antireflection film. However, the adhesion of the film is affected by the thickness of each material layer constituting the anti-reflection film, the thickness ratio of the SiO 2 layer and the ZrO 2 layer and the balance of stress in the present invention. It is not easy to increase the strength by changing the film thickness ratio.

【0004】[0004]

【発明が解決しようとする課題】最近、特に眼鏡レンズ
において高い耐擦傷性を有するレンズへの需要が高まっ
てきている。レンズの耐擦傷性を高める方法の一つとし
て、レンズの最表面にある反射防止膜の硬さを高めると
いった方法が挙げられる。主に金属酸化物を用いた反射
防止膜において硬さに最も影響を及ぼし、且つ反射防止
特性への影響が少ないのが下地層である。しかし、下地
層の厚さを増すことで反射防止膜の硬さを高めることが
出来るが、一方で膜構成が変わることにより各層の物質
間の応力バランスが崩れて密着性の低下等を起こして十
分な耐久性が得られないことが多い。本発明は、反射防
止膜内の応力のバランスを考慮して、十分な硬さと耐擦
傷性を有しつつ、且つ耐久性も兼ね備えた反射防止膜付
きの眼鏡レンズを提供することを目的としている。
Recently, there has been an increasing demand for lenses having high scratch resistance, especially for spectacle lenses. One of the methods for improving the scratch resistance of a lens is to increase the hardness of the antireflection film on the outermost surface of the lens. In an antireflection film mainly using a metal oxide, the underlayer has the greatest effect on hardness and has little effect on antireflection characteristics. However, by increasing the thickness of the underlayer, the hardness of the antireflection film can be increased. On the other hand, the change in the film configuration causes the stress balance between the materials of each layer to be lost, causing a decrease in adhesion and the like. In many cases, sufficient durability cannot be obtained. An object of the present invention is to provide a spectacle lens with an antireflection film having sufficient hardness and abrasion resistance in consideration of the balance of stress in the antireflection film and also having durability. .

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために成されたものであり、請求項1に記載された
発明は、ハードコート層表面から順に、下地層としての
SiO2層、ZrO2層とSiO2層から構成される等価
膜からなる中屈折率層、ZrO2層からなる高屈折率
層、SiO2層からなる低屈折率層を積層してなる反射
防止膜を有する眼鏡レンズで、前記下地層の膜厚が、設
計波長500nm〜550nmのときに光学的距離で
0.25λ〜0.5λであることを特徴としている。
Means for Solving the Problems The present invention has been made to achieve the above object, and the invention described in claim 1 is to provide a SiO 2 layer as an underlayer in order from the surface of the hard coat layer. A medium refractive index layer composed of an equivalent film composed of a ZrO 2 layer and a SiO 2 layer, a high refractive index layer composed of a ZrO 2 layer, and an antireflection film composed of a low refractive index layer composed of a SiO 2 layer. In a spectacle lens, the thickness of the underlayer is 0.25λ to 0.5λ in terms of optical distance when the design wavelength is 500 nm to 550 nm.

【0006】請求項2に記載された発明は、請求項1記
載の発明で、反射防止膜をハードコート層上に積層する
前に、酸素プラズマを利用した酸素イオンビームによっ
て表面を清浄化することで、膜の密着性をより高めてい
ることを特徴としている。
According to a second aspect of the present invention, in the first aspect of the present invention, before laminating the antireflection film on the hard coat layer, the surface is cleaned by an oxygen ion beam using oxygen plasma. The feature is that the adhesion of the film is further enhanced.

【0007】請求項3に記載された発明は、SiO2
とZrO2層の総物理膜厚比を限定することにより、硬
さと密着性の双方を満足させることを可能とした。
According to the third aspect of the invention, it is possible to satisfy both hardness and adhesion by limiting the total physical thickness ratio of the SiO 2 layer and the ZrO 2 layer.

【0008】請求項4に記載された発明は、合成樹脂基
板上に塗布・硬化させてなるハードコート層において、
本発明を実現させるために最も有用なハードコート組成
に関するものである。
According to a fourth aspect of the present invention, there is provided a hard coat layer coated and cured on a synthetic resin substrate,
The present invention relates to a hard coat composition most useful for realizing the present invention.

【0009】[0009]

【発明の実施の形態】本発明の目的を満たす条件とし
て、第一に下地層の膜厚を増やして反射防止膜の硬さを
向上させられること、第二に各物質層間の膜厚や応力の
バランスをとることが出来て眼鏡レンズとしての性能を
十分に満たせる構成であること、第三に反射防止特性の
反射率と干渉色も現行の構成のものと同様に出来ること
の3つが挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The conditions satisfying the object of the present invention are as follows. First, the thickness of the underlayer can be increased to improve the hardness of the antireflection film. And the third is that the reflectance and interference color of the anti-reflection characteristics can be the same as those of the current configuration. .

