JP2002113459A - Method for controlling pumping of polluted ground water and system for cleaning polluted ground water - Google Patents

Method for controlling pumping of polluted ground water and system for cleaning polluted ground water

Info

Publication number
JP2002113459A
JP2002113459A JP2000308676A JP2000308676A JP2002113459A JP 2002113459 A JP2002113459 A JP 2002113459A JP 2000308676 A JP2000308676 A JP 2000308676A JP 2000308676 A JP2000308676 A JP 2000308676A JP 2002113459 A JP2002113459 A JP 2002113459A
Authority
JP
Japan
Prior art keywords
groundwater
pumping
amount
purification
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000308676A
Other languages
Japanese (ja)
Other versions
JP4537562B2 (en
Inventor
Toshiro Hatake
俊郎 畠
Toshihito Kondo
敏仁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2000308676A priority Critical patent/JP4537562B2/en
Publication of JP2002113459A publication Critical patent/JP2002113459A/en
Application granted granted Critical
Publication of JP4537562B2 publication Critical patent/JP4537562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To clean ground water efficiently by correcting the amount of ground water to be pumped up by a pump properly corresponding to the variation of the concentration of contaminants in the ground water which changes in association with pumping and the risk of a ground environment. SOLUTION: A submergible motor pump 3 for pumping up polluted ground water is installed in a pumping well 1, and a flow meter 5 and a concentration sensor 6 are fitted to a pumping pipe 4 extended from the discharge port of the pump 3 to the ground. A water level sensor 7 is installed in a ground water monitoring well 2. A fuzzy controller operates the optimum amount of pumping in consideration of the contribution to ground water cleaning and risk to the ground environment from the change of ground water level ΔH obtained from the amount of pumping Q(t) per unit time measured by the flow meter 5, the change of a pollutant concentration d(t) obtained from a measured value by the concentration sensor 6, and the measured value of a ground water level GWL by the water level sensor 7 with the use of a membership function and a fuzzy inference rule by fuzzy inference and controls a driving device 9 for driving the pump 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚染地下水を浄化
するための井戸におけるポンプによる揚水量を適正に制
御するための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for properly controlling a pumping amount in a well for purifying contaminated groundwater.

【0002】[0002]

【従来の技術】近年、例えば家庭や工場からの廃棄物
や、農薬等の汚染物質による地下水の汚染が問題になっ
ている。そして、このような汚染地下水の浄化方法の一
種として、従来から、汚染領域の地盤に所要数の井戸を
掘削して、汚染地盤領域内の汚染地下水をポンプで汲み
上げて浄化し、この浄化した水を汚染地盤領域内に復水
し浸透させることによって、汚染地盤領域の浄化を図る
方法が知られている。
2. Description of the Related Art In recent years, contamination of groundwater by contaminants such as wastes from households and factories and agricultural chemicals has become a problem. As a method of purifying such contaminated groundwater, conventionally, a required number of wells have been excavated in the ground of the contaminated area, and the contaminated groundwater in the contaminated ground area has been pumped up and purified. There is known a method of purifying a contaminated ground region by condensing water into a contaminated ground region and allowing the contaminated ground region to permeate.

【0003】[0003]

【発明が解決しようとする課題】このような汚染地下水
の揚水井戸においては、予め汚染地下水分布状況の調査
により設定した計画揚水量に基づいて、水中ポンプの運
転を行っている。しかしながら、このような方法では、
揚水に伴って変化する地下水の汚染濃度の変化に対応す
ることができず、事前調査時との誤差を生じることが多
い。しかも、揚水量によっては、近隣の井戸枯れや、地
盤沈下といった弊害を来すおそれもあり、このため、当
初の揚水計画どおりに浄化を行うことが困難であった。
In such a pumped well of contaminated groundwater, a submersible pump is operated based on a planned pumping amount set in advance by investigating the distribution of contaminated groundwater. However, in such a method,
It is not possible to cope with changes in the concentration of contaminants in groundwater that change with pumping, which often results in errors from the time of the preliminary survey. In addition, depending on the amount of pumped water, there is a risk that the wells nearby will die or the land will sink, which makes it difficult to purify the water as planned.

【0004】本発明は、上記のような問題に鑑みてなさ
れたもので、その技術的課題とするところは、揚水に伴
って変化する地下水汚染濃度の変化や、地盤環境のリス
クに対応して、ポンプによる揚水量を適切に補正して効
率良く地下水の浄化を行うことにある。
[0004] The present invention has been made in view of the above-mentioned problems, and its technical subjects are to respond to changes in the concentration of groundwater contaminants that change with pumping and risks to the ground environment. Another object of the present invention is to efficiently correct the amount of water pumped by a pump and efficiently purify groundwater.

