JP4537562B2 - Contaminated groundwater pumping control method and contaminated groundwater purification system - Google Patents

Contaminated groundwater pumping control method and contaminated groundwater purification system Download PDF

Info

Publication number
JP4537562B2
JP4537562B2 JP2000308676A JP2000308676A JP4537562B2 JP 4537562 B2 JP4537562 B2 JP 4537562B2 JP 2000308676 A JP2000308676 A JP 2000308676A JP 2000308676 A JP2000308676 A JP 2000308676A JP 4537562 B2 JP4537562 B2 JP 4537562B2
Authority
JP
Japan
Prior art keywords
groundwater
pumping
amount
purification
contribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000308676A
Other languages
Japanese (ja)
Other versions
JP2002113459A (en
Inventor
俊郎 畠
敏仁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2000308676A priority Critical patent/JP4537562B2/en
Publication of JP2002113459A publication Critical patent/JP2002113459A/en
Application granted granted Critical
Publication of JP4537562B2 publication Critical patent/JP4537562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、汚染地下水を浄化するための井戸におけるポンプによる揚水量を適正に制御するための方法に関するものである。
【0002】
【従来の技術】
近年、例えば家庭や工場からの廃棄物や、農薬等の汚染物質による地下水の汚染が問題になっている。そして、このような汚染地下水の浄化方法の一種として、従来から、汚染領域の地盤に所要数の井戸を掘削して、汚染地盤領域内の汚染地下水をポンプで汲み上げて浄化し、この浄化した水を汚染地盤領域内に復水し浸透させることによって、汚染地盤領域の浄化を図る方法が知られている。
【0003】
【発明が解決しようとする課題】
このような汚染地下水の揚水井戸においては、予め汚染地下水分布状況の調査により設定した計画揚水量に基づいて、水中ポンプの運転を行っている。しかしながら、このような方法では、揚水に伴って変化する地下水の汚染濃度の変化に対応することができず、事前調査時との誤差を生じることが多い。しかも、揚水量によっては、近隣の井戸枯れや、地盤沈下といった弊害を来すおそれもあり、このため、当初の揚水計画どおりに浄化を行うことが困難であった。
【0004】
本発明は、上記のような問題に鑑みてなされたもので、その技術的課題とするところは、揚水に伴って変化する地下水汚染濃度の変化や、地盤環境のリスクに対応して、ポンプによる揚水量を適切に補正して効率良く地下水の浄化を行うことにある。
【0005】
【課題を解決するための手段】
上述した技術的課題を有効に解決するため、本発明に係る汚染地下水の揚水制御方法は、汚染地下水の揚水井戸からの揚水による地下水浄化への貢献度を地下水の汚染濃度の変化量及び単位時間あたりの揚水量を入力とするファジイ推論により評価し、前記揚水による地盤環境へのリスクを地下水位変化量又は地盤沈下量を入力とするファジイ推論により評価し、前記地下水浄化への貢献度の評価データ及び地盤環境へのリスクの評価データを入力とするファジイ推論により最適揚水量を決定し、この最適揚水量に基づいて揚水を制御するものである。
【0006】
なお、ここでいう「地盤環境のリスク」としては、例えば地下水位低下による地盤沈下や、近隣の井戸枯れ等が挙げられる。
【0007】
上記本発明に係る汚染地下水の揚水制御方法において、地下水浄化への貢献度e(t)は、地下水中の汚染物質の濃度変化量をd(t)、揚水量をQ(t)として、次式
e(t)={d(t−1)−d(t)}/Q(t) …(1)
により評価するものである。
【0008】
上記本発明に係る汚染地下水の揚水制御方法において、最適揚水量の決定は、地下水浄化への貢献度の評価データとして平面図形で表されるメンバーシップ関数と、地盤環境へのリスクの評価データとして平面図形で表されるメンバーシップ関数を重合し、その重心を求めることにより行うものである。
【0009】
上記本発明に係る汚染地下水の揚水制御方法においては、上記式(1)により求められた地下水浄化への貢献度e(t)から、浄化の終了又はシステムの異常の発生を判断する。
【0010】
上記本発明に係る汚染地下水の揚水制御方法を実現するため、本発明に係る汚染地下水浄化システムは、揚水井戸に設置され地下水を揚水するポンプと、前記ポンプで揚水される地下水の単位時間あたりの揚水量を計測する流量計測手段と、揚水井戸から揚水される地下水の汚染濃度を計測する濃度計測手段と、地下水位監視井戸に設置されて地下水位を計測する水位計測手段と、前記ポンプの駆動を制御するファジイコントローラとを備え、前記ファジイコントローラは、汚染地下水の揚水井戸からの揚水による地下水浄化への貢献度を前記濃度計測手段による計測値から求められた地下水の汚染濃度の変化量及び前記流量計測手段により計測された単位時間あたりの揚水量を入力とするファジイ推論により評価し、揚水による地盤環境へのリスクを前記水位計測手段による計測値から求められた地下水位変化量又は地盤沈下量を入力とするファジイ推論により評価し、前記地下水浄化への貢献度の評価データ及び地盤環境へのリスクの評価データを入力とするファジイ推論により求められる最適揚水量に基づいて制御データを出力するものである。
【0011】
【発明の実施の形態】
図1は、本発明に係る汚染地下水浄化システムの好ましい実施の形態を示す説明図で、図中の符号Gは汚染領域の地盤、GWLはこの地盤Gにおける地下水位である。地盤Gには、ボーリング等により揚水井戸1及び地下水位監視井戸2が削孔される。
【0012】
揚水井戸1には、地下水位GWLよりも十分深い位置に、地下水を揚水する水中ポンプ3が設置されており、その吐出口から地上へ延在された揚水管4には、流量計5及び濃度センサ6が設けられている。流量計5は、揚水井戸1から水中ポンプ3で揚水される地下水の単位時間あたりの揚水量を計測するものであり、濃度センサ6は、揚水された地下水の汚染濃度を計測するものである。一方、地下水位監視井戸2は、揚水井戸1からの揚水による井戸枯れや地盤沈下の影響が高いと考えられる場所に設けられ、地下水位GWLを計測する水位センサ7が設置されている。
【0013】
流量計5濃度センサ6及び水位センサ7の計測データは、ファジイコントローラ8に入力される。このファジイコントローラ8は、各計測データを一時的に記憶するデータメモリ81と、後述する各メンバーシップ関数及びファジイ推論ルールが記憶されたファジイ推論用メモリ82と、各計測データから、各メンバーシップ関数及びファジイ推論ルールに基づいてファジイ推論演算を実行する演算部83とを備える。
【0014】
詳しくは、ファジイコントローラ8は、まずファジイ推論の前件部として、流量計5により計測された単位時間あたりの揚水量Q(t)と、濃度センサ6による計測値から求められた地下水の汚染濃度変化量d(t)と、水位センサ7による地下水位GWLの計測値から求められた地下水位変化量又は地盤沈下量ΔHとを、それぞれについて予め定められた平面図形で表されるメンバーシップ関数に適用し、かつ予め定められたファジイ推論ルールを用いてファジイ推論演算を実行し、これによってファジイ推論の後件部として得られた各平面図形によるメンバーシップ関数データを合成し、その重心位置を求めることによって、地下水浄化への貢献度と、地盤沈下や近隣の井戸枯れといった地盤環境へのリスクとを考慮した最適な揚水量となるように、水中ポンプ3のモータを駆動させる駆動装置9を制御するものである。
【0015】
また、地下水浄化への貢献度e(t)の評価は、単位時間あたりの揚水量Q(t)と、地下水の汚染濃度変化量d(t)により、次式
e(t)={d(t−1)−d(t)}/Q(t) …(1)
によって行われる。
【0016】
すなわち、この実施の形態による汚染地下水浄化システムは、上記式(1)によって求められる貢献度e(t)が目標値へ向かって収束するように、揚水量Q(t)を制御するものである。したがって、e(t)が目標値になったら、その時点で浄化終了と判断して、水中ポンプ3による揚水を停止するものであり、e(t)が目標値へ向けて収束せずに大きく乖離したような場合にはシステムの異常が発生したものと判断することができる。
【0017】
地下水浄化への貢献度による揚水量の演算
地下水浄化への貢献度による揚水量の演算においては、まず、流量計5により計測された単位時間あたりの揚水量Q(t)及び濃度センサ6による計測値から求められた地下水の汚染濃度変化量d(t)の二つの入力データを、それぞれ、ファジイ推論における前件部のメンバーシップ関数に当てはめる。揚水量のメンバーシップ関数は、図2に示されるように、横軸に揚水量、縦軸に適合度をとってあり、汚染濃度変化量のメンバーシップ関数は、図3に示されるように、横軸に汚染濃度変化量、縦軸に適合度をとってある。
【0018】
例えば単位時間あたりの揚水量がQ(t)a、地下水の汚染濃度変化量がd(t)aであった場合、これらのデータを、それぞれ対応するメンバーシップ関数に当てはめると、揚水量は、図2に示されるように「目標範囲」で適合度0.7、汚染濃度変化量は、図3に示されるように「やや多い」で適合度0.8である。そしてファジイ推論における前件部では、AND条件となる複数の適合度のうち小さいほうを採用するから、地下水浄化への貢献度の適合度は0.7となる。
【0019】
次に、上記揚水量及び汚染濃度変化量のデータを、下の表1に示されるようなファジイ推論ルール1に適合させる。上述の例では、揚水量は「目標範囲」であり、汚染濃度変化量は「やや多い」であるから、これをファジイ推論ルール1に適合させた場合、揚水変化量は「やや多い」となる。
【表1】

Figure 0004537562
【0020】
次に、上述のようにして得られた適合度及び揚水変化量のデータを、ファジイ推論における後件部に適合させる。上述の例においては、揚水変化量は「やや多い」、地下水浄化への貢献度の適合度は0.7であるから、地下水浄化への貢献度の評価による最適揚水量Qは、図4に示されるファジイ推論後件部のメンバーシップ関数に、「やや多い」における適合度0.7以下の実線太枠で示される台形状の図形Aの重心Gの横軸座標として求められる。
【0021】
地盤環境のリスクによる揚水量の演算
一方、地盤環境のリスクによる揚水量の演算においては、地下水位監視井戸2に設置された水位センサ7による地下水位GWLの計測値から求められた地盤沈下量(又は地下水位変化量)ΔHの値を、ファジイ推論における前件部のメンバーシップ関数に当てはめる。地盤沈下量のメンバーシップ関数は、図5に示されるように、横軸に地盤沈下量、縦軸に適合度をとってある。
【0022】
例えば、地盤沈下量がΔHaであった場合、このデータを、図5に示されるメンバーシップ関数に当てはめると、地盤沈下量は「やや少ない」で適合度0.6である。また、先の図2で説明したように、揚水量Q(t)aは「目標範囲」で適合度0.7であり、ファジイ推論における前件部では、AND条件となる複数の適合度のうち小さいほうを採用するから、地盤環境のリスクへの適合度は0.6となる。
【0023】
次に、上記揚水量及び地盤沈下量のデータを、下の表2に示されるようなファジイ推論ルール2に適合させる。上述の例では、揚水量は「目標範囲」であり、地盤沈下量は「やや少ない」であるから、これをファジイ推論ルール2に適合させた場合、揚水変化量は「やや少ない」となる。
【表2】
Figure 0004537562
【0024】
次に、上述のようにして得られた適合度及び揚水変化量のデータを、ファジイ推論における後件部に適合させる。上述の例においては、揚水変化量は「やや少ない」、地盤環境のリスクへの適合度は0.6であるから、地盤環境のリスクから制御すべき最適揚水量Qは、図6に示されるファジイ推論後件部のメンバーシップ関数に、「やや少ない」における適合度0.6以下の実線太枠で示される台形状の図形Bの重心Gの横軸座標として求められる。
【0025】
最適揚水量の演算
次に、重心法により、図4に示される図形Aと図6に示される図形Bを、図7に示されるように重ね合わせて、その重心Gを求め、この重心Gの横軸の座標値が、最終的な最適揚水量Qとして出力される。
【0026】
すなわち、上述の方法においては、現場で常時モニタリングされる単位時間あたりの揚水量Q(t)、地下水の汚染濃度変化量d(t)及び地下水位変化量ΔHによって、揚水に伴って変化する汚染地下水の濃度変化や地下水位の変化に応じた最適の揚水量となるように、計画揚水量を補正し、これによって水中ポンプ3の駆動がフィードバック制御されるので、地盤環境への影響が少ない最適な揚水量で揚水を行うことができ、地下水浄化の効率を向上させて、浄化に要する期間の短縮を図ることができる。また、先に説明したように、e(t)が目標値になったら、その時点で浄化終了と判断して揚水を停止し、e(t)が目標値から大きく乖離したような場合にはシステムの異常が発生したものと判断することができる。
【0027】
なお、ポンプ3によって揚水した汚染地下水は、図示されていない水浄化装置によって浄化された後、近くの河川や水路などに放水されるか、地上に散水されるが、この浄化した水を汚染地盤内に復水し浸透させることによって、浄化を促進させることも可能である。
【0028】
[実施例]
図8は、環境基準の約2倍の濃度(約0.06mg/L)のトリクロロエチレンで地下水が汚染された地盤で、従来の技術により汚染地下水を揚水した場合と、本発明の方法によって汚染地下水を揚水した場合の、地下水汚染濃度の推移を示すものである。この図から明らかなように、本発明によれば、汚染濃度が0.02mg/L以下になるまで浄化されるのに要した日数が、従来の技術に比較して約40%短縮され、浄化の効率で約40%の向上が確認された。
【0029】
【発明の効果】
本発明によれば、地下水の汚染濃度の変化量、単位時間あたりの揚水量及び地下水位の変化量の計測データから、ファジイ推論によって、汚染地下水の揚水井戸からの揚水による地下水浄化への貢献度と、揚水による地下水位の変化による地盤環境へのリスクとを考慮した最適揚水量となるように、計画揚水量を補正し、これに基づいてポンプを制御するため、汚染濃度の変化に対応し、かつ地盤環境への影響が少ない最適な揚水量で揚水を行うことができ、その結果、浄化効率の向上及び浄化に要する期間の短縮を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る好ましい実施の形態を示す概略構成説明図である。
【図2】本発明において適用される地下水浄化への貢献度によるファジイ推論前件部の揚水量のメンバーシップ関数を示す説明図である。
【図3】本発明において適用される地下水浄化への貢献度によるファジイ推論前件部の汚染濃度変化量のメンバーシップ関数を示す説明図である。
【図4】本発明において適用される地下水浄化への貢献度によるファジイ推論後件部のメンバーシップ関数を示す説明図である。
【図5】本発明において適用される地盤環境へのリスクによるファジイ推論前件部の地盤沈下量のメンバーシップ関数を示す説明図である。
【図6】本発明において適用される地盤環境へのリスクによるファジイ推論後件部のメンバーシップ関数を示す説明図である。
【図7】本発明において適用される後件部のメンバーシップ関数の重心法による最適揚水量の決定を示す説明図である。
【図8】従来の技術により汚染地下水を揚水した場合と、本発明の方法によって汚染地下水を揚水した場合の、地下水汚染濃度の計測結果を示す説明図である。
【符号の説明】
1 揚水井戸
2 地下水位監視井戸
3 水中ポンプ
5 流量計
6 濃度センサ
7 水位センサ
8 ファジイコントローラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for appropriately controlling the amount of pumped water in a well for purifying contaminated groundwater.
[0002]
[Prior art]
In recent years, contamination of groundwater by waste from households and factories and pollutants such as agricultural chemicals has become a problem. As a method for purifying such contaminated groundwater, conventionally, the required number of wells are excavated in the ground of the contaminated area, and the contaminated groundwater in the contaminated ground area is pumped and purified, and this purified water is purified. There is known a method for purifying a contaminated ground area by condensing and infiltrating water into the contaminated ground area.
[0003]
[Problems to be solved by the invention]
In such a groundwater pumping well, the submersible pump is operated based on the planned pumping amount set in advance through the investigation of the distribution of contaminated groundwater. However, such a method cannot cope with the change in the contamination concentration of groundwater that changes with pumping, and often causes an error from the preliminary survey. In addition, depending on the amount of pumped water, there is a risk that it will cause damage to wells in the vicinity and land subsidence. For this reason, it has been difficult to purify according to the original pumping plan.
[0004]
The present invention has been made in view of the above problems, and the technical problem is that the pump is used in response to changes in the concentration of groundwater contamination that changes with pumping and the risk of the ground environment. The purpose is to purify groundwater efficiently by correcting the pumped amount appropriately.
[0005]
[Means for Solving the Problems]
In order to effectively solve the technical problem described above, the method for controlling the pumping of contaminated groundwater according to the present invention is based on the amount of change in the concentration of groundwater contamination and the unit time of the contribution to groundwater purification by pumping from the pumped well of the contaminated groundwater. Evaluation by fuzzy reasoning with the amount of water pumped as input, and the risk to the ground environment due to the pumping by fuzzy reasoning with groundwater level change or ground subsidence as input, and evaluation of the degree of contribution to groundwater purification The optimum yield is determined by fuzzy inference using the data and the risk assessment data for the ground environment, and the yield is controlled based on this optimum yield.
[0006]
The “risk of the ground environment” mentioned here includes, for example, ground subsidence due to a drop in the groundwater level, well drainage in the vicinity, and the like.
[0007]
In the method for controlling the pumping of contaminated groundwater according to the present invention, the contribution e (t) to the purification of groundwater is expressed as follows, where d (t) is the amount of change in the concentration of contaminants in the groundwater, and Q (t) is the pumped amount. formula
e (t) = {d (t−1) −d (t)} / Q (t) (1)
Is to be evaluated.
[0008]
In the method for controlling the pumping of contaminated groundwater according to the present invention, the determination of the optimum pumping amount is performed as a membership function represented by a plane figure as evaluation data for the contribution to groundwater purification, and as evaluation data for risk to the ground environment. This is done by superimposing membership functions represented by plane figures and finding their centroids.
[0009]
In the contaminated groundwater pumping control method according to the present invention, the end of the purification or the occurrence of an abnormality of the system is determined from the contribution e (t) to the groundwater purification obtained by the above formula (1).
[0010]
In order to realize the method for controlling pumping of contaminated groundwater according to the present invention, a contaminated groundwater purification system according to the present invention includes a pump installed in a pumping well and pumping groundwater, and a unit of groundwater pumped by the pump per unit time. Flow rate measuring means for measuring the amount of pumped water, concentration measuring means for measuring the contamination concentration of groundwater pumped from the pumping well, water level measuring means for measuring the groundwater level installed in the groundwater level monitoring well, and driving of the pump The fuzzy controller controls the amount of change in groundwater contamination concentration obtained from the measured value by the concentration measuring means, and the degree of contribution to groundwater purification by pumping from the pumped well of the contaminated groundwater, and the fuzzy controller Evaluate by fuzzy inference using the amount of pumped water per unit time measured by the flow rate measurement means, and move to the ground environment by pumping The risk is evaluated by fuzzy inference using as input the groundwater level change amount or ground subsidence amount obtained from the measured value by the water level measuring means, and the evaluation data of the degree of contribution to the groundwater purification and the evaluation data of the risk to the ground environment The control data is output based on the optimum pumping amount obtained by fuzzy reasoning.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory view showing a preferred embodiment of a contaminated groundwater purification system according to the present invention. In the figure, symbol G denotes the ground in the contaminated area, and GWL denotes the groundwater level in the ground G. In the ground G, a pumping well 1 and a groundwater level monitoring well 2 are drilled by boring or the like.
[0012]
The pumping well 1 is provided with a submersible pump 3 for pumping groundwater at a position sufficiently deeper than the groundwater level GWL. The pumping pipe 4 extending from the discharge port to the ground has a flow meter 5 and a concentration. A sensor 6 is provided. The flow meter 5 measures the amount of groundwater pumped from the pumping well 1 by the submersible pump 3, and the concentration sensor 6 measures the contamination concentration of the pumped groundwater. On the other hand, the groundwater level monitoring well 2 is provided in a place where it is considered that the effects of well drainage and ground subsidence due to pumping from the pumping well 1 are high, and a water level sensor 7 for measuring the groundwater level GWL is installed.
[0013]
The measurement data of the flow meter 5 concentration sensor 6 and the water level sensor 7 are input to the fuzzy controller 8. The fuzzy controller 8 includes a data memory 81 for temporarily storing each measurement data, a fuzzy inference memory 82 for storing each membership function and fuzzy inference rules described later, and each membership function from each measurement data. And an operation unit 83 that executes a fuzzy inference operation based on the fuzzy inference rule.
[0014]
Specifically, the fuzzy controller 8 firstly has a groundwater contamination concentration obtained from the pumping amount Q (t) per unit time measured by the flow meter 5 and the measured value by the concentration sensor 6 as a predecessor part of the fuzzy inference. The change amount d (t) and the groundwater level change amount or the ground subsidence amount ΔH obtained from the measured value of the groundwater level GWL by the water level sensor 7 are respectively expressed as membership functions represented by predetermined plane figures. Apply and execute fuzzy inference operations using pre-determined fuzzy inference rules, thereby synthesize membership function data by each plane figure obtained as a consequent part of fuzzy inference, and find the center of gravity position As a result, the optimum yield is considered in consideration of the contribution to groundwater purification and the risks to the ground environment such as land subsidence and well drainage. The driving device 9 for driving the motor of the submersible pump 3 is controlled.
[0015]
In addition, the evaluation of the degree of contribution to groundwater purification e (t) is based on the following formula using the amount of pumped water Q (t) per unit time and the change in groundwater contamination concentration d (t):
e (t) = {d (t−1) −d (t)} / Q (t) (1)
Is done by.
[0016]
That is, the contaminated groundwater purification system according to this embodiment controls the pumping amount Q (t) so that the contribution e (t) calculated by the above equation (1) converges toward the target value. . Therefore, when e (t) reaches the target value, it is determined that the purification is finished at that time, and the pumping by the submersible pump 3 is stopped, and e (t) becomes large without converging toward the target value. If there is a divergence, it can be determined that a system abnormality has occurred.
[0017]
Calculation of the pumped amount by the contribution to the groundwater purification In the calculation of the pumped amount by the contribution to the groundwater purification, the pumped amount Q (t) per unit time measured by the flow meter 5 and the concentration sensor 6 are first measured. Two input data of groundwater contamination concentration change d (t) obtained from the values are applied to the membership function of the antecedent part in fuzzy inference, respectively. As shown in FIG. 2, the membership function of the yield is taken along the horizontal axis, and the fitness is taken along the vertical axis. The membership function of the contamination concentration change is as shown in FIG. 3. The horizontal axis represents the amount of contamination concentration change, and the vertical axis represents the degree of conformity.
[0018]
For example, if the amount of pumped water per unit time is Q (t) a and the amount of change in contamination concentration of groundwater is d (t) a, applying these data to the corresponding membership functions, As shown in FIG. 2, the “target range” has a fitness of 0.7, and the contamination concentration change amount is “slightly” and has a fitness of 0.8 as shown in FIG. And in the antecedent part in fuzzy reasoning, since the smaller one of a plurality of goodness-of-fit that is an AND condition is adopted, the goodness-of-fit for the contribution to groundwater purification is 0.7.
[0019]
Next, the data on the amount of pumped water and the amount of change in contamination concentration are adapted to fuzzy inference rule 1 as shown in Table 1 below. In the above example, the pumping amount is “target range” and the pollution concentration change amount is “slightly large”. Therefore, when this is adapted to the fuzzy inference rule 1, the pumping amount change is “slightly large”. .
[Table 1]
Figure 0004537562
[0020]
Next, the data of the degree of fit and the amount of change in pumping obtained as described above are adapted to the consequent part in fuzzy inference. In the above example, the amount of change in pumping is “slightly large” and the degree of conformity to the contribution to groundwater purification is 0.7. Therefore, the optimum amount of pumping Q A based on the evaluation of the contribution to groundwater purification is shown in FIG. fuzzy inference after matter membership functions as indicated in the, obtained as the horizontal axis coordinate of the center of gravity G a of figure a trapezoidal shape shown in fitness 0.7 following solid thick frame in "slightly higher".
[0021]
On the other hand, in the calculation of the amount of pumped water due to the risk of the ground environment, in the calculation of the amount of pumped water based on the risk of the ground environment, the amount of ground subsidence obtained from the measured value of the groundwater level GWL by the water level sensor 7 installed in the groundwater level monitoring well 2 ( (Or groundwater level change amount) ΔH is applied to the membership function of the antecedent part in fuzzy inference. As shown in FIG. 5, the membership function of the ground subsidence amount has the horizontal subsidence amount on the horizontal axis and the fitness on the vertical axis.
[0022]
For example, when the ground subsidence amount is ΔHa and this data is applied to the membership function shown in FIG. 5, the ground subsidence amount is “slightly small” and the fitness is 0.6. In addition, as explained in FIG. 2 above, the pumped amount Q (t) a is “target range” and has a fitness of 0.7, and the antecedent part in fuzzy inference has a plurality of fitness that is an AND condition. Since the smaller one is adopted, the degree of conformity to the risk of the ground environment is 0.6.
[0023]
Next, the data of the amount of pumped water and the amount of land subsidence are adapted to the fuzzy inference rule 2 as shown in Table 2 below. In the above example, the pumping amount is the “target range” and the land subsidence amount is “slightly small”. Therefore, when this is adapted to the fuzzy inference rule 2, the pumping change amount is “slightly small”.
[Table 2]
Figure 0004537562
[0024]
Next, the data of the degree of fit and the amount of change in pumping obtained as described above are adapted to the consequent part in fuzzy inference. In the above example, the amount of change in pumping is “slightly small” and the degree of conformity to the risk of the ground environment is 0.6. Therefore, the optimum pumping amount Q B to be controlled from the risk of the ground environment is shown in FIG. the fuzzy inference after matter membership functions of which is determined as the horizontal axis coordinate of the center of gravity G B of figure B trapezoidal shape shown in fitness 0.6 following solid thick frame in "slightly less".
[0025]
Calculation of optimum pumping amount Next, the center of gravity method is used to superimpose the figure A shown in FIG. 4 and the figure B shown in FIG. 6 as shown in FIG. The coordinate value on the horizontal axis is output as the final optimum pumped amount Q.
[0026]
That is, in the above-described method, the pollution that changes with pumping by the pumped water amount Q (t), the groundwater contamination concentration change amount d (t), and the groundwater level change amount ΔH that are constantly monitored at the site. The planned pumping amount is corrected so that the optimal pumping amount according to the change in groundwater concentration and groundwater level is corrected, and the drive of the submersible pump 3 is feedback-controlled by this, so there is little impact on the ground environment. It is possible to pump water with a small amount of pumped water, improve the efficiency of groundwater purification, and shorten the period required for purification. In addition, as explained earlier, when e (t) reaches the target value, it is determined that purification has been completed at that time, and the pumping is stopped.If e (t) deviates significantly from the target value, It can be determined that a system abnormality has occurred.
[0027]
The contaminated groundwater pumped up by the pump 3 is purified by a water purification device (not shown) and then discharged to a nearby river or waterway, or sprinkled on the ground. It is also possible to promote purification by condensing and penetrating the inside.
[0028]
[Example]
FIG. 8 shows a ground in which groundwater is contaminated with trichlorethylene having a concentration about twice the environmental standard (about 0.06 mg / L), and the groundwater contaminated by the method of the present invention when the groundwater is pumped by a conventional technique. It shows the transition of groundwater contamination concentration when water is pumped up. As is apparent from this figure, according to the present invention, the number of days required for purification until the contamination concentration becomes 0.02 mg / L or less is shortened by about 40% compared with the conventional technique, and purification is performed. An improvement of about 40% was confirmed in the efficiency.
[0029]
【The invention's effect】
According to the present invention, from the measurement data of the amount of change in the contamination concentration of groundwater, the amount of pumped water per unit time and the amount of change in groundwater level, the degree of contribution to groundwater purification by pumping from the pumped well of contaminated groundwater by fuzzy inference In order to adjust the pumped pumping amount so that the pumped pumping amount is adjusted to take into account the risk to the ground environment due to changes in groundwater level due to pumping, and the pump is controlled based on this, it is possible to cope with changes in the concentration of pollution. Moreover, pumping can be performed with an optimal pumping amount that has little influence on the ground environment, and as a result, purification efficiency can be improved and the period required for purification can be shortened.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory view showing a preferred embodiment according to the present invention.
FIG. 2 is an explanatory diagram showing a membership function of the yield of the fuzzy inference antecedent part according to the degree of contribution to groundwater purification applied in the present invention.
FIG. 3 is an explanatory diagram showing a membership function of a change amount of contamination concentration in a fuzzy inference antecedent part according to a contribution to groundwater purification applied in the present invention.
FIG. 4 is an explanatory diagram showing a membership function of a consequent part of fuzzy inference according to the degree of contribution to groundwater purification applied in the present invention.
FIG. 5 is an explanatory diagram showing a membership function of a ground subsidence amount of a fuzzy inference antecedent part due to a risk to the ground environment applied in the present invention.
FIG. 6 is an explanatory diagram showing a membership function of a fuzzy inference consequent part due to a risk to the ground environment applied in the present invention.
FIG. 7 is an explanatory diagram showing determination of the optimum pumping amount by the center of gravity method of the membership function of the consequent part applied in the present invention.
FIG. 8 is an explanatory diagram showing measurement results of groundwater contamination concentration when contaminated groundwater is pumped by a conventional technique and when contaminated groundwater is pumped by the method of the present invention.
[Explanation of symbols]
1 Pumping well 2 Groundwater level monitoring well 3 Submersible pump 5 Flow meter 6 Concentration sensor 7 Water level sensor 8 Fuzzy controller

Claims (5)

汚染地下水の揚水井戸からの揚水による地下水浄化への貢献度を地下水の汚染濃度の変化量及び単位時間あたりの揚水量を入力とするファジイ推論により評価し、
前記揚水による地盤環境へのリスクを地下水位変化量又は地盤沈下量を入力とするファジイ推論により評価し、
前記地下水浄化への貢献度の評価データ及び地盤環境へのリスクの評価データを入力とするファジイ推論により最適揚水量を決定し、
この最適揚水量に基づいて揚水を制御することを特徴とする汚染地下水の揚水制御方法。
The degree of contribution to groundwater purification by pumping from contaminated groundwater pumping wells was evaluated by fuzzy reasoning using the amount of change in groundwater contamination concentration and the amount of pumped water per unit time as inputs,
The risk to the ground environment due to the pumping is evaluated by fuzzy inference using the groundwater level change amount or ground subsidence amount as input.
Determine the optimal yield by fuzzy inference using the evaluation data of the degree of contribution to the purification of groundwater and the evaluation data of risk to the ground environment,
A pumping control method for contaminated groundwater, wherein pumping is controlled based on the optimum pumping amount.
地下水浄化への貢献度e(t)は、地下水の汚染濃度の変化量をd(t)、単位時間あたりの揚水量をQ(t)として、次式
e(t)={d(t−1)−d(t)}/Q(t) …(1)
により評価することを特徴とする請求項1に記載の汚染地下水の揚水制御方法。
The degree of contribution to groundwater purification e (t) is expressed as follows:
e (t) = {d (t−1) −d (t)} / Q (t) (1)
The method for controlling pumping of contaminated groundwater according to claim 1, wherein
最適揚水量の決定は、地下水浄化への貢献度の評価データとして平面図形で表されるメンバーシップ関数と、地盤環境へのリスクの評価データとして平面図形で表されるメンバーシップ関数を重合し、その重心を求めることにより行うことを特徴とする請求項1に記載の汚染地下水の揚水制御方法。The optimum yield is determined by superimposing the membership function represented by a plane figure as evaluation data for the contribution to groundwater purification and the membership function represented by a plane figure as evaluation data for risk to the ground environment. The method for controlling pumping of contaminated groundwater according to claim 1, wherein the control is performed by obtaining the center of gravity. 式(1)により求められた地下水浄化への貢献度e(t)から、浄化の終了又はシステムの異常の発生を判断することを特徴とする請求項2に記載の汚染地下水の揚水制御方法。The method for controlling pumping of contaminated groundwater according to claim 2, wherein the end of purification or the occurrence of an abnormality in the system is determined from the degree of contribution e (t) to the purification of groundwater obtained by equation (1). 揚水井戸に設置され地下水を揚水するポンプと、
前記ポンプで揚水される地下水の単位時間あたりの揚水量を計測する流量計測手段と、
揚水井戸から揚水される地下水の汚染濃度を計測する濃度計測手段と、
地下水位監視井戸に設置されて地下水位を計測する水位計測手段と、
前記ポンプの駆動を制御するファジイコントローラとを備え、
前記ファジイコントローラは、汚染地下水の揚水井戸からの揚水による地下水浄化への貢献度を前記濃度計測手段による計測値から求められた地下水の汚染濃度の変化量及び前記流量計測手段により計測された単位時間あたりの揚水量を入力とするファジイ推論により評価し、揚水による地盤環境へのリスクを前記水位計測手段による計測値から求められた地下水位変化量又は地盤沈下量を入力とするファジイ推論により評価し、前記地下水浄化への貢献度の評価データ及び地盤環境へのリスクの評価データを入力とするファジイ推論により求められる最適揚水量に基づいて制御データを出力することを特徴とする汚染地下水浄化システム。
A pump installed in a pumping well for pumping up groundwater;
Flow rate measuring means for measuring the amount of groundwater pumped by the pump per unit time;
A concentration measuring means for measuring the contamination concentration of groundwater pumped from a pumping well;
Water level measuring means installed in the groundwater level monitoring well to measure the groundwater level;
A fuzzy controller for controlling the driving of the pump,
The fuzzy controller is a unit time measured by the amount of change in groundwater contamination concentration obtained from the measured value by the concentration measuring means and the amount of contribution to the groundwater purification by pumping from contaminated groundwater pumping wells and the flow rate measuring means. The risk to the ground environment due to pumping is evaluated by fuzzy reasoning using the groundwater level change or ground subsidence obtained from the measured value by the water level measurement means as input. A polluted groundwater purification system, which outputs control data based on an optimum yield obtained by fuzzy inference using the evaluation data of the contribution to the groundwater purification and the evaluation data of the risk to the ground environment as inputs.
JP2000308676A 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system Expired - Fee Related JP4537562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308676A JP4537562B2 (en) 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308676A JP4537562B2 (en) 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system

Publications (2)

Publication Number Publication Date
JP2002113459A JP2002113459A (en) 2002-04-16
JP4537562B2 true JP4537562B2 (en) 2010-09-01

Family

ID=18788946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308676A Expired - Fee Related JP4537562B2 (en) 2000-10-10 2000-10-10 Contaminated groundwater pumping control method and contaminated groundwater purification system

Country Status (1)

Country Link
JP (1) JP4537562B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021280A (en) * 2005-07-12 2007-02-01 Mirai Kensetsu Kogyo Kk Cleaning apparatus and cleaning method for soil
JP5204626B2 (en) * 2008-11-11 2013-06-05 株式会社竹中工務店 Groundwater management system
JP5248423B2 (en) * 2009-06-23 2013-07-31 株式会社アーサーバイオ Soil and groundwater purification system
JP6049411B2 (en) * 2012-11-12 2016-12-21 株式会社ウェルシィ Operation support system and operation support method for groundwater purification treatment apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154113A (en) * 1978-05-24 1979-12-05 Kajima Corp Automatic controller of underground waterrlevel
JPH08318262A (en) * 1995-05-25 1996-12-03 Toshiba Corp Pumping-up water flow rate control device of adjusting basin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154113A (en) * 1978-05-24 1979-12-05 Kajima Corp Automatic controller of underground waterrlevel
JPH08318262A (en) * 1995-05-25 1996-12-03 Toshiba Corp Pumping-up water flow rate control device of adjusting basin

Also Published As

Publication number Publication date
JP2002113459A (en) 2002-04-16

Similar Documents

Publication Publication Date Title
JP4537562B2 (en) Contaminated groundwater pumping control method and contaminated groundwater purification system
CN106193268A (en) Amphibious multiple-unit wheeled pipe robot examination and repair system
JP2006291474A (en) Control system of ground water, and control method of ground water
CN102500146B (en) Filtering layer back washing method for percolating water abstraction and control system
CN107010789A (en) A kind of ecological ditch of the rainwater treatment based on sponge city
JP2001336400A (en) Spring water filtering method and spring water filtering apparatus
CN210509282U (en) Reverse slope tunnel construction drainage system
JP2016118082A (en) Self-propelled oil recovery equipment
JP2000107744A (en) Client server system of water supply and drainage plant
JP2016098540A (en) Groundwater pumping-up and pouring management system and groundwater pumping-up and pouring method
CN105214989B (en) Transformer station livewire work water flushing device people and its hydraulic system control method
CN109387401A (en) A kind of analysis method that space enrironment tentatively samples
CN211445327U (en) Organic contaminated site groundwater remediation system
Marryott Optimal ground‐water remediation design using multiple control technologies
CN110980830A (en) Method for repairing underground water pollution by well digging and intercepting
CN109709293A (en) The recognition methods of sewerage steathily
CN209368013U (en) Groundwater azotate tandem extracts coupled processing system out in situ
JPH115077A (en) Contaminated ground purification system
CN209428177U (en) Groundwater azotate processing system
CN206232416U (en) Waste water circulation utilized device
JP3830807B2 (en) Wastewater disinfection method
JP2004082056A (en) Soil cleaning method by trench engineering method
JP4544399B2 (en) Soil purification method and system
JPH0782730A (en) Purification method of contaminated soil
KR102604316B1 (en) Installation facilities of permeable reactive barriers through hybrid groundwater flow control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees