JP2002119300A - Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same - Google Patents

Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same

Info

Publication number
JP2002119300A
JP2002119300A JP2000313300A JP2000313300A JP2002119300A JP 2002119300 A JP2002119300 A JP 2002119300A JP 2000313300 A JP2000313300 A JP 2000313300A JP 2000313300 A JP2000313300 A JP 2000313300A JP 2002119300 A JP2002119300 A JP 2002119300A
Authority
JP
Japan
Prior art keywords
filamentous bacteria
sludge
filamentous
bacteria
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000313300A
Other languages
Japanese (ja)
Inventor
Minoru Ishii
実 石井
Toshiichi Hashimoto
敏一 橋本
Mitsuo Kawase
三雄 川瀬
Junko Shimizu
純子 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Japan Sewage Works Agency
Original Assignee
NGK Insulators Ltd
Japan Sewage Works Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Japan Sewage Works Agency filed Critical NGK Insulators Ltd
Priority to JP2000313300A priority Critical patent/JP2002119300A/en
Publication of JP2002119300A publication Critical patent/JP2002119300A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both a method for rapidly assaying filamentous bacteria, capable of rapidly and accurately assaying the amount of filamentous bacteria in a sludge or only a target specific filamentous bacteria by an image treatment process and a method for controlling an operation of an activated sludge process tank using the same. SOLUTION: Filamentous bacteria in a sludge are dyed by an FISH method, the size and the number of the dyed filamentous bacteria in the sludge are assayed by a flow cytometer to obtain the amount of the filamentous bacteria in the sludge. In this case, preferably the filamentous bacteria are subjected to fluorescent dyeing by using a fluorescent labeled gene probe to be specifically combined with an r-RNA of specific filamentous bacteria to be a detection object. An amount of dissolved oxygen in a tank, an inflow load to the tank, etc., are controlled so as not to make the amount of the filamentous bacteria exceed a fixed value based on the assayed result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に下水処理場に
おいて用いるに適した糸状性細菌または目的とする特定
糸状性細菌の迅速測定方法及びこれを利用した活性汚泥
処理槽の運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quickly measuring a filamentous bacterium or a specific filamentous bacterium which is particularly suitable for use in a sewage treatment plant, and a method for controlling the operation of an activated sludge treatment tank using the same. It is.

【0002】[0002]

【従来の技術】下水処理場の活性汚泥処理槽において
は、運転条件によっては糸状性細菌の異常な増殖による
バルキングと呼ばれる現象が発生し、フロックの沈降性
が阻害されて正常な処理が行えなくなることがある。こ
のために下水処理場においては、活性汚泥を定期的にサ
ンプリングして顕微鏡で糸状性細菌の量をモニタリング
し、バルキング発生に至らないように運転条件を操作し
ている。
2. Description of the Related Art In an activated sludge treatment tank in a sewage treatment plant, a phenomenon called bulking occurs due to abnormal growth of filamentous bacteria depending on the operating conditions, and sedimentation of flocs is inhibited, so that normal treatment cannot be performed. Sometimes. For this reason, in the sewage treatment plant, activated sludge is periodically sampled, the amount of filamentous bacteria is monitored with a microscope, and operating conditions are controlled so that bulking does not occur.