【0005】[0005]

【課題を解決するための手段】上述した技術的課題を有
効に解決するため、本発明に係る汚染地下水の揚水制御
方法は、汚染地下水の揚水井戸からの揚水による地下水
浄化への貢献度を地下水の汚染濃度の変化量及び単位時
間あたりの揚水量を入力とするファジイ推論により評価
し、前記揚水による地盤環境へのリスクを地下水位変化
量又は地盤沈下量を入力とするファジイ推論により評価
し、前記地下水浄化への貢献度の評価データ及び地盤環
境へのリスクの評価データを入力とするファジイ推論に
より最適揚水量を決定し、この最適揚水量に基づいて揚
水を制御するものである。
SUMMARY OF THE INVENTION In order to effectively solve the above-mentioned technical problems, a method of controlling the pumping of contaminated groundwater according to the present invention is directed to a method of controlling the degree of contribution to groundwater purification by pumping contaminated groundwater from a pumping well. Evaluate by fuzzy inference which inputs the amount of change in pollution concentration and the amount of pumped water per unit time, and evaluate the risk to the ground environment by the pumping by fuzzy inference which inputs the amount of groundwater level change or the amount of land subsidence, The optimum pumping amount is determined by fuzzy inference using the evaluation data of the degree of contribution to groundwater purification and the evaluation data of the risk to the ground environment, and the pumping is controlled based on the optimum pumping amount.

【0006】なお、ここでいう「地盤環境のリスク」と
しては、例えば地下水位低下による地盤沈下や、近隣の
井戸枯れ等が挙げられる。
[0006] The "risk of the ground environment" mentioned here includes, for example, land subsidence due to a drop in groundwater level, withering of a nearby well, and the like.

【0007】上記本発明に係る汚染地下水の揚水制御方
法において、地下水浄化への貢献度e(t)は、地下水中の
汚染物質の濃度変化量をd(t)、揚水量をQ(t)として、次
式 e(t)={d(t−1)−d(t)}/Q(t) …(1) により評価するものである。
In the method for controlling the pumping of contaminated groundwater according to the present invention, the degree of contribution e (t) to groundwater purification is such that the amount of change in the concentration of pollutants in groundwater is d (t) and the amount of pumping is Q (t). The following equation e (t) = {d (t−1) −d (t)} / Q (t) (1)

【0008】上記本発明に係る汚染地下水の揚水制御方
法において、最適揚水量の決定は、地下水浄化への貢献
度の評価データとして平面図形で表されるメンバーシッ
プ関数と、地盤環境へのリスクの評価データとして平面
図形で表されるメンバーシップ関数を重合し、その重心
を求めることにより行うものである。
[0008] In the above-mentioned method of controlling the pumping of contaminated groundwater according to the present invention, the determination of the optimum pumping amount is based on a membership function represented by a plane figure as evaluation data of the degree of contribution to groundwater purification, and a risk to the ground environment. This is performed by superimposing a membership function represented by a plane figure as evaluation data and obtaining the center of gravity.

【0009】上記本発明に係る汚染地下水の揚水制御方
法においては、上記式(1)により求められた地下水浄
化への貢献度e(t)から、浄化の終了又はシステムの異常
の発生を判断する。
In the method of controlling the pumping of contaminated groundwater according to the present invention, the end of the purification or the occurrence of an abnormality in the system is determined from the degree of contribution e (t) to the purification of the groundwater obtained by the above equation (1). .

【0010】上記本発明に係る汚染地下水の揚水制御方
法を実現するため、本発明に係る汚染地下水浄化システ
ムは、揚水井戸に設置され地下水を揚水するポンプと、
前記ポンプで揚水される地下水の単位時間あたりの揚水
量を計測する流量計測手段と、揚水井戸から揚水される
地下水の汚染濃度を計測する濃度計測手段と、地下水位
監視井戸に設置されて地下水位を計測する水位計測手段
と、前記ポンプの駆動を制御するファジイコントローラ
とを備え、前記ファジイコントローラは、汚染地下水の
揚水井戸からの揚水による地下水浄化への貢献度を前記
濃度計測手段による計測値から求められた地下水の汚染
濃度の変化量及び前記流量計測手段により計測された単
位時間あたりの揚水量を入力とするファジイ推論により
評価し、揚水による地盤環境へのリスクを前記水位計測
手段による計測値から求められた地下水位変化量又は地
盤沈下量を入力とするファジイ推論により評価し、前記
地下水浄化への貢献度の評価データ及び地盤環境へのリ
スクの評価データを入力とするファジイ推論により求め
られる最適揚水量に基づいて制御データを出力するもの
である。
[0010] In order to realize the method for controlling the pumping of contaminated groundwater according to the present invention, a contaminated groundwater purification system according to the present invention includes a pump installed in a pumping well and pumping groundwater;
Flow rate measuring means for measuring the amount of groundwater pumped by the pump per unit time; concentration measuring means for measuring the concentration of contaminated groundwater pumped from a pumping well; and a groundwater level installed in the groundwater level monitoring well. And a fuzzy controller for controlling the driving of the pump, wherein the fuzzy controller determines the degree of contribution to groundwater purification by pumping contaminated groundwater from a pumping well from the measured value by the concentration measuring unit. Estimated by fuzzy inference with the input amount of change in groundwater contamination concentration obtained and the amount of pumped water per unit time measured by the flow rate measuring means, the risk to the ground environment due to pumping is measured by the water level measuring means. Is evaluated by fuzzy inference using the groundwater level change amount or the land subsidence amount obtained from And it outputs the control data based on the optimal pumping amount obtained by the fuzzy inference to input evaluation data of risk to every evaluation data and soil environment.