【0010】この中で特に、膜内の応力バランスが重要
なポイントを占めていた。SiO2層とZrO2層の物理
膜厚比から見てみると、2.0:1≦SiO2層:Zr
2層≦3.0:1の間ならば反射防止膜の硬さ、耐久
性、反射特性とも良好であったが、3.5:1≦SiO
2層:ZrO2層になると反射防止膜の硬さは向上した
が、耐久性に問題が生じた。
[0010] Among them, the stress balance in the film occupies an important point. Looking at the physical film thickness ratio between the SiO 2 layer and the ZrO 2 layer, 2.0: 1 ≦ SiO 2 layer: Zr
If the O 2 layer ≦ 3.0: 1, the hardness, durability and reflection characteristics of the antireflection film were good, but 3.5: 1 ≦ SiO
Two layers: The hardness of the antireflection film was improved when the ZrO 2 layer was used, but a problem occurred in durability.

【0011】この結果から下地層の厚さを増すにも限界
があると考え、2.0:1≦SiO 2層:ZrO2層≦
3.0:1の範囲内で効果的な膜構成を検討した。
From these results, there is no limit to increasing the thickness of the underlayer.
2.0: 1 ≦ SiO TwoLayer: ZrOTwoLayer ≤
An effective film configuration was examined within the range of 3.0: 1.

【0012】一方、下地層を厚くすることによって密着
性の低下が起こる可能性があるため、蒸着前の表面処理
の段階でハードコート層と反射防止膜との密着性をより
高めることができる手法を導入することが有効であると
考えた。そこで、酸素プラズマを利用した酸素イオンビ
ームを照射する表面処理法を蒸着前に行うことを検討し
た。
On the other hand, there is a possibility that the adhesion may be reduced by increasing the thickness of the underlayer. Therefore, it is possible to further increase the adhesion between the hard coat layer and the antireflection film at the stage of surface treatment before vapor deposition. I thought it would be effective to introduce Therefore, it was studied to perform a surface treatment method of irradiating an oxygen ion beam using oxygen plasma before vapor deposition.

【0013】また、本発明で使用する(A)成分の粒径
1〜100ミリミクロンのSi,Al,Sn,Sb,T
a,Ce,La,Fe,Zn,W,Zr,In,Tiか
ら選ばれる1種以上の金属酸化物からなる微粒子および
/またはSi,Al,Sn,Sb,Ta,Ce,La,
Fe,Zn,W,Zr,In,Tiから選ばれる2種以
上の金属酸化物から構成される複合微粒子の具体的例と
しては、 SiO2,Al23,SnO2,Sb25,T
25,CeO2,La23,Fe23,ZnO,W
3,ZrO2,In23,TiO2の無機酸化物微粒子
を分散媒たとえば水、アルコール系もしくはその他の有
機溶媒にコロイド状に分散させたものである。または、
これら無機酸化物の2種以上によって構成される複合微
粒子が水、アルコール系もしくはその他の有機溶媒にコ
ロイド状に分散したものである。さらにコーティング液
中での分散安定性を高めるためにこれらの微粒子表面を
有機ケイ素化合物またはアミン系化合物で処理したもの
を使用することも可能である。この際用いられる有機ケ
イ素化合物としては、単官能性シラン、あるいは二官能
性シラン、三官能性シラン、四官能性シラン等がある。
処理に際しては加水分解性基を未処理で行ってもあるい
は加水分解して行ってもよい。また処理後は、加水分解
性基が微粒子の−OH基と反応した状態が好ましいが、
一部残存した状態でも安定性には何ら問題がない。また
アミン系化合物としてはアンモニウムまたはエチルアミ
ン、トリエチルアミン、イソプロピルアミン、n−プロ
ピルアミン等のアルキルアミン、ベンジルアミン等のア
ラルキルアミン、ピペリジン等の脂環式アミン、モノエ
タノールアミン、トリエタノールアミン等のアルカノー
ルアミンがある。これら有機ケイ素化合物とアミン化合
物の添加量は微粒子の重量に対して1から15%程度の
範囲内で加える必要がある。いずれも粒子径は約1〜3
00mμが好適である。
The component (A) used in the present invention has a particle diameter of 1 to 100 millimicrons of Si, Al, Sn, Sb, and T.
a, Ce, La, Fe, Zn, W, Zr, In, Ti, fine particles comprising at least one metal oxide selected from Ti, and / or Si, Al, Sn, Sb, Ta, Ce, La,
Specific examples of the composite fine particles composed of two or more metal oxides selected from Fe, Zn, W, Zr, In, and Ti include SiO 2 , Al 2 O 3 , SnO 2 , Sb 2 O 5 , T
a 2 O 5 , CeO 2 , La 2 O 3 , Fe 2 O 3 , ZnO, W
It is obtained by dispersing inorganic oxide fine particles of O 3 , ZrO 2 , In 2 O 3 , and TiO 2 in a colloidal form in a dispersion medium such as water, an alcohol or other organic solvent. Or
Composite fine particles composed of two or more of these inorganic oxides are colloidally dispersed in water, alcohol, or another organic solvent. Further, it is also possible to use those obtained by treating the surface of these fine particles with an organosilicon compound or an amine compound in order to enhance the dispersion stability in the coating liquid. As the organosilicon compound used at this time, there are monofunctional silane, difunctional silane, trifunctional silane, tetrafunctional silane and the like.
In the treatment, the hydrolyzable group may be untreated or hydrolyzed. Further, after the treatment, a state in which the hydrolyzable group has reacted with the -OH group of the fine particles is preferable,
There is no problem in stability even when a part remains. Examples of the amine compound include ammonium or alkylamines such as ethylamine, triethylamine, isopropylamine and n-propylamine, aralkylamines such as benzylamine, alicyclic amines such as piperidine, and alkanolamines such as monoethanolamine and triethanolamine. There is. It is necessary to add the organosilicon compound and the amine compound within the range of about 1 to 15% based on the weight of the fine particles. In all cases, the particle size is about 1 to 3
00 mμ is preferred.

【0014】続いて、(B)成分は、ビニル基、アリル
基、アクリル基、メタクリル基、エポキシ基、メルカプ
ト基、シアノ基、イソシアノ基、アミノ基等の重合可能
な反応基を有するシラン化合物であり、その具体的なも
のとして、ビニルトリアルコキシシラン、ビニルトリク
ロロシラン、ビニルトリ(β−メトキシ−エトキシ)シ
ラン、アリルトリアルコキシシラン、アクリルオキシプ
ロピルトリアルコキシシラン、メタクリルオキシプロピ
ルトリアルコキシシラン、メタクリルオキシプロピルジ
アルコキシメチルシラン、γ−グリシドオキシプロピル
トリアルコキシシラン、β−(3,4−エポキシシクロ
ヘキシル)−エチルトリアルコキシシラン、メルカプト
プロピルトリアルコキシシラン、γ−アミノプロピルト
リアルコキシシラン、N−β(アミノエチル)−γ−ア
ミノプロピルメチルジアルコキシシラン等がある。
The component (B) is a silane compound having a polymerizable reactive group such as a vinyl group, an allyl group, an acryl group, a methacryl group, an epoxy group, a mercapto group, a cyano group, an isocyano group, and an amino group. Specific examples thereof include vinyltrialkoxysilane, vinyltrichlorosilane, vinyltri (β-methoxy-ethoxy) silane, allyltrialkoxysilane, acryloxypropyltrialkoxysilane, methacryloxypropyltrialkoxysilane, and methacryloxypropyl. Dialkoxymethylsilane, γ-glycidoxypropyl trialkoxysilane, β- (3,4-epoxycyclohexyl) -ethyl trialkoxysilane, mercaptopropyl trialkoxysilane, γ-aminopropyl trialkoxysilane N-beta is (aminoethyl)-.gamma.-aminopropyl methyl dialkoxysilane, and the like.

【0015】この(B)成分は、2種以上混合して用い
てもかまわない。また、加水分解を行ってから用いる
か、もしくは硬化した後の被膜に酸処理を行うか、どち
らかの方法を取った方がより有効である。
The component (B) may be used as a mixture of two or more kinds. In addition, it is more effective to use either method after hydrolysis or use of an acid treatment on the cured film.

【0016】以下に本発明の実施例を示し、詳細の説明
をする。なお、実施例で形成された反射防止膜を有する
眼鏡レンズについては、以下に示す試験方法で各物性を
評価した。 (a)耐擦傷性試験 #0000のスチールウールで表面を、荷重1.00±
0.05kgで振幅30mm、10往復させたときの傷
の付き方によって耐擦傷性を評価した。 (b)密着性試験 JIS K5400の碁盤目法・碁盤目テープ法に従
い、カッターナイフで10×10の碁盤目を作り、セロ
ファン粘着テープによる剥離試験で残った碁盤目の数を
数えて密着性を評価した。 (c)耐熱性試験 反射防止膜形成後にオーブンで30分加熱した後、クラ
ックの有無を評価した。加熱温度は40℃よりはじめ
て、5℃ずつ上げた。
Hereinafter, embodiments of the present invention will be shown and described in detail. The physical properties of the spectacle lens having the antireflection film formed in the examples were evaluated by the following test methods. (A) Scratch resistance test The surface was coated with a steel wool of # 0000 and a load of 1.00 ±
The abrasion resistance was evaluated by the method of scratching when the sample was reciprocated 10 times with an amplitude of 30 mm at 0.05 kg. (B) Adhesion test According to the JIS K5400 crosscut method and crosscut tape method, a 10 x 10 crosscut is made with a cutter knife, and the number of crosscuts remaining in the peeling test with a cellophane adhesive tape is counted to determine the adhesion. evaluated. (C) Heat resistance test After forming the antireflection film, the film was heated in an oven for 30 minutes, and then the presence or absence of cracks was evaluated. The heating temperature was increased by 5 ° C. starting from 40 ° C.

【0017】実施例−1 (1)ハードコート液の調整 プロピレングリコールモノメチルエーテル1360g、
メタノール分散二酸化チタン−二酸化ジルコニウム−二
酸化ケイ素複合微粒子ゾル(触媒化成工業(株)製、商
品名「オプトレイク1120Z(S−7・A8)、固形
分濃度20重量%」6450gおよびγ−グリシドキシ
プロピルトリメトキシシラン1700gを混合した。こ
の混合液に0.05N塩酸水溶液500gを撹拌しなが
ら滴下し、4時間撹拌後一昼夜熟成させた後、Fe(II
I)アセチルアセトネート10g、シリコン系界面活性
剤(日本ユニカー(株)製、商品名「L−7001」)
3gを添加し4時間撹拌後一昼夜熟成させて塗液とし
た。 (2)塗布および硬化 このようにして得られた塗液で、アルカリ処理を施した
屈折率1.67眼鏡レンズ(セイコーエプソン(株)
製、セイコースーパーソブリンレンズ生地)に浸漬法に
て塗布を行った。引き上げ速度は、20cm/minと
した。塗布後80℃で20分間風乾した後130℃で1
20分間焼成を行った。 (3)反射防止膜の形成 (2)で得られたハードコート層の表面に光学的膜厚で
0.43λ(λ=500nm)のSiO2層で構成され
る下地層(屈折率1.46)を形成した。次に、膜厚
0.10λのZrO2層(屈折率1.99)と膜厚0.
06λのSiO2層(屈折率1.46)から構成される
中屈折率層(屈折率1.80)を形成した。続いて、膜
厚0.23λのZrO2層(屈折率1.99)からなる
高屈折率層を形成した。最後に膜厚0.24λのSiO
2層(屈折率1.46)からなる低屈折率層を形成して
反射防止膜を構築した。下地層から低屈折率層にいたる
まで、真空蒸着法(真空度2.0×10-5Torr)に
よって形成した。この構成による反射防止膜の反射特性
を計算機によってシミュレーションした結果は図1のよ
うになる。このときのSiO2層とZrO2層の物理膜厚
比はSiO2層:ZrO2層=3.0:1であった。得ら
れた反射防止膜を有する眼鏡レンズの評価結果を表1に
示す。
Example-1 (1) Preparation of Hard Coat Solution 1360 g of propylene glycol monomethyl ether,
Methanol-dispersed titanium dioxide-zirconium dioxide-silicon dioxide composite fine particle sol (trade name "Optreak 1120Z (S-7A8), solid content concentration 20% by weight", manufactured by Catalyst Chemical Industry Co., Ltd.) 6450 g and γ-glycidoxy 1700 g of propyltrimethoxysilane was mixed in. 500 g of a 0.05N hydrochloric acid aqueous solution was added dropwise to this mixed solution with stirring, and the mixture was stirred for 4 hours, aged for 24 hours, and then Fe (II).
I) 10 g of acetylacetonate, silicone surfactant (trade name "L-7001" manufactured by Nippon Unicar Co., Ltd.)
After adding 3 g and stirring for 4 hours, the mixture was aged for 24 hours to obtain a coating solution. (2) Coating and curing The coating liquid thus obtained is subjected to alkali treatment with a refractive index of 1.67 spectacle lens (Seiko Epson Corporation)
Co., Ltd., Seiko Super Sovereign Lens Fabric). The lifting speed was 20 cm / min. After air-drying at 80 ° C for 20 minutes after application,
Baking was performed for 20 minutes. (3) Formation of anti-reflection film On the surface of the hard coat layer obtained in (2), an underlayer (refractive index: 1.46) composed of an SiO 2 layer having an optical thickness of 0.43λ (λ = 500 nm) ) Formed. Next, a 0.10λ-thick ZrO 2 layer (refractive index: 1.99) and a 0.
A middle refractive index layer (refractive index: 1.80) composed of a 06λ SiO 2 layer (refractive index: 1.46) was formed. Subsequently, a high refractive index layer made of a ZrO 2 layer (refractive index: 1.99) having a thickness of 0.23λ was formed. Finally, a 0.24λ thick SiO
An antireflection film was constructed by forming a low-refractive-index layer consisting of two layers (refractive index: 1.46). From the base layer to the low-refractive-index layer, they were formed by a vacuum deposition method (degree of vacuum: 2.0 × 10 −5 Torr). FIG. 1 shows the result of computer simulation of the reflection characteristics of the antireflection film having this configuration. Physical film thickness ratio of the SiO 2 layer and the ZrO 2 layer at this time is the SiO 2 layer: ZrO 2 layer = 3.0: 1. Table 1 shows the evaluation results of the spectacle lens having the obtained antireflection film.

【0018】実施例−2 (1)ハードコート液の調整 2−ブトキシエタノール1700g、メタノール分散二
酸化チタン−二酸化錫複合微粒子ゾル(触媒化成工業
(株)製、商品名「オプトレイク1120Z(8Ru・
A8)」、固形分濃度20重量%)5900gおよびγ
−グリシドキシプロピルトリメトキシシラン1830g
を混合した。この混合液に0.05N塩酸水溶液550
gを撹拌しながら滴下し、4時間撹拌後一昼夜熟成させ
た後、Al(III)アセチルアセトネート10g、シリ
コン系界面活性剤(日本ユニカー(株)製、商品名「L
−7001」)3gを添加し4時間撹拌後一昼夜熟成さ
せて塗液とした。 (2)塗布および硬化 このようにして得られた塗液で、アルカリ処理を施した
屈折率1.67眼鏡レンズ(セイコーエプソン(株)
製、セイコースーパーソブリンレンズ生地)に浸漬法に
て塗布を行った。引き上げ速度は、20cm/minと
した。塗布後80℃で20分間風乾した後130℃で1
20分間焼成を行った。 (3)反射防止膜の形成 ハードコート層の表面に光学膜厚で0.25λ(λ=5
20nm)のSiO2層から構成される下地層(屈折率
1.46)を形成した。次に膜厚0.11λのZrO2
層と膜厚0.08λのSiO2層とで作られる等価膜か
らなる中屈折率層(屈折率1.74)を形成した。続い
て膜厚0.29λのZrO2層からなる高屈折率層(屈
折率1.99)を形成した。最後に膜厚0.26λのS
iO2層からなる低屈折率層を形成して反射防止膜を構
築した。下地層から低屈折率層にいたるまで、実施例1
と同様に真空蒸着法によって形成した。この構成による
反射防止膜の反射特性を計算機によってシミュレーショ
ンした結果は図2のようになる。このときのSiO2
とZrO2層の物理膜厚比はSiO2層:ZrO2層=
2.0:1であった。得られた反射防止膜を有する眼鏡
レンズの評価結果を表1に示す。
Example-2 (1) Preparation of Hard Coat Solution 1700 g of 2-butoxyethanol, sol of titanium dioxide-tin dioxide composite fine particles dispersed in methanol (trade name "Optreak 1120Z (8Ru.
A8) ", solid content concentration 20% by weight) 5900 g and γ
-Glycidoxypropyltrimethoxysilane 1830 g
Was mixed. The mixture was added to a 0.05N hydrochloric acid aqueous solution 550.
g, stirred for 4 hours, aged all day and night, then 10 g of Al (III) acetylacetonate, silicon surfactant (trade name “L” manufactured by Nippon Unicar Co., Ltd.)
−7001 ”), and the mixture was stirred for 4 hours and then aged for 24 hours to obtain a coating solution. (2) Coating and curing The coating liquid thus obtained is subjected to alkali treatment with a refractive index of 1.67 spectacle lens (Seiko Epson Corporation)
Co., Ltd., Seiko Super Sovereign Lens Fabric). The lifting speed was 20 cm / min. After air-drying at 80 ° C for 20 minutes after application,
Baking was performed for 20 minutes. (3) Formation of anti-reflection film The optical film thickness is 0.25λ (λ = 5) on the surface of the hard coat layer.
An underlayer (refractive index: 1.46) composed of a 20 nm) SiO 2 layer was formed. Next, a ZrO 2 film having a thickness of 0.11λ is formed.
A medium refractive index layer (refractive index: 1.74) composed of an equivalent film made of a layer and an SiO 2 layer having a thickness of 0.08λ was formed. Subsequently, a high refractive index layer (refractive index: 1.99) composed of a ZrO 2 layer having a thickness of 0.29λ was formed. Finally, S with a film thickness of 0.26λ
An antireflection film was constructed by forming a low refractive index layer composed of an iO 2 layer. Example 1 from the underlayer to the low refractive index layer
It was formed by a vacuum deposition method in the same manner as described above. FIG. 2 shows the result of a computer simulating the reflection characteristics of the antireflection film having this configuration. At this time, the physical film thickness ratio between the SiO 2 layer and the ZrO 2 layer is as follows: SiO 2 layer: ZrO 2 layer =
2.0: 1. Table 1 shows the evaluation results of the spectacle lens having the obtained antireflection film.

【0019】比較例−1 前記実施例の比較として比較例1を挙げる。下地層の膜
厚を本発明の範囲外である0.08λ(λ=520n
m)とした。下地層に続いて、膜厚0.13λのZrO
2層と膜厚0.06λのSiO2層からなる中屈折率層
(屈折率1.80)を形成し、次に膜厚0.26λのZ
rO2層からなる高屈折率層(屈折率1.99)、最後
に膜厚0.255λのSiO2層(屈折率1.46)か
らなる低屈折率層を形成して反射防止膜を有する眼鏡レ
ンズを得た。このときのSiO2層とZrO2層の物理膜
厚比はSiO2層:ZrO2層=1.4:1であった。得
られた反射防止膜を有する眼鏡レンズの評価結果を表1
に示す。
COMPARATIVE EXAMPLE 1 Comparative Example 1 will be described as a comparison of the above embodiment. The thickness of the underlayer is set to 0.08λ (λ = 520n) which is out of the range of the present invention.
m). Subsequent to the underlayer, a 0.13λ-thick ZrO
2 layer and the intermediate refractive index layer made of SiO 2 layer having a thickness of 0.06λ (refractive index 1.80) was formed, then the film thickness 0.26Ramuda Z
An antireflection film is formed by forming a high refractive index layer (refractive index 1.99) composed of an rO 2 layer and finally a low refractive index layer composed of a SiO 2 layer (refractive index 1.46) having a thickness of 0.255λ. I got a spectacle lens. At this time, the physical thickness ratio between the SiO 2 layer and the ZrO 2 layer was SiO 2 layer: ZrO 2 layer = 1.4: 1. Table 1 shows the evaluation results of the spectacle lens having the obtained antireflection film.
Shown in

【0020】比較例−2 前記実施例の比較として比較例2を挙げる。本例は膜応
力バランスの比較に主眼を置いていたため、反射防止特
性は特に考慮していない。下地層の膜厚を本発明の範囲
外である0.65λ(λ=520nm)とした。下地層
に続いて膜厚0.13λのZrO2層と膜厚0.06λ
のSiO2層からなる中屈折率層(屈折率1.80)を
形成し、次に膜厚0.28λのZrO2層(屈折率1.
99)からなる高屈折率層を形成し、最後に膜厚0.2
7λのSiO2層からなる低屈折率層を形成して反射防
止膜を有する眼鏡レンズを得た。このときのSiO2
とZrO2層の物理膜厚比はSiO2層:ZrO2層=
3.5:1であった。評価結果を表1に示す。
Comparative Example 2 A comparative example 2 will be described as a comparison of the above examples. In this example, the focus was on the comparison of the film stress balance, and the antireflection characteristics were not particularly considered. The thickness of the underlayer was set to 0.65λ (λ = 520 nm), which is outside the range of the present invention. Subsequent to the underlayer, a ZrO 2 layer having a thickness of 0.13λ and a thickness of 0.06λ
Of a medium refractive index layer (refractive index: 1.80) made of a SiO 2 layer, and then a ZrO 2 layer having a thickness of 0.28λ (refractive index: 1.80).
99) to form a high refractive index layer,
A low refractive index layer composed of a 7λ SiO 2 layer was formed to obtain a spectacle lens having an antireflection film. At this time, the physical film thickness ratio between the SiO 2 layer and the ZrO 2 layer is as follows: SiO 2 layer: ZrO 2 layer =
3.5: 1. Table 1 shows the evaluation results.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明の反射防止膜を有する眼鏡レンズ
によって、その他の特性を損なわずに耐擦傷性を向上さ
せることが出来た。
According to the spectacle lens having the antireflection film of the present invention, scratch resistance can be improved without impairing other characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1による反射防止特性のシミュ
レーション結果。
FIG. 1 is a simulation result of antireflection characteristics according to Example 1 of the present invention.

【図2】本発明の実施例2による反射防止特性のシミュ
レーション結果。
FIG. 2 is a simulation result of antireflection characteristics according to a second embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 浩幸 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 Fターム(参考) 2H006 BA03 BA04 2K009 AA06 AA15 CC03 CC09 CC42 DD02 DD03 DD17 EE00 4J038 DL031 DL051 DL081 DL091 DL111 GA01 GA02 GA07 GA09 GA13 HA216 HA446 KA08 KA12 KA20 NA11 NA17 PB08 PC08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroyuki Seki 3-3-5 Yamato, Suwa-shi, Nagano F-term in Seiko Epson Corporation (reference) 2H006 BA03 BA04 2K009 AA06 AA15 CC03 CC09 CC42 DD02 DD03 DD17 EE00 4J038 DL031 DL051 DL081 DL091 DL111 GA01 GA02 GA07 GA09 GA13 HA216 HA446 KA08 KA12 KA20 NA11 NA17 PB08 PC08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂基板上にハードコート層を有
し、SiO2層を下地層とし、前記下地層の表面から順
にZrO2層とSiO2層で構成される等価膜からなる中
屈折率層、ZrO2層からなる高屈折率層、SiO2層か
らなる低屈折率層を積層してなる反射防止膜を有する眼
鏡レンズにおいて、前記下地層の厚さが光学距離で0.
25λ〜0.5λ(λ=520nm)であることを特徴
とする眼鏡レンズ。
1. A medium refractive index comprising a hard coat layer on a synthetic resin substrate, an SiO 2 layer as an underlayer, and an equivalent film composed of a ZrO 2 layer and an SiO 2 layer in order from the surface of the underlayer. A spectacle lens having an antireflection film formed by laminating a high refractive index layer composed of a ZrO 2 layer and a low refractive index layer composed of a SiO 2 layer, the thickness of the underlayer is 0.1 mm in optical distance.
A spectacle lens characterized by having a wavelength of 25λ to 0.5λ (λ = 520 nm).
【請求項2】 前記下地層を蒸着する前のハードコート
層の表面処理として、酸素プラズマから作り出された酸
素イオンのビームを照射することによって表面の清浄化
を行うことを特徴とする請求項1記載の眼鏡レンズ。
2. The method according to claim 1, wherein the surface treatment is performed by irradiating a beam of oxygen ions generated from oxygen plasma as a surface treatment of the hard coat layer before depositing the underlayer. The spectacle lens described.
【請求項3】 下地層、中屈折率層、高屈折率層および
低屈折率層の膜構成において、SiO2層とZrO2層の
物理膜厚比が、2.0:1≦SiO2層:ZrO2層≦
3.0:1であることを特徴とする請求項1あるいは2
記載の眼鏡レンズ。
3. The physical constitution of the underlayer, the medium refractive index layer, the high refractive index layer and the low refractive index layer, wherein the physical thickness ratio of the SiO 2 layer and the ZrO 2 layer is 2.0: 1 ≦ SiO 2 layer. : ZrO 2 layer ≦
3. The method according to claim 1, wherein the ratio is 3.0: 1.
The spectacle lens described.
【請求項4】 前記ハードコート層が少なくとも下記の
成分(A)および(B)を主成分とすることを特徴とす
る請求項2記載の眼鏡レンズ。(A).粒径1〜100
ミリミクロンのSi,Al,Sn,Sb,Ta,Ce,
La,Fe,Zn,W,Zr,In,Tiから選ばれる
1種以上の金属酸化物からなる微粒子および/またはS
i,Al,Sn,Sb,Ta,Ce,La,Fe,Z
n,W,Zr,In,Tiから選ばれる2種以上の金属
酸化物から構成される複合微粒子(B).少なくとも一
個以上の重合可能な反応基を有するシラン化合物
4. The spectacle lens according to claim 2, wherein the hard coat layer contains at least the following components (A) and (B) as main components. (A). Particle size 1-100
Millimicron Si, Al, Sn, Sb, Ta, Ce,
Fine particles comprising at least one metal oxide selected from La, Fe, Zn, W, Zr, In, Ti and / or S
i, Al, Sn, Sb, Ta, Ce, La, Fe, Z
Composite fine particles (B) composed of two or more metal oxides selected from n, W, Zr, In, and Ti. Silane compounds having at least one or more polymerizable reactive groups
JP2000312398A 2000-10-12 2000-10-12 Ophthalmic lens having hard coating layer and antireflection film Withdrawn JP2002122820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000312398A JP2002122820A (en) 2000-10-12 2000-10-12 Ophthalmic lens having hard coating layer and antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000312398A JP2002122820A (en) 2000-10-12 2000-10-12 Ophthalmic lens having hard coating layer and antireflection film

Publications (1)

Publication Number Publication Date
JP2002122820A true JP2002122820A (en) 2002-04-26

Family

ID=18791999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000312398A Withdrawn JP2002122820A (en) 2000-10-12 2000-10-12 Ophthalmic lens having hard coating layer and antireflection film

Country Status (1)

Country Link
JP (1) JP2002122820A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215304A (en) * 2005-02-04 2006-08-17 Seiko Epson Corp Plastic lens and manufacturing method
WO2013146382A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Method for manufacturing eyeglass lens
US9994676B2 (en) 2014-06-23 2018-06-12 3M Innovative Properties Company Silicon-containing polymer and method of making a silicon-containing polymer
US20180231689A1 (en) * 2015-08-05 2018-08-16 Essilor International Item Having Optimized Adhesive Properties and Comprising a Silicon Organic Layer
EP3392680A1 (en) 2017-04-18 2018-10-24 Essilor International Optical article having an abrasion and temperature resistant interferential coating with an optimized thickness ratio of low and high refractive index layers
US10213993B2 (en) 2013-12-19 2019-02-26 3M Innovative Properties Company Multilayer composite article
EP3640688A1 (en) 2018-10-18 2020-04-22 Essilor International Optical article having an interferential coating with an improved abrasion-resistance
EP3640687A1 (en) 2018-10-18 2020-04-22 Essilor International Optical article having an interferential coating with a high abrasion-resistance
EP3654071A1 (en) 2018-11-19 2020-05-20 Essilor International Optical lens having an interferential coating and a multilayer system for improving abrasion-resistance
EP3654072A1 (en) 2018-11-19 2020-05-20 Essilor International Optical lens having a filtering interferential coating and a multilayer system for improving abrasion-resistance
WO2020104381A2 (en) 2018-11-19 2020-05-28 Essilor International Optical lens having a mirror coating and a multilayer system for improving abrasion-resistance
WO2020104388A2 (en) 2018-11-19 2020-05-28 Essilor International Optical lens having an enhanced interferential coating and a multilayer system for improving abrasion-resistance
WO2022268795A1 (en) 2021-06-21 2022-12-29 Essilor International Optical lens having an interferential coating and a multilayer system for improving abrasion-resistance

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215304A (en) * 2005-02-04 2006-08-17 Seiko Epson Corp Plastic lens and manufacturing method
WO2013146382A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Method for manufacturing eyeglass lens
JPWO2013146382A1 (en) * 2012-03-30 2015-12-10 Hoya株式会社 Manufacturing method of spectacle lens
US9651802B2 (en) 2012-03-30 2017-05-16 Hoya Corporation Method of manufacturing eyeglass lens
US10213993B2 (en) 2013-12-19 2019-02-26 3M Innovative Properties Company Multilayer composite article
US9994676B2 (en) 2014-06-23 2018-06-12 3M Innovative Properties Company Silicon-containing polymer and method of making a silicon-containing polymer
US20180231689A1 (en) * 2015-08-05 2018-08-16 Essilor International Item Having Optimized Adhesive Properties and Comprising a Silicon Organic Layer
EP3392680A1 (en) 2017-04-18 2018-10-24 Essilor International Optical article having an abrasion and temperature resistant interferential coating with an optimized thickness ratio of low and high refractive index layers
WO2018192998A1 (en) 2017-04-18 2018-10-25 Essilor International Optical article having an abrasion and temperature resistant interferential coating with an optimized thickness ratio of low and high refractive index layers
US11397285B2 (en) 2017-04-18 2022-07-26 Essilor International Optical article having an abrasion and temperature resistant interferential coating with an optimized thickness ratio of low and high refractive index layers
EP3640687A1 (en) 2018-10-18 2020-04-22 Essilor International Optical article having an interferential coating with a high abrasion-resistance
WO2020079197A1 (en) 2018-10-18 2020-04-23 Essilor International Optical article having an interferential coating with an improved abrasion-resistance
WO2020079241A1 (en) 2018-10-18 2020-04-23 Essilor International Optical article having an interferential coating with a high abrasion-resistance
EP3640688A1 (en) 2018-10-18 2020-04-22 Essilor International Optical article having an interferential coating with an improved abrasion-resistance
EP3654071A1 (en) 2018-11-19 2020-05-20 Essilor International Optical lens having an interferential coating and a multilayer system for improving abrasion-resistance
EP3654072A1 (en) 2018-11-19 2020-05-20 Essilor International Optical lens having a filtering interferential coating and a multilayer system for improving abrasion-resistance
WO2020104381A2 (en) 2018-11-19 2020-05-28 Essilor International Optical lens having a mirror coating and a multilayer system for improving abrasion-resistance
WO2020104392A2 (en) 2018-11-19 2020-05-28 Essilor International Optical lens having a filtering interferential coating and a multilayer system for improving abrasion-resistance
WO2020104391A1 (en) 2018-11-19 2020-05-28 Essilor International Optical lens having an interferential coating and a multilayer system for improving abrasion-resistance
WO2020104388A2 (en) 2018-11-19 2020-05-28 Essilor International Optical lens having an enhanced interferential coating and a multilayer system for improving abrasion-resistance
WO2022268795A1 (en) 2021-06-21 2022-12-29 Essilor International Optical lens having an interferential coating and a multilayer system for improving abrasion-resistance

Similar Documents

Publication Publication Date Title
US8746880B2 (en) Optical product and eyeglass plastic lens
JP2002122820A (en) Ophthalmic lens having hard coating layer and antireflection film
JP2012234218A (en) Hard coating composition and plastic optical product
JP2003195003A (en) Plastic lens
JP2020187188A (en) Spectacle lens
JPH08295846A (en) Coating composition and laminate
JPH0251163B2 (en)
US20080050601A1 (en) Hard coating composition and plastic optical product
JP2000066149A (en) Sunglass provided with mirror coat
JPH08311408A (en) Coating composition, and its production and laminate
JPH10292135A (en) Coating composition, its production, and laminate using the same
JP2805877B2 (en) Composition for coating
JPH10123301A (en) Optical article having antireflection layer
JPH08311402A (en) Composition for coating and multilayer material
JPH11119001A (en) Plastic lens
JP4076668B2 (en) Weatherproof hard coat composition
JPH08311240A (en) Coating composition and laminate
JP3445773B2 (en) Plastic mirror coated lens
JP3712103B2 (en) Plastic lens manufacturing method and plastic lens
JPH0463117B2 (en)
JP2003292896A (en) Coating composition and laminate
JP2004077989A (en) Optical member and antireflection film
JPH081482B2 (en) Plastic mirror lenses
JP2005234311A (en) Optical element and method of manufacturing optical element
JPH036276A (en) Coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100406