【0003】このような糸状性細菌のモニタリングは、
活性汚泥を顕微鏡で撮像する、又は、活性汚泥を顕微鏡
を用いて撮像しその画像をコンピュータで画像処理する
方法で実施されてきた。この方法は糸状性細菌に特有の
形状を利用して他の微生物やごみ等と識別する方法であ
るが、糸状性細菌と紛らわしい形状のごみ等も多いた
め、糸状性細菌のみを正確に抽出することは容易でな
い。しかも最近の研究によれば、糸状性細菌のなかにも
バルキングの原因となる糸状性細菌とならない糸状性細
菌があることが判明しており、すべての糸状性細菌をカ
ウントする従来法では測定誤差が大きいという問題があ
った。また、このような従来法は測定に時間を要するた
めに、活性汚泥処理槽の運転制御の自動化に利用するこ
とは難しいという問題もあった。
[0003] The monitoring of such filamentous bacteria is as follows.
Activated sludge is imaged with a microscope, or activated sludge is imaged with a microscope and the image is processed by a computer. This method is a method of distinguishing from other microorganisms and garbage by utilizing the shape peculiar to the filamentous bacterium, but since there are many garbage and the like in a shape confusing with the filamentous bacterium, only the filamentous bacterium is accurately extracted. It is not easy. In addition, recent studies have shown that among filamentous bacteria, filamentous bacteria that do not become bulking-causing filamentous bacteria are found. There was a problem that was large. Further, such a conventional method has a problem that it is difficult to utilize it for automating the operation control of the activated sludge treatment tank because the measurement requires time.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、活性汚泥中の糸状性細菌の量または
目的とする特定糸状性細菌のみを画像処理法よりも迅速
かつ正確に測定することができる糸状性細菌の迅速測定
方法及びこれを利用した活性汚泥処理槽の運転制御方法
を提供することを主な目的とするものである。また本発
明の他の目的は、バルキングの原因となる糸状性細菌の
みを正確に測定できる糸状性細菌の迅速測定方法及びこ
れを利用した活性汚泥処理槽の運転制御方法を提供する
ことである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems, and enables the amount of filamentous bacteria in activated sludge or only the specific filamentous bacteria of interest to be detected more quickly and accurately than the image processing method. It is a main object of the present invention to provide a method for rapidly measuring filamentous bacteria which can be measured and a method for controlling the operation of an activated sludge treatment tank using the same. Another object of the present invention is to provide a method for rapidly measuring filamentous bacteria that can accurately measure only filamentous bacteria that cause bulking, and a method for controlling the operation of an activated sludge treatment tank using the same.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の糸状性細菌または目的とする特定
糸状性細菌の迅速測定方法は、汚泥中の糸状性細菌を超
音波処理、ホモジナイザー処理、酵素処理等で切断し、
FISH法(蛍光染色法)により染色したうえ、フロー
サイトメータでこの汚泥中の染色された糸状性細菌の大
きさ及び糸状性細菌数を測定することにより、汚泥中の
糸状性細菌の量を求めることを特徴とするものである。
なお、菌の切断は、FISH法による染色の前とは限ら
ず、後におこなってもよい。バルキングの原因となる糸
状性細菌等、測定したい糸状性細菌のr−RNAと特異
的に結合する蛍光標識遺伝子プローブを用いて糸状性細
菌を蛍光染色することが好ましい。
Means for Solving the Problems To solve the above-mentioned problems, the method of the present invention for rapidly measuring a filamentous bacterium or a specific filamentous bacterium of interest can be performed by ultrasonically treating a filamentous bacterium in sludge, Cut by homogenizer treatment, enzyme treatment, etc.,
After staining by the FISH method (fluorescent staining method), the amount of the filamentous bacteria in the sludge is determined by measuring the size and the number of the filamentous bacteria in the sludge with a flow cytometer. It is characterized by the following.
The cutting of the bacteria is not limited to before the staining by the FISH method, but may be performed after. It is preferable to fluorescently stain the filamentous bacterium using a fluorescently labeled gene probe that specifically binds to the r-RNA of the filamentous bacterium to be measured, such as a filamentous bacterium that causes bulking.

【0006】また、本発明の活性汚泥処理槽の運転制御
方法は、上記の方法により汚泥中の糸状性細菌の量を測
定し、所定値を超えないように、上記記載の糸状性細菌
にダメージを与えるような薬剤の添加、槽内の溶存酸素
量制御、槽内への流入負荷の制御、デッドスペースの調
整、フラッシングの実施、栄養塩濃度の調整のうち、い
ずれかの1または2以上を行うことを特徴とするもので
ある。上記薬剤としては、塩素、次亜塩素酸ナトリウ
ム、ポリマー、ポリカチオンなど、糸状性細菌を溶かす
溶菌効果、殺す殺菌効果、沈める凝集効果、沈降効果な
どの効果があるものを選択することが好ましい。
Further, the method for controlling the operation of an activated sludge treatment tank according to the present invention measures the amount of filamentous bacteria in sludge by the above method, and damages the filamentous bacteria so as not to exceed a predetermined value. Of one or more of the following: addition of a chemical that gives the following, control of the dissolved oxygen amount in the tank, control of the inflow load into the tank, adjustment of the dead space, execution of flushing, and adjustment of the nutrient concentration. It is characterized by performing. As the agent, it is preferable to select an agent having an effect such as chlorine, sodium hypochlorite, a polymer, or a polycation, which has a lytic effect of dissolving filamentous bacteria, a bactericidal effect of killing, a flocculating effect of sinking, and a sedimentation effect.

【0007】本発明の糸状性細菌の迅速測定方法は、F
ISH法により汚泥中の糸状性細菌のみを蛍光染色した
うえ、フローサイトメータでこの汚泥中の染色された糸
状性細菌の大きさ及び糸状性細菌数を測定する方法を採
用したため、汚泥中の糸状性細菌の量のみを画像処理法
よりも迅速かつ正確に測定することができる。特に、バ
ルキングの原因となる糸状性細菌のr−RNAと特異的
に結合する蛍光標識遺伝子プローブを用いれば、バルキ
ングの原因となる糸状性細菌のみを正確に測定すること
ができる。
The method for rapid measurement of filamentous bacteria of the present invention
Since only the filamentous bacteria in the sludge were fluorescently stained by the ISH method and the size and the number of filamentous bacteria in the sludge were measured with a flow cytometer, the filamentous filaments in the sludge were used. Only the amount of the bacterium can be measured more quickly and accurately than the image processing method. In particular, if a fluorescent-labeled gene probe that specifically binds to r-RNA of a filamentous bacterium that causes bulking is used, only the filamentous bacterium that causes bulking can be accurately measured.

【0008】また本発明の活性汚泥処理槽の運転制御方
法は上記した方法により迅速に測定された糸状性細菌の
量に応じて槽内の上記記載の糸状性細菌にダメージを与
えるような薬剤の添加、溶存酸素量制御、槽内への流入
負荷の制御、デッドスペースの調整、フラッシングの実
施、栄養塩濃度の調整のうち、いずれかの1または2以
上を行うので、対応遅れのおそれがなく、バルキングの
発生を確実に予防することができる。以下に本発明を好
ましい実施形態とともに、より詳細に説明する。
[0008] The method for controlling the operation of an activated sludge treatment tank according to the present invention comprises the use of an agent capable of damaging the above-described filamentous bacteria in the tank according to the amount of filamentous bacteria rapidly measured by the above method. Addition, control of dissolved oxygen, control of inflow load into the tank, adjustment of dead space, execution of flushing, and adjustment of nutrient concentration. , The occurrence of bulking can be reliably prevented. Hereinafter, the present invention will be described in more detail with preferred embodiments.

【0009】[0009]

【発明の実施の形態】本発明では、先ず下水処理場の活
性汚泥処理槽からサンプリングした活性汚泥をエタノー
ルやパラホルムアミド等で生物固定する。生物固定は例
えば濃度3%のパラホルムアルデヒドを固定試薬とし、
温度4℃、1時間の条件で行うことができる。次に、超
音波処理、ホモジナイザー処理、酵素処理等の処理をお
こない、菌を切断する。その後、FISH法(Fluoresc
ent In Situ Hybridizati on 法)による蛍光染色を行
う。なお、菌の切断はFISH法による蛍光染色の後に
おこなってもよい。周知のようにFISH法は一端に蛍
光標識を付着させた遺伝子プローブを用いて特定微生物
のみを蛍光染色する方法であり、糸状性細菌のリボソー
ム中のr−RNAと特異的に結合する蛍光標識遺伝子プ
ローブを用いることにより、糸状性細菌のみを染色する
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, activated sludge sampled from an activated sludge treatment tank in a sewage treatment plant is biologically fixed with ethanol, paraformamide, or the like. For biological fixation, for example, paraformaldehyde having a concentration of 3% is used as a fixing reagent,
The reaction can be performed at a temperature of 4 ° C. for one hour. Next, a treatment such as an ultrasonic treatment, a homogenizer treatment, and an enzyme treatment is performed to cut the bacteria. Then, the FISH method (Fluoresc
ent In Situ Hybridization method). The bacteria may be cut after fluorescent staining by the FISH method. As is well known, the FISH method is a method in which only a specific microorganism is fluorescently stained using a gene probe having a fluorescent label attached to one end thereof. By using a probe, only filamentous bacteria can be stained.

【0010】この蛍光標識遺伝子プローブは、特定微生
物のゲノムを解析し、他の微生物との相同性比較を行い
特定遺伝子配列を選定し、DNA合成機により遺伝子プ
ローブを合成したうえ蛍光染料でラベル化するという手
順で作成される。バルキングの原因となる微生物として
は、スフェロチルスナタンス(Sphaerotilus natuns)、
チオスリックス(Thiothrix)属などの多数種があるが、
日本においてはバルキングの大半はタイプ021Nに分
類される糸状性細菌が原因となることが判明したため、
このタイプ021Nの一つAP3株をターゲットとして
蛍光標識遺伝子プローブを作成した。
This fluorescent-labeled gene probe analyzes the genome of a specific microorganism, compares the homology with other microorganisms, selects a specific gene sequence, synthesizes the gene probe with a DNA synthesizer, and labels it with a fluorescent dye. It is created by the procedure of doing. Microorganisms that cause bulking include Sphaerotilus natuns,
There are many species such as the genus Thiothrix,
In Japan, most of bulking was found to be caused by filamentous bacteria classified as type 021N,
A fluorescent-labeled gene probe was prepared using the AP3 strain of this type 021N as a target.

【0011】作成された蛍光標識遺伝子プローブは、表
1のとおりの塩基配列を持つものである。なお、この塩
基配列は明細書末尾の配列表中に、配列番号1として記
載した。
The prepared fluorescently labeled gene probe has a base sequence as shown in Table 1. This base sequence was described as SEQ ID NO: 1 in the sequence listing at the end of the specification.

【表1】 [Table 1]

【0012】次のようにハイブリダイゼーションを行っ
た。洗浄条件:PBSに懸濁・遠心分離2回、温度:4
6℃、ホルムアミド濃度:35%、反応時間:1時間であ
る。この結果、蛍光標識遺伝子プローブが活性汚泥中の
目的とする糸状性細菌のリボソームのr−RNAと特異
的に結合し、蛍光染色する。
Hybridization was carried out as follows. Washing conditions: suspension in PBS, centrifugation twice, temperature: 4
6 ° C., formamide concentration: 35%, reaction time: 1 hour. As a result, the fluorescent-labeled gene probe specifically binds to the ribosome r-RNA of the target filamentous bacterium in the activated sludge and performs fluorescent staining.

【0013】次に本発明では、フローサイトメータでこ
の汚泥中の染色された糸状性細菌の大きさ及び糸状性細
菌数を測定することにより、汚泥中の糸状性細菌の量を
求める。フローサイトメータは、汚泥をノズルから液滴
として流出させながらレーザー光線等を照射し、その像
をフォトダイオードで受光することにより液滴中に含ま
れる粒子径と粒子数を測定できる装置であり、毎秒数千
粒子を測定できる能力を持つ。この光源として例えばマ
ーキュリーキセノンランプを使用し、蛍光標識遺伝子プ
ローブの励起波長付近の光線を照射すれば、蛍光染色さ
れた糸状性細菌だけを検出することができる。フローサ
イトメータを用いれば1サンプルを4分間以内に測定で
きる。
Next, in the present invention, the amount of the filamentous bacteria in the sludge is determined by measuring the size and the number of filamentous bacteria in the sludge with a flow cytometer. A flow cytometer is a device that can measure the particle size and the number of particles contained in a droplet by irradiating a laser beam or the like while sludge flows out from a nozzle as a droplet and receiving the image with a photodiode. Capable of measuring thousands of particles. By using, for example, a Mercury xenon lamp as the light source and irradiating light near the excitation wavelength of the fluorescently labeled gene probe, only the fluorescently stained filamentous bacteria can be detected. Using a flow cytometer, one sample can be measured within 4 minutes.

【0014】このようにして、本発明によれば汚泥中の
目的とする糸状性細菌の量のみを、迅速かつ正確に測定
することが可能となる。その全体的な手順を図1に示し
た。また具体的な測定内容の一例を実施例に示した。本
発明の方法によれば従来の画像解析法よりもはるかに迅
速に目的とする糸状性細菌の測定ができるので、汚泥中
の糸状性細菌の量が所定値を超えないように活性汚泥処
理槽の運転制御を行うことができる。
As described above, according to the present invention, only the amount of the target filamentous bacteria in the sludge can be measured quickly and accurately. The overall procedure is shown in FIG. In addition, an example of specific measurement contents is shown in the examples. According to the method of the present invention, the target filamentous bacteria can be measured much more rapidly than the conventional image analysis method, so that the amount of the filamentous bacteria in the sludge does not exceed a predetermined value. Operation control can be performed.

【0015】例えば図2に示すように、測定結果に基づ
いて塩素、次亜塩素酸ナトリウム、ポリマー、ポリカチ
オンなど、糸状性細菌を溶かす溶菌効果、殺す殺菌効
果、沈める凝集効果、沈降効果などの効果があり、上記
記載の糸状性細菌にダメージを与えるような薬剤を、活
性汚泥槽1、または沈殿池4、または返送汚泥ライン5
に添加することにより、糸状性細菌の生育を抑制するこ
とができる。また図2に示すように、測定結果に基づい
て活性汚泥槽1の散気装置2に供給される空気量を自動
制御することにより槽内の溶存酸素量を低下させれば、
糸状性細菌の生育を抑制することができる。また同じく
図2に示すように、流量制御装置3により槽内への流入
下水量を制御して流入負荷を減少させることによって
も、糸状性細菌の生育を抑制することができる。このほ
か、槽内のデッドスペースの調整、槽内のフラッシング
の実施、槽内の栄養塩濃度の調整等を行うことにより糸
状性細菌の生育を抑制することも可能である。ここでデ
ッドスペースの調整とは糸状性細菌の生育の原因となり
易いデッドスペースを調整することによりその生育を抑
制するものである。フラッシングは槽内の堆積物を水と
ともに洗い流すことを意味するもので、糸状性細菌その
ものを除去する効果がある。栄養塩濃度の調整は、糸状
性細菌の生育に適さず活性汚泥中の正常菌の生育に適す
るように栄養塩濃度を調整することを意味し、場合によ
っては殺菌剤の投入と併用してもよい。
For example, as shown in FIG. 2, based on the measurement results, the bacteriolytic effect of dissolving filamentous bacteria such as chlorine, sodium hypochlorite, polymer, polycation, etc., the bactericidal effect of killing, the flocculating effect of sinking, the sedimentation effect, etc. The activated sludge tank 1, the sedimentation basin 4, or the returned sludge line 5 is supplied with an agent that is effective and damages the filamentous bacteria described above.
, The growth of filamentous bacteria can be suppressed. Also, as shown in FIG. 2, if the amount of dissolved oxygen in the tank is reduced by automatically controlling the amount of air supplied to the diffuser 2 of the activated sludge tank 1 based on the measurement result,
The growth of filamentous bacteria can be suppressed. Also, as shown in FIG. 2, the growth of filamentous bacteria can be suppressed by reducing the inflow load by controlling the amount of sewage flowing into the tank by the flow control device 3. In addition, the growth of filamentous bacteria can be suppressed by adjusting the dead space in the tank, performing flushing in the tank, adjusting the nutrient concentration in the tank, and the like. Here, the adjustment of the dead space means that the growth of the filamentous bacteria is suppressed by adjusting the dead space which is likely to cause the growth. Flushing means washing away sediments in the tank together with water, and has the effect of removing the filamentous bacteria themselves. Adjustment of the nutrient concentration means adjusting the nutrient concentration so that it is not suitable for the growth of filamentous bacteria and is suitable for the growth of normal bacteria in the activated sludge. Good.

【0016】[0016]

【実施例】(実施例1…糸状性細菌の測定例)本発明の
効果を確認するため、タイプ021Nに分類される菌の中か
ら、公的に入手可能なAP3株(ATCC49788)を用いて、純
粋培養した菌の測定を行った。
EXAMPLES Example 1 Measurement Example of Filamentous Bacteria In order to confirm the effect of the present invention, a publicly available strain AP3 (ATCC49788) was used from among bacteria classified into type 021N. , And pure cultured bacteria were measured.

【0017】菌を培養後、白金線で吊り上げて固定(4
℃、1時間)し、PBS(0.15MのNaC lを含むリン酸緩衝
液)にて洗浄後、微量超音波破砕機で処理して菌を切断
し、染色サンプルとした。このサンプルを配列番号1に
示される塩基配列を持つ蛍光標識遺伝子プローブで染色
した。染色するための反応溶液は、0.9M NaCl、0.1%S
DS、 20mM Tris/HCl(Ph7.2)、 35%Formamide、 5ng/μ
l蛍光標識プローブ、反応は46℃、1時間で行った。その
後、遠心分離を行って上澄みを捨て、プローブを含まな
いハイブリダイゼーションバッファーを反応溶液と同量
添加し、48℃で5分間静置後、シリンジにて分散した。
After culturing the bacteria, they are lifted and fixed with a platinum wire (4
C. for 1 hour), washed with PBS (phosphate buffer containing 0.15 M NaCl), treated with a microsonicator to cut the bacteria, and used as a stained sample. This sample was stained with a fluorescent-labeled gene probe having the nucleotide sequence shown in SEQ ID NO: 1. The reaction solution for staining was 0.9 M NaCl, 0.1% S
DS, 20mM Tris / HCl (Ph7.2), 35% Formamide, 5ng / μ
l Fluorescently labeled probe, the reaction was performed at 46 ° C for 1 hour. Thereafter, the supernatant was discarded by centrifugation, a hybridization buffer containing no probe was added in the same amount as the reaction solution, the mixture was allowed to stand at 48 ° C. for 5 minutes, and then dispersed with a syringe.

【0018】このようにして染色したサンプルを、バイ
オラッド社製のフローサイトメータを用いて測定した。
流速は20μL/min、光源は75Wマーキュリーキセノンラン
プとし、AP3株数を測定する場合は546±5nmで励起
し、粒子の大きさを示す前方散乱光とTRITCの蛍光
(Em520−720nm)とを同時に測定した。
The samples stained in this manner were measured using a flow cytometer manufactured by Bio-Rad.
The flow rate is 20 μL / min, the light source is a 75 W Mercury Xenon lamp, and when measuring the number of AP3 strains, it is excited at 546 ± 5 nm and simultaneously measures the forward scattered light indicating the particle size and the TRITC fluorescence (Em520-720 nm). did.

【0019】このようにしてTRITCの蛍光を測定し
た結果は、図3、図4に示す通りである。横軸は粒子の
大きさ、縦軸は蛍光強度を示し、図3はFISH染色し
ていないAP3株の測定結果、図4はFISH染色した
AP3株の測定結果である。これらの比較から、蛍光標
識遺伝子プローブAP3がAP3株を染色し、その蛍光
をフローサイトメーターで測定できたことを確認した。
The results of measuring the fluorescence of TRITC in this manner are as shown in FIGS. The horizontal axis shows the particle size and the vertical axis shows the fluorescence intensity. FIG. 3 shows the measurement results of the AP3 strain not stained with FISH, and FIG. 4 shows the measurement results of the AP3 strain stained with FISH. From these comparisons, it was confirmed that the fluorescent-labeled gene probe AP3 stained the AP3 strain, and that the fluorescence could be measured with a flow cytometer.

【0020】(実施例2…活性汚泥中の糸状性細菌の測
定例)次に、AP3株を下水処理場の活性汚泥に混合し
たサンプルを作成した。先ず培養されたAP3株を70
%エタノールにて固定(4℃、1時間)し、PBSにて洗
浄後、微量超音波破砕機で処理して菌を切断した。一
方、A下水処理場にてサンプリングした活性汚泥を70
%エタノールにて固定し、PBSにて洗浄し、AP3株と
同様に微量超音波破砕機で処理した。サンプルはOD1.8
のAP3株懸濁液を、OD1.4の活性汚泥に0〜50体積%
添加して作成した。
Example 2 Measurement of Filamentous Bacteria in Activated Sludge Next, a sample was prepared by mixing the AP3 strain with activated sludge in a sewage treatment plant. First, 70 cultured AP3 strains were
The cells were fixed with 4% ethanol (4 ° C, 1 hour), washed with PBS, and treated with a microsonicator to cut the bacteria. On the other hand, activated sludge sampled at A sewage treatment plant
The cells were fixed with% ethanol, washed with PBS, and treated with a microsonicator in the same manner as the AP3 strain. Sample is OD1.8
Of the AP3 strain suspension in OD1.4 activated sludge from 0 to 50% by volume
It was made by adding.

【0021】プローブとして前記したプローブAP3を
用い、実施例1と同じ反応溶液で、46℃、1時間反応さ
せた。その後、実施例1と同様に遠心分離を行って上澄
みを捨て、プローブを含まないハイブリダイゼーション
バッファーを添加し、48℃で5分間静置後、シリンジに
て分散した。次にサンプル中の全微生物を染色するた
め、DNA染料であるDAPIを終濃度1μg/mLになる
ように添加し、室温で5分反応させた。
Using the probe AP3 described above as a probe, the reaction was carried out in the same reaction solution as in Example 1 at 46 ° C. for 1 hour. Thereafter, centrifugation was performed in the same manner as in Example 1, the supernatant was discarded, a hybridization buffer containing no probe was added, the mixture was allowed to stand at 48 ° C. for 5 minutes, and then dispersed with a syringe. Next, in order to stain all microorganisms in the sample, DAPI as a DNA dye was added to a final concentration of 1 μg / mL, and reacted at room temperature for 5 minutes.

【0022】このようにして染色したサンプルを、フロ
ーサイトメータを用いて測定した。流速は20μL/min、
光源は75Wマーキュリーキセノンランプとし、AP3株
数を測定する場合は546±5nmで励起し、粒子の大きさを
示す前方散乱光とTRITCの蛍光(Em520−720nm)と
を同時に測定した。また全微生物数を測定する場合には
350−425nmで励起し、前方散乱光とDAPIの蛍光(Em
390−490nm)とを同時に測定した。
The samples stained in this way were measured using a flow cytometer. Flow rate is 20 μL / min,
The light source was a 75 W Mercury Xenon lamp, and when measuring the number of AP3 strains, excitation was performed at 546 ± 5 nm, and forward scattered light indicating the particle size and TRITC fluorescence (Em520-720 nm) were measured simultaneously. When measuring the total number of microorganisms,
Excitation at 350-425 nm, forward scattered light and DAPI fluorescence (Em
390-490 nm).

【0023】このようにしてTRITCの蛍光を測定し
た結果の比較及び大腸菌を用いた予備試験により、糸状
性細菌の大きさは1.5μm以上であることが分かっている
ので、その粒子数を求めてLとした。またTRITCの
蛍光粒子、すなわちプローブAP3で染色されたAP3
株は図4中に四角の枠で囲んだ範囲にあるので、その数
を求めてTとした。同様に、DAPIの蛍光測定結果か
らサンプルなかの全微生物数を求めてDとした。
From the comparison of the results of measuring the fluorescence of TRITC and the preliminary test using Escherichia coli, it is known that the size of the filamentous bacteria is 1.5 μm or more. L. Also, TRITC fluorescent particles, ie, AP3 stained with probe AP3
Since the number of strains is in the range surrounded by a square frame in FIG. Similarly, the total number of microorganisms in the sample was determined from the results of DAPI fluorescence measurement and was designated as D.

【0024】図5はサンプル中の全微生物に対する糸状
性細菌の割合(T/D)を示すグラフであり、図6はサンプ
ル中の1.5μm以上の全粒子に対する糸状性細菌の割合(T
/L)を示すグラフである。このように、いずれもAP
3株の混入率との間に高い相関を示すことが確認でき
た。T/Lは糸状性細菌以外の粒子もカウントするため
に本来はT/Dを用いるべきであるが、TRITCとDA
PIの励起波長が離れているためにサンプルを2回測定
する必要がある。これに対してT/Lは1回の測定で済
むうえ、DAPIによる染色も不要であるから簡便であ
り、糸状性細菌の実用的な測定方法として優れている。
FIG. 5 is a graph showing the ratio of filamentous bacteria to total microorganisms (T / D) in the sample. FIG. 6 is a graph showing the ratio (T / D) of filamentous bacteria to all particles of 1.5 μm or more in the sample.
/ L). Thus, all AP
It was confirmed that there was a high correlation with the contamination rate of the three strains. For T / L, T / D should be used originally to count particles other than filamentous bacteria, but TRITC and DA
The sample needs to be measured twice because the PI excitation wavelengths are far apart. On the other hand, T / L requires only one measurement and does not require staining with DAPI, so it is simple and excellent as a practical method for measuring filamentous bacteria.

【0025】[0025]

【発明の効果】以上に説明したように、本発明の糸状性
細菌の迅速測定方法によれば、汚泥中のバルキングの原
因となる糸状性細菌の量を画像処理法よりも迅速かつ正
確に測定することができ、また本発明の活性汚泥処理槽
の運転制御方法によれば、この測定結果を利用してバル
キングを発生させることのないように自動的に活性汚泥
処理槽の運転制御を行うことができる利点がある。
As described above, according to the method for rapidly measuring filamentous bacteria of the present invention, the amount of filamentous bacteria causing bulking in sludge can be measured more quickly and accurately than by the image processing method. According to the method for controlling the operation of the activated sludge treatment tank of the present invention, the operation control of the activated sludge treatment tank is automatically performed so as not to generate bulking using the measurement result. There are advantages that can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の糸状性細菌の迅速測定方法を示すフロ
ーシートである。
FIG. 1 is a flow sheet showing a method for rapid measurement of filamentous bacteria of the present invention.

【図2】本発明の活性汚泥処理槽の運転制御方法を示す
模式的な断面図である。
FIG. 2 is a schematic sectional view showing an operation control method of the activated sludge treatment tank of the present invention.

【図3】FISH染色していないAP3株のサンプルに
ついて、TRITCの蛍光を測定した結果を示すグラフ
である。
FIG. 3 is a graph showing the results of measuring the fluorescence of TRITC for a sample of the AP3 strain not stained with FISH.

【図4】FISH染色したAP3株のサンプルについ
て、TRITCの蛍光を測定した結果を示すグラフであ
る。
FIG. 4 is a graph showing the results of measuring the fluorescence of TRITC for a sample of the AP3 strain stained with FISH.

【図5】サンプル中の全微生物に対するAP3株の割合
(T/D)を示すグラフである。
FIG. 5: Ratio of AP3 strain to total microorganisms in the sample
It is a graph which shows (T / D).

【図6】サンプル中の1.5μm以上の全粒子に対するAP
3株の割合(T/L)を示すグラフである。
FIG. 6: AP for all particles of 1.5 μm or more in a sample
It is a graph which shows the ratio (T / L) of 3 strains.

【符号の説明】[Explanation of symbols]

1 活性汚泥槽、2 散気装置、3 流量制御装置、4
沈殿池、5 返送汚泥ライン
1 activated sludge tank, 2 diffuser, 3 flow controller, 4
Settling tank, 5 Return sludge line

【配列表】 SEQUENCE LISTING 〈110〉NGK INSURATORS,LTD. JAPAN SEWA GE WORKS AGENCY 〈120〉糸状性細菌の迅速測定方法及びこれを利用した活性汚泥処理槽の運転制 御方法 〈130〉PG121013-1 〈160〉1 〈210〉1 〈211〉18 〈212〉RNA 〈213〉Artificial Sequence 〈400〉1 tccctctcccacattcta 18 [Sequence List] SEQUENCE LISTING <110> NGK INSURATORS, LTD. 160> 1 <210> 1 <211> 18 <212> RNA <213> Artificial Sequence <400> 1 tccctctcccacattcta 18

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C12N 1/00 C12N 1/00 S (C12Q 1/68 (C12Q 1/68 A C12R 1:645) C12R 1:645) (72)発明者 川瀬 三雄 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 (72)発明者 志水 純子 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 4B063 QA01 QA20 QQ07 QQ18 QQ54 QR32 QR56 QS11 QS34 QX02 4B065 AA58X BC13 BC14 BC50 BD01 BD50 CA46 CA54 4D028 AA01 CA06 CA07 CC06 CE01──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C12N 1/00 C12N 1/00 S (C12Q 1/68 (C12Q 1/68 A C12R 1: 645) (C12R 1: 645) (72) Inventor Mitsuo Kawase 2-56 Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Inside Nihon Insulators Co., Ltd. (72) Inventor Junko Shimizu 2-56, Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Sun Insulator Co., Ltd. F term (reference) 4B063 QA01 QA20 QQ07 QQ18 QQ54 QR32 QR56 QS11 QS34 QX02 4B065 AA58X BC13 BC14 BC50 BD01 BD50 CA46 CA54 4D028 AA01 CA06 CA07 CC06 CE01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 汚泥中の糸状性細菌または目的とする特
定糸状性細菌を切断し、FISH法(蛍光染色法)によ
り染色したうえ、フローサイトメータでこの汚泥中の染
色された粒子径及び粒子数を測定することにより、汚泥
中の糸状性細菌または目的とする特定糸状性細菌の量を
求めることを特徴とする糸状性細菌の迅速測定方法。
1. Filamentous bacteria in sludge or specific filamentous bacteria of interest are cut, stained by a FISH method (fluorescent staining method), and then stained particle size and particles in the sludge by a flow cytometer. A method for rapidly measuring filamentous bacteria, comprising determining the amount of filamentous bacteria or a target specific filamentous bacteria in sludge by measuring the number.
【請求項2】汚泥中の糸状性細菌または目的とする特定
糸状性細菌をFISH法(蛍光染色法)により染色した
うえ、切断し、フローサイトメータでこの汚泥中の染色
された粒子径及び粒子数を測定することにより、汚泥中
の糸状性細菌または目的とする特定糸状性細菌の量を求
めることを特徴とする糸状性細菌の迅速測定方法。
2. Filamentous bacteria in sludge or specific filamentous bacteria of interest are stained by a FISH method (fluorescent staining method), cut, and then stained with a flow cytometer. A method for rapid measurement of filamentous bacteria, wherein the number of filamentous bacteria or a target specific filamentous bacteria in sludge is determined by measuring the number.
【請求項3】 請求項1〜2のいずれかに記載の方法に
より汚泥中の糸状性細菌の量を測定し、所定値を超えな
いように、糸状性細菌にダメージを与えるような薬剤の
添加、槽内の溶存酸素量制御、槽内への流入負荷の制
御、デッドスペースの調整、フラッシングの実施、栄養
塩濃度の調整のうち1または2以上を行うことを特徴と
する活性汚泥処理槽の運転制御方法。
3. The method according to claim 1, wherein the amount of filamentous bacteria in the sludge is measured, and an agent which damages the filamentous bacteria is added so as not to exceed a predetermined value. Activated sludge treatment tank characterized by performing one or more of controlling dissolved oxygen amount in tank, controlling inflow load into tank, adjusting dead space, performing flushing, and adjusting nutrient concentration. Operation control method.
JP2000313300A 2000-10-13 2000-10-13 Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same Pending JP2002119300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313300A JP2002119300A (en) 2000-10-13 2000-10-13 Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313300A JP2002119300A (en) 2000-10-13 2000-10-13 Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same

Publications (1)

Publication Number Publication Date
JP2002119300A true JP2002119300A (en) 2002-04-23

Family

ID=18792737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313300A Pending JP2002119300A (en) 2000-10-13 2000-10-13 Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same

Country Status (1)

Country Link
JP (1) JP2002119300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
JP2005102644A (en) * 2003-10-01 2005-04-21 Sysmex Corp Determination of proliferation stage of microorganism and program for determining proliferation stage of microorganism
CN1312291C (en) * 2003-06-30 2007-04-25 佳能株式会社 Production method and production apparatus of probe carrier
EP2471749A1 (en) * 2009-08-28 2012-07-04 Kansai Coke And Chemicals Co., Ltd. Biotreatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
CN1312291C (en) * 2003-06-30 2007-04-25 佳能株式会社 Production method and production apparatus of probe carrier
JP2005102644A (en) * 2003-10-01 2005-04-21 Sysmex Corp Determination of proliferation stage of microorganism and program for determining proliferation stage of microorganism
EP2471749A1 (en) * 2009-08-28 2012-07-04 Kansai Coke And Chemicals Co., Ltd. Biotreatment method
EP2471749A4 (en) * 2009-08-28 2012-10-31 Kansai Coke & Chemicals Co Ltd Biotreatment method
RU2520561C2 (en) * 2009-08-28 2014-06-27 Кансай Коук Энд Кемикалс Ко., Лтд. Method of biological purification
US9133043B2 (en) 2009-08-28 2015-09-15 Kansai Coke And Chemicals Co., Ltd. Biological treatment method for treating waste water and controlling COD loading rate per bacterium and COD concentration in effluent

Similar Documents

Publication Publication Date Title
JP3270722B2 (en) Bacteria detection method and detection device
KR101771373B1 (en) Methods and materials using signaling probes
JP4874008B2 (en) Method and apparatus for detecting bacteria
JP5212099B2 (en) Nucleic acid extraction method from biological materials
WO2010057318A1 (en) Devices and methods for providing concentrated biomolecule condensates to biosensing devices
JP4236893B2 (en) Bacteria counting method and bacteria counting apparatus
TW201024420A (en) Methods and systems for measuring microbiological content in aqueous media
US20060024710A1 (en) Method and device for identifying germs
CN112513289A (en) Specific detection of deoxyribonucleic acid sequences using novel CRISPR enzyme-mediated detection strategies
JP2002119300A (en) Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same
CN102220417A (en) Method for detecting food pathogen by electrochemical luminescence gene sensor on basis of magnetic in-situ amplification
CN107326098A (en) The multi-fluorescence immunoassay method and reagent of a kind of quick differentiation Rabbit pest virus, sendai virus and lapine rotavirus
JP2009225733A (en) Method for evaluation of trpa1 activator
Sun et al. Using a safe and effective fixative to improve the immunofluorescence staining of bacteria
JP2594550B2 (en) Methods for monitoring and controlling microbial communities
CN110791568A (en) LAMP primer group for rapidly detecting chicken-derived components in beef and mutton, detection kit, detection method and application
JP2007014239A (en) Method and device for detecting microorganism
CN108341528A (en) The method that fouling membrane is reduced in the processing method and water treatment procedure of tap water
JP4068419B2 (en) Microorganism detection method and apparatus
WO2002052034A1 (en) Bioscopy method and method of nucleic acid amplification
RU2079138C1 (en) Method of assay of microbiological water pollution
JP5320915B2 (en) Microbial contamination detection kit, microbial contamination detection method, and contamination source discrimination method
Schuster et al. Real-time monitoring and controlling of water quality in water distribution networks based on flow cytometry and fluorescence spectroscopy
Lepeuple et al. Laser scanning detection of FISH-labelled Escherichia coli from water samples
CN110747253A (en) DNA enzyme detection fluorescent probe, DNA enzyme activity detection method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124