【0011】[0011]

【発明の実施の形態】図1は、本発明に係る汚染地下水
浄化システムの好ましい実施の形態を示す説明図で、図
中の符号Gは汚染領域の地盤、GWLはこの地盤Gにお
ける地下水位である。地盤Gには、ボーリング等により
揚水井戸1及び地下水位監視井戸2が削孔される。
FIG. 1 is an explanatory view showing a preferred embodiment of a contaminated groundwater purification system according to the present invention. In the drawing, reference symbol G denotes the ground in the contaminated area, and GWL denotes the groundwater level in the ground G. is there. A pumping well 1 and a groundwater level monitoring well 2 are drilled in the ground G by boring or the like.

【0012】揚水井戸1には、地下水位GWLよりも十
分深い位置に、地下水を揚水する水中ポンプ3が設置さ
れており、その吐出口から地上へ延在された揚水管4に
は、流量計5及び濃度センサ6が設けられている。流量
計5は、揚水井戸1から水中ポンプ3で揚水される地下
水の単位時間あたりの揚水量を計測するものであり、濃
度センサ6は、揚水された地下水の汚染濃度を計測する
ものである。一方、地下水位監視井戸2は、揚水井戸1
からの揚水による井戸枯れや地盤沈下の影響が高いと考
えられる場所に設けられ、地下水位GWLを計測する水
位センサ7が設置されている。
The pumping well 1 is provided with a submersible pump 3 for pumping groundwater at a position sufficiently deeper than the groundwater level GWL, and a pump 4 extending from the discharge port to the ground has a flow meter. 5 and a density sensor 6 are provided. The flow meter 5 measures the amount of groundwater pumped from the pumping well 1 by the submersible pump 3 per unit time, and the concentration sensor 6 measures the contaminated concentration of the pumped groundwater. On the other hand, the groundwater level monitoring well 2 is
A water level sensor 7 for measuring a groundwater level GWL is provided in a place where it is considered that the effects of well withering and ground subsidence due to pumping water from the ground are high.

【0013】流量計5濃度センサ6及び水位センサ7の
計測データは、ファジイコントローラ8に入力される。
このファジイコントローラ8は、各計測データを一時的
に記憶するデータメモリ81と、後述する各メンバーシ
ップ関数及びファジイ推論ルールが記憶されたファジイ
推論用メモリ82と、各計測データから、各メンバーシ
ップ関数及びファジイ推論ルールに基づいてファジイ推
論演算を実行する演算部83とを備える。
The measurement data of the flow meter 5, the concentration sensor 6, and the water level sensor 7 are input to a fuzzy controller 8.
The fuzzy controller 8 includes a data memory 81 for temporarily storing each measurement data, a fuzzy inference memory 82 for storing each membership function and fuzzy inference rules to be described later, and a membership function from each measurement data. And an operation unit 83 for executing a fuzzy inference operation based on a fuzzy inference rule.

【0014】詳しくは、ファジイコントローラ8は、ま
ずファジイ推論の前件部として、流量計5により計測さ
れた単位時間あたりの揚水量Q(t)と、濃度センサ6によ
る計測値から求められた地下水の汚染濃度変化量d(t)
と、水位センサ7による地下水位GWLの計測値から求
められた地下水位変化量又は地盤沈下量ΔHとを、それ
ぞれについて予め定められた平面図形で表されるメンバ
ーシップ関数に適用し、かつ予め定められたファジイ推
論ルールを用いてファジイ推論演算を実行し、これによ
ってファジイ推論の後件部として得られた各平面図形に
よるメンバーシップ関数データを合成し、その重心位置
を求めることによって、地下水浄化への貢献度と、地盤
沈下や近隣の井戸枯れといった地盤環境へのリスクとを
考慮した最適な揚水量となるように、水中ポンプ3のモ
ータを駆動させる駆動装置9を制御するものである。
More specifically, the fuzzy controller 8 firstly serves as an antecedent part of the fuzzy inference, with the pumping rate Q (t) per unit time measured by the flow meter 5 and the groundwater calculated from the value measured by the concentration sensor 6. Contamination concentration change d (t)
And the groundwater level change amount or the land subsidence amount ΔH obtained from the measured value of the groundwater level GWL by the water level sensor 7 are applied to a membership function represented by a predetermined plane figure for each, and The fuzzy inference operation is performed using the obtained fuzzy inference rules, whereby the membership function data of each plane figure obtained as a consequent part of the fuzzy inference is synthesized, and the center of gravity position is obtained to purify groundwater. The driving device 9 that drives the motor of the submersible pump 3 is controlled so that the optimum pumping amount is obtained in consideration of the contribution to the above and the risk to the ground environment such as the land subsidence and the death of the nearby well.

【0015】また、地下水浄化への貢献度e(t)の評価
は、単位時間あたりの揚水量Q(t)と、地下水の汚染濃度
変化量d(t)により、次式 e(t)={d(t−1)−d(t)}/Q(t) …(1) によって行われる。
The evaluation of the degree of contribution e (t) to groundwater purification is based on the pumping rate Q (t) per unit time and the change in groundwater contamination concentration d (t). {d (t−1) −d (t)} / Q (t) (1)

【0016】すなわち、この実施の形態による汚染地下
水浄化システムは、上記式(1)によって求められる貢
献度e(t)が目標値へ向かって収束するように、揚水量Q
(t)を制御するものである。したがって、e(t)が目標値
になったら、その時点で浄化終了と判断して、水中ポン
プ3による揚水を停止するものであり、e(t)が目標値へ
向けて収束せずに大きく乖離したような場合にはシステ
ムの異常が発生したものと判断することができる。
That is, the contaminated groundwater purification system according to this embodiment has a pumping amount Q such that the contribution e (t) obtained by the above equation (1) converges toward the target value.
(t) is controlled. Therefore, when e (t) reaches the target value, it is determined that the purification is completed at that point, and the pumping by the submersible pump 3 is stopped, and the e (t) does not converge toward the target value and becomes large. If there is a deviation, it can be determined that a system abnormality has occurred.

【0017】地下水浄化への貢献度による揚水量の演算 地下水浄化への貢献度による揚水量の演算においては、
まず、流量計5により計測された単位時間あたりの揚水
量Q(t)及び濃度センサ6による計測値から求められた地
下水の汚染濃度変化量d(t)の二つの入力データを、それ
ぞれ、ファジイ推論における前件部のメンバーシップ関
数に当てはめる。揚水量のメンバーシップ関数は、図2
に示されるように、横軸に揚水量、縦軸に適合度をとっ
てあり、汚染濃度変化量のメンバーシップ関数は、図3
に示されるように、横軸に汚染濃度変化量、縦軸に適合
度をとってある。
Calculation of Pumped Amount Based on Contribution to Groundwater Purification In calculation of pumped water based on contribution to groundwater purification,
First, two input data of a pumping amount Q (t) per unit time measured by the flow meter 5 and a pollutant concentration change amount d (t) obtained from the measurement value of the concentration sensor 6 are respectively fuzzy. This applies to the membership function in the antecedent part of inference. Figure 2 shows the membership function for pumped water.
As shown in Fig. 3, the horizontal axis shows the pumping amount and the vertical axis shows the degree of conformity.
As shown in FIG. 7, the horizontal axis indicates the amount of change in the concentration of contamination, and the vertical axis indicates the degree of conformity.

【0018】例えば単位時間あたりの揚水量がQ(t)a、
地下水の汚染濃度変化量がd(t)aであった場合、これら
のデータを、それぞれ対応するメンバーシップ関数に当
てはめると、揚水量は、図2に示されるように「目標範
囲」で適合度0.7、汚染濃度変化量は、図3に示され
るように「やや多い」で適合度0.8である。そしてフ
ァジイ推論における前件部では、AND条件となる複数
の適合度のうち小さいほうを採用するから、地下水浄化
への貢献度の適合度は0.7となる。
For example, the pumping amount per unit time is Q (t) a,
When the amount of change in the pollution concentration of groundwater is d (t) a, when these data are applied to the corresponding membership functions, the pumped water yield is shown in FIG. As shown in FIG. 3, the amount of change in the contamination concentration is “slightly large” and the degree of conformity is 0.8. Then, in the antecedent part of the fuzzy inference, since the smaller one of a plurality of fitness levels serving as AND conditions is adopted, the fitness level of contribution to groundwater purification is 0.7.

【0019】次に、上記揚水量及び汚染濃度変化量のデ
ータを、下の表1に示されるようなファジイ推論ルール
1に適合させる。上述の例では、揚水量は「目標範囲」
であり、汚染濃度変化量は「やや多い」であるから、こ
れをファジイ推論ルール1に適合させた場合、揚水変化
量は「やや多い」となる。
Next, the data of the amount of pumped water and the amount of change in the concentration of contamination are adapted to fuzzy inference rule 1 as shown in Table 1 below. In the above example, the pumping amount is "target range"
Since the amount of change in the concentration of contamination is "slightly large", if this is adapted to the fuzzy inference rule 1, the amount of change in the pumped water is "slightly large".

【表1】 [Table 1]

【0020】次に、上述のようにして得られた適合度及
び揚水変化量のデータを、ファジイ推論における後件部
に適合させる。上述の例においては、揚水変化量は「や
や多い」、地下水浄化への貢献度の適合度は0.7であ
るから、地下水浄化への貢献度の評価による最適揚水量
Qは、図4に示されるファジイ推論後件部のメンバー
シップ関数に、「やや多い」における適合度0.7以下
の実線太枠で示される台形状の図形Aの重心Gの横軸
座標として求められる。
Next, the data of the degree of conformity and the amount of change in pumped water obtained as described above are adapted to the consequent part in the fuzzy inference. In the above example, since the pumping variation is “slightly large” and the degree of conformity of the contribution to groundwater purification is 0.7, the optimum pumping amount based on the evaluation of the degree of contribution to groundwater purification is determined.
Q A is the membership function of the fuzzy inference after matter portion shown in FIG. 4, the horizontal axis of the center of gravity G A of figure A trapezoidal shape shown in fitness 0.7 following solid thick frame in "slightly higher" Obtained as coordinates.

【0021】地盤環境のリスクによる揚水量の演算 一方、地盤環境のリスクによる揚水量の演算において
は、地下水位監視井戸2に設置された水位センサ7によ
る地下水位GWLの計測値から求められた地盤沈下量
(又は地下水位変化量)ΔHの値を、ファジイ推論にお
ける前件部のメンバーシップ関数に当てはめる。地盤沈
下量のメンバーシップ関数は、図5に示されるように、
横軸に地盤沈下量、縦軸に適合度をとってある。
Calculation of Pumping Amount Due to Risk of Ground Environment On the other hand, in calculation of pumping amount due to risk of ground environment, the ground obtained from the measured value of groundwater level GWL by the water level sensor 7 installed in the groundwater level monitoring well 2 The value of the amount of settlement (or the amount of change in groundwater level) ΔH is applied to the membership function of the antecedent part in fuzzy inference. The membership function of the land subsidence amount is, as shown in FIG.
The horizontal axis indicates the amount of land subsidence, and the vertical axis indicates the degree of conformity.

【0022】例えば、地盤沈下量がΔHaであった場
合、このデータを、図5に示されるメンバーシップ関数
に当てはめると、地盤沈下量は「やや少ない」で適合度
0.6である。また、先の図2で説明したように、揚水
量Q(t)aは「目標範囲」で適合度0.7であり、ファジ
イ推論における前件部では、AND条件となる複数の適
合度のうち小さいほうを採用するから、地盤環境のリス
クへの適合度は0.6となる。
For example, when the amount of land subsidence is ΔHa, when this data is applied to the membership function shown in FIG. 5, the amount of land subsidence is “slightly small” and the conformity is 0.6. As described with reference to FIG. 2, the yield Q (t) a is 0.7 in the “target range”, and the antecedent in the fuzzy inference has a plurality of fitness levels that are AND conditions. Since the smaller one is adopted, the degree of conformity to the risk of the ground environment is 0.6.

【0023】次に、上記揚水量及び地盤沈下量のデータ
を、下の表2に示されるようなファジイ推論ルール2に
適合させる。上述の例では、揚水量は「目標範囲」であ
り、地盤沈下量は「やや少ない」であるから、これをフ
ァジイ推論ルール2に適合させた場合、揚水変化量は
「やや少ない」となる。
Next, the data of the pumping amount and the land subsidence amount are adapted to fuzzy inference rule 2 as shown in Table 2 below. In the above example, the pumping amount is the “target range” and the land subsidence amount is “slightly small”. Therefore, if this is adapted to the fuzzy inference rule 2, the pumping amount is “slightly small”.

【表2】 [Table 2]

【0024】次に、上述のようにして得られた適合度及
び揚水変化量のデータを、ファジイ推論における後件部
に適合させる。上述の例においては、揚水変化量は「や
や少ない」、地盤環境のリスクへの適合度は0.6であ
るから、地盤環境のリスクから制御すべき最適揚水量Q
は、図6に示されるファジイ推論後件部のメンバーシ
ップ関数に、「やや少ない」における適合度0.6以下
の実線太枠で示される台形状の図形Bの重心Gの横軸
座標として求められる。
Next, the data of the degree of conformity and the amount of change in pumped water obtained as described above are adapted to the consequent part in the fuzzy inference. In the above example, since the pumping variation is “slightly small” and the conformity to the risk of the ground environment is 0.6, the optimum pumping amount Q to be controlled from the risk of the ground environment is Q
B is the membership function of the fuzzy inference after matter portion shown in FIG. 6, the horizontal axis coordinate of the center of gravity G B of figure B trapezoidal shape shown in fitness 0.6 following solid thick frame in "slightly less" Is required.

【0025】最適揚水量の演算 次に、重心法により、図4に示される図形Aと図6に示
される図形Bを、図7に示されるように重ね合わせて、
その重心Gを求め、この重心Gの横軸の座標値が、最終
的な最適揚水量Qとして出力される。
Calculation of Optimum Pumping Amount Next, the graphic A shown in FIG. 4 and the graphic B shown in FIG. 6 are superimposed as shown in FIG.
The center of gravity G is obtained, and the coordinate value of the horizontal axis of the center of gravity G is output as the final optimum pumping amount Q.

【0026】すなわち、上述の方法においては、現場で
常時モニタリングされる単位時間あたりの揚水量Q(t)、
地下水の汚染濃度変化量d(t)及び地下水位変化量ΔHに
よって、揚水に伴って変化する汚染地下水の濃度変化や
地下水位の変化に応じた最適の揚水量となるように、計
画揚水量を補正し、これによって水中ポンプ3の駆動が
フィードバック制御されるので、地盤環境への影響が少
ない最適な揚水量で揚水を行うことができ、地下水浄化
の効率を向上させて、浄化に要する期間の短縮を図るこ
とができる。また、先に説明したように、e(t)が目標値
になったら、その時点で浄化終了と判断して揚水を停止
し、e(t)が目標値から大きく乖離したような場合にはシ
ステムの異常が発生したものと判断することができる。
That is, in the above-described method, the amount of pumped water Q (t) per unit time constantly monitored on site,
Based on the change in groundwater contamination concentration d (t) and the change in groundwater level ΔH, the planned pumped water output is adjusted so that the concentration of contaminated groundwater changes with pumping and the optimal pumped water output according to the change in groundwater level. Since the driving of the submersible pump 3 is feedback-controlled by this, the pumping can be performed with the optimum pumping amount having little influence on the ground environment, the efficiency of groundwater purification can be improved, and the period required for purification can be improved. Shortening can be achieved. In addition, as described above, when e (t) reaches the target value, it is determined that purification is completed at that time, pumping is stopped, and when e (t) greatly deviates from the target value, It can be determined that a system abnormality has occurred.

【0027】なお、ポンプ3によって揚水した汚染地下
水は、図示されていない水浄化装置によって浄化された
後、近くの河川や水路などに放水されるか、地上に散水
されるが、この浄化した水を汚染地盤内に復水し浸透さ
せることによって、浄化を促進させることも可能であ
る。
The contaminated groundwater pumped up by the pump 3 is purified by a water purification device (not shown) and then discharged to nearby rivers or waterways or sprinkled on the ground. It is possible to promote the purification by condensing and infiltrating into the contaminated ground.

【0028】[実施例]図8は、環境基準の約2倍の濃
度(約0.06mg/L)のトリクロロエチレンで地下
水が汚染された地盤で、従来の技術により汚染地下水を
揚水した場合と、本発明の方法によって汚染地下水を揚
水した場合の、地下水汚染濃度の推移を示すものであ
る。この図から明らかなように、本発明によれば、汚染
濃度が0.02mg/L以下になるまで浄化されるのに
要した日数が、従来の技術に比較して約40%短縮さ
れ、浄化の効率で約40%の向上が確認された。
[Example] FIG. 8 shows the ground in which groundwater is contaminated with trichlorethylene having a concentration approximately twice that of the environmental standard (approximately 0.06 mg / L). Fig. 3 shows changes in the concentration of groundwater contamination when the contaminated groundwater is pumped by the method of the present invention. As is apparent from this figure, according to the present invention, the number of days required for purification until the contamination concentration becomes 0.02 mg / L or less is reduced by about 40% compared to the conventional technology, It was confirmed that the efficiency was improved by about 40%.

【0029】[0029]

【発明の効果】本発明によれば、地下水の汚染濃度の変
化量、単位時間あたりの揚水量及び地下水位の変化量の
計測データから、ファジイ推論によって、汚染地下水の
揚水井戸からの揚水による地下水浄化への貢献度と、揚
水による地下水位の変化による地盤環境へのリスクとを
考慮した最適揚水量となるように、計画揚水量を補正
し、これに基づいてポンプを制御するため、汚染濃度の
変化に対応し、かつ地盤環境への影響が少ない最適な揚
水量で揚水を行うことができ、その結果、浄化効率の向
上及び浄化に要する期間の短縮を図ることができる。
According to the present invention, groundwater generated by pumping from contaminated groundwater pumping wells by fuzzy inference from measured data of the amount of change in the contaminated concentration of groundwater, the amount of pumped water per unit time, and the amount of groundwater level change. The planned pumped water output is corrected so as to obtain the optimum pumped water output in consideration of the contribution to purification and the risk to the ground environment due to the change in the groundwater level due to the pumped water, and the pump is controlled based on this. , And pumping can be performed with an optimum pumping amount that has little effect on the ground environment. As a result, purification efficiency can be improved and the period required for purification can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る好ましい実施の形態を示す概略構
成説明図である。
FIG. 1 is a schematic structural explanatory view showing a preferred embodiment according to the present invention.

【図2】本発明において適用される地下水浄化への貢献
度によるファジイ推論前件部の揚水量のメンバーシップ
関数を示す説明図である。
FIG. 2 is an explanatory diagram showing a membership function of a pumping amount of a fuzzy inference antecedent based on a degree of contribution to groundwater purification applied in the present invention.

【図3】本発明において適用される地下水浄化への貢献
度によるファジイ推論前件部の汚染濃度変化量のメンバ
ーシップ関数を示す説明図である。
FIG. 3 is an explanatory diagram showing a membership function of a pollutant concentration change amount of a fuzzy inference antecedent according to a degree of contribution to groundwater purification applied in the present invention.

【図4】本発明において適用される地下水浄化への貢献
度によるファジイ推論後件部のメンバーシップ関数を示
す説明図である。
FIG. 4 is an explanatory diagram showing a membership function of a consequent part of fuzzy inference based on a degree of contribution to groundwater purification applied in the present invention.

【図5】本発明において適用される地盤環境へのリスク
によるファジイ推論前件部の地盤沈下量のメンバーシッ
プ関数を示す説明図である。
FIG. 5 is an explanatory diagram showing a membership function of a land subsidence amount of a fuzzy inference antecedent due to a risk to a ground environment applied in the present invention.

【図6】本発明において適用される地盤環境へのリスク
によるファジイ推論後件部のメンバーシップ関数を示す
説明図である。
FIG. 6 is an explanatory diagram showing a membership function of a consequent part of fuzzy inference based on risk to the ground environment applied in the present invention.

【図7】本発明において適用される後件部のメンバーシ
ップ関数の重心法による最適揚水量の決定を示す説明図
である。
FIG. 7 is an explanatory diagram showing the determination of the optimum pumping amount by the centroid method of the membership function of the consequent part applied in the present invention.

【図8】従来の技術により汚染地下水を揚水した場合
と、本発明の方法によって汚染地下水を揚水した場合
の、地下水汚染濃度の計測結果を示す説明図である。
FIG. 8 is an explanatory diagram showing measurement results of groundwater contamination concentration when contaminated groundwater is pumped by a conventional technique and when contaminated groundwater is pumped by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 揚水井戸 2 地下水位監視井戸 3 水中ポンプ 5 流量計 6 濃度センサ 7 水位センサ 8 ファジイコントローラ Reference Signs List 1 pumping well 2 groundwater level monitoring well 3 submersible pump 5 flow meter 6 concentration sensor 7 water level sensor 8 fuzzy controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 汚染地下水の揚水井戸からの揚水による
地下水浄化への貢献度を地下水の汚染濃度の変化量及び
単位時間あたりの揚水量を入力とするファジイ推論によ
り評価し、 前記揚水による地盤環境へのリスクを地下水位変化量又
は地盤沈下量を入力とするファジイ推論により評価し、 前記地下水浄化への貢献度の評価データ及び地盤環境へ
のリスクの評価データを入力とするファジイ推論により
最適揚水量を決定し、 この最適揚水量に基づいて揚水を制御することを特徴と
する汚染地下水の揚水制御方法。
The degree of contribution to groundwater purification by pumping contaminated groundwater from a pumping well is evaluated by fuzzy inference using the amount of change in groundwater contaminant concentration and the amount of pumped water per unit time as inputs. The risk to water is evaluated by fuzzy inference using the groundwater level change or ground subsidence as input, and optimal pumping is performed by fuzzy inference using the evaluation data of the degree of contribution to groundwater purification and the evaluation data of risk to the ground environment as input. A method for controlling the pumping of contaminated groundwater, comprising determining a pumping amount and controlling pumping based on the optimum pumping amount.
【請求項2】 地下水浄化への貢献度e(t)は、地下水の
汚染濃度の変化量をd(t)、単位時間あたりの揚水量をQ
(t)として、次式 e(t)={d(t−1)−d(t)}/Q(t) …(1) により評価することを特徴とする請求項1に記載の汚染
地下水の揚水制御方法。
2. The degree of contribution to groundwater purification e (t) is expressed as follows: d (t) is the amount of change in the concentration of contaminated groundwater, and Q is the amount of pumped water per unit time.
The polluted groundwater according to claim 1, wherein (t) is evaluated by the following equation: e (t) = {d (t-1) -d (t)} / Q (t) (1) Pumping control method.
【請求項3】 最適揚水量の決定は、地下水浄化への貢
献度の評価データとして平面図形で表されるメンバーシ
ップ関数と、地盤環境へのリスクの評価データとして平
面図形で表されるメンバーシップ関数を重合し、その重
心を求めることにより行うことを特徴とする請求項1に
記載の汚染地下水の揚水制御方法。
3. The determination of the optimum pumping amount is performed by a membership function represented by a plane figure as evaluation data of the degree of contribution to groundwater purification and a membership function represented by a plane figure as evaluation data of risk to the ground environment. 2. The method according to claim 1, wherein the control is performed by superimposing functions and determining the center of gravity.
【請求項4】 式(1)により求められた地下水浄化へ
の貢献度e(t)から、浄化の終了又はシステムの異常の発
生を判断することを特徴とする請求項2に記載の汚染地
下水の揚水制御方法。
4. The contaminated groundwater according to claim 2, wherein the end of the purification or the occurrence of an abnormality in the system is determined from the degree of contribution e (t) to the purification of the groundwater obtained by the equation (1). Pumping control method.
【請求項5】 揚水井戸に設置され地下水を揚水するポ
ンプと、 前記ポンプで揚水される地下水の単位時間あたりの揚水
量を計測する流量計測手段と、 揚水井戸から揚水される地下水の汚染濃度を計測する濃
度計測手段と、 地下水位監視井戸に設置されて地下水位を計測する水位
計測手段と、 前記ポンプの駆動を制御するファジイコントローラとを
備え、 前記ファジイコントローラは、汚染地下水の揚水井戸か
らの揚水による地下水浄化への貢献度を前記濃度計測手
段による計測値から求められた地下水の汚染濃度の変化
量及び前記流量計測手段により計測された単位時間あた
りの揚水量を入力とするファジイ推論により評価し、揚
水による地盤環境へのリスクを前記水位計測手段による
計測値から求められた地下水位変化量又は地盤沈下量を
入力とするファジイ推論により評価し、前記地下水浄化
への貢献度の評価データ及び地盤環境へのリスクの評価
データを入力とするファジイ推論により求められる最適
揚水量に基づいて制御データを出力することを特徴とす
る汚染地下水浄化システム。
5. A pump installed in a pumping well for pumping groundwater, a flow rate measuring means for measuring an amount of groundwater pumped by the pump per unit time, and a pollutant concentration of groundwater pumped from the pumping well. A concentration measuring means for measuring, a water level measuring means installed in the groundwater level monitoring well to measure the groundwater level, and a fuzzy controller for controlling the driving of the pump, wherein the fuzzy controller is provided with a contaminated groundwater from a pumping well. The degree of contribution to groundwater purification by pumping is evaluated by fuzzy inference using as input the amount of change in the contaminant concentration of groundwater obtained from the measured value of the concentration measuring means and the amount of pumped water per unit time measured by the flow rate measuring means. And the risk to the ground environment due to pumping is the groundwater level change or land subsidence determined from the measured values by the water level measuring means. Evaluation is performed by fuzzy inference with input as input, and control data is output based on the optimal pumping amount obtained by fuzzy inference with input of the evaluation data of the degree of contribution to groundwater purification and the evaluation data of risk to the ground environment as input. A polluted groundwater purification system.
JP2000308676A 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system Expired - Fee Related JP4537562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308676A JP4537562B2 (en) 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308676A JP4537562B2 (en) 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system

Publications (2)

Publication Number Publication Date
JP2002113459A true JP2002113459A (en) 2002-04-16
JP4537562B2 JP4537562B2 (en) 2010-09-01

Family

ID=18788946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308676A Expired - Fee Related JP4537562B2 (en) 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system

Country Status (1)

Country Link
JP (1) JP4537562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021280A (en) * 2005-07-12 2007-02-01 Mirai Kensetsu Kogyo Kk Cleaning apparatus and cleaning method for soil
JP2010116688A (en) * 2008-11-11 2010-05-27 Takenaka Komuten Co Ltd Groundwater management system
JP2011005371A (en) * 2009-06-23 2011-01-13 Arthur:Kk System for cleaning soil and groundwater
JP2014094362A (en) * 2012-11-12 2014-05-22 Uerushii:Kk Operation support system and operation support method for groundwater clarification apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154113A (en) * 1978-05-24 1979-12-05 Kajima Corp Automatic controller of underground waterrlevel
JPH08318262A (en) * 1995-05-25 1996-12-03 Toshiba Corp Pumping-up water flow rate control device of adjusting basin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154113A (en) * 1978-05-24 1979-12-05 Kajima Corp Automatic controller of underground waterrlevel
JPH08318262A (en) * 1995-05-25 1996-12-03 Toshiba Corp Pumping-up water flow rate control device of adjusting basin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021280A (en) * 2005-07-12 2007-02-01 Mirai Kensetsu Kogyo Kk Cleaning apparatus and cleaning method for soil
JP2010116688A (en) * 2008-11-11 2010-05-27 Takenaka Komuten Co Ltd Groundwater management system
JP2011005371A (en) * 2009-06-23 2011-01-13 Arthur:Kk System for cleaning soil and groundwater
JP2014094362A (en) * 2012-11-12 2014-05-22 Uerushii:Kk Operation support system and operation support method for groundwater clarification apparatus

Also Published As

Publication number Publication date
JP4537562B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2006077567A (en) Recharge method, its water pouring control method, and water pouring control system
CA2193850A1 (en) In situ soil and/or residue remediation system and process using multi-level midspacing measurement
JP2002113459A (en) Method for controlling pumping of polluted ground water and system for cleaning polluted ground water
Cohen et al. Design guidelines for conventional pump-and-treat systems
JP4488970B2 (en) Operation management system for combined sewage systems
Roux et al. Investigation of organic contamination of ground water in South Brunswick Township, New Jersey
JP2000107744A (en) Client server system of water supply and drainage plant
JP2006272263A (en) Soil cleaning method and apparatus
CN109709293A (en) The recognition methods of sewerage steathily
CN106284465A (en) Lake, river is gushed polluted bed mud and is processed intelligent environment protection dredging system
JP2007144277A (en) System for controlling aeration
CN211445327U (en) Organic contaminated site groundwater remediation system
JP4485043B2 (en) Sewage treatment system, inflow water treatment arithmetic device, inflow water treatment method, and storage medium
CN209368013U (en) Groundwater azotate tandem extracts coupled processing system out in situ
JP2005313022A (en) Raw water quality estimating device
CN209428177U (en) Groundwater azotate processing system
JP3830807B2 (en) Wastewater disinfection method
JP3923403B2 (en) Soil and groundwater purification methods
JP4544399B2 (en) Soil purification method and system
Tellam et al. Towards Management and Sustainable Development of Urban Groundwater Systems: An introduction
JP2005270786A (en) Ground water circulation type method of cleaning contaminated soil by use of horizontal well and apparatus therefor
WO2023112166A1 (en) Well monitoring system and monitoring program
JP2020099881A (en) Purification method of groundwater
JPH0290982A (en) Water pumping device for soil water treatment
JPH0782730A (en) Purification method of contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees