JP2002117884A - Electric insulation device of flow path and cooling system of fuel cell having this electric insulation device - Google Patents

Electric insulation device of flow path and cooling system of fuel cell having this electric insulation device

Info

Publication number
JP2002117884A
JP2002117884A JP2000311545A JP2000311545A JP2002117884A JP 2002117884 A JP2002117884 A JP 2002117884A JP 2000311545 A JP2000311545 A JP 2000311545A JP 2000311545 A JP2000311545 A JP 2000311545A JP 2002117884 A JP2002117884 A JP 2002117884A
Authority
JP
Japan
Prior art keywords
flow path
liquid
primary
electrical insulation
electric insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000311545A
Other languages
Japanese (ja)
Inventor
Takeshi Ushio
健 牛尾
Shiro Matsuo
史朗 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000311545A priority Critical patent/JP2002117884A/en
Publication of JP2002117884A publication Critical patent/JP2002117884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure an electric insulation resistance of a liquid which flows a flow path without lengthening a length of the flow path, and reducing a cross-section area in which current flows by thinning the flow path section. SOLUTION: Two or more bladed wheels 15, 15 having two or more blades 15a, 15a, and so on, used as a liquid sending part, which rotates by a liquid pressure, are prepared in the above primary side cooling liquid circulation path 4, to secure the electric insulation resistance of the liquid flowing in the flow path, which is electrically conductive. An interval at inside 14a of a revolving body accommodating part 14 of the primary side cooling liquid circulation path 4, which accommodates the above blades 15, 15 in rotating free, and the tips of two or more above blades 15, 15, is set as the interval holding the electric insulation of the cooling liquid, and the above revolving body accommodation part 14, which accommodates the above bladed wheels 15, 15, and the bladed wheels 15, 15, is constituted with a material having high electric insulation resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流路を流れる液であ
って電気的に導通可能な液の電気的絶縁抵抗を確保する
ための流路の電気的絶縁装置およびこの電気的絶縁装置
を有する燃料電池の冷却システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an electrical insulation device for a flow path for ensuring the electrical insulation resistance of a liquid flowing through the flow path and being electrically conductive, and this electrical insulation device. The present invention relates to a fuel cell cooling system.

【0002】[0002]

【従来の技術】一般に、固体高分子型の燃料電池システ
ムは、固体高分子膜(電解質膜)を挟んで一方側にカソ
ード電極を区画し、他方側にアノード電極を区画して構
成されており、カソード電極に供給される供給空気中の
酸素と、アノード電極に供給する供給水素との化学反応
によって発電し、カソード電極及びアノード電極に接続
された外部負荷を駆動する。
2. Description of the Related Art In general, a polymer electrolyte fuel cell system is configured such that a cathode electrode is partitioned on one side and a anode electrode is partitioned on the other side with a polymer electrolyte membrane (electrolyte membrane) interposed therebetween. In addition, power is generated by a chemical reaction between oxygen in supply air supplied to the cathode electrode and supply hydrogen supplied to the anode electrode, and an external load connected to the cathode electrode and the anode electrode is driven.

【0003】図6において、符号111は燃料電池の冷
却システムを示す。この冷却システム111は、燃料電
池112内に区画された冷却通路113に一次側冷却液
循環通路114を接続し、二次側冷却液循環通路115
に介設されたラジエータ117によって冷却した二次側
冷却液と一次側冷却液とを熱交換器116によって熱交
換させ、この熱交換により冷却された一次側冷却液によ
って前記燃料電池112内を冷却する。前記一次側冷却
液循環通路114には、熱交換器116の一次側を迂回
させてバイパス通路118を形成し、前記熱交換器11
6より見て一次側冷却液循環通路114の下流側と前記
バイパス通路118との連通部119にサーモスタット
バルブ120を設けて、このサーモスタットバルブ12
0の切り換えによって、一次側冷却液の温度を燃料電池
112の発電に適した温度に制御する。また、一次側冷
却液循環通路114、二次側冷却液循環通路115に、
それぞれ冷却液を循環させるための循環ポンプ121,
122を設け、各循環ポンプ121,122によって一
次側冷却液、二次側冷却液を強制的に循環する。
In FIG. 6, reference numeral 111 denotes a fuel cell cooling system. This cooling system 111 connects a primary-side coolant circulation path 114 to a coolant path 113 defined in a fuel cell 112, and a secondary-side coolant circulation path 115.
The heat exchange between the secondary coolant and the primary coolant cooled by the radiator 117 provided between the fuel cells 112 is performed by the heat exchanger 116, and the inside of the fuel cell 112 is cooled by the primary coolant cooled by the heat exchange. I do. A bypass passage 118 is formed in the primary coolant circulation passage 114 so as to bypass the primary side of the heat exchanger 116, and the heat exchanger 11
6, a thermostat valve 120 is provided in a communication portion 119 between the downstream side of the primary coolant circulation passage 114 and the bypass passage 118.
By switching to 0, the temperature of the primary side coolant is controlled to a temperature suitable for power generation of the fuel cell 112. In addition, the primary-side coolant circulation passage 114 and the secondary-side coolant circulation passage 115
Circulating pumps 121 for circulating the coolant,
A primary coolant and a secondary coolant are forcibly circulated by respective circulation pumps 121 and 122.

【0004】[0004]

【発明が解決しようとする課題】前記従来の燃料電池の
冷却システム111では、一次側冷却液および二次側冷
却液には、液絡の防止のために、エチレングリコールと
水との混合液が用いられており、一次側冷却液循環通路
114における熱交換器116の上流側と下流側とを連
通する連通路123に、一次側冷却液中の遊離イオンを
処理するためのイオン交換器124が設置されている
が、イオン交換器124のイオン処理能力には経時的な
限界があり、定期的なメンテナンスを実施せざるを得な
い。
In the conventional cooling system 111 for a fuel cell, a mixture of ethylene glycol and water is contained in the primary coolant and the secondary coolant in order to prevent a liquid junction. An ion exchanger 124 for processing free ions in the primary coolant is provided in a communication passage 123 that communicates the upstream and downstream sides of the heat exchanger 116 in the primary coolant circulation passage 114. Although installed, the ion processing capacity of the ion exchanger 124 has a limit over time, and periodic maintenance must be performed.

【0005】そこで、本出願人等は、一次側冷却液循環
通路114を電気的絶縁抵抗の高い材料(樹脂等)で構
成し、一次側冷却液循環通路114の流路断面を小さく
することによって一定の電気的絶縁抵抗を得る方法と、
一次側冷却液循環通路114の通路長を延長することに
よって一定の電気的絶縁抵抗を得る方法とを検討した
が、前者の方法では一次側冷却液の流量の確保が困難で
あり、後者の方法では、装置の小形化を図ることが困難
となる。
Accordingly, the present applicants have made the primary coolant circulation passage 114 a material (resin or the like) having a high electrical insulation resistance and made the primary coolant circulation passage 114 smaller in cross section. A method of obtaining a constant electrical insulation resistance,
A method of obtaining a constant electrical insulation resistance by extending the length of the primary-side coolant circulation passage 114 was examined. However, in the former method, it is difficult to secure a flow rate of the primary-side coolant, and in the latter method, Then, it is difficult to reduce the size of the device.

【0006】そこで、流路の通路長を長くとることな
く、また、流路断面を細くすることなく流路を流れる液
であって電気的に導通可能な液の電気的絶縁抵抗を確保
するために解決すべき技術的課題が生じてくるのであ
り、本発明はこの課題を解決することを目的とする。
Therefore, in order to ensure the electrical insulation resistance of the liquid flowing through the flow path without increasing the length of the flow path and without reducing the cross section of the flow path, the liquid can be electrically conducted. A technical problem to be solved arises, and an object of the present invention is to solve this problem.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
流路を流れる液であって電気的に導通可能な液の電気的
絶縁抵抗を確保すべく、前記流路に液圧によって回転す
る複数の液送り部を有する回転体を設けるとともに、前
記流路の内面と前記複数の液送り部の先端との間を狭く
設定し、前記回転体及びこの回転体を収容する流路の回
転体収容部を電気的絶縁抵抗の高い材料で構成した流路
の電気的絶縁装置を提供するものである。
According to the first aspect of the present invention,
In order to ensure an electrical insulation resistance of a liquid flowing through the flow path and an electrically conductive liquid, the flow path is provided with a rotating body having a plurality of liquid feed portions rotated by hydraulic pressure, and The space between the inner surface of the liquid feeder and the tip of the plurality of liquid feeders is set to be narrow, and the rotary body and the rotary body accommodating part of the flow channel that accommodates the rotary body are formed of a material having a high electrical insulation resistance. An electric insulating device is provided.

【0008】また、請求項2記載の発明は、請求項1記
載の流路の電気的絶縁装置において、前記回転体に回転
駆動手段を取り付けた流路の電気的絶縁装置を提供する
ものである。
According to a second aspect of the present invention, there is provided an electrical insulating device for a flow path according to the first aspect, wherein the rotary body is provided with a rotary drive means. .

【0009】さらに、請求項3記載の発明は、請求項1
記載又は請求項2記載の流路の電気的絶縁装置を、燃料
電池内を冷却するための冷却液循環通路の少なくとも一
カ所に設けた燃料電池の冷却システムを提供するもので
ある。
Further, the invention according to claim 3 is the invention according to claim 1.
An object of the present invention is to provide a cooling system for a fuel cell, wherein the electrical insulation device for a flow path according to the above or claim 2 is provided at at least one position in a coolant circulation passage for cooling the inside of the fuel cell.

【0010】すなわち、請求項1記載の発明では、液圧
によって回転する回転体の複数の液送り部によって送り
出し、前記回転体とこの回転体を収容する流路の回転体
収容部とを電気的絶縁抵抗の高い材料で形成し、複数の
液送り部の先端と流路の内面との間に電気的に導通可能
な液の電気的絶縁抵抗に対応した間隔を形成することに
よって、前記液の電気的絶縁抵抗を確保する。
In other words, according to the first aspect of the present invention, the rotating body which is rotated by the hydraulic pressure is sent out by a plurality of liquid sending portions, and the rotating body and the rotating body accommodating section of the flow path accommodating the rotating body are electrically connected. It is formed of a material having a high insulation resistance, and by forming a gap corresponding to the electrical insulation resistance of the liquid that can be electrically conducted between the tips of the plurality of liquid feed portions and the inner surface of the flow path, Secure electrical insulation resistance.

【0011】また、請求項2記載の発明では、前記回転
体に回転駆動手段を取り付けている。このため、回転駆
動手段によって回転体の回転抵抗の改善、回転体の回転
制御による一次側冷却液循環通路の流量、圧力の制御、
さらには、回転駆動手段の駆動による前記液の強制循環
が可能となる。
According to the second aspect of the present invention, a rotation driving means is attached to the rotating body. For this reason, the rotational drive means improves the rotational resistance of the rotator, controls the flow rate and pressure of the primary coolant circulation passage by controlling the rotation of the rotator,
Further, the forced circulation of the liquid by the driving of the rotation driving means becomes possible.

【0012】さらに、請求項3記載の発明では、請求項
1記載の流路の電気的絶縁装置を、燃料電池内を冷却す
るための冷却液循環通路の少なくとも一カ所に設けるの
で、燃料電池の冷却システムにおける冷却液の液絡を防
止することが可能となり、さらに、請求項2記載の流路
の電気的絶縁装置においては、燃料電池の冷却に必要な
冷却液を循環させて燃料電池を良好に冷却することがで
きる。
Further, according to the third aspect of the present invention, the electrical insulation device for the flow path according to the first aspect is provided at at least one position of a cooling liquid circulation passage for cooling the inside of the fuel cell. It is possible to prevent the liquid junction of the cooling liquid in the cooling system, and in the electric insulation device for the flow path according to the second aspect, the cooling liquid necessary for cooling the fuel cell is circulated to improve the fuel cell. Can be cooled.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る流路の電気的
絶縁装置を適用した燃料電池の冷却システムを図1ない
し図5を参照して詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a fuel cell cooling system to which a flow path electrical insulation device according to the present invention is applied will be described in detail with reference to FIGS.

【0014】図1において、符号1は燃料電池の冷却シ
ステムを示す。この冷却システム1は、燃料電池2内に
区画された冷却通路3の入口と出口とに一次側冷却液循
環通路4の入口と出口とを接続し、二次側冷却液循環通
路5に介設されたラジエータ7によって二次側冷却液を
冷却する。そして、一次側冷却液と二次側冷却液とを熱
交換器6によって熱交換させ、熱交換により冷却された
一次側冷却液によって燃料電池2内を冷却する。
In FIG. 1, reference numeral 1 denotes a fuel cell cooling system. In the cooling system 1, an inlet and an outlet of a primary coolant circulation passage 4 are connected to an inlet and an outlet of a cooling passage 3 partitioned in a fuel cell 2, and the cooling system 3 is interposed in a secondary coolant circulation passage 5. The radiator 7 cools the secondary coolant. Then, heat is exchanged between the primary coolant and the secondary coolant by the heat exchanger 6, and the inside of the fuel cell 2 is cooled by the primary coolant cooled by the heat exchange.

【0015】また、一次側冷却液循環通路4に、熱交換
器6の一次側を迂回させてバイパス通路8を形成し、前
記熱交換器6より見て一次側冷却液循環通路4の下流側
と前記バイパス通路8との連通部9にサーモスタットバ
ルブ10を設けて、このサーモスタットバルブ10の切
り換えによって、一次側冷却液の温度を燃料電池2の発
電に適した温度に制御し、前記一次側冷却液循環通路
4、二次側冷却液循環通路5に設けられた循環ポンプ1
1,12によって一次側冷却液、二次側冷却液を強制的
に循環する。
A bypass passage 8 is formed in the primary coolant circulation passage 4 so as to bypass the primary side of the heat exchanger 6, and the bypass passage 8 is formed on the downstream side of the primary coolant circulation passage 4 as viewed from the heat exchanger 6. A thermostat valve 10 is provided in a communication portion 9 between the fuel cell 2 and the bypass passage 8. By switching the thermostat valve 10, the temperature of the primary coolant is controlled to a temperature suitable for power generation of the fuel cell 2. Circulation pump 1 provided in liquid circulation passage 4 and secondary coolant circulation passage 5
The primary side coolant and the secondary side coolant are forcibly circulated by 1 and 12.

【0016】そして、一次側冷却液の液絡(冷却液を介
しての地絡)を防止するために、前記一次側冷却液循環
通路4の入口側と出口側とに電気的絶縁装置13,13
を設置している。
In order to prevent a liquid junction of the primary side coolant (ground fault via the coolant), an electrical insulating device 13 is provided between the inlet side and the outlet side of the primary side coolant circulation path 4. 13
Is installed.

【0017】図2に詳細に示すように、前記電気的絶縁
装置13は、流路としての一次側冷却液循環通路4の途
中に形成された回転体収容部14と、この回転体収容部
14内に回転自在に収容された回転体としての一対の羽
根車15,15からなる。前記回転体収容部14および
この回転体収容部14に収容される一対の羽根車15,
15は、電気的絶縁のためそれぞれ電気的絶縁抵抗の高
い材料、たとえば、樹脂により形成されており、前記一
対の羽根車15,15は、互いに噛み合った状態で回転
することができるように、前記回転体収容部14内に収
容される。
As shown in detail in FIG. 2, the electrical insulation device 13 includes a rotating body housing portion 14 formed in the middle of the primary side coolant circulation passage 4 as a flow path, and a rotating body housing portion 14. It comprises a pair of impellers 15 as rotating bodies rotatably housed therein. The rotating body housing portion 14 and a pair of impellers 15 housed in the rotating body housing portion 14;
15 is made of a material having a high electrical insulation resistance for electrical insulation, for example, a resin, and the pair of impellers 15 and 15 are rotatably engaged with each other. It is housed in the rotating body housing 14.

【0018】前記回転体収容部14の上流側には一次側
冷却液を通過させるための入口16が形成されるととも
に、下流側に一次側冷却液を吐出するための出口17と
が形成されており、前記液送り部としての羽根車15,
15の羽根15a,15a,…は、前記回転体収容部1
4の入口16から出口17に向かって移動する一次側冷
却液の圧力によって回転されるように形成されている。
An inlet 16 for passing the primary coolant is formed on the upstream side of the rotator housing portion 14, and an outlet 17 for discharging the primary coolant is formed on the downstream side. And an impeller 15 as the liquid feeder,
The 15 blades 15a, 15a,...
4 is formed so as to be rotated by the pressure of the primary-side coolant moving from the inlet 16 to the outlet 17.

【0019】さらに、前記羽根車15,15の羽根15
a,15,…は先端が、前記回転体収容部14の内面1
4a,14aとの間に、一次側冷却液の電気的絶縁に必
要なクリアランスが設定されるように形成され、羽根車
15,15の隣接する羽根15a,15a,…のピッチ
は、羽根車15,15が一次側冷却液の圧力によって前
記回転体収容部14の内面14a,14aに沿って回転
されたとき、少なくとも1以上、好ましくは2以上の羽
根15aの先端が、前記回転体収容部14の内面14
a,14aとの間に、前記クリアランスを形成するよう
に定められる。
Further, the blades 15 of the impellers 15
, a, 15,...
4a, 14a are formed such that a clearance required for electrical insulation of the primary coolant is set, and the pitch of the blades 15a, 15a,. , 15 are rotated along the inner surfaces 14a, 14a of the rotator housing portion 14 by the pressure of the primary-side cooling liquid, the tip of at least one or more, preferably two or more blades 15a is brought into contact with the rotator housing portion 14. Inner surface 14
a, 14a so as to form the clearance.

【0020】また、一対の羽根車15,15は、それぞ
れ隣接する羽根15a,15aと、回転体収容部14の
内面14a,14aによって区画された空間部内に少な
くとも、循環に必要な吐出量の1/2の冷却液を取り込
むことができるように形成される。
The pair of impellers 15, 15 has at least one discharge amount necessary for circulation in a space defined by adjacent blades 15 a, 15 a and inner surfaces 14 a, 14 a of the rotator housing 14. / 2 cooling liquid can be taken in.

【0021】以下、本発明の実施の形態の作用を説明す
る。図1に示すように一次側冷却液循環通路4、及び、
二次側冷却液循環通路5の循環ポンプ11,12を駆動
すると、一次側冷却液循環通路4及び冷却通路3を一次
側冷却液が循環し、二次側冷却液通路5及びラジエータ
7のウォータジャケット(図示せず)内を二次側冷却液
が循環する。
Hereinafter, the operation of the embodiment of the present invention will be described. As shown in FIG. 1, the primary-side coolant circulation passage 4, and
When the circulation pumps 11 and 12 of the secondary-side coolant circulation path 5 are driven, the primary-side coolant circulates through the primary-side coolant circulation path 4 and the cooling path 3, and the water of the secondary-side coolant path 5 and the radiator 7 is discharged. A secondary-side coolant circulates in a jacket (not shown).

【0022】図1及び図2に示すように、前記電気的絶
縁装置13の回転体収容部14の入口16から回転体収
容部14内に入る一次側冷却液の圧力は、一対の羽根車
15,15の羽根15a,15a,…に作用し、羽根車
15,15は、この圧力によって互いに反対向きに回転
する。このとき、羽根車15,15は、前述したピッチ
で羽根車軸15b,15bに形成されているため、回転
時には、常に、少なくとも2枚の羽根15a,15aの
先端と回転体収容部14の内面14aとの間には、一次
側冷却液の電気的絶縁抵抗を保持するための僅少なクリ
アランスが設定される。このため、一次側冷却液の電気
的絶縁抵抗が保持される。
As shown in FIGS. 1 and 2, the pressure of the primary side coolant entering the rotating body housing 14 from the inlet 16 of the rotating body housing 14 of the electrical insulating device 13 is controlled by a pair of impellers 15. , 15, the impellers 15, 15 rotate in opposite directions due to this pressure. At this time, the impellers 15, 15 are formed on the impeller shafts 15b, 15b at the above-mentioned pitch, so that at the time of rotation, the tips of at least two blades 15a, 15a and the inner surface 14a Between them, a small clearance for maintaining the electrical insulation resistance of the primary coolant is set. For this reason, the electrical insulation resistance of the primary coolant is maintained.

【0023】一方、一対の羽根車15,15は、隣接す
る羽根15a,15aと回転体収容部14の内面14
a,14aとの間に区画する空間内に、一次側冷却液の
流量の少なくとも1/2を取り込みながら回転する。こ
のため、一次側冷却液の流路断面を大きく設定せずに必
要な流量が循環し、この一次側冷却液によって、燃料電
池2の内部が良好に冷却される。
On the other hand, a pair of impellers 15, 15
a, and rotates while taking in at least half of the flow rate of the primary-side cooling liquid into a space defined between the first-side cooling liquid and the first-side cooling liquid. Therefore, the required flow rate circulates without setting the flow path cross section of the primary coolant to be large, and the interior of the fuel cell 2 is cooled well by the primary coolant.

【0024】図3は一次側冷却液循環通路4に前記電気
的絶縁装置13を介設した場合と、介設しない場合の管
長(流路長)Lに対する一次側冷却液の電気的絶縁抵抗
の大きさを示す。図中、符号R1は電気的絶縁装置13
を介設しない場合の一次側冷却液の電気的絶縁抵抗値を
示し、符号R2は前記電気的絶縁装置13を介設した場
合の一次側冷却液の電気的絶縁抵抗値を示す。
FIG. 3 shows the electrical insulation resistance of the primary coolant relative to the pipe length (flow path length) L when the electrical insulation device 13 is provided in the primary coolant circulation passage 4 and when it is not provided. Indicates the size. In the figure, reference symbol R1 denotes an electrical insulating device 13
Indicates the electrical insulation resistance value of the primary-side coolant when no electrical insulation is provided, and reference numeral R2 indicates the electrical insulation resistance value of the primary-side coolant when the electrical insulation device 13 is provided.

【0025】この図3から明かなように、一次側冷却液
循環通路4に、前記電気的絶縁装置13を介設すると、
管長Lが同一でも、電気的絶縁抵抗値は一次側冷却液循
環通路4内を流れる一次側冷却液の電気的な絶縁に必要
な電気的絶縁抵抗R2に維持されることになる。
As is apparent from FIG. 3, when the electrical insulating device 13 is provided in the primary coolant circulation passage 4,
Even if the pipe length L is the same, the electrical insulation resistance value is maintained at the electrical insulation resistance R2 necessary for electrical insulation of the primary coolant flowing in the primary coolant circulation passage 4.

【0026】このため、一次側冷却液循環通路4の流路
断面を大きくすることなく一次側冷却液の冷却液循環量
を必要な流量とすることが可能となり、結果として、前
記回転体収容部14を中心とする上流側と下流側の電気
的絶縁を一定に保持して一次側冷却液循環通路4の上流
側と下流側、ひいては、一次側循環通路4と二次側循環
通路5との液絡に起因した地絡をも防止することが可能
となる。
For this reason, it is possible to make the coolant circulation amount of the primary coolant to a necessary flow rate without increasing the cross section of the primary coolant circulation passage 4. The electrical insulation between the upstream side and the downstream side centered at 14 is kept constant, and the upstream side and the downstream side of the primary side coolant circulation path 4, and thus the primary side circulation path 4 and the secondary side circulation path 5 are connected. It is also possible to prevent a ground fault caused by a liquid junction.

【0027】図4は前記電気的絶縁装置13を容積型の
ポンプとして駆動できるようにした実施の形態を示す。
この実施の形態では、羽根車軸15b,15bに歯車1
8,19がそれぞれ取り付けられ、いずれか一方の羽根
車軸15bに回転駆動手段としてのモータ20が連結さ
れる。もちろん、歯車18,19は互いに噛み合わされ
る。
FIG. 4 shows an embodiment in which the electrical insulation device 13 can be driven as a positive displacement pump.
In this embodiment, the gear 1 is attached to the impeller shafts 15b, 15b.
8 and 19 are attached, respectively, and a motor 20 as a rotation driving means is connected to one of the impeller shafts 15b. Of course, the gears 18, 19 are meshed with each other.

【0028】従って、係る構成によれば、一対の羽根車
15,15の回転によって一次側冷却液の循環に対する
羽根車15,15の回転抵抗を軽減できる。なお、この
逆に、羽根車15,15の回転制御により、一次側冷却
液循環通路4の流量、圧力を制御すること、前記モータ
20の回転駆動力によって一次側冷却液を強制循環する
こともできる。
Therefore, according to this configuration, the rotation resistance of the impellers 15, 15 with respect to the circulation of the primary coolant can be reduced by the rotation of the pair of impellers 15, 15. Conversely, it is also possible to control the flow rate and pressure of the primary-side coolant circulation path 4 by controlling the rotation of the impellers 15, 15 and to forcibly circulate the primary-side coolant by the rotational driving force of the motor 20. it can.

【0029】図5はルーツ形の容積ポンプ状に構成され
た電気的絶縁装置13aを示す。この場合、回転体2
1,21の回転軸21b,21bのそれぞれに、前記歯
車18,19が取り付けられ、いずれか一方の回転軸2
1bに回転駆動手段としてのモータ20が連結され、歯
車18,19を互いに噛み合わせている。
FIG. 5 shows an electrical insulating device 13a configured as a roots volume pump. In this case, the rotating body 2
The gears 18 and 19 are attached to the rotation shafts 21b and 21b of the rotation shafts 21 and 21 respectively.
A motor 20 as a rotation driving means is connected to 1b, and the gears 18, 19 mesh with each other.

【0030】そして、回転体収容部22及びこれに回転
自在に収容される一対の回転体21,21は、電気的絶
縁のため、それぞれ電気的絶縁抵抗の高い材料、たとえ
ば、樹脂により形成され、一対の回転体21,21は、
互いに噛み合って回転する状態で回転体収容部22内に
収容される。
The rotating body housing 22 and the pair of rotating bodies 21 and 21 rotatably housed therein are formed of a material having a high electrical insulation resistance, for example, a resin, for electrical insulation. The pair of rotating bodies 21 and 21
It is housed in the rotating body housing part 22 in a state of being engaged with each other and rotating.

【0031】前記回転体収容部22は一次側冷却液を通
過させるための入口23と出口24とが形成されてい
て、回転体21,21の各液送り部21a,21a,2
1aは、回転体収容部22の入口23から出口24に向
かって移動する一次側冷却液を圧送するように構成され
る。
The rotary body housing 22 has an inlet 23 and an outlet 24 for allowing the primary side coolant to pass therethrough, and the liquid feeders 21a, 21a, 2 of the rotary bodies 21 and 21 are formed.
1 a is configured to pump the primary-side coolant that moves from the inlet 23 to the outlet 24 of the rotator housing 22.

【0032】そして、各回転体21の液送り部21a,
21a,21aは、先端が、前記回転体収容部22の内
面22aとの間に、一次側冷却液の電気的絶縁のために
必要なクリアランスを設定するように形成され、一対の
回転体21,21の隣接する液送り部21a,21aの
ピッチは、一次側冷却液の圧力によって前記回転体2
1,21が前記回転体収容部22の内面22aに沿って
回転されたとき、少なくとも1以上、好ましくは2以上
の液送り部21aの先端が前記回転体収容部22の内面
22aとの間に電気的な絶縁のために必要なクリアラン
スを形成するように決定される。
Then, the liquid feed portions 21a,
21a, 21a are formed such that a tip thereof sets a clearance required for electrical insulation of the primary-side coolant between the inner surface 22a of the rotator housing 22 and a pair of rotators 21, The pitch of the liquid sending portions 21a, 21a adjacent to each other is determined by the pressure of the primary side cooling liquid.
When the first and second components 21 and 21 are rotated along the inner surface 22a of the rotator housing portion 22, at least one or more, preferably two or more liquid feed portions 21a are positioned between the tip of the liquid feeder 21a and the inner surface 22a of the rotator housing portion 22. It is determined to provide the necessary clearance for electrical insulation.

【0033】さらに、一対の回転体21,21の隣接す
る液送り部21a,21aと、前記回転体収容部22の
内面22aとによって区画された空間部に、少なくとも
一次側冷却液の循環に必要な吐出量の1/2の一次側冷
却液が取り込まれるように設定される。
Further, at least a primary coolant is required to circulate in a space defined by the liquid feed portions 21a, 21a adjacent to the pair of rotating bodies 21, 21 and the inner surface 22a of the rotating body housing 22. The primary cooling liquid is set so as to be の of the appropriate discharge amount.

【0034】従って、回転時には、少なくとも2つの液
送り部21a,21aの先端と回転体収容部22の内面
22aとの間で一次側冷却液の電気的絶縁抵抗が確保さ
れ、隣接する液送り部21a,21aと回転体収容部2
2の内面22aとの間に区画された空間内に、一次側冷
却液の流量の少なくとも1/2を取り込んで送り出すこ
とができる。
Therefore, at the time of rotation, the electrical insulation resistance of the primary-side coolant is ensured between the tips of the at least two liquid feed portions 21a, 21a and the inner surface 22a of the rotator housing 22, and the adjacent liquid feed portions 21a, 21a and rotating body housing 2
At least one half of the flow rate of the primary coolant can be taken into and sent out into the space defined between the second coolant and the inner surface 22a.

【0035】このため、結果として、一次側冷却液の流
路断面を大きく設定せずに、必要な流量の一次側冷却液
を循環でき、この一次側冷却液によって、燃料電池2の
内部を良好に冷却できる。
As a result, it is possible to circulate the required amount of the primary coolant without setting the flow path cross section of the primary coolant to be large. Can be cooled.

【0036】もちろん、前記モータ20によって、回転
体21の回転を制御することにより、一次側冷却液循環
通路4の流量、圧力を制御するようにしてもよい。
Of course, the flow rate and pressure of the primary coolant circulation path 4 may be controlled by controlling the rotation of the rotating body 21 by the motor 20.

【0037】なお、本実施の形態では、前記電気的絶縁
装置13,13,13aを燃料電池の冷却システム1に
取り付ける例を説明をしたが、電気的絶縁が必要な種々
の流路に用いられるものとする。このように本発明は本
発明の技術的思想を逸脱しない限り種々の改変が可能で
あり、本発明がこの改変された発明に及ぶことは勿論で
ある。
In this embodiment, an example has been described in which the electrical insulation devices 13, 13, and 13a are attached to the cooling system 1 for a fuel cell. However, the electrical insulation devices 13, 13, and 13a are used for various flow paths requiring electrical insulation. Shall be. As described above, the present invention can be variously modified without departing from the technical idea of the present invention, and it goes without saying that the present invention extends to the modified invention.

【0038】[0038]

【発明の効果】請求項1記載の発明は前記一実施の形態
に詳述したように、流路を長くとることなく、また、流
路断面を細くして電流の流れる断面積を減らすことなく
流路を流れる液であって電気的に導通可能な液の電気的
絶縁抵抗を確保することができるとともに、小型に形成
することができる等、正に著大なる効果を発揮する発明
である。
According to the first aspect of the present invention, as described in detail in the first embodiment, the length of the flow path is not increased, and the cross section of the flow path is reduced by reducing the cross section of the flow path. This is an invention that exhibits a very great effect, such as being able to secure electrical insulation resistance of a liquid flowing through a flow path and being electrically conductive, and being able to be formed in a small size.

【0039】さらに、請求項2記載の発明は、回転体の
回転抵抗を改善できるとともに、逆に、回転体の回転を
制御することにより、一次側冷却液循環通路の流量、圧
力を制御すること、液を強制循環することができるとい
う優れた効果を発揮する。
Further, according to the present invention, the rotational resistance of the rotator can be improved, and conversely, the flow rate and the pressure of the primary coolant circulation path can be controlled by controlling the rotation of the rotator. It has an excellent effect that the liquid can be forcibly circulated.

【0040】さらに、請求項3記載の発明は、燃料電池
の冷却システムにおける冷却液の液絡を防止することが
可能となるとともに、燃料電池の冷却に必要な冷却液を
循環させて冷却することができる等、正に、著大なる効
果を発揮する発明である。
Further, according to the third aspect of the present invention, it is possible to prevent a liquid junction of the cooling liquid in the cooling system of the fuel cell, and to circulate and cool the cooling liquid necessary for cooling the fuel cell. It is an invention that exhibits a truly remarkable effect, for example,

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示し、燃料電池の冷却
システムを示す解説図である。
FIG. 1 is a diagram illustrating a fuel cell cooling system according to an embodiment of the present invention.

【図2】本発明にかかる流路の電気的絶縁装置の構造を
示す解説図である。
FIG. 2 is an explanatory view showing a structure of a flow path electrical insulation device according to the present invention.

【図3】本発明にかかる流路の電気的絶縁装置による電
気抵抗値の変化を示す図である。
FIG. 3 is a diagram showing a change in an electric resistance value by an electric insulation device for a flow channel according to the present invention.

【図4】本発明にかかる流路の電気的絶縁装置に回転駆
動手段としてのモータを取り付けた状態を示す解説図で
ある。
FIG. 4 is an explanatory view showing a state in which a motor as a rotation driving means is attached to the electrical insulation device for the flow channel according to the present invention.

【図5】本発明にかかる流路の電気的絶縁装置をルーツ
形の容積ポンプ状に形成した一実施の形態を示す解説図
である。
FIG. 5 is an explanatory view showing an embodiment in which the electrical insulating device for a flow channel according to the present invention is formed in a roots-shaped positive displacement pump shape.

【図6】従来例を示し、燃料電池の冷却システムを示す
解説図である。
FIG. 6 is an explanatory view showing a conventional example and showing a cooling system for a fuel cell.

【符号の説明】[Explanation of symbols]

1 冷却システム 2 燃料電池 4 一次側冷却液循環通路 15 羽根車(回転体) 15a 羽根(液送り部) 14 回転体収容部 14a 回転体収容部の内面 DESCRIPTION OF SYMBOLS 1 Cooling system 2 Fuel cell 4 Primary-side cooling-fluid circulation path 15 Impeller (rotating body) 15a Blade (liquid sending part) 14 Rotating body housing part 14a Inner surface of rotating body housing part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流路を流れる液であって電気的に導通可
能な液の電気的絶縁抵抗を確保すべく、前記流路に液圧
によって回転する複数の液送り部を有する回転体を設け
るとともに、前記流路の内面と前記複数の液送り部の先
端との間を狭く設定し、前記回転体及びこの回転体を収
容する流路の回転体収容部を電気的絶縁抵抗の高い材料
で構成したことを特徴とする流路の電気的絶縁装置。
A rotator having a plurality of liquid feed portions which are rotated by liquid pressure is provided in said flow path in order to secure an electrical insulation resistance of a liquid flowing through the flow path and being electrically conductive. In addition, the gap between the inner surface of the flow path and the tip of the plurality of liquid feed sections is set to be narrow, and the rotator and the rotator housing section of the flow path that accommodates the rotator are made of a material having a high electrical insulation resistance. An electrical insulation device for a flow path, comprising:
【請求項2】 前記回転体に回転駆動手段を取り付けた
請求項1記載の流路の電気的絶縁装置。
2. The electrical insulation device for a flow path according to claim 1, wherein a rotation driving means is attached to said rotating body.
【請求項3】 請求項1記載又は請求項2記載の流路の
電気的絶縁装置を、燃料電池内を冷却するための冷却液
循環通路の少なくとも一カ所に設けたことを特徴する燃
料電池の冷却システム。
3. The fuel cell according to claim 1, wherein the electrical insulating device for the flow path according to claim 1 or 2 is provided at least at one position of a coolant circulation passage for cooling the inside of the fuel cell. Cooling system.
JP2000311545A 2000-10-12 2000-10-12 Electric insulation device of flow path and cooling system of fuel cell having this electric insulation device Pending JP2002117884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311545A JP2002117884A (en) 2000-10-12 2000-10-12 Electric insulation device of flow path and cooling system of fuel cell having this electric insulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311545A JP2002117884A (en) 2000-10-12 2000-10-12 Electric insulation device of flow path and cooling system of fuel cell having this electric insulation device

Publications (1)

Publication Number Publication Date
JP2002117884A true JP2002117884A (en) 2002-04-19

Family

ID=18791286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311545A Pending JP2002117884A (en) 2000-10-12 2000-10-12 Electric insulation device of flow path and cooling system of fuel cell having this electric insulation device

Country Status (1)

Country Link
JP (1) JP2002117884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014019544A1 (en) 2014-12-23 2016-06-23 Daimler Ag Device for increasing the electrical insulation resistance
DE102015004719A1 (en) 2014-12-23 2016-06-23 Daimler Ag Device for increasing the electrical insulation resistance
DE102015004675A1 (en) 2015-04-09 2016-10-13 Daimler Ag Method for increasing the electrical insulation resistance
US11302936B2 (en) 2018-07-03 2022-04-12 Toyota Jidosha Kabushiki Kaisha Fuel cell cooling system with electrical insulating coolant or heat exchanger structured by electrical insulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014019544A1 (en) 2014-12-23 2016-06-23 Daimler Ag Device for increasing the electrical insulation resistance
DE102015004719A1 (en) 2014-12-23 2016-06-23 Daimler Ag Device for increasing the electrical insulation resistance
DE102015004675A1 (en) 2015-04-09 2016-10-13 Daimler Ag Method for increasing the electrical insulation resistance
US11302936B2 (en) 2018-07-03 2022-04-12 Toyota Jidosha Kabushiki Kaisha Fuel cell cooling system with electrical insulating coolant or heat exchanger structured by electrical insulator

Similar Documents

Publication Publication Date Title
US7402355B2 (en) Cooling method for fuel cell
US6860349B2 (en) Cooling system for fuel cell powered vehicle and fuel cell powered vehicle employing the same
US20040001985A1 (en) Fuel cell cooling system
US7534514B2 (en) Polymer electrolyte membrane fuel cell stack
US20040001984A1 (en) Fuel cell cooling system for low coolant flow rate
JP2005032696A (en) Fuel cell system
US10724645B2 (en) Three-way valve
JP2008181783A (en) Fuel cell
US20040038113A1 (en) Fuel cell and method of operating the same
JP2002117884A (en) Electric insulation device of flow path and cooling system of fuel cell having this electric insulation device
JP2001339808A (en) Device for cooling fuel cell car
JP5543292B2 (en) In-vehicle fuel cell system
JP2004158279A (en) Fuel cell cooling device of fuel cell electric vehicle
JP3643069B2 (en) Fuel cell cooling method
JP2001339807A (en) Device for cooling fuel cell car
JP2014143070A (en) Fuel cell stack
JP2002110205A (en) Cooling device for fuel cell
JP2006019123A (en) Fuel cell system
JP2005340029A (en) Redox flow battery system
CN220253282U (en) Cooling system of fuel cell
JP2004335369A (en) Insulation system for fuel cell cooling system
JP2003123804A (en) Cooling method of fuel cell
KR20220166059A (en) Fuel cell system
KR20230049439A (en) Valve assembly and fuel cell system
JP2024031133A (en) fuel cell system