JP2002118227A - Power semiconductor device - Google Patents

Power semiconductor device

Info

Publication number
JP2002118227A
JP2002118227A JP2000311435A JP2000311435A JP2002118227A JP 2002118227 A JP2002118227 A JP 2002118227A JP 2000311435 A JP2000311435 A JP 2000311435A JP 2000311435 A JP2000311435 A JP 2000311435A JP 2002118227 A JP2002118227 A JP 2002118227A
Authority
JP
Japan
Prior art keywords
semiconductor device
current
cooling air
heat dissipation
flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000311435A
Other languages
Japanese (ja)
Other versions
JP3887741B2 (en
Inventor
Fumiaki Ihara
文明 伊原
Yoshihisa Kaji
芳久 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2000311435A priority Critical patent/JP3887741B2/en
Publication of JP2002118227A publication Critical patent/JP2002118227A/en
Application granted granted Critical
Publication of JP3887741B2 publication Critical patent/JP3887741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make junction temperatures nearly equal based on difference in cooling effect, and to increase current capacity as a whole in a power semiconductor device that fixes a plurality of semiconductor devices onto a radiation substrate for connecting in parallel. SOLUTION: This power semiconductor device fixes the plurality of semiconductor devices that accommodate bipolar transistors and field effect transistors Q1 to Qn into a package onto the radiation substrate, has a main control circuit MC that connects the plurality of semiconductors in parallel and at the same time detects current for controlling a sharing current, and circulates cooling air to the radiation substrate for cooling the semiconductor device. In this case, resistance values Rs1 to Rsn for detecting the current of each semiconductor device are set so that the amount of the current that is allowed to flow to the semiconductor device positioned at the suction side of the cooling air is larger than that of the current that is allowed to flow to the semiconductor device positioned at the exhaust side of the cooling air in order along the circulation direction of the cooling air of the semiconductor device fixed onto the radiation substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数のバイポーラ
トランジスタや電界効果トランジスタ等の半導体装置を
放熱基板に固定して並列に接続した電力半導体装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power semiconductor device in which a plurality of semiconductor devices such as bipolar transistors and field effect transistors are fixed to a heat dissipation substrate and connected in parallel.

【0002】[0002]

【従来の技術】図4は電力半導体装置の説明図であり、
41−1〜41−nはパッケージに収容されたバイポー
ラトランジスタや電界効果トランジスタ等の半導体装
置、42はアルミニウム等の金属からなる放熱基板、4
3は放熱フィン、44はプリント配線基板、45は冷却
ファンを示す。
2. Description of the Related Art FIG. 4 is an explanatory view of a power semiconductor device.
41-1 to 41-n are semiconductor devices such as bipolar transistors and field effect transistors housed in a package, 42 is a heat dissipation substrate made of a metal such as aluminum,
Reference numeral 3 denotes a radiation fin, 44 denotes a printed wiring board, and 45 denotes a cooling fan.

【0003】半導体装置41−1〜41−nは、バイポ
ーラトランジスタや電界効果トランジスタ等を絶縁パッ
ケージに封止し、端子を導出した構成を有し、これらの
半導体装置41−1〜41−nを放熱基板42に固定
し、その放熱基板42をプリント配線基板44に固定
し、半導体装置41−1〜41−nの端子をプリント配
線基板44の例えば裏面のプリント配線と接続する。又
冷却ファン45によって冷却空気を放熱基板42の放熱
フィン43間を流通させる。図示の場合は、冷却ファン
45によって内部の空気を外部へ排出し、冷却ファン4
5と反対側から空気を吸入する場合を示し、冷却空気は
矢印の方向に流通し、放熱基板42を介して半導体装置
41−1〜41−nを冷却する。
Each of the semiconductor devices 41-1 to 41-n has a configuration in which a bipolar transistor, a field effect transistor, and the like are sealed in an insulating package and terminals are led out. The heat radiation board 42 is fixed to the printed wiring board 44, and the terminals of the semiconductor devices 41-1 to 41-n are connected to, for example, the printed wiring on the back surface of the printed wiring board 44. The cooling fan 45 allows cooling air to flow between the radiating fins 43 of the radiating substrate 42. In the illustrated case, the internal air is discharged to the outside by the cooling fan 45 and the cooling fan 4
5 shows a case in which air is sucked in from the side opposite to 5, and cooling air flows in the direction of the arrow to cool the semiconductor devices 41-1 to 41-n via the heat dissipation substrate 42.

【0004】又各半導体装置41−1〜41−nは、並
列に接続して直流電源からの電流を分流させるもので、
並列接続数を多くすることにより、大電流を制御するこ
とができる。又電流が流れることにより、半導体装置4
1−1〜41−nのジャンクション部の温度が上昇す
る。この温度が所定値を越えると、熱暴走や焼損等が生
じるから、前述のように、放熱基板42に熱伝導性絶縁
膜等を介して半導体装置41−1〜41−nを固定し、
半導体装置41−1〜41−nの発生熱を放熱基板42
に伝導し、放熱基板42を冷却空気によって冷却するも
のである。
The semiconductor devices 41-1 to 41-n are connected in parallel to shunt the current from a DC power supply.
Large current can be controlled by increasing the number of parallel connections. In addition, the flow of the current causes the semiconductor device 4
The temperature at the junction of 1-1 to 41-n increases. If this temperature exceeds a predetermined value, thermal runaway or burnout will occur. As described above, the semiconductor devices 41-1 to 41-n are fixed to the heat dissipation substrate 42 via a heat conductive insulating film or the like.
The heat generated by the semiconductor devices 41-1 to 41-n is transferred to the heat dissipation substrate 42.
And the heat dissipating substrate 42 is cooled by the cooling air.

【0005】図5は従来例の説明図であり、Q1〜Qn
は前述の半導体装置41−1〜41−nに対応する電界
効果トランジスタ、Rs1〜Rsnは電流検出用の抵
抗、R1〜Rnは抵抗、DAは演算増幅器、Vrは基準
電圧、PWは一次電池,二次電池,大容量コンデンサ,
スイッチング電源等の電源装置を示す。この場合、電源
装置PWの試験を行う為の電子負荷装置としての構成を
示す。
FIG. 5 is an explanatory view of a conventional example, in which Q1-Qn
Is a field-effect transistor corresponding to the aforementioned semiconductor devices 41-1 to 41-n, Rs1 to Rsn are current detecting resistors, R1 to Rn are resistors, DA is an operational amplifier, Vr is a reference voltage, PW is a primary battery, Rechargeable batteries, large capacity capacitors,
1 shows a power supply device such as a switching power supply. In this case, a configuration as an electronic load device for testing the power supply device PW is shown.

【0006】又抵抗Rs1〜Rsnはそれぞれ同一の抵
抗値を有し、又抵抗R1〜Rnもそれぞれ同一の抵抗値
を有するものである。又基準電圧Vrは可変可能の構成
とする。電界効果トランジスタQ1〜Qnに流れる電流
I1〜Inを抵抗Rs1〜Rsnによって検出し、この
電流検出値を抵抗R1〜Rnを介して演算増幅器DAの
−端子に入力し、+端子に入力する基準電圧Vrとの差
に対応して電界効果トランジスタQ1〜Qnのゲートに
制御電圧を印加し、基準電圧Vrに対応した電流I1〜
Inが電界効果トランジスタQ1〜Qnに流れるように
制御する。
The resistors Rs1 to Rsn have the same resistance value, and the resistors R1 to Rn also have the same resistance value. The reference voltage Vr is configured to be variable. Currents I1 to In flowing through the field effect transistors Q1 to Qn are detected by resistors Rs1 to Rsn, and the detected current values are input to the-terminal of the operational amplifier DA via the resistors R1 to Rn, and the reference voltage is input to the + terminal. A control voltage is applied to the gates of the field effect transistors Q1 to Qn in accordance with the difference from Vr, and currents I1 to I4 corresponding to the reference voltage Vr are applied.
Control is performed so that In flows into the field effect transistors Q1 to Qn.

【0007】従って、電源装置PWから供給する電流を
Ipとすると、各電界効果トランジスタQ1〜Qnに
は、Ip/nの電流I1〜Ipが流れることになり、そ
の時の電源装置PWの出力電圧Vpを測定することによ
り、電源装置PWの出力電流対出力電圧の特性を求める
ことができる。
Therefore, assuming that the current supplied from the power supply device PW is Ip, currents I1 to Ip of Ip / n flow through the respective field effect transistors Q1 to Qn, and the output voltage Vp of the power supply device PW at that time. Is measured, the characteristic of the output current versus the output voltage of the power supply device PW can be obtained.

【0008】[0008]

【発明が解決しようとする課題】バイポーラトランジス
タや電界効果トランジスタ等をパッケージに収容した半
導体装置41−1〜41−nを放熱基板42に固定し、
冷却空気によって放熱基板42を冷却し、この放熱基板
42を介して半導体装置41−1〜41−nを冷却する
構成に於いて、冷却空気の流れに沿った方向に半導体装
置41−1〜41−nが配列される構成が一般的であ
る。その場合の冷却空気の温度が吸気側より排気側が高
くなる。従って、放熱基板42は、冷却空気の吸気側の
温度より排気側の温度が高い温度分布となる。その為
に、冷却空気の吸気側より排気側に配置された半導体装
置41−1〜41−nの温度が高くなる。
The semiconductor devices 41-1 to 41-n accommodating a bipolar transistor, a field effect transistor and the like in a package are fixed to a heat dissipation substrate 42.
In the configuration in which the heat dissipation substrate 42 is cooled by the cooling air and the semiconductor devices 41-1 to 41-n are cooled through the heat dissipation substrate 42, the semiconductor devices 41-1 to 41-41 are arranged in a direction along the flow of the cooling air. -N is generally arranged. In this case, the temperature of the cooling air is higher on the exhaust side than on the intake side. Therefore, the heat dissipation board 42 has a temperature distribution in which the temperature on the exhaust side is higher than the temperature on the intake side of the cooling air. Therefore, the temperature of the semiconductor devices 41-1 to 41-n arranged on the exhaust side of the cooling air from the intake side increases.

【0009】図6は半導体装置41−1を冷却空気の吸
気側、半導体41−nを冷却空気の排気側となるよう
に、半導体装置41−1〜41−nを放熱基板42に固
定した場合の半導体装置41−1〜41−nの半導体部
分のジャンクション温度を示す。即ち、半導体装置41
−1〜41−nの配列順に従った温度となる。その為、
冷却空気の排出側に配置されている半導体装置41−n
のジャンクション温度による制約に従った電流に制限さ
れる。その時、冷却空気の吸気側に配置されている半導
体装置41−1のジャンクション温度は充分に耐えられ
る値であるにも拘らず、冷却空気の排出側に配置されて
いる半導体装置41−nに流し得る電流に制限される。
即ち、全半導体装置41−1〜41−nの能力を充分に
利用できない問題があった。本発明は、半導体装置のジ
ャンクション温度がほぼ均等になるような電流分担制御
を行い、全体としての電流容量を増大することを目的と
する。
FIG. 6 shows a case where the semiconductor devices 41-1 to 41-n are fixed to the heat dissipation board 42 such that the semiconductor device 41-1 is on the cooling air intake side and the semiconductor 41-n is on the cooling air exhaust side. 3 shows junction temperatures of semiconductor portions of the semiconductor devices 41-1 to 41-n. That is, the semiconductor device 41
The temperature is in accordance with the arrangement order of -1 to 41-n. For that reason,
Semiconductor device 41-n disposed on the cooling air discharge side
Is limited to the current according to the junction temperature constraint. At this time, although the junction temperature of the semiconductor device 41-1 disposed on the cooling air intake side is a value that can withstand sufficiently, the semiconductor device 41-1 flows to the semiconductor device 41-n disposed on the cooling air discharge side. Limited to the current you get.
That is, there is a problem that the capabilities of all the semiconductor devices 41-1 to 41-n cannot be sufficiently utilized. An object of the present invention is to increase current capacity as a whole by performing current sharing control so that the junction temperature of a semiconductor device becomes substantially equal.

【0010】[0010]

【課題を解決するための手段】本発明の電力半導体装置
は、バイボーラトランジスタや電界効果トランジスタを
パッケージに収容した複数の半導体装置を放熱基板に固
定し、複数の半導体装置を並列接続し且つ電流を検出し
て分担電流を制御する主制御回路を有し、放熱基板に対
して冷却空気を流通させて半導体装置を冷却する電力半
導体装置であって、放熱基板に固定した半導体装置の冷
却空気の流通方向に沿った順に、冷却空気の吸気側に位
置する半導体装置に流す電流を、冷却空気の排気側に位
置する半導体装置に流す電流より多くなるように、各半
導体装置の電流検出用の抵抗値を設定した構成とするも
のである。
According to the power semiconductor device of the present invention, a plurality of semiconductor devices accommodating a bipolar transistor or a field-effect transistor in a package are fixed to a heat dissipation substrate, and the plurality of semiconductor devices are connected in parallel to each other. A power semiconductor device that has a main control circuit that detects and controls a shared current and circulates cooling air to the heat dissipation substrate to cool the semiconductor device. In order along the flow direction, the current detection resistance of each semiconductor device is set so that the current flowing to the semiconductor device located on the intake side of the cooling air is larger than the current flowing to the semiconductor device located on the exhaust side of the cooling air. The configuration is such that a value is set.

【0011】又複数の半導体装置を放熱基板に固定し、
前記複数の半導体装置を並列接続し且つ電流を検出して
分担電流を制御する主制御回路を有し、前記放熱基板に
対して冷却空気を流通させて前記半導体装置を冷却する
電力半導体装置であって、複数の半導体装置にそれぞれ
流れる電流を検出する抵抗を同一の抵抗値とし、この電
流検出用の抵抗による電流検出値を基に、主制御回路に
よって半導体装置に流れる電流を制御する制御信号を、
放熱基板に固定した半導体装置の冷却空気の流通方向に
沿った順に、冷却空気の吸気側に位置する半導体装置に
流す電流が、冷却空気の排気側に位置する半導体装置に
流す電流より多くなるように設定する補助制御回路を設
けたものである。
[0011] Further, a plurality of semiconductor devices are fixed to a heat dissipation substrate,
A power semiconductor device having a main control circuit for connecting the plurality of semiconductor devices in parallel and detecting a current to control a shared current, and cooling the semiconductor device by flowing cooling air to the heat dissipation substrate. The resistance for detecting the current flowing through each of the plurality of semiconductor devices is set to the same resistance value, and a control signal for controlling the current flowing to the semiconductor device by the main control circuit is set based on the current detection value obtained by the current detection resistor. ,
The current flowing to the semiconductor device located on the intake side of the cooling air is larger than the current flowing to the semiconductor device located on the exhaust side of the cooling air in the order along the flow direction of the cooling air of the semiconductor device fixed to the heat dissipation substrate. Is provided.

【0012】又補助制御回路は、半導体装置に流れる電
流検出用の抵抗による電流検出値を分圧する第1の分圧
回路と、電流検出値を抵抗を介して共通に主制御回路に
入力する値を分圧する第2の分圧回路と、第1,第2の
分圧回路による分圧値を入力し、差分に対応した値を半
導体装置の電流制御用の信号とする演算増幅器とを備え
ている。
The auxiliary control circuit includes a first voltage dividing circuit for dividing a current detection value by a current detection resistor flowing through the semiconductor device, and a value for commonly inputting the current detection value to the main control circuit via the resistor. And a operational amplifier that receives the voltage divided by the first and second voltage dividers and uses a value corresponding to the difference as a current control signal for the semiconductor device. I have.

【0013】[0013]

【発明の実施の形態】図1は本発明の第1の実施の形態
の説明図であり、Q1〜Qnは放熱基板(図示を省略)
に固定した半導体装置(図4参照)を構成する電界効果
トランジスタ、Rs1〜Rsnは電流検出用の抵抗、R
1〜Rnは抵抗、DAは演算増幅器、Vrは基準電圧、
MCは主制御回路、PWは一次電池,二次電池,大容量
コンデンサ,スイッチング電源等の電源装置、ARは冷
却空気の流通方向を示し、この実施の形態に於いては、
冷却空気の流通方向に沿って配置された電界効果トラン
ジスタQ1〜Qnの電流検出用の抵抗Rs1〜Rsn
は、Rs1<Rs2<・・・<Rsnの関係の抵抗値と
する。
FIG. 1 is an explanatory view of a first embodiment of the present invention, wherein Q1 to Qn denote heat dissipation boards (not shown).
Field effect transistors constituting a semiconductor device (see FIG. 4) fixed to Rs1 to Rsn are resistors for detecting current,
1 to Rn are resistors, DA is an operational amplifier, Vr is a reference voltage,
MC is a main control circuit, PW is a power supply device such as a primary battery, a secondary battery, a large-capacity capacitor, a switching power supply, etc., AR is a flow direction of cooling air, and in this embodiment,
Current detection resistors Rs1 to Rsn of field effect transistors Q1 to Qn arranged along the direction of flow of cooling air
Is a resistance value in a relationship of Rs1 <Rs2 <... <Rsn.

【0014】電流検出用の抵抗Rs1〜Rsnによる電
流検出値を抵抗R1〜Rnを介して主制御回路MCに入
力して、基準電圧Vrと比較し、その差分に対応した制
御電圧を電界効果トランジスタQ1〜Qnのゲートに印
加する。そして、比較差分に対応した同一の制御電圧を
ゲートに印加するものであるが、各電界効果トランジス
タQ1〜Qnのゲート・ソース間電圧は、抵抗Rs1〜
Rsnの値がそれぞれ異なることによって相違する。こ
の場合、冷却空気の吸入側に位置する電界効果トランジ
スタQ1のゲート・ソース間電圧が、冷却空気の排気側
に位置する電界効果トランジスタQnのゲート・ソース
間電圧より高くなり、流れる電流も多くなる。
A current detected by the current detecting resistors Rs1 to Rsn is input to the main control circuit MC via the resistors R1 to Rn, compared with a reference voltage Vr, and a control voltage corresponding to the difference is applied to a field effect transistor. It is applied to the gates of Q1 to Qn. Then, the same control voltage corresponding to the comparison difference is applied to the gate. The gate-source voltage of each of the field effect transistors Q1 to Qn is equal to the resistance Rs1 to Rs1.
The difference is caused by different values of Rsn. In this case, the gate-source voltage of the field-effect transistor Q1 located on the cooling air intake side becomes higher than the gate-source voltage of the field-effect transistor Qn located on the cooling air exhaust side, and the flowing current increases. .

【0015】従って、電界効果トランジスタQ1〜Qn
に流れる電流I1〜Inは、I1>I2>・・・Inと
なる。それにより、各電界効果トランジスタQ1〜Qn
を冷却しない場合、流れる電流I1〜Inに対応したジ
ャンクション温度、即ち、電界効果トランジスタQ1の
ジャンクション温度が高く、電界効果トランジスタQn
のジャンクション温度が低くなる。
Therefore, the field effect transistors Q1 to Qn
Currents I1 to In are I1>I2>... In. Thereby, each of the field effect transistors Q1 to Qn
Is not cooled, the junction temperature corresponding to the flowing currents I1 to In, that is, the junction temperature of the field effect transistor Q1 is high, and the field effect transistor Qn
Junction temperature decreases.

【0016】その場合、各電界効果トランジスタQ1〜
Qnは放熱基板を介して冷却されるもので、電界効果ト
ランジスタQnに比較して、電界効果トランジスタQ1
の冷却効果が大きくなる。従って、大きい電流が流れる
電界効果トランジスタの冷却効果が大きいので、各電界
効果トランジスタQ1〜Qnのジャンクション温度をほ
ぼ同一とすることができる。図2は従来例と比較して本
発明に於ける電界効果トランジスタQ1〜Qnのジャン
クション温度を示す。即ち、従来例(曲線b)に於いて
は、冷却空気の流通方向に沿った配置位置に従って、電
界効果トランジスタQ1〜Qnのジャンクション温度
は、冷却空気の吸気側は低く、排気側は高くなる。これ
に対して、第1の実施の形態(曲線a)に於いては、冷
却空気の流通方向に沿った配置位置の電界効果トランジ
スタQ1〜Qnのジャンクション温度をほぼ同一とする
ことができる。
In this case, each of the field effect transistors Q1 to Q1
Qn is cooled through the heat dissipation substrate, and compared to the field effect transistor Qn, the field effect transistor Q1
The cooling effect of is increased. Therefore, since the cooling effect of the field effect transistor through which a large current flows is large, the junction temperatures of the field effect transistors Q1 to Qn can be made substantially the same. FIG. 2 shows the junction temperatures of the field effect transistors Q1 to Qn according to the present invention as compared with the conventional example. That is, in the conventional example (curve b), the junction temperature of the field-effect transistors Q1 to Qn is low on the intake side of the cooling air and high on the exhaust side according to the arrangement position along the flow direction of the cooling air. On the other hand, in the first embodiment (curve a), the junction temperatures of the field-effect transistors Q1 to Qn at the positions along the flow direction of the cooling air can be made substantially the same.

【0017】前述のように、ジャンクション温度の上昇
により、流す電流に制約が生じるものであるが、各電界
効果トランジスタQ1〜Qnのジャンクション温度をほ
ぼ同一とすることにより、各電界効果トランジスタQ1
〜Qnにそれぞれ最大限の電流を流すことができる。即
ち、並列接続した電界効果トランジスタQ1〜Qnによ
り、電源装置PWから流すことができる電流を従来例に
比較して増加することが可能となる。又同一の出力電流
とする場合は、冷却空気量を削減することができる。即
ち、小型且つ経済的な構成とすることもできる。
As described above, the increase in the junction temperature causes a restriction on the flowing current. However, by making the junction temperatures of the field effect transistors Q1 to Qn substantially the same, each of the field effect transistors Q1
To Qn can be supplied with the maximum current. That is, the current that can flow from the power supply device PW can be increased as compared with the conventional example by the field effect transistors Q1 to Qn connected in parallel. When the same output current is used, the amount of cooling air can be reduced. That is, a compact and economical configuration can be achieved.

【0018】図3は本発明の第2の実施の形態の説明図
であり、図1と同一符号は同一部分を示し、SC1〜S
Cnは補助制御回路、OP1〜OPnは演算増幅器、R
a1〜Re1,・・・Ran〜Renは抵抗、Rg1〜
Rgnはゲート抵抗を示す。又第1の実施の形態と同様
に、図示を省略した放熱基板に、矢印ARの冷却空気の
流通方法に沿って、電界効果トランジスタQ1〜Qnを
配置した場合を示す。
FIG. 3 is an explanatory view of a second embodiment of the present invention. The same reference numerals as in FIG.
Cn is an auxiliary control circuit, OP1 to OPn are operational amplifiers, R
a1-Re1,... Ran1-Ren are resistors, Rg1-
Rgn indicates a gate resistance. Further, similarly to the first embodiment, a case is shown in which the field effect transistors Q1 to Qn are arranged on a heat dissipation substrate (not shown) in accordance with the cooling air distribution method indicated by the arrow AR.

【0019】又電流検出用の抵抗Rs1〜Rsnは同一
の抵抗値とし、抵抗Ra1,Rb1〜Ran,Rbnは
それぞれ異なる抵抗値とする。又抵抗Rc1,Rd1,
Re1〜Rcn,Rdn,Renは同一の抵抗値とし、
R1〜Rn及びRg1〜Rgnも同一の抵抗値とする。
The resistors Rs1 to Rsn for detecting current have the same resistance value, and the resistors Ra1, Rb1 to Ran, and Rbn have different resistance values. Also, the resistors Rc1, Rd1,
Re1 to Rcn, Rdn and Ren have the same resistance value,
R1 to Rn and Rg1 to Rgn have the same resistance value.

【0020】補助制御回路SC1〜SCnは、抵抗Ra
1,Rb1,Rc1,Rd1,Re1〜Ran,Rb
n,Rcn,Rdn,Renと、演算増幅器OP1〜O
Pnとを含み、電界効果トランジスタQ1〜Qn対応の
電流検出用の抵抗Rs1〜Rsnによる電流検出値を、
抵抗Ra1,Rb1〜Ran,Rbnからなる第1の分
圧回路により分圧し、又主制御回路MCに抵抗R1〜R
nを介して入力する電流検出値を、抵抗Rc1,Rd1
〜Rcn,Rdnからなる第2の分圧回路により分圧し
て、それぞれ演算増幅器OP1〜OPnに入力し、各分
圧値の差分に対応した信号を抵抗Re1〜Renを介し
て電界効果トランジスタQ1〜Qnのゲートに印加す
る。なお、(Rc1,Rd1〜Rcn,Rdn)≫(R
1〜Rn)の関係とする。
The auxiliary control circuits SC1 to SCn include resistors Ra
1, Rb1, Rc1, Rd1, Re1 to Ran, Rb
n, Rcn, Rdn, Ren and operational amplifiers OP1 to OP
Pn, and the current detection value by the current detection resistors Rs1 to Rsn corresponding to the field effect transistors Q1 to Qn,
The voltage is divided by a first voltage dividing circuit including resistors Ra1, Rb1 to Ran, and Rbn.
n are input to the resistors Rc1 and Rd1.
To Rcn, Rdn, Rdn, and Rdn, and input to operational amplifiers OP1 to OPn, respectively, and a signal corresponding to the difference between the divided voltage values is applied to the field effect transistors Q1 to Rn via resistors Re1 to Ren. Apply to the gate of Qn. Note that (Rc1, Rd1 to Rcn, Rdn) ≫ (R
1 to Rn).

【0021】又抵抗Ra1〜Ran,Rb1〜Rbnか
らなる第1の分圧回路による分圧値をVa1〜Vanと
し、抵抗Rc1〜Rcn,Rd1〜Rdnからなる第2
の分圧回路による分圧値をVb1〜Vbnとすると、演
算増幅器OP1〜OPnは、Va1=Vb1,Va2=
Vb2,・・・Van=Vbnとなるように、電界効果
トランジスタQ1〜Qnを制御する。なお、主制御回路
MCは、基準電圧Vrに対応した電源装置PWからの電
流Ipを制御することになる。
The voltage dividing value of the first voltage dividing circuit consisting of the resistors Ra1 to Ran and Rb1 to Rbn is defined as Va1 to Van, and the second voltage dividing value comprising the resistors Rc1 to Rcn and Rd1 to Rdn.
Assuming that the voltage dividing values of the voltage dividing circuits are Vb1 to Vbn, the operational amplifiers OP1 to OPn provide Va1 = Vb1, Va2 =
The field effect transistors Q1 to Qn are controlled so that Vb2,... Van = Vbn. The main control circuit MC controls the current Ip from the power supply device PW corresponding to the reference voltage Vr.

【0022】又抵抗Rc1〜Rcnを同一、抵抗Rd1
〜Rdnを同一とすることにより、第2の分圧回路の分
圧値Vb1〜Vbnは同一の値となる。そこで、Va1
<Va2<・・・<Vanの関係となるように抵抗Ra
1〜Ran,Rb1〜Rbnを設定する。それにより、
電界効果トランジスタQ1〜Qnに流れる電流I1〜I
nが同一であると、Va1<Va2<・・・<Vanの
関係となり、又Vb1=Vb2=・・・=Vbnとな
る。補助制御回路SC1〜SCnは、Va1=Vb1,
・・・,Van=Vbnとなるように、電界効果トラン
ジスタQ1〜Qnを制御することになるから、電界効果
トランジスタQ1〜Qnの電流は、I1>I2>・・・
>Inの関係となるように制御される。
The resistances Rc1 to Rcn are the same, and the resistance Rd1 is
To Rdn are the same, the divided voltage values Vb1 to Vbn of the second voltage dividing circuit have the same value. Therefore, Va1
<Va2 <... <Van
1 to Ran and Rb1 to Rbn are set. Thereby,
Currents I1-I flowing through field effect transistors Q1-Qn
When n is the same, Va1 <Va2 <... <Van, and Vb1 = Vb2 =... = Vbn. The auxiliary control circuits SC1 to SCn provide Va1 = Vb1,
..., the field effect transistors Q1 to Qn are controlled so that Van = Vbn, so that the current of the field effect transistors Q1 to Qn is I1>I2>.
> In.

【0023】従って、冷却効果が大きい冷却空気の吸気
側に位置する電界効果トランジスタQ1に流れる電流I
1を大きくし、冷却効果が小さい冷却空気の排気側に位
置する電界効果トランジスタQnに流れる電流Inを小
さくして、各電界効果トランジスタQ1〜Qnのジャン
クション温度がほぼ同一となるように、それぞれの電流
I1〜Inを制御することができる。即ち、許容される
ジャンクション温度まで上昇する電流を流すことができ
るから、並列接続した電界効果トランジスタQ1〜Qn
による全体としての制御電流容量を増加することができ
る。又全体としての制御電流容量を従来例と同一とす
る、冷却空気を削減しても良いことになり、小型且つ経
済的な構成とすることができる。
Therefore, the current I flowing through the field effect transistor Q1 located on the intake side of the cooling air having a large cooling effect is obtained.
1 is increased, the current In flowing through the field effect transistor Qn located on the exhaust side of the cooling air having a small cooling effect is reduced, and the respective junction temperatures of the field effect transistors Q1 to Qn are substantially the same. The currents I1 to In can be controlled. That is, since a current that rises to an allowable junction temperature can flow, the field-effect transistors Q1 to Qn
As a result, the overall control current capacity can be increased. Further, the control current capacity as a whole may be the same as that of the conventional example, and the cooling air may be reduced, so that a compact and economical configuration can be realized.

【0024】又電界効果トランジスタQ1〜Qnの特性
にはばらつきがある場合が一般的であり、このような特
性のばらつきについては、補助制御回路SC1〜SCn
の第1の分圧回路を構成する抵抗Rb1〜Rbnの調整
等によって補償することができる。
In general, the characteristics of the field effect transistors Q1 to Qn vary, and such variations in the characteristics are corrected by the auxiliary control circuits SC1 to SCn.
Can be compensated by adjusting the resistors Rb1 to Rbn constituting the first voltage dividing circuit.

【0025】本発明は、前述の各実施の形態にのみ限定
されるものではなく、種々付加,変更することが可能で
あり、電界効果トランジスタQ1〜Qnに代えて、バイ
ポーラトランジスタを用いることも可能である。又電源
装置PWから図示を省略している負荷に供給する電流の
制御回路として適用することも可能である。又冷却空気
を流通させる冷却ファンは、冷却空気の吸気側に設け
て、外部からの空気を放熱基板に沿って吹き込む構成と
することも可能である。
The present invention is not limited to the above-described embodiments, but can be variously added or changed. Bipolar transistors can be used instead of the field effect transistors Q1 to Qn. It is. Further, the present invention can be applied as a control circuit of a current supplied from the power supply device PW to a load (not shown). Further, the cooling fan for circulating the cooling air may be provided on the intake side of the cooling air to blow air from the outside along the heat radiating substrate.

【0026】[0026]

【発明の効果】以上説明したように、本発明は、並列接
続して電流を分担して流す複数の半導体装置を放熱基板
に固定し、この放熱基板を冷却空気で冷却する構成に於
いて、冷却空気の吸気側に位置する半導体装置に流れる
電流を大きくし、且つ冷却空気の排気側に位置する半導
体装置に流れる電流を小さくするように制御するもの
で、冷却効果が大きい半導体装置は、大きな電流が流れ
てジャンクション温度が上昇しても冷却されるから、冷
却空気の流通方向に沿って配置された半導体装置に流れ
る電流を順次小さくすることによって、総ての半導体装
置のジャンクション温度をほぼ同一とすることができ
る。それにより、全体として流し得る電流値を従来例に
比較して増加することができる。又従来例と同一の電流
値とすれば、冷却能力を低減しても、所定のジャンクシ
ョン温度に上昇しないように制御できるから、小型化並
びに経済化を図ることができる利点がある。
As described above, the present invention relates to a configuration in which a plurality of semiconductor devices are connected in parallel to share and flow a current and are fixed to a radiating substrate, and the radiating substrate is cooled by cooling air. The current flowing to the semiconductor device located on the intake side of the cooling air is controlled to be large, and the current flowing to the semiconductor device located on the exhaust side of the cooling air is controlled to be small. Even if the current flows and the junction temperature rises, the semiconductor device is cooled even if the junction temperature rises.Therefore, by gradually reducing the current flowing through the semiconductor devices arranged along the flow direction of the cooling air, the junction temperature of all the semiconductor devices becomes substantially the same. It can be. As a result, the current value that can flow as a whole can be increased as compared with the conventional example. Further, if the current value is the same as that of the conventional example, control can be performed so as not to increase to a predetermined junction temperature even if the cooling capacity is reduced, so that there is an advantage that downsizing and economy can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】本発明の実施の形態のジャンクション温度の説
明図である。
FIG. 2 is an explanatory diagram of a junction temperature according to the embodiment of the present invention.

【図3】本発明の第2の実施の形態の説明図である。FIG. 3 is an explanatory diagram of a second embodiment of the present invention.

【図4】電力半導体装置の説明図である。FIG. 4 is an explanatory diagram of a power semiconductor device.

【図5】従来例の説明図である。FIG. 5 is an explanatory diagram of a conventional example.

【図6】従来例のジャンクション温度の説明図である。FIG. 6 is an explanatory diagram of a junction temperature in a conventional example.

【符号の説明】[Explanation of symbols]

Q1〜Qn 半導体装置を構成する電界効果トランジス
タ Rs1〜Rsn 電流検出用の抵抗 MC 主制御回路 Vr 基準電圧 DA 演算増幅器 PW 電源装置 AR 冷却空気の流通方向
Q1 to Qn Field effect transistors constituting a semiconductor device Rs1 to Rsn Current detection resistors MC Main control circuit Vr Reference voltage DA Operational amplifier PW power supply AR Cooling air flow direction

フロントページの続き Fターム(参考) 5E322 AA01 BB03 5H430 BB09 BB12 EE06 EE13 FF08 HH03 LA06 LA10 LA21 LB02 5H740 BA11 BB02 BB07 MM11 PP06Continued on the front page F term (reference) 5E322 AA01 BB03 5H430 BB09 BB12 EE06 EE13 FF08 HH03 LA06 LA10 LA21 LB02 5H740 BA11 BB02 BB07 MM11 PP06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の半導体装置を放熱基板に固定し、
前記複数の半導体装置を並列接続し且つ電流を検出して
分担電流を制御する主制御回路を有し、前記放熱基板に
対して冷却空気を流通させて前記半導体装置を冷却する
電力半導体装置に於いて、 前記放熱基板に固定した前記半導体装置の前記冷却空気
の流通方向に沿った順に、前記冷却空気の吸気側に位置
する前記半導体装置に流す電流を、前記冷却空気の排気
側に位置する前記半導体装置に流す電流より多くなるよ
うに、各半導体装置の電流検出用の抵抗値を設定したこ
とを特徴とする電力半導体装置。
A plurality of semiconductor devices fixed to a heat dissipation substrate;
A power control device for connecting the plurality of semiconductor devices in parallel and detecting a current to control a shared current, and for cooling the semiconductor device by flowing cooling air to the heat dissipation substrate; Current flowing in the semiconductor device located on the intake side of the cooling air in the order along the flow direction of the cooling air of the semiconductor device fixed to the heat dissipation substrate, A power semiconductor device wherein a current detection resistance value of each semiconductor device is set so as to be larger than a current flowing through the semiconductor device.
【請求項2】 複数の半導体装置を放熱基板に固定し、
前記複数の半導体装置を並列接続し且つ電流を検出して
分担電流を制御する主制御回路を有し、前記放熱基板に
対して冷却空気を流通させて前記半導体装置を冷却する
電力半導体装置に於いて、 前記複数の半導体装置にそれぞれ流れる電流を検出する
抵抗を同一の抵抗値とし、該電流検出用の抵抗による電
流検出値を基に前記主制御回路によって前記半導体装置
に流れる電流を制御する制御信号を、前記放熱基板に固
定した前記半導体装置の前記冷却空気の流通方向に沿っ
た順に、前記冷却空気の吸気側に位置する前記半導体装
置に流す電流が、前記冷却空気の排気側に位置する前記
半導体装置に流す電流より多くなるように設定する補助
制御回路を設けたことを特徴とする電力半導体装置。
2. A plurality of semiconductor devices are fixed to a heat dissipation board,
A power control device for connecting the plurality of semiconductor devices in parallel and detecting a current to control a shared current, and for cooling the semiconductor device by flowing cooling air to the heat dissipation substrate; Controlling the resistors for detecting the current flowing through each of the plurality of semiconductor devices to have the same resistance value, and controlling the current flowing through the semiconductor device by the main control circuit based on the current detection value obtained by the current detection resistor. The signal is supplied to the semiconductor device located on the intake side of the cooling air in the order along the flow direction of the cooling air of the semiconductor device fixed to the heat dissipation board, and the current flowing on the exhaust side of the cooling air is located on the exhaust side of the cooling air. An electric power semiconductor device, further comprising an auxiliary control circuit for setting the current to be larger than the current flowing through the semiconductor device.
【請求項3】 前記補助制御回路は、前記半導体装置に
流れる電流検出用の抵抗による電流検出値を分圧する第
1の分圧回路と、前記電流検出値を抵抗を介して共通に
前記主制御回路に入力する値を分圧する第2の分圧回路
と、前記第1,第2の分圧回路による分圧値を入力し、
差分に対応した値を前記半導体装置の電流制御用の信号
とする演算増幅器とを備えていることを特徴とする請求
項2記載の電力半導体装置。
3. The main control circuit according to claim 1, wherein the auxiliary control circuit is configured to divide a current detection value by a current detection resistor flowing through the semiconductor device into a first voltage-dividing circuit. A second voltage dividing circuit for dividing a value to be input to the circuit, and a voltage dividing value by the first and second voltage dividing circuits,
3. The power semiconductor device according to claim 2, further comprising: an operational amplifier that uses a value corresponding to the difference as a current control signal for the semiconductor device.
JP2000311435A 2000-10-12 2000-10-12 Power semiconductor device Expired - Fee Related JP3887741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311435A JP3887741B2 (en) 2000-10-12 2000-10-12 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311435A JP3887741B2 (en) 2000-10-12 2000-10-12 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2002118227A true JP2002118227A (en) 2002-04-19
JP3887741B2 JP3887741B2 (en) 2007-02-28

Family

ID=18791197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311435A Expired - Fee Related JP3887741B2 (en) 2000-10-12 2000-10-12 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP3887741B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191774A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Power control circuit and vehicle
JP2007276174A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Drive signal generation circuit and printer
JP2008124522A (en) * 2008-02-21 2008-05-29 Fuji Electric Fa Components & Systems Co Ltd Installation method for resin-encapsulated semiconductor device
CN109560686A (en) * 2017-09-22 2019-04-02 广东美的制冷设备有限公司 Radiator, the air conditioner of power device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191774A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Power control circuit and vehicle
JP2007276174A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Drive signal generation circuit and printer
JP2008124522A (en) * 2008-02-21 2008-05-29 Fuji Electric Fa Components & Systems Co Ltd Installation method for resin-encapsulated semiconductor device
JP4683059B2 (en) * 2008-02-21 2011-05-11 富士電機システムズ株式会社 Installation method of resin-encapsulated semiconductor device
CN109560686A (en) * 2017-09-22 2019-04-02 广东美的制冷设备有限公司 Radiator, the air conditioner of power device

Also Published As

Publication number Publication date
JP3887741B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US7612534B2 (en) Capacity adjustment apparatus and method of secondary battery
US6515858B2 (en) Thermal distribution system
US9906154B2 (en) Power conversion unit and power conversion device
Maleki et al. Thermal analysis and modeling of a notebook computer battery
JP3300566B2 (en) Power module and power converter
US7554804B2 (en) Electronic module configured for air flow therethrough and system including same
US20220210951A1 (en) Multi-compartment electrical apparatus with shared cooling assembly
JP2002118227A (en) Power semiconductor device
US10342144B1 (en) Power supply with a staggered configuration
CA2656201C (en) Electronic module configured for failure containment and system including same
RU2652427C1 (en) Power transistor unit
US11923766B2 (en) Apparatus and approach to actively balance thermal performance of paralleled devices
TWI303919B (en) Power control system capable of balancing output currents
JP4819457B2 (en) Condensation prevention system for inverter device
JP2001196777A (en) Forced-air cooling device for electronic circuit
US11930623B2 (en) Board structure, electronic apparatus, and method of manufacturing board structure
US20220385081A1 (en) High voltage isolation using discrete non-isolated devices and electrically isolating, thermally conductive substrate
JPS63302736A (en) Uninterruptible power supply
US20240138051A1 (en) Point of load module and heatsink therefor
TWI677279B (en) Power supply device
TWI843407B (en) Server power supply
US20160341487A1 (en) Structure for Cooling Heat Generator and Power Conversion Equipment
JP3092450B2 (en) Active filter main circuit wiring method
US20240074091A1 (en) Directed cooling in heat producing systems
JP2019514320A (en) Power control system with improved thermal performance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees