JP2002111349A - Chip antenna element and manufacturing method thereof - Google Patents

Chip antenna element and manufacturing method thereof

Info

Publication number
JP2002111349A
JP2002111349A JP2000297351A JP2000297351A JP2002111349A JP 2002111349 A JP2002111349 A JP 2002111349A JP 2000297351 A JP2000297351 A JP 2000297351A JP 2000297351 A JP2000297351 A JP 2000297351A JP 2002111349 A JP2002111349 A JP 2002111349A
Authority
JP
Japan
Prior art keywords
groove
electrode
antenna element
concave portion
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000297351A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
博志 青山
Keiko Kikuchi
慶子 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000297351A priority Critical patent/JP2002111349A/en
Publication of JP2002111349A publication Critical patent/JP2002111349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chip antenna element capable of improving variation in frequency characteristics and the like at resonance. SOLUTION: A chip antenna 10 is provided with a radiation electrode 13, ground electrodes 15 and 17 and the like on an insulating substrate 11. Here, a recessed part 19 such as a groove is provided between the radiation electrode 13 and the ground electrodes 15 and 17. The recessed part 19 such as a groove specifies the distance between the radiation electrode 13 and the ground electrode 15 and 17 while a large width is selected to be an appropriate value depending on the depth and/or width of the recessed part 19 such as a groove.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯無線電話や無
線LAN(ローカルエリアネットワーク)等のマイクロ
波無線通信機器に好適なチップ型アンテナ素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip antenna element suitable for a microwave radio communication device such as a portable radio telephone and a wireless LAN (local area network).

【0002】[0002]

【従来の技術】マイクロ波無線通信機器、とりわけ携帯
電話等の携帯通信機器では、アンテナ素子として小形低
背化に適したモノポールアンテナやマイクロストリップ
アンテナが多用されている。マイクロストリップアンテ
ナの構造あるいは原理は、アンテナ工学ハンドブック
(p109〜111 電子情報通信学会編 オーム社)にその詳
しい記載がある。また、これらのアンテナ素子はチップ
型アンテナ素子とも呼ばれている。
2. Description of the Related Art In a microwave radio communication device, especially a portable communication device such as a cellular phone, a monopole antenna or a microstrip antenna suitable for miniaturization and reduction in height is frequently used as an antenna element. The structure or principle of the microstrip antenna is described in detail in Antenna Engineering Handbook (p.109-111, edited by IEICE Ohmsha). These antenna elements are also called chip antenna elements.

【0003】さて、携帯電話等に適したチップ型アンテ
ナ素子として、直方体の絶縁基体上面に放射電極、下面
に接地電極を配置して同軸ケーブルにて給電する構成
が、特開平10−209740号公報に記載されてい
る。このようなアンテナ素子では、共振周波数と指向特
性等の主要特性は放射電極の形状と寸法から決まる。例
えば、一辺の長さが共振波長の1/2に等しい正方形を放
射電極とすると、放射電極の垂直面内では無指向性とす
ることができ、携帯電話等に適したアンテナ素子が得ら
れる。
[0003] As a chip type antenna element suitable for a cellular phone or the like, a configuration in which a radiating electrode is arranged on the upper surface of a rectangular parallelepiped insulating substrate and a ground electrode is arranged on the lower surface and power is supplied by a coaxial cable is disclosed in JP-A-10-209740. It is described in. In such an antenna element, the main characteristics such as the resonance frequency and the directivity are determined by the shape and size of the radiation electrode. For example, if a square whose side length is equal to 1/2 of the resonance wavelength is used as the radiation electrode, the antenna can be made non-directional in the vertical plane of the radiation electrode, and an antenna element suitable for a mobile phone or the like can be obtained.

【0004】[0004]

【発明が解決しようとする課題】チップ型アンテナは、
他のアンテナと比べるとかなり小形化されているが、本
発明者等は市場の要求から更に小形で且つ高性能なアン
テナ素子を開発し、特願2000−113686号にて
出願した。図11はその斜視図である。絶縁基体11の
主面に配設した台形状放射電極13は、接地電極15お
よび17によって両側から挟まれるが、下面には接地電
極が配置されない構成となっている。また、中央部寄り
に給電電極12を設け、容量結合による給電方式であ
る。従来の構成では、絶縁基体の両主面に放射電極と接
地電極が対向配置されるが、改良したアンテナは図示す
るように放射電極13の周りに接地電極15、17を併
設するため、接地電極による遮蔽効果が得られる。この
遮蔽効果によって、アンテナ素子は周囲からノイズ等の
影響を受け難くなり、安定したアンテナ動作が可能とな
る。また、台形状の放射電極は帯域特性の改善に効果が
ある。
The chip type antenna is
Although the antenna is much smaller than other antennas, the present inventors have developed a more compact and high-performance antenna element based on market requirements, and filed an application in Japanese Patent Application No. 2000-113686. FIG. 11 is a perspective view thereof. The trapezoidal radiation electrode 13 disposed on the main surface of the insulating base 11 is sandwiched between the ground electrodes 15 and 17 from both sides, but the ground electrode is not disposed on the lower surface. In addition, a power supply electrode 12 is provided near the center to supply power by capacitive coupling. In the conventional configuration, a radiation electrode and a ground electrode are disposed on both main surfaces of the insulating base so as to face each other. However, the improved antenna has the ground electrodes 15 and 17 around the radiation electrode 13 as shown in FIG. A shielding effect is obtained. Due to this shielding effect, the antenna element is hardly affected by noise or the like from the surroundings, and stable antenna operation is possible. Further, the trapezoidal radiation electrode is effective in improving the band characteristics.

【0005】現在、マイクロ波無線通信機器に割り当て
られている周波数は、800MHzから1GHz付近であるが、さ
らに高い周波数の適用検討が進められている。計画で
は、高周波化と共に帯域幅の拡大が必須要件とされてい
る。ブルートゥースでは無線周波数2.4〜2.5GHzが予定
され、帯域幅は100MHz以上が必要である。しかしなが
ら、上述のアンテナ素子ではこの高い目標性能をクリア
することは難しく、その抜本的な対策が必要となってき
た。具体的には、共振周波数のバラツキの問題である。
測定結果によると、帯域幅は100MHz強を有するが、共振
時の中心周波数は2.45GHzに対して±30MHzのバラツキが
ある。この±30MHzのバラツキ幅によって共振周波数
が、前記目標値から逸脱する恐れがあった。
At present, frequencies assigned to microwave radio communication devices are from 800 MHz to around 1 GHz, and application of higher frequencies is being studied. The plan calls for increasing the bandwidth as well as increasing the frequency. Bluetooth is expected to have a radio frequency of 2.4-2.5GHz and a bandwidth of at least 100MHz. However, it is difficult for the above-mentioned antenna element to achieve this high target performance, and drastic measures have been required. Specifically, there is a problem of variation in resonance frequency.
According to the measurement results, the bandwidth has a little over 100 MHz, but the center frequency at resonance has a variation of ± 30 MHz with respect to 2.45 GHz. Due to the variation width of ± 30 MHz, the resonance frequency may deviate from the target value.

【0006】一般に、アンテナ素子の共振周波数は、放
射電極のインダクタンスと対地静電容量との積の平方根
に反比例する。インダクタンスや静電容量は、電極間の
配置など幾何学的な要素でほぼ決まるが、3次元配置で
あること、高周波帯域における表皮効果の影響等が無視
できないこと等のため、共振周波数のバラツキ原因の究
明は容易でなかった。しかしながら、次に述べるような
従来技術の課題を明らかにした。
Generally, the resonance frequency of an antenna element is inversely proportional to the square root of the product of the inductance of the radiation electrode and the capacitance to ground. Inductance and capacitance are almost determined by geometrical factors such as the arrangement between the electrodes. However, due to the three-dimensional arrangement and the effect of the skin effect in the high frequency band cannot be ignored, the cause of the variation in the resonance frequency Finding was not easy. However, the following problems of the prior art were clarified.

【0007】図12はチップ型アンテナ素子の等価回路
である。図中の回路素子のうち、Ciは給電電極と放射電
極間の結合容量、CGは放射電極と接地電極間の等価静電
容量、Rrは放射等価抵抗、Lrは等価インダクタンスをあ
らわす。また、Csは漂遊容量であり、CG以外特定できな
い静電容量を一括したものである。したがって、CsはCG
と比べるとかなり小さな値をとることになる。アンテナ
動作時には、LrとCGによる共振回路が形成され、その周
波数は1/(√ Lr CG )に比例する。また、共振時Rr
で消費される損失が等価的にアンテナから放射される電
磁エネルギー、またはアンテナへの入射エネルギーであ
る。
FIG. 12 is an equivalent circuit of a chip antenna element. Of the circuit elements in FIG, Ci represents the feeding electrode coupling capacitance between the radiation electrode, C G is the equivalent capacitance between the ground electrode and the radiation electrode, Rr is the radiation equivalent resistance, Lr is the equivalent inductance. Also, Cs is the stray capacitance, is obtained by collectively capacitance can not be identified other than C G. Therefore, Cs is C G
Will take a considerably smaller value than. During antenna operation, the resonant circuit of Lr and C G is formed, the frequency is proportional to 1 / (√ Lr C G) . Also, at resonance Rr
Is equivalently the electromagnetic energy radiated from the antenna or the energy incident on the antenna.

【0008】次に、図11の左上隅部の放射電極と接地
電極の対向部を拡大すると、図13に示すような模式図
が得られる。この部分はCGの値に大きな影響を持ち、凡
そCGはGdに反比例すると考えられる。図示するように、
絶縁基体11上の接地電極15および放射電極13の境
界は、かなり不規則に入り組んでおり、図中破断線で示
すように直線状にならない。このため、設計的にはGdの
離隔距離で設定したとしても、実効的にはGdと異なる値
となり、その結果CGが一定しない。等価回路中のCGは、
電極の形状、配置あるいは絶縁基体の物性値等のパラメ
ータが関係するが、それらの中でもGdの影響が最も大き
く、Gdが主要パラメータとして捉えることができる。一
方、Lrに関して製造上の変動は少ない。したがって、共
振周波数のバラツキはCGが大きく関与し、放射電極と接
地電極間の離隔距離、即ちGdが精度良く形成されていな
いためである。
[0008] Next, when the facing portion of the radiation electrode and the ground electrode at the upper left corner of FIG. 11 is enlarged, a schematic diagram as shown in FIG. 13 is obtained. This portion has a large effect on the value of C G, considered approximately C G is inversely proportional to Gd. As shown
The boundary between the ground electrode 15 and the radiation electrode 13 on the insulating base 11 is considerably irregular and intricate, and is not linear as shown by the broken line in the figure. Therefore, even in the design set in separation distance Gd, the effective will differ from values and Gd, the result C G is not constant. C G in the equivalent circuit is
The parameters such as the shape and arrangement of the electrodes and the physical properties of the insulating substrate are related. Among them, Gd has the largest influence, and Gd can be regarded as a main parameter. On the other hand, there is little variation in production of Lr. Therefore, variations in the resonant frequency greatly involved C G, separation between the radiation electrode and the ground electrode, i.e., Gd is because it is not accurately formed.

【0009】ところで、絶縁基体上に電極を形成する場
合、スクリーン印刷法が広く用いられる。周知のように
スクリーン印刷法は、絶縁基体上に導電ペーストによる
パターン膜をスクリーン印刷で作製した後、所要の温度
にて電極を燒結する方法であり、チップ抵抗、コンデン
サ等の小形回路部品の製造に使われる量産技術である。
しかし、スクリーン印刷法では導電ペーストと下地基材
との濡れ性が一定しないため、図13に示すように電極
の境界を一定に確定させることは困難であり、高精度な
Gdの形成を阻んでいた。
When forming electrodes on an insulating substrate, a screen printing method is widely used. As is well known, the screen printing method is a method in which a pattern film made of a conductive paste is formed on an insulating substrate by screen printing, and then the electrodes are sintered at a required temperature, thereby producing small circuit components such as chip resistors and capacitors. Mass production technology used for
However, since the wettability between the conductive paste and the base material is not constant in the screen printing method, it is difficult to determine the boundaries of the electrodes to be constant as shown in FIG.
Gd formation was prevented.

【0010】さらに、上述した基体と導電ペーストとの
濡れ性の問題に加え、スクリーンシート自体の温度およ
び/または応力による伸縮があり、誤差を生む要因の一
つである。一般に、スクリーン印刷法では±20μm程度
の公差が実用上、許容値とされている。±20μmの公差
は周波数に換算すると、±10MHzの誤差に相当する。以
上述べた誤差要因が集積した結果、共振周波数は±30MH
zのバラツキとなる。
Furthermore, in addition to the problem of wettability between the base and the conductive paste, there is expansion and contraction due to the temperature and / or stress of the screen sheet itself, which is one of the factors causing errors. Generally, in the screen printing method, a tolerance of about ± 20 μm is regarded as a practically allowable value. When converted to frequency, a tolerance of ± 20 μm corresponds to an error of ± 10 MHz. As a result of integrating the error factors described above, the resonance frequency is ± 30 MHz
z will vary.

【0011】一方、アンテナの共振周波数のバラツキに
対してその調整方法として、特開平10−256825
号公報および特開平11−274839号公報等に記載
される方法が、通常用いられる。これらの方法はデュー
ター、レーザ、サンドブラスト等を使い、電極をトリミ
ングする。小回りがきく簡便な方法ではあるが、アンテ
ナ素子毎に電極と絶縁基体の一部を機械的に除去する手
作業が主体であり、熟練と多くの工数が必要である。ま
た、トリミングの位置あるいは量等を規格化することが
難しく、加工後のアンテナ素子の特性が微妙に変化する
等の問題があった。
On the other hand, Japanese Patent Application Laid-Open No. 10-256825 discloses a method for adjusting the variation in the resonance frequency of the antenna.
The method described in Japanese Patent Application Laid-Open No. H11-274839 and Japanese Patent Application Laid-Open No. H11-274839 is generally used. These methods use a duuter, laser, sandblast, or the like to trim the electrodes. Although this method is simple and easy to turn, it mainly involves manual work of mechanically removing the electrode and a part of the insulating base for each antenna element, and requires skill and many man-hours. In addition, it is difficult to standardize the position or amount of trimming, and there is a problem that the characteristics of the processed antenna element are slightly changed.

【0012】[0012]

【課題を解決するための手段】本発明者等は、従来技術
の課題である共振周波数のバラツキを抑制でき、且つ作
業性の良い方法を摸索した結果、新規な電極加工法を想
到した。さらに、この電極加工法を詳細に調べた結果、
アンテナ素子の広帯域化等に非常に有効であることを見
出して、本発明を完成した。
Means for Solving the Problems The present inventors have sought a method that can suppress the variation of the resonance frequency, which is a problem of the prior art, and has good workability, and as a result, has arrived at a new electrode processing method. Furthermore, as a result of examining this electrode processing method in detail,
The present inventors have found that the present invention is very effective for widening the antenna element and the like, and completed the present invention.

【0013】本発明の第1は、少なくとも放射電極と接
地電極間に溝等の凹部を設けて、電極間の離隔距離Gdを
確定する方法にある。具体的には、絶縁基体上に前記電
極パターンを形成した後、Gd幅の溝を設けて両電極を物
理的に分離する方法である。このような溝等の凹部を配
設することによって、放射電極と接地電極間の間隔が一
定化され、共振周波数のバラツキが大幅に抑制される。
なお、本発明で使用する溝等の凹部は、直線状に切り欠
いた凹溝あるいは局所的な凹溝を含むもので、概念上絶
縁基体の表面に形成される僅かな深さのものまでも含
む。絶縁基体上の電極だけを取り除くことは実際上不可
能であり、また下地材である絶縁基体の僅かな除去だけ
でも発明の効果が得られるためである。
A first aspect of the present invention is a method for determining a separation distance Gd between electrodes by providing a concave portion such as a groove between at least the radiation electrode and the ground electrode. Specifically, after the electrode pattern is formed on an insulating substrate, a groove having a Gd width is provided to physically separate both electrodes. By providing such a concave portion such as a groove, the interval between the radiation electrode and the ground electrode is made constant, and the variation in the resonance frequency is greatly suppressed.
In addition, the concave portion such as the groove used in the present invention includes a concave groove cut linearly or a local concave groove, and even a conceptually small depth formed on the surface of the insulating substrate. Including. This is because it is practically impossible to remove only the electrode on the insulating substrate, and the effect of the invention can be obtained even by a slight removal of the insulating substrate as a base material.

【0014】本発明では電極周辺部を加工対象とし、線
または面状に加工することを要旨としている。本発明
は、従来の電極トリミングのようにスポット的な加工方
法とは異なる考えと意図に基づく方法である。したがっ
て、加工の実施に当たり、特殊な工具あるいは装置は必
要でなく、汎用的に使用されている機械加工装置、レー
ザ加工機、サンドブラストあるいはエッチング装置等の
部分的な改良で対応が可能である。機械加工法の一例と
して回転式カッターを適用すると、幅寸法で数μm程度
の加工公差は容易に得られる。スクリーン印刷法による
従来方法と比較すると、1桁以上の精度向上が得られ
る。さらに、機械加工以上の精度を獲得しようとするな
らば、レジスト膜でマスクするエッチングあるいはサン
ドブラスト等を用いることが選択肢としてあげられる。
The gist of the present invention is that the peripheral portion of the electrode is processed and processed into a line or a plane. The present invention is a method based on a different idea and intention from a spot processing method such as conventional electrode trimming. Therefore, a special tool or device is not required for carrying out the processing, and it can be dealt with by a partial improvement of a generally used machining device, laser processing machine, sand blast or etching device. When a rotary cutter is applied as an example of the machining method, a processing tolerance of about several μm in width can be easily obtained. Compared with the conventional method using the screen printing method, the accuracy can be improved by one digit or more. Further, if it is desired to obtain an accuracy higher than that of the mechanical processing, etching or sandblasting using a mask with a resist film is an option.

【0015】また、トリミング方法は電極材と共に絶縁
基体も同時に取り除いてしまうため、予期しない結果を
生じる恐れがある。しかし、本発明の方法では、必要な
個所に限定して一定な加工を施すことが可能であること
から、共振周波数の調整に伴う特性変化を最小限に抑制
できる。また、作業の規格化が容易となり、量産に適し
た加工方法である。さらに、放射電極と接地電極間だけ
に溝等の凹部を限定する必要はなく、電極の外形に沿っ
て溝等の凹部を設けることは、電極の形状および寸法を
特定できる効果があり、本発明の技術思想に合致するも
のである。
[0015] In addition, the trimming method removes not only the electrode material but also the insulating substrate at the same time, which may cause unexpected results. However, according to the method of the present invention, since it is possible to perform a certain processing only at a necessary place, it is possible to minimize a change in characteristics due to the adjustment of the resonance frequency. In addition, the standardization of work is easy, and this is a processing method suitable for mass production. Further, it is not necessary to limit the concave portion such as a groove only between the radiation electrode and the ground electrode. Providing the concave portion such as the groove along the outer shape of the electrode has an effect of specifying the shape and dimensions of the electrode. It is in line with the technical philosophy.

【0016】本発明の第2は、前記溝等の凹部の断面等
を適宜選択することによって、アンテナ素子の帯域幅を
任意に制御できることである。前述の発明では、主とし
て電極に関係する発明であったが、この発明は電極ばか
りでなく絶縁基体までを包含する内容である。本発明に
よって、帯域幅を変えたアンテナ素子が容易に製造可能
である。
A second aspect of the present invention is that the bandwidth of the antenna element can be arbitrarily controlled by appropriately selecting the cross section of the concave portion such as the groove. In the above-described invention, the invention mainly relates to the electrodes, but the invention includes not only the electrodes but also the insulating substrate. According to the present invention, an antenna element having a changed bandwidth can be easily manufactured.

【0017】本発明の第3は、前記溝等の凹部内に誘電
体を配置もしくは充填する構成である。放射電極と接地
電極の間に溝等の凹部を設けることは、物理的には放射
電極と接地電極間の誘電体を空気と置換したことと同一
と考えることができる。この空気で占有された空間を誘
電体で置き換えると、絶縁基体の物性値に限定されない
特異な特性を付与することが可能である。等価回路から
明らかなように、CGは共振周波数および帯域幅特性に関
係するが、前述の発明で説明したようにアンテナの特性
は絶縁基体の材質に大きく依存するため、従来は基体の
特性に限定された程度の変更しか得られない。現在使用
している絶縁基体は、主として酸化チタンやアルミナ等
燒結材に限られる。この発明では、絶縁基体の誘電体特
性とは関係なく、所望のアンテナ性能を容易に与えるこ
とが可能である。
A third aspect of the present invention is a configuration in which a dielectric is disposed or filled in a concave portion such as the groove. Providing a concave portion such as a groove between the radiation electrode and the ground electrode can be considered physically the same as replacing the dielectric between the radiation electrode and the ground electrode with air. When the space occupied by the air is replaced with a dielectric, it is possible to impart unique characteristics that are not limited to the physical properties of the insulating base. As is clear from the equivalent circuit, CG is related to the resonance frequency and the bandwidth characteristics. However, as described in the above-mentioned invention, the characteristics of the antenna greatly depend on the material of the insulating base. Only a limited degree of change is obtained. Currently used insulating substrates are mainly limited to sintered materials such as titanium oxide and alumina. According to the present invention, desired antenna performance can be easily provided irrespective of the dielectric properties of the insulating base.

【0018】例えば、ポリエチレンやガラス等の低誘電
率材料を溝等の凹部に充填すれば、共振周波数は高くな
り、さらに広帯域幅特性が得られる。また、非線形もし
くは強誘電体等の薄膜を溝等の凹部内に形成配置すれ
ば、共振周波数は低くなり、帯域幅も狭くなることが考
えられる。以上述べた溝または凹部等を記載した文献、
あるいは作用効果を示唆するような先行技術は見当たら
ない。以下、本発明の実施形態を詳しく説明する。
For example, if a low dielectric material such as polyethylene or glass is filled in a concave portion such as a groove, the resonance frequency is increased, and a wider bandwidth characteristic is obtained. If a thin film such as a non-linear or ferroelectric material is formed and arranged in a concave portion such as a groove, the resonance frequency may be lowered and the bandwidth may be narrowed. Documents describing the grooves or recesses described above,
Or, there is no prior art that suggests an effect. Hereinafter, embodiments of the present invention will be described in detail.

【0019】[0019]

【発明の実施の形態】図1は本発明による一実施例であ
る。同図(a)はアンテナ素子の上面図であり、また同
図(b)はA-A’における断面図である。図11に示す従
来構成と比較すると、放射電極13と接地電極15の間
に幅Gdの溝等の凹部19を設けたことが異なる。このア
ンテナ素子は、図2に示すような加工法等で製造するこ
とが可能である。まず、絶縁基体11上に放射電極13
と接地電極15を形成する工程では、両者の間隙をGdよ
り狭く設定する。電極を焼成した後、図に示すようにカ
ッター幅Gdの回転式カッター21等を用いて、溝等の凹
部19を接地電極15に平行に適当な深さdをもって切
り込む。溝等の凹部19は接地電極15と放射電極13
をGdの距離で分離することになる。従来のトリミング方
法では、デューター等で電極の限られた部分を局部的に
除去するものであったが、本実施例は電極の境界線を直
線的に且つ一定幅にトリミングすることになり、従来技
術で問題となっていたGdを高精度に仕上げられる。した
がって、共振周波数のバラツキを大幅に低減できること
は明らかである。
FIG. 1 shows an embodiment according to the present invention. FIG. 3A is a top view of the antenna element, and FIG. 3B is a cross-sectional view taken along line AA ′. 11 differs from the conventional configuration shown in FIG. 11 in that a recess 19 such as a groove having a width Gd is provided between the radiation electrode 13 and the ground electrode 15. This antenna element can be manufactured by a processing method as shown in FIG. First, the radiation electrode 13 is placed on the insulating base 11.
In the step of forming the gate electrode 15 and the ground electrode 15, the gap between them is set to be smaller than Gd. After firing the electrode, a concave portion 19 such as a groove is cut in parallel to the ground electrode 15 with an appropriate depth d using a rotary cutter 21 having a cutter width Gd as shown in the figure. The concave portion 19 such as a groove includes the ground electrode 15 and the radiation electrode 13.
At the distance of Gd. In the conventional trimming method, a limited portion of the electrode is locally removed by a deuterer or the like.In this embodiment, however, the boundary of the electrode is trimmed linearly and to a constant width. Gd, which has been a problem in technology, can be finished with high precision. Therefore, it is clear that the variation in the resonance frequency can be significantly reduced.

【0020】他の実施例として、図3は放射電極13を
絶縁基体11の主面だけでなく側面14に延在する場合
である。放射電極13を側面14にまで配設すると、放
射効率を高められ、より実用的なアンテナ素子を提供で
きる。図示するように放射電極13の頭部41は、溝等
の凹部19によって階段状となる。さらに、本発明の効
果を大きくするために、側面14に溝等の凹部19’を
設けた実施例を図4に示す。
FIG. 3 shows another embodiment in which the radiation electrode 13 extends not only on the main surface but also on the side surface 14 of the insulating base 11. By arranging the radiation electrode 13 on the side surface 14, the radiation efficiency can be increased, and a more practical antenna element can be provided. As shown, the head 41 of the radiation electrode 13 has a stepped shape due to the concave portion 19 such as a groove. FIG. 4 shows an embodiment in which a concave portion 19 ′ such as a groove is provided on the side surface 14 in order to increase the effect of the present invention.

【0021】また、サンプルの特性を詳細に評価する
と、溝等の凹部の形状を変えることによってアンテナの
帯域幅特性が変化することがわかり、実用的な溝等の凹
部形状の探索を行った。図5は溝等の凹部深さdと帯域
幅BWの関係で、シミレーションによって計算した結果を
示す。図中、破断線は図1に示す実施例の場合であり、
また実線は図4の実施例である。当然ながら、放射電極
と接地電極間の溝等の凹部の長さが長い程、dの効果が
大きい。また、dとBWはほぼ比例関係にあり、d=0.3mm
とすればd=0の溝なしの場合に比べ、BWを2倍以上に
拡大することができる。電極のトリミングのみが必要な
場合は溝なしとし、dを限りなくゼロに近づけた特性で
ある。さらに、図6に溝等の凹部幅Wと帯域幅BWの関係
を示す。図5の場合と同様に、Wが増えるとBWも増加
し、W=0.2mmとすれば、BWを約2倍以上広げることが
できる。一方、溝等の凹部幅Wの方が溝等の凹部深さdよ
り帯域幅WBに対する影響が大である。
Further, when the characteristics of the sample were evaluated in detail, it was found that changing the shape of the concave portion such as the groove changed the bandwidth characteristic of the antenna, and a search was made for a practical shape of the concave portion such as the groove. FIG. 5 shows a result calculated by simulation in a relationship between the depth d of the concave portion such as the groove and the bandwidth BW. In the figure, the broken line is the case of the embodiment shown in FIG.
The solid line is the embodiment of FIG. As a matter of course, the longer the length of the concave portion such as the groove between the radiation electrode and the ground electrode, the greater the effect of d. Also, d and BW are almost in a proportional relationship, and d = 0.3 mm
In this case, the BW can be doubled or more as compared with the case where there is no groove at d = 0. When only trimming of the electrode is necessary, no groove is provided, and d is as close as possible to zero. FIG. 6 shows the relationship between the width W of the concave portion such as a groove and the bandwidth BW. As in the case of FIG. 5, when W increases, BW also increases. If W = 0.2 mm, the BW can be increased by about twice or more. On the other hand, the width W of the concave portion such as the groove has a greater effect on the bandwidth WB than the depth d of the concave portion such as the groove.

【0022】電極間に溝等の凹部を設けることは、物理
的には次のように考えることができる。図7において、
放射電極13が接地電極15に対して正に帯電している
状態を考える。絶縁基体11の比誘電率は空気より通常
1桁以上大きいため、図示するように電気力線の大部分
は溝等の凹部19を回り込むように分布し、絶縁基体1
1中を通過する。したがって、溝等の凹部19は絶縁基
体11中の電気力線本数とその密度分布を制御できるこ
とがわかる。溝等の凹部19を深くあるいは広くするに
従い、電気力線の回り込みが少なくなり、結果的に電気
力線数の減少する。これは電極間の静電容量の低下とな
って現れ、帯域幅が広がることと等価である。さらに、
溝等の凹部19が深くなるにつれて、電極離隔距離Gdは
電気力線の分布に殆ど影響を持たないため、溝の幅をGd
より狭くても同じ効果が得られる。現象的には、溝等の
凹部19を広げた場合も同じと考えられる。
The provision of a concave portion such as a groove between the electrodes can be physically considered as follows. In FIG.
It is assumed that the radiation electrode 13 is positively charged with respect to the ground electrode 15. Since the relative permittivity of the insulating base 11 is usually at least one order of magnitude higher than that of air, most of the lines of electric force are distributed around the recess 19 such as a groove as shown in FIG.
Pass through one. Therefore, it can be understood that the concave portion 19 such as a groove can control the number of lines of electric force in the insulating base 11 and the density distribution thereof. As the concave portion 19 such as a groove is made deeper or wider, the wraparound of the lines of electric force is reduced, and as a result, the number of lines of electric force is reduced. This appears as a decrease in capacitance between the electrodes, and is equivalent to an increase in bandwidth. further,
As the concave portion 19 such as a groove becomes deeper, the electrode separation distance Gd has almost no influence on the distribution of lines of electric force.
The same effect can be obtained with a smaller width. Phenomenologically, the same applies to the case where the recess 19 such as a groove is widened.

【0023】また、上述した実施例の溝等の凹部に絶縁
基体とは異なる特性の誘電体を配設する場合の実施例を
図8に示す。誘電体25としてポリエチレンやガラス等
の低誘電率材料を充填する例であるが、場合によっては
完全に充填する必要はない。また、膜状でも可能であ
り、溝等の凹部19内の誘電体25がアンテナ素子の改
善に寄与できる配置あるいは材質の選択は、本発明の技
術思想に含まれる。
FIG. 8 shows an embodiment in which a dielectric having characteristics different from those of the insulating base is provided in the concave portion such as the groove of the above-described embodiment. In this example, the dielectric 25 is filled with a low dielectric constant material such as polyethylene or glass, but it is not necessary to completely fill the dielectric 25 in some cases. Further, it is also possible to form a film, and the selection of the arrangement or the material in which the dielectric 25 in the recess 19 such as the groove can contribute to the improvement of the antenna element is included in the technical idea of the present invention.

【0024】図9は、溝等の凹部断面を台形状とした場
合である。溝等の凹部19の側面を傾けることによっ
て、図1に示す溝壁面が垂直の場合に比べると、溝加工
が容易になる。側面の傾斜が緩くなるに従い、図5およ
び6の特性から外れるが、極端にならない限り大きな偏
差は生じない。この例からわかるように、本発明の実施
に当っては溝等の凹部の断面形状は2次的な選択事項で
あり、加工性あるいは作業性を優先すべきものと考え
る。
FIG. 9 shows a case where the cross section of a concave portion such as a groove is trapezoidal. By inclining the side surface of the concave portion 19 such as a groove, groove processing becomes easier as compared with the case where the groove wall surface shown in FIG. 1 is vertical. As the inclination of the side surface becomes gentler, the characteristics deviate from the characteristics shown in FIGS. 5 and 6, but a large deviation does not occur unless it becomes extreme. As can be seen from this example, in implementing the present invention, the cross-sectional shape of the concave portion such as the groove is a secondary choice, and it is considered that workability or workability should be given priority.

【0025】さらに、部分改善した実施例を図10に示
す。放射電極13と接地電極15の対向部に半開の溝等
の凹部19’’を設けると共に、切残し部71と放射電
極13の周辺に側溝73を設ける場合である。この実施
例のように、接地電極と放射電極が対向しない部分にも
本発明を適用でき、図13に示す等価回路における漂遊
容量Csを最小化が可能であり、バラツキの抑制に効果が
ある。さらに、放射電極13の先端平行部75を図示の
ように段差を設けると、一層特性の改善に寄与できる。
加えて、切残し部71は機械的な強度の向上と調整精度
の改善に役立つ。
FIG. 10 shows a partially improved embodiment. This is a case where a concave portion 19 ″ such as a half-open groove is provided in a portion facing the radiation electrode 13 and the ground electrode 15, and a side groove 73 is provided around the uncut portion 71 and the radiation electrode 13. As in this embodiment, the present invention can be applied to a portion where the ground electrode and the radiation electrode do not face each other, and the stray capacitance Cs in the equivalent circuit shown in FIG. 13 can be minimized, which is effective in suppressing variations. Further, if the tip parallel portion 75 of the radiation electrode 13 is provided with a step as shown in the drawing, it is possible to further contribute to the improvement of the characteristics.
In addition, the uncut portion 71 is useful for improving mechanical strength and improving adjustment accuracy.

【0026】[0026]

【発明の効果】本発明によって、従来問題となっていた
共振周波数のバラツキを大幅に抑制でき、アンテナ製造
時の歩留まり向上に貢献する。さらに、溝等の凹部の形
状あるいは誘電体の充填によって波数帯域幅特性等を制
御でき、特性の異なる各種のアンテナを容易に製造可能
である。
According to the present invention, the variation of the resonance frequency, which has been a problem in the past, can be greatly suppressed, which contributes to the improvement of the yield at the time of manufacturing the antenna. Further, the wave number bandwidth characteristic and the like can be controlled by the shape of the concave portion such as the groove or the filling of the dielectric material, and various antennas having different characteristics can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例を示す上面および断面図
である。
FIG. 1 is a top view and a sectional view showing one embodiment of the present invention.

【図2】本発明による溝等の凹部加工法の概略図であ
る。
FIG. 2 is a schematic view of a method for processing a concave portion such as a groove according to the present invention.

【図3】本発明による第2の実施例を示す斜視図であ
る。
FIG. 3 is a perspective view showing a second embodiment according to the present invention.

【図4】本発明による第3の実施例を示す主要部の斜視
図である。
FIG. 4 is a perspective view of a main part showing a third embodiment according to the present invention.

【図5】本発明を実施した場合の溝等の凹部深さと帯域
幅の関係である。
FIG. 5 shows the relationship between the depth of a concave portion such as a groove and the bandwidth when the present invention is implemented.

【図6】本発明を実施した場合の溝等の凹部幅と帯域幅
の関係である。
FIG. 6 shows the relationship between the width of a concave portion such as a groove and the bandwidth when the present invention is implemented.

【図7】溝等の凹部付近の電気力線の分布図である。FIG. 7 is a distribution diagram of lines of electric force near concave portions such as grooves.

【図8】溝等の凹部内に誘電体を配置する場合の断面図
である。
FIG. 8 is a cross-sectional view when a dielectric is arranged in a concave portion such as a groove.

【図9】本発明による溝等の凹部の断面図である。FIG. 9 is a sectional view of a concave portion such as a groove according to the present invention.

【図10】本発明の第4の実施例である。FIG. 10 is a fourth embodiment of the present invention.

【図11】従来技術によるチップ型アンテナ素子の斜視
図である。
FIG. 11 is a perspective view of a conventional chip antenna element.

【図12】チップ型アンテナ素子の等価回路図である。FIG. 12 is an equivalent circuit diagram of the chip antenna element.

【図13】従来の電極部拡大模式図である。FIG. 13 is an enlarged schematic view of a conventional electrode portion.

【符号の説明】[Explanation of symbols]

10:アンテナ素子、11:絶縁基体、12:給電電
極、13:放射電極、14:側面、15,17:接地電
極、19:溝等の凹部、21:カッター、25:誘電
体、71:切残し部、73:側溝、75:先端平行部
10: antenna element, 11: insulating base, 12: feed electrode, 13: radiation electrode, 14: side surface, 15, 17: ground electrode, 19: recess such as groove, 21: cutter, 25: dielectric, 71: off Remaining part, 73: side groove, 75: tip parallel part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基体上に給電電極、放射電極および
接地電極等を配したチップ型アンテナ素子であって、少
なくとも前記放射電極と接地電極の間に溝等の凹部を設
けて、前記電極間を規制することを特徴とするチップ型
アンテナ素子。
1. A chip antenna element having a power supply electrode, a radiation electrode, a ground electrode, and the like disposed on an insulating substrate, wherein at least a concave portion such as a groove is provided between the radiation electrode and the ground electrode. A chip-type antenna element characterized by regulating the following.
【請求項2】 請求項1において、前記溝等の凹部は所
要の形状と断面積を有することを特徴とするチップ型ア
ンテナ素子。
2. The chip type antenna element according to claim 1, wherein the concave portion such as the groove has a required shape and a required cross-sectional area.
【請求項3】 請求項1または2のいずれかにおいて、
前記溝等の凹部は前記放射電極および/または接地電極
の外形の一部に一致することを特徴とするチップ型アン
テナ素子。
3. The method according to claim 1, wherein
A chip-type antenna element, wherein a concave portion such as the groove coincides with a part of an outer shape of the radiation electrode and / or the ground electrode.
【請求項4】 請求項1〜3のいずれかにおいて、前記
溝等の凹部は放射電極と接地電極の離隔距離を規定する
ことを特徴とするチップ型アンテナ素子。
4. The chip-type antenna element according to claim 1, wherein the recess such as the groove defines a separation distance between the radiation electrode and the ground electrode.
【請求項5】 請求項2〜4のいずれかにおいて、前記
溝等の凹部は方形の断面を有し、幅および/または深さ
によって帯域幅を制御することを特徴とするチップ型ア
ンテナ素子。
5. The chip-type antenna element according to claim 2, wherein the recess such as the groove has a rectangular cross section, and the bandwidth is controlled by the width and / or the depth.
【請求項6】 請求項1〜3のいずれかにおいて、前記
溝等の凹部の一部もしくは全てに誘電体を充填すること
を特徴とするチップ型アンテナ素子。
6. The chip type antenna element according to claim 1, wherein a part or all of the concave portion such as the groove is filled with a dielectric.
【請求項7】 請求項1〜6のいずれかにおいて、前記
アンテナ素子の放射電極は絶縁基体の少なくとも主面に
配置し連続的および/または段階的に幅を狭めながら伸
びる電極であり、接地電極は絶縁基体の両端面に配置し
前記放射電極の一端と接続していることを特徴とするチ
ップ型アンテナ素子。
7. The ground electrode according to claim 1, wherein the radiation electrode of the antenna element is an electrode disposed on at least a main surface of the insulating base and continuously and / or stepwise reduced in width. Are chip antenna elements arranged on both end surfaces of an insulating base and connected to one end of the radiation electrode.
【請求項8】 請求項1〜7に記載のアンテナ素子の製
造方法であって、前記絶縁基体に放射電極および接地電
極を形成した後に、前記溝等の凹部を所定の位置に設け
る工程を含むことを特徴とするチップ型アンテナ素子の
製造方法。
8. The method for manufacturing an antenna element according to claim 1, further comprising a step of forming a concave portion such as the groove at a predetermined position after forming a radiation electrode and a ground electrode on the insulating base. A method for manufacturing a chip antenna element, comprising:
JP2000297351A 2000-09-28 2000-09-28 Chip antenna element and manufacturing method thereof Pending JP2002111349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297351A JP2002111349A (en) 2000-09-28 2000-09-28 Chip antenna element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297351A JP2002111349A (en) 2000-09-28 2000-09-28 Chip antenna element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002111349A true JP2002111349A (en) 2002-04-12

Family

ID=18779482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297351A Pending JP2002111349A (en) 2000-09-28 2000-09-28 Chip antenna element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002111349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505689A1 (en) * 2003-08-08 2005-02-09 Hitachi Metals, Ltd. Chip antenna device and communications apparatus using same
JP2009171096A (en) * 2008-01-15 2009-07-30 Tdk Corp Surface mount antenna and antenna module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505689A1 (en) * 2003-08-08 2005-02-09 Hitachi Metals, Ltd. Chip antenna device and communications apparatus using same
US7148851B2 (en) 2003-08-08 2006-12-12 Hitachi Metals, Ltd. Antenna device and communications apparatus comprising same
JP2009171096A (en) * 2008-01-15 2009-07-30 Tdk Corp Surface mount antenna and antenna module

Similar Documents

Publication Publication Date Title
EP1251588B1 (en) Method for tuning an antenna and an antenna
US6753813B2 (en) Surface mount antenna, method of manufacturing the surface mount antenna, and radio communication apparatus equipped with the surface mount antenna
KR100563021B1 (en) An electric communication signal filter and an antenna duplexer for an RF receiver/transmitter unit
US7786938B2 (en) Antenna, component and methods
US7221326B2 (en) Biconical antenna
KR101139741B1 (en) Antenna device and wireless communication equipment using the same
EP1770826A2 (en) Surface-mounted antenna and communications apparatus comprising same
US8106722B2 (en) Multi-layered device and electronic equipment using thereof
JPH10247808A (en) Chip antenna and frequency adjustment method therefor
US7924229B2 (en) Antenna apparatus and method for adjusting characteristics thereof
US6452554B1 (en) Antenna element and radio communication apparatus
EP0303216B1 (en) Dielectric filter and its method of manufacturing
US20210226310A1 (en) A Cavity Filter
JP2002111349A (en) Chip antenna element and manufacturing method thereof
JPH10107537A (en) Manufacture of surface mount antenna
JP4924399B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE USING THE SAME
JP4045459B2 (en) ANTENNA ELEMENT AND RADIO COMMUNICATION DEVICE USING THE SAME
JP2001358515A (en) Chip type antenna element and antenna device as well as communication apparatus mounting the same
KR20190065766A (en) Dielectric wave guide device and method for fabricating the same
JP2002232222A (en) Chip antenna element and method for adjusting its electric characteristic
JPH0522002A (en) Dielectric filter
CN110337754B (en) RF resonator with bridge coupling adjacent resonators
JPH06232624A (en) Plane antenna for mobile radio equipment
JPH07245513A (en) High frequency dielectric resonator and adjustment method for its resonance frequency
JP2002135027A (en) Manufacturing method of chip-type antenna