JP2001358515A - Chip type antenna element and antenna device as well as communication apparatus mounting the same - Google Patents

Chip type antenna element and antenna device as well as communication apparatus mounting the same

Info

Publication number
JP2001358515A
JP2001358515A JP2000353460A JP2000353460A JP2001358515A JP 2001358515 A JP2001358515 A JP 2001358515A JP 2000353460 A JP2000353460 A JP 2000353460A JP 2000353460 A JP2000353460 A JP 2000353460A JP 2001358515 A JP2001358515 A JP 2001358515A
Authority
JP
Japan
Prior art keywords
electrode
ground
antenna element
radiation electrode
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000353460A
Other languages
Japanese (ja)
Other versions
JP3594127B2 (en
Inventor
Hiroshi Aoyama
博志 青山
Kenichi Tonomura
健一 外村
Keiko Kikuchi
慶子 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000353460A priority Critical patent/JP3594127B2/en
Priority to EP01109178A priority patent/EP1146589B1/en
Priority to AT01109178T priority patent/ATE311020T1/en
Priority to DE60115131T priority patent/DE60115131T2/en
Priority to KR1020010019914A priority patent/KR100798044B1/en
Priority to US09/833,560 priority patent/US6476767B2/en
Publication of JP2001358515A publication Critical patent/JP2001358515A/en
Application granted granted Critical
Publication of JP3594127B2 publication Critical patent/JP3594127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a chip type antenna in size and enhance performance thereof and to provide an antenna device for raising a mounting density of circuit boards and a communication apparatus for mounting the same. SOLUTION: In the chip type antenna comprising microstrip conductors arranged on an insulating base having at least an end face, ground electrodes are provided at both ends of the base, one side of a radiation electrode provided on an upper surface is formed in an open end against the ground electrodes via gaps, the radiating electrode extended from the other grounding electrode toward the open end while continuously and/or stepwisely narrowing a width is formed, and a power supply electrode is provided at a side on its midway. Thus, wide band characteristics are obtained, and a directivity can be remarkably improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チップ型アンテナ
素子とそれを用いたアンテナ装置並びにそれを搭載した
通信機器に係わるものであり、特に携帯無線電話や無線
LAN(ローカルエリアネットワーク)等のマイクロ波
無線通信機器に好適なチップ型アンテナ素子(以下、単
にアンテナ素子と言うことがある。)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip-type antenna element, an antenna device using the same, and a communication device equipped with the chip-type antenna element. The present invention relates to a chip antenna element (hereinafter, may be simply referred to as an antenna element) suitable for a radio wave communication device.

【0002】[0002]

【従来の技術】マイクロ波無線通信機器、とりわけ携帯
電話などの携帯通信機器では、小形低背化を図るために
アンテナ素子としてモノポールアンテナやマイクロスト
リップアンテナ等が、一般に用いられている。このう
ち、最近適用が増加しているマイクロストリップアンテ
ナの構造および原理に関しては、アンテナ工学ハンドブ
ック(p109〜111 電子情報通信学会編 オーム社)にそ
の詳しい記載がある。
2. Description of the Related Art In a microwave radio communication device, especially a portable communication device such as a mobile phone, a monopole antenna, a microstrip antenna, or the like is generally used as an antenna element in order to reduce the size and height. Of these, the structure and principle of microstrip antennas, which have been increasingly used in recent years, are described in detail in the Antenna Engineering Handbook (pp. 109-111, Ohmsha, edited by the Institute of Electronics, Information and Communication Engineers).

【0003】現在、実用化されているマイクロストリッ
プアンテナ素子は、特開平10−209740号公報に
記載されているように直方体状の誘電体上面に放射電極
を形成し、下面から給電するものが知られている。この
概略構成を図16に示す。アンテナとして動作させる場
合、地導体96を配したプリント基板(図示せず)上に
アンテナ素子100を図示するように配置し、下面側か
ら給電線94によって給電が行われる。放射電極90の
開放端では図示するように地導体96間で電気力線が発
生し、放射電極の垂直方向に磁流が発生して空間に電波
が効率良く放射される。すなわち、放射電極の一辺の長
さDは通常約1/4波長に選ばれ、共振時には放射電極
の垂直向きに磁流が発生し、電気力線の向きは放射電極
端面から流出する磁流と直交する方向に生じるのであ
る。尚、放射電極90の形状は長方形電極の他に円形あ
るいは五角形等様々な形状が提案されているが、上下あ
るいは左右対称なものが主に使用される。
At present, there is known a microstrip antenna element which is practically used, in which a radiation electrode is formed on the upper surface of a rectangular parallelepiped dielectric and power is supplied from the lower surface as described in Japanese Patent Application Laid-Open No. 10-209740. Have been. FIG. 16 shows the schematic configuration. When operating as an antenna, the antenna element 100 is arranged on a printed circuit board (not shown) on which the ground conductor 96 is arranged as shown in the figure, and power is supplied from the lower surface side by the power supply line 94. At the open end of the radiating electrode 90, lines of electric force are generated between the ground conductors 96 as shown in the figure, and a magnetic current is generated in the vertical direction of the radiating electrode, so that radio waves are efficiently radiated into space. That is, the length D of one side of the radiation electrode is usually selected to be about 1/4 wavelength, and at the time of resonance, a magnetic current is generated in a direction perpendicular to the radiation electrode. It occurs in orthogonal directions. Although various shapes such as a circular or pentagonal shape have been proposed as the shape of the radiation electrode 90 in addition to the rectangular electrode, a vertically or horizontally symmetrical one is mainly used.

【0004】携帯通信機器に使用されるアンテナは、小
形低背であると同時に放射効率が良く且つ指向性がない
ことが必要十分条件である。小形低背化のために上述し
たアンテナ素子は、放射電極を絶縁基板上もしくは内部
に配置した構成がとられる。これは、放射電極を流れる
電流が隣接する絶縁基板に影響され、その波長を短くす
る(波長短縮効果)ためで、放射電極を短くしても同一
の放射効率が得れることから、小形なアンテナの使用が
可能となる。必要なアンテナ長dは、絶縁基板の比誘電
率をεr、共振周波数をf0、また光の速度をcとするなら
ば、大略 d=c/(2f0√εr) (1) と表される。
It is necessary and sufficient conditions that an antenna used in a portable communication device has a small size, a low profile, a high radiation efficiency, and no directivity. In order to reduce the size and height of the antenna element, the above-described antenna element has a configuration in which a radiation electrode is disposed on or inside an insulating substrate. This is because the current flowing through the radiation electrode is affected by the adjacent insulating substrate and shortens its wavelength (wavelength shortening effect). Even if the radiation electrode is shortened, the same radiation efficiency can be obtained. Can be used. If the relative permittivity of the insulating substrate is εr, the resonance frequency is f 0 , and the speed of light is c, the required antenna length d is approximately expressed as d = c / (2f 0 √εr) (1) You.

【0005】上式から容易に理解されるように、マイク
ロストリップ構造のアンテナ素子は、伝搬周波数(=
f0)を一定とするならば、絶縁基板のεrが大きければ
大きい程、d、即ちアンテナ素子長を短くできる。言い
換えると、比誘電率の高い基板を用いることによって、
同じ性能で低背なマイクロストリップアンテナ素子を製
造することが可能である。特に、携帯電話等には低背化
したアンテナ装置は必須であり、従来にない小形で高性
能なアンテナ素子の開発が望まれている。
As can be easily understood from the above equation, the antenna element having a microstrip structure has a propagation frequency (=
If f 0 ) is constant, d, that is, the antenna element length can be shortened as εr of the insulating substrate increases. In other words, by using a substrate having a high relative dielectric constant,
It is possible to manufacture a low-profile microstrip antenna element with the same performance. In particular, a low-profile antenna device is indispensable for a mobile phone or the like, and development of an unprecedented small and high-performance antenna element is desired.

【0006】また、携帯通信機器に適用されるマイクロ
ストリップアンテナ以外のアンテナ方式として、逆F型
モノポールアンテナがある。この逆F型モノポールアン
テナは、地導体板に短絡した線状導体を途中で折り曲げ
て放射電極とするもので、地導体板と放射電極との間に
給電端子を接続した方式のアンテナである。この放射電
極はおよそ1/4波長あればよいことから、先に引用した
マイクロストリップアンテナ素子と比較すると、導体幅
方向に展開したアンテナ方式と見なすことができる。
As an antenna system other than the microstrip antenna applied to a portable communication device, there is an inverted-F monopole antenna. This inverted-F type monopole antenna is a type in which a linear conductor short-circuited to a ground conductor plate is bent in the middle to form a radiation electrode, and a feeding terminal is connected between the ground conductor plate and the radiation electrode. . Since the radiation electrode only needs to be about 1/4 wavelength, it can be regarded as an antenna system developed in the conductor width direction as compared with the microstrip antenna element cited above.

【0007】[0007]

【発明が解決しようとする課題】上述した従来のマイク
ロストリップアンテナでは、小形低背化に際して次のよ
うな課題を有していた。即ち、所定の伝搬周波数f0に対
し絶縁基板の比誘電率εrを高めることによって、放射
電極を短縮化して行くと、共振特性が先鋭化し、狭い周
波数領域だけで動作する狭帯域化となる。これは、携帯
電話等のアンテナとして好ましいことではなく、通信に
利用可能な周波数帯域の制限を意味する。従って、実用
的なアンテナを開発するに当たっては、第1に広帯域特
性を満足する必要がある。特に、2周波以上を使用する
多周波用アンテナでは、この狭帯域化現象が深刻な問題
であり、絶縁基体の物性値だけで制御する範囲を超えて
いた。
The above-mentioned conventional microstrip antenna has the following problems in reducing the size and height. That is, when the relative permittivity εr of the insulating substrate is increased with respect to a predetermined propagation frequency f 0 , when the radiation electrode is shortened, the resonance characteristics are sharpened, and the band is narrowed to operate only in a narrow frequency range. This is not preferable as an antenna of a mobile phone or the like, but means a limitation on a frequency band usable for communication. Therefore, in developing a practical antenna, first, it is necessary to satisfy wideband characteristics. In particular, in a multi-frequency antenna using two or more frequencies, this narrowing phenomenon is a serious problem, and has exceeded the range controlled by only the physical properties of the insulating base.

【0008】一般に、共振特性の帯域幅をBW、アンテ
ナの共振時の良さをQ値とすると、共振周波数f0、BW
およびQとの間には次式のような関係を有する。 BW=f0/Q (2) 一方、マイクロストリップアンテナの高さhは絶縁基板
の厚さと一致し、Qとの関係を表すと、 Q∝εr/h (3) となることが知られている。
In general, assuming that the bandwidth of the resonance characteristic is BW and the quality of the antenna at resonance is Q value, the resonance frequency f 0 , BW
And Q have the following relationship. BW = f 0 / Q (2) On the other hand, it is known that the height h of the microstrip antenna coincides with the thickness of the insulating substrate, and when expressed in relation to Q, Q∝εr / h (3) I have.

【0009】このように比誘電率εrの高い絶縁基板を
用いると、Q値が増して結果的に帯域幅BWの低下を招
くことが、上式から説明できる。一方、背の高いアンテ
ナを使用すれば、Qが低下するが、アンテナの小形低背
化ができなくなる。要するに、アンテナの小形低背化と
性能は互いにトレイドオフの関係にあり、両者を同時に
満足することは非常に困難であると考えられていた。
From the above equation, it can be explained that the use of an insulating substrate having a high relative dielectric constant εr results in an increase in the Q value and consequently a reduction in the bandwidth BW. On the other hand, if a tall antenna is used, Q is reduced, but the antenna cannot be reduced in size and height. In short, the miniaturization and height reduction of the antenna and the performance are in a trade-off relationship with each other, and it has been considered very difficult to satisfy both at the same time.

【0010】一方、マイクロストリップアンテナの小形
化の一手法として、放射電極を中央部で2分割し、一端
を短絡させる方式が知られている。この方式は、新アン
テナ工学(p109〜112 新井宏之著 総合電子出版社発
行)に詳しい記載がある。この構成は、線状の放射電極
を中央で半分に分割し、その一端と地導体板を電気的に
短絡するものである。放射電極の一辺の長さは共振周波
長の1/4程度となるため、従来に比べ約50%の小形化
が可能である。また、放射電極を基体の縁部に沿って設
けるか、または隣接面に回り込んで設けることによっ
て、帯域幅の拡大を図ることが可能である旨を記載した
特開平11−251816号公報がある。
On the other hand, as a technique for miniaturizing a microstrip antenna, a method is known in which a radiation electrode is divided into two parts at a central portion and one end is short-circuited. This method is described in detail in New Antenna Engineering (pp.109-112 by Hiroyuki Arai, published by Sogo Denshi Shuppan). In this configuration, a linear radiation electrode is divided into halves at the center, and one end thereof and the ground conductor plate are electrically short-circuited. Since the length of one side of the radiation electrode is about 1/4 of the resonance wavelength, the size can be reduced by about 50% as compared with the related art. Japanese Patent Application Laid-Open No. H11-251816 describes that the bandwidth can be increased by providing the radiation electrode along the edge of the base or by wrapping around the adjacent surface. .

【0011】ところが、このマイクロストリップアンテ
ナ素子を携帯通信機器に組み込むと、主に放射電極の端
部からの放射電波によってその近傍に配置された筐体あ
るいは回路基板の導体部に電流を誘起し、その導体部が
見掛け上アンテナ作用を起こすことになる。この方式の
アンテナでは、実装状態や環境によって特性の変動が生
じやすく、給電点におけるインピーダンスの不整合、あ
るいは放射指向性の変動となって現れ、実装上の問題が
あった。
However, when this microstrip antenna element is incorporated in a portable communication device, a current is induced in a conductor portion of a housing or a circuit board disposed in the vicinity thereof mainly by a radio wave radiated from an end of a radiation electrode, The conductor part apparently acts as an antenna. In this type of antenna, the characteristics tend to fluctuate depending on the mounting state and the environment, resulting in impedance mismatch at the feeding point or fluctuation of the radiation directivity, and there is a mounting problem.

【0012】さらに、放射電極の端部からは高周波の電
磁波が放射するため、近傍に配置された電子回路部品に
も影響を与え、ノイズの発生、誤動作あるいは異常発振
など通信性能の劣化が課題であった。従来行われていた
対策は、周辺回路部品をアンテナ素子から離隔して配置
することであったが、この方法ではアンテナ周辺の実装
密度を高めることにならず、通信機器の小形化に大きな
障害となっていた。
Further, since high-frequency electromagnetic waves are radiated from the end of the radiation electrode, the influence is exerted on electronic circuit components arranged in the vicinity, and deterioration of communication performance such as generation of noise, malfunction or abnormal oscillation is a problem. there were. The countermeasure that has been taken in the past was to place peripheral circuit components away from the antenna element.However, this method does not increase the mounting density around the antenna, and poses a major obstacle to miniaturization of communication equipment. Had become.

【0013】そこで、本発明は、アンテナ素子の長さや
高さを大きくすることなく、Q値を確保し、高利得で且
つ帯域幅を広げることの出来るアンテナ素子と、これを
回路基板に実装した際に周辺の回路部品に悪影響を与え
ることなく省スペースと実装密度を高めたアンテナ装置
及びそれを搭載した携帯情報端末などの通信機器を提供
することを目的とする。
Accordingly, the present invention provides an antenna element capable of securing a Q value, increasing gain, and broadening a bandwidth without increasing the length and height of the antenna element, and mounting the antenna element on a circuit board. It is an object of the present invention to provide an antenna device having a small space and an increased mounting density without adversely affecting peripheral circuit components, and a communication device such as a portable information terminal equipped with the antenna device.

【0014】[0014]

【課題を解決するための手段】以上述べたように、アン
テナ素子の小形低背化と広帯域化を同時に行うことは、
従来技術では適用限界を超えていた。しかしながら、本
発明者は、従来のアンテナ構成の基本原理に立ち返り、
その動作をシミュレーション等を駆使し、細部に亘り深
く考究した結果、放射電極と接地電極の形状を選ぶこと
によって等価的に複数の共振回路をアンテナ素子に発生
させることができること、また、電極配置を選ぶことに
よって高利得の放射指向性と不必要な電界の放射を阻止
できること、また、地導体への載置構成を考慮すること
によって占有面積を小さくしてより良い特性が得られる
ことなどを知見した。これらにより小形低背化と高利
得、広帯域特性を得ることが可能であることを想到し、
本発明を完成した。
As described above, it is necessary to simultaneously reduce the size and height of the antenna element and increase the bandwidth.
In the prior art, the application limit was exceeded. However, the present inventor has returned to the basic principle of the conventional antenna configuration,
As a result of deeply studying the operation using simulations and other details, it is possible to equivalently generate a plurality of resonance circuits in the antenna element by selecting the shape of the radiation electrode and the ground electrode. It is known that by selecting this, high gain radiation directivity and unnecessary electric field radiation can be blocked, and that by taking into account the mounting configuration on the ground conductor, the occupied area can be reduced and better characteristics can be obtained. did. With these, we realized that it is possible to obtain a compact, low profile, high gain, and broadband characteristics.
The present invention has been completed.

【0015】即ち、本発明は、絶縁基体にマイクロスト
リップ導体を配した放射電極と、接地電極と、給電電極
とを有するチップ型アンテナ素子であって、少なくとも
一面に設けた放射電極の一方辺は開放端となし、ギャッ
プを介して接地電極と対向し、さらに開放端の反対側に
位置する他方辺は接地され、且つ前記放射電極には帯域
幅の制御手段を備えてなるチップ型アンテナ素子であ
る。前記帯域幅の制御手段としては、前記放射電極の幅
を前記ギャップに向かって連続的および/または段階的
に狭めながら延在して設けたものがあり、これは並列多
重共振機能を有するものであれば良いと言える。
That is, the present invention relates to a chip antenna element having a radiation electrode in which a microstrip conductor is provided on an insulating base, a ground electrode, and a feed electrode, wherein at least one side of the radiation electrode provided on at least one surface has A chip-type antenna element having an open end, facing the ground electrode via a gap, and the other side located on the side opposite to the open end is grounded, and the radiation electrode is provided with a bandwidth control means. is there. As the bandwidth control means, there is a means provided so as to extend while narrowing the width of the radiation electrode continuously and / or stepwise toward the gap, which has a parallel multiple resonance function. It would be good if there was.

【0016】また、本発明は、絶縁基体にマイクロスト
リップ導体を配した放射電極と、接地電極と、給電電極
とを有するチップ型アンテナ素子であって、少なくとも
一面に設けた放射電極の一方辺は開放端となし、この開
放端に対向し、ギャップを介して一方の端面を覆い少な
くとも接地面まで延在した接地電極と、前記放射電極の
他方辺には連続あるいは容量結合して他方の端面を覆い
少なくとも接地面まで延在した接地電極を設けたチップ
型アンテナ素子である。
The present invention is also directed to a chip antenna element having a radiation electrode having a microstrip conductor disposed on an insulating base, a ground electrode, and a feed electrode, wherein at least one side of the radiation electrode provided on at least one surface has A ground electrode that faces the open end, covers one end face via a gap, extends at least to the ground plane, and continuously or capacitively couples the other end face to the other side of the radiation electrode. This is a chip type antenna element provided with a ground electrode extending at least to a ground plane.

【0017】そして、本発明のチップ型アンテナ素子
は、絶縁基体にマイクロストリップ導体を配した放射電
極と、接地電極と、給電電極とを有し、少なくとも一面
に設け、一方辺を開放端となしその幅を前記開放端に向
かって連続的および/または段階的に狭めながら延在し
て設けた放射電極と、前記開放端とギャップを介して対
向し、一方の端面とその廻りの四面を覆って設けた第1
の接地電極と、前記放射電極の他方辺と連続あるいは容
量結合して、他方の端面とその廻りの四面を覆って設け
た第2の接地電極とを有したものであることが好まし
い。
The chip antenna element of the present invention has a radiation electrode having a microstrip conductor provided on an insulating base, a ground electrode, and a power supply electrode, and is provided on at least one surface, and one side is not open. A radiating electrode that extends while narrowing its width continuously and / or stepwise toward the open end, opposes the open end via a gap, and covers one end face and the four faces around it; The first provided
And a second ground electrode provided continuously or capacitively coupled to the other side of the radiation electrode so as to cover the other end face and the four faces around the other end face.

【0018】また、本発明において給電電極は、前記放
射電極の開放端から第2の接地電極間で所定のインピー
ダンスが得られる箇所に接触または非接触で設けること
ができる。また、前記放射電極を挟むように長手方向の
両端部に配した接地電極のどちらか一方を前記放射電極
に接続することによって、前記放射電極の長さ方向の放
射電界強度を弱め、逆に垂直方向が強まる放射電極とな
すことは望ましいことである。また、前記放射電極の一
方辺の開放端の幅をS、他方辺の幅をWとしたとき、W
/Sを2〜5の範囲とすることは望ましく、さらに前記
放射電極は絶縁基体の隣り合う側面に亘って配置するこ
とはより好ましいことである。
In the present invention, the power supply electrode may be provided in a contact or non-contact manner at a location where a predetermined impedance is obtained between the open end of the radiation electrode and the second ground electrode. Further, by connecting one of the ground electrodes arranged at both ends in the longitudinal direction so as to sandwich the radiation electrode to the radiation electrode, the intensity of the radiation electric field in the longitudinal direction of the radiation electrode is weakened, and conversely, It is desirable to have a directionally enhanced radiation electrode. When the width of the open end of one side of the radiation electrode is S and the width of the other side is W, W
/ S is desirably in the range of 2 to 5, and it is more preferable that the radiation electrode is disposed over the adjacent side surface of the insulating base.

【0019】本発明は、上記したチップ型アンテナ素子
を回路基板に載置したアンテナ装置にも関し、具体的に
は放射電極の開放端と接地電極間のギャップ方向が回路
基板の地導体と並行となるようになし、且つ前記放射電
極のギャップを地導体から遠ざけるような配置に構成し
たアンテナ装置である。また、上記したチップ型アンテ
ナ素子の給電電極は基体中央に対し前記開放端側に偏っ
て設けてあり、両端の接地電極を回路基板の地導体から
左右離間して設けた地導体部分と接続するように長手方
向を地導体と横に並べて並行に配置し、前記突出した地
導体の間に設けた給電線から前記給電電極に電力を供給
するようにしたアンテナ装置である。また、本発明は、
上記した何れかのアンテナ装置を搭載した通信機器であ
り、例えば、ブルートゥース用アンテナとして携帯電
話、ヘッドフォン、パソコン、ノートPC、デジタルカ
メラ等に搭載した通信機器とすることができる。
The present invention also relates to an antenna device in which the above-mentioned chip-type antenna element is mounted on a circuit board. Specifically, the gap direction between the open end of the radiation electrode and the ground electrode is parallel to the ground conductor of the circuit board. And an arrangement in which the gap between the radiation electrodes is kept away from the ground conductor. Further, the feed electrode of the above-mentioned chip type antenna element is provided so as to be deviated toward the open end side with respect to the center of the base, and the ground electrodes at both ends are connected to a ground conductor portion provided left and right apart from the ground conductor of the circuit board. Thus, the antenna device is arranged such that the longitudinal direction is arranged side by side with the ground conductor and is arranged in parallel, and power is supplied to the feed electrode from a feed line provided between the protruding ground conductors. Also, the present invention
A communication device equipped with any of the above-described antenna devices, for example, a communication device mounted on a mobile phone, a headphone, a personal computer, a notebook PC, a digital camera, or the like as a Bluetooth antenna.

【0020】[0020]

【発明の実施の形態】以下、本発明の構成と動作を詳し
く説明する。図1は本発明の原理を説明するもので
(a)は平板上にアンテナ素子を構成した場合を示し、
(b)はチップ型にした場合の斜視図である。但し、本
発明では(a)のような平板状のアンテナ素子であって
もチップ型の範疇に入るものである。本発明のアンテナ
素子は、先ず(a)に示したように従来の逆F型アンテ
ナを例にとって単純化すれば、放射電極13を開放端
(ギャップ)に向かうに従い導体幅を狭めた形状とな
し、開放端付近に地導体31の一部を延長し、他方辺1
5は地導体に接地した構成であると説明できる。そし
て、より具体的な実施例は(b)に示している。即ち、
このアンテナ素子10は、概略直方体状の絶縁基体11
の両端面に端部を覆う接地電極15および17を配し、
上面の中央部に放射電極13を設けると共に、側面の給
電電極14から放射電極の途中に給電する構成である。
また、放射電極13の一方辺は開放端となし接地電極1
7との間でギャップ部12を形成し、一方の他方辺は接
地電極15と一体的に接続している。ここで従来のアン
テナ素子と最も異なる点は、放射電極を略台形状のよ
うにギャップに向かって幅を狭めながら伸びる形状とし
たこと。絶縁基体の両端部に接地電極を設け、両接地
電極は電気的に繋がっていないこと。回路基板の地導
体(図示せず)に対し長手方向を横並び(本発明では並
行と言う)となしギャップ部が地導体から最も遠ざかる
ように配置したこと。である。次に、各項目毎にその動
作、作用等について詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and operation of the present invention will be described below in detail. FIG. 1 illustrates the principle of the present invention. FIG. 1A shows a case where an antenna element is formed on a flat plate.
(B) is a perspective view in the case of a chip type. However, in the present invention, even a flat antenna element as shown in FIG. If the antenna element of the present invention is simplified by first taking a conventional inverted-F antenna as an example as shown in (a), the radiation electrode 13 does not have a shape in which the conductor width is reduced toward the open end (gap). , A part of the ground conductor 31 is extended near the open end, and the other side 1
5 can be described as a configuration grounded to a ground conductor. A more specific embodiment is shown in FIG. That is,
The antenna element 10 has a substantially rectangular parallelepiped insulating base 11.
Ground electrodes 15 and 17 covering the end portions are disposed on both end surfaces of
The radiation electrode 13 is provided in the center of the upper surface, and power is supplied from the power supply electrode 14 on the side to the middle of the radiation electrode.
One side of the radiation electrode 13 has an open end and no ground electrode 1
7, a gap portion 12 is formed, and one other side is integrally connected to the ground electrode 15. Here, the most different point from the conventional antenna element is that the radiation electrode is formed to have a substantially trapezoidal shape and extend while reducing the width toward the gap. Ground electrodes are provided at both ends of the insulating base, and both ground electrodes are not electrically connected. The longitudinal direction is parallel to the ground conductor (not shown) of the circuit board (this is referred to as “parallel” in the present invention). The gap part is arranged so as to be farthest from the ground conductor. It is. Next, the operation, operation, and the like of each item will be described in detail.

【0021】まず、放射電極の形状であるが、高周波電
流の流れに対して垂直方向の電極長さ、即ち幅を一定と
せずに、ギャップ12側に接近するに従い徐々に減少さ
せることにした。一般に、給電電源19から給電電極1
4を介して供給された高周波電流は、放射電極のインダ
クタンスと大地との間で形成されるコンデンサ容量で決
まる周波数で共振を起こし、空間に電磁エネルギとして
放射される。この時、接地電極15とギャップ部12を
節と腹とする電流分布モードになる。放射電極の幅が一
定ならば、この電流分布モードは1つしか存在しない。
しかし、接地電極間に配置する放射電極の幅が一定でな
いこと、さらに図示する各電極配置であることによっ
て、素子には複数の共振回路が等価的に形成される。ま
た、各共振回路の共振周波数は、構成上かなり接近して
複数存在することになり、マクロ的に見ると広帯域な共
振特性となる。これはQ値の低下を示唆するものであ
る。
First, regarding the shape of the radiation electrode, the length of the electrode in the direction perpendicular to the flow of the high-frequency current, that is, the width of the electrode was not fixed, but was gradually reduced as approaching the gap 12 side. Generally, the power supply electrode 1
The high-frequency current supplied via 4 causes resonance at a frequency determined by the capacitance of the capacitor formed between the inductance of the radiation electrode and the ground, and is radiated to the space as electromagnetic energy. At this time, a current distribution mode is set in which the ground electrode 15 and the gap 12 are nodes and antinodes. If the width of the radiation electrode is constant, there is only one current distribution mode.
However, a plurality of resonance circuits are equivalently formed in the element because the width of the radiation electrode disposed between the ground electrodes is not constant and each electrode arrangement is illustrated. In addition, a plurality of resonance frequencies of each resonance circuit are present in a very close relationship in terms of configuration, and have a broadband resonance characteristic when viewed macroscopically. This indicates a decrease in the Q value.

【0022】上述した現象の物理的な意味づけを検討す
る。図2(a)は、図1のアンテナ素子の等価回路を示
している。給電電源19は、給電電極等によるインダク
タンスLiとコンデンサ容量Ciを介して、放射電極13
に電流を供給する。供給された電力は共振時に放射抵抗
rにおいて空間で消費される。この消費される電力が空
間に電磁波として放射されることになる。等価回路中、
給電電源19より右側の破線で囲んだ部分が放射電極に
よる部分13-1、左側がギャップ部12を含めた接地
電極17部分に関係し、放射電極13と接地電極17間
のコンデンサ容量をCgとして等価回路中に表示した。
The physical meaning of the above-mentioned phenomenon will be examined. FIG. 2A shows an equivalent circuit of the antenna element of FIG. The power supply 19 is connected to the radiation electrode 13 via the inductance Li and the capacitor Ci by the power supply electrode or the like.
To supply current. The supplied power is radiation resistance at resonance.
Consumed in space at r. This consumed power is radiated into space as electromagnetic waves. In the equivalent circuit,
The portion surrounded by a broken line on the right side of the power supply 19 is related to the portion 13-1 by the radiation electrode, and the left side is related to the portion of the ground electrode 17 including the gap portion 12. The capacitance between the radiation electrode 13 and the ground electrode 17 is Cg. Displayed in the equivalent circuit.

【0023】他方、等幅の電極を用いた場合を図2
(b)の等価回路に示す。この場合は放射電極を単純に
インダクタンスLとコンデンサ容量Cで置き換えること
ができる。一方、等幅でない本発明の場合は放射電極に
よる動作を考えると分布定数的に扱う必要がある。この
ため、適当に分割してそれぞれに対応するインダクタン
スとコンデンサを接続したものと見なせる。従って、放
射電極13を含む等価回路は、複数のインダクタンスLr
1,Lr2,Lr3とコンデンサCr1,Cr2による梯子型回路として
表示することが最も理に適う。図示の回路では3個以上
の共振回路が形成されることになるが、構成上、各共振
周波数はかなり接近して発生するため共振が連続して発
生するように見られ、周波数特性では帯域幅が広がった
特性となる。
On the other hand, FIG.
The equivalent circuit shown in FIG. In this case, the radiation electrode can be simply replaced with the inductance L and the capacitor C. On the other hand, in the case of the present invention having a non-uniform width, it is necessary to treat it as a distributed constant in consideration of the operation by the radiation electrode. For this reason, it can be considered that an appropriate division is made and the corresponding inductance and capacitor are connected. Therefore, the equivalent circuit including the radiation electrode 13 has a plurality of inductances Lr
It makes the most sense to display as a ladder type circuit with 1, Lr2, Lr3 and capacitors Cr1, Cr2. In the circuit shown in the figure, three or more resonance circuits are formed. However, due to the configuration, the resonance frequencies appear to be very close to each other, so that the resonance appears to occur continuously. Becomes the spread characteristic.

【0024】以上説明した例の放射電極は台形状を想定
したものであるが、発明の趣旨から明らかなように台形
に拘束されることはなく、種々の形状が考えられる。本
発明が骨子とするところは、等幅のマイクロストリップ
導体に対してインダクタンスを分布させることにあり、
分布インダクタンスと静電容量によって複数の共振回路
の形成をなし、いわば並列多重共振回路の機能を持たせ
たことにある。これを放射電極の形状に換言すれば、ギ
ャップ部を有する接地電極に向かって流れる電流に対し
て電極幅が変わることであり、放射電極幅が連続的およ
びまたは段階的に変化すれば、本発明の効果を享受でき
ることは明らかである。図15に放射電極形状の他の実
施例を示す。しかしこれに限定されることはない。
Although the radiation electrode in the above-described example is assumed to be trapezoidal, it is not limited to a trapezoid as apparent from the gist of the invention, and various shapes can be considered. The gist of the present invention is to distribute inductance with respect to a microstrip conductor of equal width.
That is, a plurality of resonance circuits are formed by the distributed inductance and the capacitance, that is, a function of a parallel multiple resonance circuit is provided. In other words, the width of the radiation electrode changes with respect to the current flowing toward the ground electrode having the gap. If the width of the radiation electrode changes continuously and / or stepwise, the present invention will be described. It is clear that the effect of the above can be enjoyed. FIG. 15 shows another embodiment of the radiation electrode shape. However, it is not limited to this.

【0025】次に、上述した放射電極の寸法形状につい
て述べる。図3は本発明の典型的な例として放射電極1
3が台形状の場合である。ここで、接地電極17に繋が
った他方辺(広幅部)をWとなし、ここから先端側に向
かってD長さだけ適宜傾斜し、先端の開放端(狭幅部)
をSとしている。図示する各部の寸法について好適な範
囲を検討した結果を図4、図5、図6に示す。図4の特
性カーブは横軸を導体形状比W/S、縦軸を共振周波数
0で表したものである。f0はW/Sが約4以上では飽
和する傾向が見られる。これはSが所定値以下になる
と、共振周波数の高周波化のため実用範囲をはずれてし
まうためである。また、図5の特性カーブはW/Sに対
する比帯域幅の特性を示している。この特性カーブから
比帯域値(BW/f0)は、W/Sが約3以上では飽和
する傾向が見られ、3.5%以内ならば本発明の目的を
充分達成することができる。また、図6の特性カーブは
縦軸にQ値を示しW/Sに対するQ値の変化を示してい
る。この特性カーブからW/Sが大きく、即ち先端が細
くなるに従いQ値が減少し広帯域化が図られることが分
かりQ値≦29を満たすW/Sは3以上である。以上の
検討結果からW/Sは余裕を見て2〜5の範囲が好適で
ある。
Next, the dimensions and shape of the above-mentioned radiation electrode will be described. FIG. 3 shows a radiation electrode 1 as a typical example of the present invention.
3 is a trapezoidal shape. Here, the other side (wide portion) connected to the ground electrode 17 is defined as W, and is inclined appropriately by the length of D from here toward the distal end, and the open end of the distal end (narrow portion).
Is S. FIGS. 4, 5, and 6 show the results of examining suitable ranges for the dimensions of each part shown in the drawings. In the characteristic curve of FIG. 4, the horizontal axis represents the conductor shape ratio W / S, and the vertical axis represents the resonance frequency f 0 . f 0 tends to be saturated when W / S is about 4 or more. This is because, when S becomes equal to or less than a predetermined value, the resonance frequency becomes higher, and the practical range is deviated. Further, the characteristic curve of FIG. 5 shows the characteristic of the relative bandwidth with respect to W / S. From this characteristic curve, the fractional band value (BW / f 0 ) tends to be saturated when W / S is about 3 or more, and the object of the present invention can be sufficiently achieved if it is within 3.5%. The characteristic curve in FIG. 6 shows the Q value on the vertical axis, and shows the change in the Q value with respect to W / S. From this characteristic curve, it can be seen that the W / S is large, that is, the Q value decreases as the tip becomes thinner, and a wider band is achieved, and the W / S satisfying the Q value ≦ 29 is 3 or more. From the above examination results, the W / S is preferably in the range of 2 to 5 in view of the margin.

【0026】次に、接地電極の配置について述べる。マ
イクロストリップアンテナに限らず、アンテナが電波を
放射する際は放射電極と地導体間で形成される電磁界に
よって電磁エネルギを空間に放射する。従って、地導体
と同電位である接地電極の反対側では、電磁界は非常に
弱いため放射エネルギはかなり小さくなる。この作用効
果を利用することによって、アンテナ素子に接近して電
子回路素子などを実装することができる。即ち、接地電
極の配置を考慮してシールド効果を積極的に利用するこ
とにより、筐体、配線基板の導体等の影響をなくすと共
に、回路部品の誤動作を防ぐことができ、特性の安定化
および信頼性の向上が得られる。この概念が本発明の第
2および第3の特徴点である。アンテナ装置としての典
型的な構成を図7に示す。
Next, the arrangement of the ground electrodes will be described. In addition to the microstrip antenna, when the antenna radiates radio waves, electromagnetic energy is radiated into space by an electromagnetic field formed between the radiation electrode and the ground conductor. Therefore, on the opposite side of the ground electrode which is at the same potential as the ground conductor, the electromagnetic field is very weak, so that the radiation energy is considerably small. By utilizing this effect, an electronic circuit element or the like can be mounted close to the antenna element. In other words, by actively utilizing the shielding effect in consideration of the arrangement of the ground electrode, it is possible to eliminate the influence of the housing, the conductor of the wiring board, and the like, and to prevent the malfunction of the circuit components, thereby stabilizing the characteristics and improving the characteristics. Improved reliability is obtained. This concept is the second and third feature points of the present invention. FIG. 7 shows a typical configuration as an antenna device.

【0027】図7で図示するように、給電線75を跨ぐ
ようにアンテナ素子10を基板の接地面(地導体)55
上に設置する。放射電極13は左右両端の接地電極15
および17と下面の接地面(地導体)55で囲まれ、開
放面としては上面と2側面の三方向である。よって、放
射電極の長さ方向の放射電界強度は弱まり、逆に垂直方
向が強まる指向特性となり利得が向上する。他方、接地
電極15および17の遮蔽効果により放射電極の長さ方
向の電磁波による影響が少なくなることから、基体の側
面側に部品51、52等を置いても問題が無くなり実装
レイアウトの自由度と密度を上げて省スペース化を図る
ことが出来る。
As shown in FIG. 7, the antenna element 10 is connected to the ground plane (ground conductor) 55 of the substrate so as to
Place on top. The radiation electrode 13 is a ground electrode 15 at both left and right ends.
And 17 and the ground plane (ground conductor) 55 on the lower surface, and the open surface is in three directions of the upper surface and the two side surfaces. Therefore, the radiation electric field intensity in the length direction of the radiation electrode is weakened, and conversely, the directivity is enhanced in the vertical direction, and the gain is improved. On the other hand, since the effect of electromagnetic waves in the length direction of the radiation electrode is reduced due to the shielding effect of the ground electrodes 15 and 17, there is no problem even if the components 51, 52, etc. are placed on the side surface of the base, and the degree of freedom of mounting layout is improved. The density can be increased to save space.

【0028】また、図8で図示するように、本発明では
アンテナ素子10をモジュール基板50上の接地面(地
導体)55に載置する際、地導体に対して放射電極の開
放端と接地電極17間のギャップ方向(矢印で示す)を
略並行に、即ち横方向に並べて配設している。さらにこ
のとき、地導体55から左右に離間して突出した地導体
部分550に両端の接地電極15、17載置し、アンテ
ナ素子を地導体に隣接させ放射電極とギャップ部12の
電界放射領域が地導体55から最も遠ざかるように配置
した。ここで基板との電気的相互作用としては、アンテ
ナの共振電流が基板に鏡像電流を発生させる現象が挙げ
られる。この鏡像電流と基板側の電流が逆位相となると
アンテナからの電磁放射を妨げ利得低下や共振周波数の
シフトをもたらすことがある。この点で図示の配置とす
ることによって、アンテナ基体上で共振電流が最も強く
流れる放射電極とギャップ部を地導体から最も遠い位置
に配置し、電界を接地導体から離れた位置に誘起でき
る。これにより鏡像電流を極力弱くでき、また、アンテ
ナ基体の裏面のほとんどには接地電極を有していないの
で基板への鏡像電流を減少させることが出来ている。
As shown in FIG. 8, according to the present invention, when the antenna element 10 is placed on the ground plane (ground conductor) 55 on the module substrate 50, the open end of the radiation electrode is grounded with respect to the ground conductor. The gap directions (indicated by arrows) between the electrodes 17 are arranged substantially in parallel, that is, side by side. Further, at this time, ground electrodes 15 and 17 at both ends are placed on a ground conductor portion 550 projecting away from the ground conductor 55 to the left and right, and the antenna element is adjacent to the ground conductor so that the radiation electrode and the electric field radiation area of the gap portion 12 are formed. It was arranged to be farthest from the ground conductor 55. Here, the electrical interaction with the substrate includes a phenomenon in which a resonance current of the antenna generates a mirror image current on the substrate. If the mirror image current and the current on the substrate side have opposite phases, electromagnetic radiation from the antenna may be hindered, resulting in a decrease in gain or a shift in resonance frequency. At this point, the arrangement shown in the drawing allows the radiation electrode and the gap portion where the resonance current flows most strongly on the antenna base to be arranged at the position farthest from the ground conductor, and the electric field can be induced at a position away from the ground conductor. As a result, the mirror image current can be reduced as much as possible, and the mirror image current to the substrate can be reduced because most of the back surface of the antenna base has no ground electrode.

【0029】また、従来は上記の問題からもアンテナ素
子を地導体に対して垂直に配置する場合が多かった。こ
のような場合デッドスペースが大きくなり設計の自由度
が低いことは言うまでもない。本発明のように並行に置
く理由は、上記した放射電極の形状効果を積極的に引き
出すためで、放射電極と接地面間に形成されるコンデン
サ作用を大とするためでもある。放射電極13とギャッ
プ部12の方向が地導体55にほぼ並行になっている図
7、8を参照すれば、以上の説明は容易に理解される。
したがって、放射電極を地導体に対して並行に配置する
本発明の場合と、垂直に配置する従来技術と比べると、
地導体間のコンデンサ作用は本発明の方が格段に強く、
従来にない効果を奏することが可能である。
Conventionally, the antenna element is often arranged perpendicular to the ground conductor in view of the above problem. In such a case, it goes without saying that the dead space increases and the degree of freedom in design is low. The reason why they are arranged in parallel as in the present invention is to actively bring out the above-mentioned shape effect of the radiation electrode and also to increase the action of a capacitor formed between the radiation electrode and the ground plane. The above description can be easily understood with reference to FIGS. 7 and 8 in which the directions of the radiation electrode 13 and the gap portion 12 are substantially parallel to the ground conductor 55.
Therefore, in the case of the present invention in which the radiating electrodes are arranged in parallel with the ground conductor, and in comparison with the prior art in which the radiating electrodes are arranged vertically,
The capacitor action between the ground conductors is much stronger in the present invention,
Unprecedented effects can be achieved.

【0030】次に、このアンテナ素子の放射指向性につ
いて言えば、先ずアンテナ基体の長手方向について放射
電極13と接地電極17との間にギャップ部12を介し
て電界が放射される。そしてこれと直交するギャップ部
と基板間の方向にも電界を発生させることができる。よ
って、このアンテナ装置は直交する2方向に電界が発生
するので各通信機に搭載した場合、姿勢によらず全方位
指向性を発揮して安定確実に通信することが出来る。
Next, regarding the radiation directivity of this antenna element, first, an electric field is radiated between the radiation electrode 13 and the ground electrode 17 via the gap portion 12 in the longitudinal direction of the antenna base. An electric field can also be generated in the direction between the gap and the substrate, which is perpendicular to the gap. Therefore, this antenna device generates electric fields in two orthogonal directions, so that when mounted on each communication device, omnidirectional directivity can be exhibited and communication can be performed stably and reliably regardless of posture.

【0031】[0031]

【実施例】以下、本発明の実施例を図面を参照して詳し
く説明する。まず、図9(a)(b)(c)はアンテナ
素子の絶縁基体の寸法(長さL、幅W)と帯域幅(B
W)及び比誘電率(εr)と帯域幅の関係を示してい
る。帯域幅は上記したように素子基体の寸法や材料によ
って変わるものであるから、図9のような素子寸法と帯
域幅の関係及び素子材料と帯域幅の関係を予め得ること
によって省力かつ効率的に本発明を実施できるものであ
る。ここでは100MHzの帯域幅を得ることを前提に
図9を用いて検討した結果、絶縁基体として直方体(1
5mm×3mm×3mm)の誘電体セラミックスで比誘電率ε
r=8、Al23系材料を使用することにした。電極は
Ag電極材料を用い、絶縁基体11の表面に図8に示す
ような位置と形状に設けた。この時、放射電極13は略
台形状とし、上底Sと下底Wの比率を1:3とした。ま
た、放射電極13の開放端と接地電極17との間に長さ
1mmのギャップ(絶縁基体の露出部)12を設けた。
放射電極13の他方端(下底W側)は、ここでは接地電
極15を連続的に接続して設けた。給電電極14は基体
側面で中央よりギャップ側よりに設けている。尚、上記
した寸法を有するアンテナ素子は、伝搬周波数2.4〜
2.5GHz、帯域幅100MHz、比帯域3.5%、
利得0dBi以上、電圧定在波比(VSWR)3以下等
の性能を満たすと共に、特定平面内無指向性が要請され
る携帯電話あるいは無線LAN用に設計したものであ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. First, FIGS. 9A, 9B, and 9C show the dimensions (length L, width W) and bandwidth (B) of the insulating base of the antenna element.
W) and the relative dielectric constant (εr) and the bandwidth. Since the bandwidth varies depending on the dimensions and the material of the element substrate as described above, the relation between the element dimensions and the bandwidth and the relation between the element material and the bandwidth as shown in FIG. The present invention can be implemented. Here, as a result of the study using FIG. 9 on the premise that a bandwidth of 100 MHz is obtained, a rectangular solid (1
5mm x 3mm x 3mm) dielectric ceramic with relative permittivity ε
r = 8, an Al 2 O 3 material was used. The electrodes were made of an Ag electrode material, and provided on the surface of the insulating base 11 at the positions and shapes as shown in FIG. At this time, the radiation electrode 13 was substantially trapezoidal, and the ratio of the upper base S to the lower base W was 1: 3. In addition, a gap (exposed portion of the insulating base) 12 having a length of 1 mm was provided between the open end of the radiation electrode 13 and the ground electrode 17.
The other end (lower bottom W side) of the radiation electrode 13 is provided by continuously connecting the ground electrode 15 here. The power supply electrode 14 is provided on the side of the base body from the center to the gap side. Note that the antenna element having the above-described dimensions has a propagation frequency of 2.4 to
2.5 GHz, bandwidth 100 MHz, bandwidth ratio 3.5%,
It is designed for a mobile phone or a wireless LAN that satisfies performances such as a gain of 0 dBi or more and a voltage standing wave ratio (VSWR) of 3 or less and requires omnidirectionality in a specific plane.

【0032】上記の実施例は一例であって設計条件等に
よっては適宜寸法や構成を選定することができる。例え
ば、略直方体状の誘電体基板は円柱状でもよく、また材
料は磁性体基板、樹脂基板、これらの積層基板であって
も良い。放射電極の形状や開放端と接地端の幅寸法につ
いても2〜5の範囲外でも変更ができる。また、帯域幅
を広げたり周波数調整のためにギャップ部や放射電極を
トリミングすることが有効であるが、このとき放射電極
の開放端近傍の傾斜面は平行部を形成し、この平行部を
トリミングすればマッチング作業がやり易くなる。ま
た、放射電極の開放端は接地電極とギャップを介して対
向させることが必要であるが、他方辺側は必ずしも連続
的に接地電極を形成する必要はなく、非連続とした容量
結合となし最終的に接地できていれば良い。また、接地
電極は基体端面からの電界の放射を抑制する目的からし
て最小限その端面を覆い、接地面に連接して接地できて
いれば良いと言える。しかし、その効果を確実に得るた
めには図示するように基体端部において端面とその廻り
の四面を覆うように形成しておくことが望ましい。ま
た、給電電極は放射電極の周りで基体の端面あるいは上
面に亘って設けても良く接触非接触を問わない。但し、
放射電極の開放端に対向して設けることはしない。
The above embodiment is an example, and the dimensions and configuration can be appropriately selected depending on design conditions and the like. For example, the substantially rectangular parallelepiped dielectric substrate may be cylindrical, and the material may be a magnetic substrate, a resin substrate, or a laminated substrate thereof. The shape of the radiation electrode and the width dimension between the open end and the ground end can also be changed outside the range of 2 to 5. Also, it is effective to trim the gap and the radiation electrode to increase the bandwidth and adjust the frequency. At this time, the inclined surface near the open end of the radiation electrode forms a parallel part, and this parallel part is trimmed. This will make the matching work easier. It is necessary that the open end of the radiation electrode is opposed to the ground electrode via a gap, but the other side does not necessarily have to form the ground electrode continuously. What is necessary is just to be able to ground. In addition, it can be said that the ground electrode only needs to cover its end face at least for the purpose of suppressing the emission of the electric field from the end face of the base body and be connected to the ground plane to be grounded. However, in order to surely obtain the effect, it is desirable to form the base end so as to cover the end face and the four faces around the end face as shown in the figure. Further, the power supply electrode may be provided around the end surface or the upper surface of the base around the radiation electrode, and may be in contact or non-contact. However,
It is not provided facing the open end of the radiation electrode.

【0033】アンテナ素子の作製方法としては、概略次
の工程を用いて製造した。まず、誘電体セラミックスの
ブロックを焼成によって作製し、このブロックから適宜
寸法の直方体のチップを複数個に切り出し所定の寸法に
研削加工する。その後、この誘電体チップを複数並べた
列を作り、これらの表面にAg電極をスクリーン印刷で所
定の形状と位置に形成した。次に、これらチップを乾燥
させた後、端面電極を印刷形成し電極焼き付け工程を経
てアンテナ素子として完成した。
The antenna element was manufactured using the following steps. First, a block of dielectric ceramics is prepared by firing, and a plurality of rectangular parallelepiped chips having appropriate dimensions are cut out from the block and ground to predetermined dimensions. Thereafter, a row was formed by arranging a plurality of the dielectric chips, and an Ag electrode was formed on these surfaces in a predetermined shape and position by screen printing. Next, after drying these chips, end electrodes were printed and formed, and an electrode element was completed through an electrode baking process.

【0034】図10は試作したアンテナ素子及びその評
価方法を示す。回路基板71上にマイクロアンテナ素子
10を地導体73の端部に略並行に、且つ放射電極の傾
斜とギャップ部12が地導体より遠ざかるように配置
し、回路基板71の左右の地導体73の間に位置する給
電線75を介して、電源19から給電する構成である。
放射電極13は接地電極15側に他方辺(広幅部)16
を有し、ここから連続的に幅を狭めながら延びる傾斜面
を形成し開放端(狭幅部)18となっている。そして、
開放端(狭幅部)18と接地電極17との間にギャップ
部12を設けている。給電電極14は放射電極の長手方
向の中央よりギャップ部12側に偏って設けてあり、よ
ってアンテナ素子自体も地導体に対し偏って配置されて
いる。尚、接地電極15と放射電極13は別体のように
図示しているが一体的に形成している。但しこれは別体
とし間隙を有していても良い。
FIG. 10 shows a prototype antenna element and its evaluation method. The micro antenna element 10 is disposed on the circuit board 71 substantially in parallel with the end of the ground conductor 73, and the inclination of the radiation electrode and the gap portion 12 are set apart from the ground conductor. In this configuration, power is supplied from the power supply 19 via a power supply line 75 located therebetween.
The radiation electrode 13 is connected to the other side (wide portion) 16 on the side of the ground electrode 15.
, From which an inclined surface extending continuously while reducing the width is formed to form an open end (narrow portion) 18. And
The gap portion 12 is provided between the open end (narrow portion) 18 and the ground electrode 17. The feed electrode 14 is provided so as to be closer to the gap portion 12 than the center in the longitudinal direction of the radiation electrode, so that the antenna element itself is also provided to be biased with respect to the ground conductor. Although the ground electrode 15 and the radiation electrode 13 are shown as separate bodies, they are integrally formed. However, this may be separate and have a gap.

【0035】特性の評価項目としては、電圧定在波比
(VSWR)と指向性および利得特性である。VSWR
の測定は、給電端子にネットワークアナライザを接続
し、端子側からみたインピーダンスを測定することにし
た。また、利得の測定に際しては、電波無響暗室内で被
試験アンテナからの放射電力を受信用基準アンテナで受
信し、基準アンテナに対する比として評価した。指向性
については、被試験アンテナ素子を回転テーブルに搭載
し、回転させながら放射電界の強度を利得の測定と同じ
手順で各回転角度における利得を測定した。また、図1
0では給電電極14の位置は、放射電極の途中で開放端
側に偏って設けている。これに対して中央、接地電極1
6側にある場合と変えた被試験アンテナ素子を同様に試
作し、同様の測定を行った。
The evaluation items of the characteristics include a voltage standing wave ratio (VSWR), directivity, and gain characteristics. VSWR
In the measurement, a network analyzer was connected to the power supply terminal, and the impedance viewed from the terminal side was measured. When measuring the gain, the radiated power from the antenna under test was received by the receiving reference antenna in the anechoic chamber, and evaluated as a ratio to the reference antenna. Regarding the directivity, the antenna element under test was mounted on a rotary table, and while rotating, the intensity of the radiated electric field was measured for the gain at each rotation angle in the same procedure as the gain measurement. FIG.
At 0, the position of the power supply electrode 14 is biased toward the open end in the middle of the radiation electrode. In contrast, the center, ground electrode 1
An antenna element under test different from the case on the 6 side was similarly prototyped, and similar measurements were performed.

【0036】図10の被試験アンテナ素子をX、Yおよ
びZ軸に関して回転させたときの指向特性を図11〜図
13に示す。図示の結果から分かるとおり3軸共に利得
がほぼ円に近く、指向性のない無指向特性が得られた。
しかし、接地電極を配置したアンテナ素子の長手方向に
若干の利得減少が見られた。この理由は接地電極方向に
放射される電界強度が弱められたためであり、本発明に
よるアンテナの特長を実証する結果となった。また、図
14は帯域幅特性である。従来と比べて格段の改善が見
られ、狙い通り電圧定在波比VSWRが3の時の帯域幅
を100MHzとすることができた。また、給電電極の
位置を変えたアンテナ素子については、帯域幅において
図11〜図14よりも劣る結果となり、給電電極の位置
および地導体に対するアンテナ素子の位置による影響が
確認された。給電電極は放射電極の途中に給電を行うの
であるが、非接触の場合はコンデンサ容量でマッチング
が出来るためインピーダンスの高い開放端に近いところ
に配置することが可能となる。一方、放射電極に接触す
る場合はインダクタンス分しかないので整合が難しくイ
ンピーダンスの低い広幅部側に配置せざるおえなくな
る。これらのことから、非接触の場合は狭幅部側に、接
触の場合は広幅部側に給電電極は位置させることが望ま
しいものである。
FIGS. 11 to 13 show directional characteristics when the antenna element under test of FIG. 10 is rotated about the X, Y and Z axes. As can be seen from the results shown in the figure, the gain was almost close to a circle for all three axes, and omnidirectional characteristics without directivity were obtained.
However, a slight decrease in gain was observed in the longitudinal direction of the antenna element having the ground electrode. The reason for this is that the intensity of the electric field radiated in the direction of the ground electrode was weakened, and the result proved the features of the antenna according to the present invention. FIG. 14 shows bandwidth characteristics. A remarkable improvement was observed as compared with the conventional case, and the bandwidth when the voltage standing wave ratio VSWR was 3 could be made 100 MHz as intended. In addition, with respect to the antenna element in which the position of the feed electrode was changed, the bandwidth was inferior to those of FIGS. 11 to 14, and the influence of the position of the feed electrode and the position of the antenna element on the ground conductor was confirmed. The power supply electrode supplies power in the middle of the radiation electrode. However, in the case of non-contact, matching can be performed by the capacitance of the capacitor, so that the power supply electrode can be arranged near an open end having high impedance. On the other hand, when it comes into contact with the radiation electrode, since there is only the inductance, matching is difficult, and it is unavoidable to dispose it on the wide portion side where the impedance is low. From these facts, it is desirable that the power supply electrode be located on the narrow portion side in the case of non-contact and on the wide portion side in the case of contact.

【0037】次に、本発明の他の実施例を図15〜図1
9に示す。まず、図15はアンテナ素子の上面斜視図
(a)、反対側の上面斜視図(b)、下面側の斜視図
(c)を示している。本例では放射電極131を上面の
みに配置するのではなく、隣り合う側面にも延在させて
設けた場合である。このような構成によって、放射電極
を実質的に広げることが可能となり、周方向の放射利得
が向上すると共に一層の小形低背化に効果を持つもので
ある。また、基体の厚さをさらに薄くした場合(例えば
2mm以下)側面の放射電極は傾斜を形成しない場合も
あり得るが、上面の放射電極は変わらず機能するので特
性上は問題ない。さらに、絶縁基体の下面側にも放射電
極を延長して設けることもできる。(c)図から明らか
なように接地電極15、17は両端部のみに設けられて
おり両者は電気的に導通されていない。図16の例は図
15と同様の斜視図を示しているが、このアンテナ素子
は、台形状の放射電極132に給電電極142を接続し
た直接給電方式である。また、下面には導体150を配
し、接地電極と導通する構成としている。
Next, another embodiment of the present invention will be described with reference to FIGS.
It is shown in FIG. First, FIG. 15 shows a top perspective view (a) of the antenna element, a top perspective view (b) of the opposite side, and a perspective view (c) of the bottom side. In this example, the radiation electrode 131 is provided not only on the upper surface but also on the adjacent side surface. With such a configuration, the radiation electrode can be substantially widened, and the radiation gain in the circumferential direction can be improved, and the size and height can be further reduced. Further, when the thickness of the base is further reduced (for example, 2 mm or less), the emission electrode on the side surface may not form an inclination, but the emission electrode on the upper surface functions as it is, so there is no problem in characteristics. Further, a radiation electrode can be extended on the lower surface side of the insulating base. (C) As is clear from the figure, the ground electrodes 15 and 17 are provided only at both ends, and both are not electrically connected. The example of FIG. 16 is a perspective view similar to FIG. 15, but this antenna element is of a direct power supply type in which a power supply electrode 142 is connected to a trapezoidal radiation electrode 132. Further, a conductor 150 is arranged on the lower surface, and is configured to conduct with the ground electrode.

【0038】図17の例は一面の斜視図のみを示すが、
放射電極133と他方辺の接地電極15との間に間隙を
設けて容量結合の方式としたものである。以下の例も同
様であるが本例では、台形状の放射電極を二面に亘って
設け、一端はギャップ部12を介して端部を覆う接地電
極17を、他方端にはその端部を覆う接地電極15をそ
れぞれ設けた構成については同じであり、上述してきた
本発明の作用効果は同様に享受できるものである。特に
本実施例では放射電極と接地電極との間隙(ギャップ)
が2箇所設けられていることから、この間隙に発生する
電界が広範囲に放射されることによりQ値が低下し、よ
り広帯域化が期待できる。図18に示した例は、放射電
極134と接地電極15との間を一部分で接続するよう
にした構成である。161の基体部分はトリミングの要
素が兼用して備わっており、よって、この部分の長さを
変えるか、また削ったりして共振周波数の調整を行うこ
とが出来る。また図19に示した例は、図示の通り放射
電極135を二面に亘ってミアンダ状に形成したもので
ある。この実施例ではミアンダ状放射電極に共振電流が
流れることからミアンダ状電極の長さが電気長の約1/
4に相当する。このため放射電極の長さを短くできるこ
とによりアンテナ寸法を更に小型化出来るという効果が
ある。
Although the example of FIG. 17 shows only one perspective view,
A gap is provided between the radiation electrode 133 and the ground electrode 15 on the other side to perform capacitive coupling. The same applies to the following examples, but in this example, trapezoidal radiation electrodes are provided over two surfaces, one end is provided with a ground electrode 17 covering the end via the gap portion 12, and the other end is provided with the end. The configuration in which the covering ground electrodes 15 are provided is the same, and the operation and effect of the present invention described above can be similarly enjoyed. In particular, in this embodiment, the gap between the radiation electrode and the ground electrode (gap)
Are provided at two places, the electric field generated in this gap is radiated over a wide range, so that the Q value is reduced and a wider band can be expected. The example shown in FIG. 18 has a configuration in which the radiation electrode 134 and the ground electrode 15 are partially connected. The base portion of the base 161 is also provided with a trimming element, so that the resonance frequency can be adjusted by changing the length of this portion or cutting it. In the example shown in FIG. 19, the radiation electrode 135 is formed in a meandering shape over two surfaces as shown. In this embodiment, since the resonance current flows through the meandering radiating electrode, the length of the meandering electrode is about 1 / the electric length.
Equivalent to 4. For this reason, there is an effect that the antenna dimensions can be further reduced by shortening the length of the radiation electrode.

【0039】図20は放射電極の形状としての他の実施
例を示している。これらの実施例は、本発明の趣旨によ
って考えられたものであり、頭部側の幅は底部側のそれ
より狭いこと、および左右対称である必要がない等の条
件を満たすことは図から一目瞭然である。尚、(g)〜
(l)までのパターン例は放射電極の下部に接地電極が
繋がったあるいは離れた状態を一緒に図示し接地電極と
の関与も示している。
FIG. 20 shows another embodiment of the shape of the radiation electrode. These examples are considered for the purpose of the present invention, and it is obvious from the figure that the width on the head side is smaller than that on the bottom side and that the requirements such as not having to be symmetrical are satisfied. It is. (G) ~
In the pattern examples up to (l), the state where the ground electrode is connected to or separated from the lower part of the radiation electrode is shown together, and the involvement with the ground electrode is also shown.

【0040】上記してきた実施例では、誘電体としてセ
ラミックスの絶縁基体を用いたが、これを樹脂等の誘電
体により構成しても良く、絶縁体である磁性体で構成し
ても構わない。また樹脂などの場合は基体に孔を形成
し、ここに給電点を設けることもできる。上記したアン
テナ素子を回路基板上に実装したアンテナ装置を携帯電
話等の無線通信情報端末機器に搭載することにより、無
指向性で利得や帯域幅などのアンテナ特性の良い通信機
器とすることができる。また、表面実装型アンテナ装置
としては占有面積が小さく自由度の高い設計が可能とな
り、省スペースと実装密度が上がることから通信機器の
小型化にも寄与できる。例えば、本実施例のアンテナ素
子(15mm×3mm×3mm)を載置したアンテナ装置は、実装
時のアンテナ素子の占有面積は50mm以下となり、
従来構造のアンテナ装置に対し1/2以下の省スペース化
が達成できた。
In the above-described embodiment, an insulating substrate made of ceramics is used as the dielectric. However, it may be made of a dielectric such as resin or a magnetic material which is an insulator. In the case of a resin or the like, a hole may be formed in the base, and a power supply point may be provided here. By mounting an antenna device in which the above-described antenna element is mounted on a circuit board in a wireless communication information terminal device such as a mobile phone, a communication device having omnidirectionality and good antenna characteristics such as gain and bandwidth can be obtained. . Further, the surface-mounted antenna device can be designed with a small occupation area and a high degree of freedom, and can contribute to a reduction in the size of communication equipment because of a space saving and an increase in mounting density. For example, in the antenna device on which the antenna element (15 mm × 3 mm × 3 mm) is mounted, the occupied area of the antenna element at the time of mounting is 50 mm 2 or less,
Space saving of less than 1/2 compared with the antenna device of the conventional structure was achieved.

【0041】[0041]

【発明の効果】以上、説明したように本発明によれば、
全方位指向性(無指向性)を持ち、広帯域で利得が高
く、且つ小形低背化が可能な高性能のチップ型アンテナ
素子及びアンテナ装置が得られた。また、このアンテナ
素子を回路基板上に実装したときは占有面積を最小化し
て実装密度を向上することができ、これを携帯型無線通
信情報端末機器等の通信機器に搭載した場合の装置自体
の小形化に貢献すると共に、装置の位置あるいは姿勢に
関係なく安定した通信性能を持つことができる。
As described above, according to the present invention,
A high-performance chip-type antenna element and antenna device having omnidirectionality (omnidirectionality), high gain over a wide band, and capable of miniaturization and reduction in height have been obtained. In addition, when this antenna element is mounted on a circuit board, the occupied area can be minimized and the mounting density can be improved, and when the antenna element is mounted on a communication device such as a portable wireless communication information terminal device, the device itself can be improved. In addition to contributing to miniaturization, stable communication performance can be achieved regardless of the position or orientation of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明するためのアンテナ素子の
斜視図で、(a)は平面に設けた例を示し、(b)は立
体的に設けた例を示す。
FIGS. 1A and 1B are perspective views of an antenna element for explaining the principle of the present invention. FIG. 1A shows an example in which the antenna element is provided on a plane, and FIG.

【図2】(a)は図1のアンテナ素子の等価回路図、
(b)は従来のアンテナ素子の等価回路図。
FIG. 2A is an equivalent circuit diagram of the antenna element of FIG. 1,
(B) is an equivalent circuit diagram of a conventional antenna element.

【図3】本発明の基本的なアンテナ素子の放射電極の構
成を示す斜視図。
FIG. 3 is a perspective view showing a configuration of a radiation electrode of a basic antenna element of the present invention.

【図4】本発明における放射電極の広幅Wと狭幅Sの比
W/Sと伝搬周波数fの関係を示す特性線図。
FIG. 4 shows a ratio of a wide width W to a narrow width S of a radiation electrode according to the present invention.
Characteristic diagram showing the relation between W / S and the propagation frequency f 0.

【図5】本発明における放射電極の広幅Wと狭幅Sの比
W/Sと比帯域幅BW/f0の関係を示す特性線図。
FIG. 5 is a ratio of a wide width W to a narrow width S of a radiation electrode according to the present invention.
FIG. 4 is a characteristic diagram showing a relationship between W / S and a relative bandwidth BW / f 0 .

【図6】本発明における放射電極の広幅Wと狭幅Sの比
W/SとQ値の関係を示す特性線図。
FIG. 6 shows the ratio between the wide width W and the narrow width S of the radiation electrode in the present invention.
FIG. 4 is a characteristic diagram showing a relationship between W / S and a Q value.

【図7】本発明のアンテナ素子を回路基板に実装したと
きのアンテナ装置を示す概略実装図。
FIG. 7 is a schematic mounting diagram showing an antenna device when the antenna element of the present invention is mounted on a circuit board.

【図8】本発明のアンテナ素子を別の回路基板に実装し
たとき配置を示すアンテナ装置の概略実装図。
FIG. 8 is a schematic mounting diagram of an antenna device showing an arrangement when the antenna element of the present invention is mounted on another circuit board.

【図9】本発明を適用するための絶縁基体のデータであ
り、(a)は基体長さと帯域幅の関係、(b)は基体幅
と帯域幅の関係、(c)は基体の誘電率と帯域幅の関係
をそれぞれ示す特性図。
9A and 9B are data of an insulating substrate to which the present invention is applied, wherein FIG. 9A shows the relationship between the substrate length and the bandwidth, FIG. 9B shows the relationship between the substrate width and the bandwidth, and FIG. 9C shows the permittivity of the substrate. FIG. 4 is a characteristic diagram illustrating a relationship between the bandwidth and the bandwidth.

【図10】実施例のアンテナ素子の評価方法の例を示す
概略図。
FIG. 10 is a schematic view showing an example of an antenna element evaluation method according to the embodiment.

【図11】実施例のアンテナ素子を評価した結果でZ軸
に関する指向特性。
FIG. 11 shows directional characteristics with respect to the Z axis as a result of evaluating the antenna element of the example.

【図12】実施例のアンテナ素子を評価した結果でX軸
に関する指向特性。
FIG. 12 shows directional characteristics with respect to the X axis as a result of evaluating the antenna element of the example.

【図13】実施例のアンテナ素子を評価した結果でY軸
に関する指向特性。
FIG. 13 shows directional characteristics with respect to the Y-axis as a result of evaluating the antenna element of the example.

【図14】実施例のアンテナ素子を評価した結果で帯域
幅特性。
FIG. 14 shows a bandwidth characteristic as a result of evaluating the antenna element of the example.

【図15】本発明による他の実施例を示し、アンテナ素
子の(a)上面斜視図、(b)反対側の上面斜視図、
(c)下面側の斜視図。
FIG. 15 shows another embodiment according to the present invention, in which (a) is a top perspective view of an antenna element, (b) is a top perspective view of an opposite side,
(C) A perspective view of the lower surface side.

【図16】本発明による更に他の実施例を示し、アンテ
ナ素子の(a)上面斜視図、(b)反対側の上面斜視
図、(c)下面側の斜視図。
16A and 16B show still another embodiment according to the present invention, wherein FIG. 16A is a top perspective view of an antenna element, FIG. 16B is a top perspective view of the opposite side, and FIG.

【図17】本発明の他の実施例を示す、アンテナ素子の
上面斜視図。
FIG. 17 is a top perspective view of an antenna element according to another embodiment of the present invention.

【図18】本発明の他の実施例を示す、アンテナ素子の
上面斜視図。
FIG. 18 is a top perspective view of an antenna element according to another embodiment of the present invention.

【図19】本発明の他の実施例を示す、アンテナ素子の
上面斜視図。
FIG. 19 is a top perspective view of an antenna element according to another embodiment of the present invention.

【図20】本発明のアンテナ素子の放射電極の他の実施
例を示す平面図。
FIG. 20 is a plan view showing another embodiment of the radiation electrode of the antenna element of the present invention.

【図21】従来のマイクロストリップアンテナ素子の一
例を示す構成図。
FIG. 21 is a configuration diagram showing an example of a conventional microstrip antenna element.

【符号の説明】[Explanation of symbols]

10:アンテナ素子、11:絶縁基体、12:ギャップ
部、13、131、132、133、134、135:
放射電極、14:給電電極、15,17:接地電極、1
6:他方辺(広幅部)、18:開放端(狭幅部)、1
9:電源、31:地導体、51,52:回路部品、5
5:接地面(地導体)、71:回路基板、73:地導
体、75:給電線、90:放射電極、92:接地電極、
94、142:給電電極、96:地導体
10: antenna element, 11: insulating base, 12: gap, 13, 131, 132, 133, 134, 135:
Radiation electrode, 14: feeding electrode, 15, 17: ground electrode, 1
6: other side (wide part), 18: open end (narrow part), 1
9: power supply, 31: ground conductor, 51, 52: circuit components, 5
5: ground plane (ground conductor), 71: circuit board, 73: ground conductor, 75: feed line, 90: radiation electrode, 92: ground electrode,
94, 142: feeding electrode, 96: ground conductor

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基体にマイクロストリップ導体を配
した放射電極と、接地電極と、給電電極とを有するチッ
プ型アンテナ素子であって、少なくとも一面に設けた放
射電極の一方辺は開放端となし、ギャップを介して接地
電極と対向し、さらに開放端の反対側に位置する他方辺
は接地され、且つ前記放射電極には帯域幅の制御手段を
備えてなることを特徴とするチップ型アンテナ素子。
1. A chip antenna element having a radiation electrode in which a microstrip conductor is provided on an insulating base, a ground electrode, and a feed electrode, wherein one side of the radiation electrode provided on at least one surface is not an open end. A chip-type antenna element, wherein the other side opposite to the open end opposite to the ground electrode via the gap is grounded, and the radiation electrode is provided with bandwidth control means. .
【請求項2】 前記帯域幅の制御手段は、前記放射電極
の幅を前記ギャップに向かって連続的および/または段
階的に狭めながら延在して設けたものであることを特徴
とする請求項1記載のチップ型アンテナ素子。
2. The apparatus according to claim 1, wherein said bandwidth control means extends while narrowing a width of said radiation electrode continuously and / or stepwise toward said gap. 2. The chip antenna element according to 1.
【請求項3】 絶縁基体にマイクロストリップ導体を配
した放射電極と、接地電極と、給電電極とを有するチッ
プ型アンテナ素子であって、少なくとも一面に設けた放
射電極の一方辺は開放端となし、この開放端に対向し、
ギャップを介して一方の端面を覆い少なくとも接地面ま
で延在した接地電極と、前記放射電極の他方辺には連続
あるいは容量結合して他方の端面を覆い少なくとも接地
面まで延在した接地電極を設けたことを特徴とするチッ
プ型アンテナ素子。
3. A chip antenna element having a radiation electrode having a microstrip conductor disposed on an insulating substrate, a ground electrode, and a feed electrode, wherein at least one side of the radiation electrode provided on at least one surface is not an open end. , Facing this open end,
A ground electrode that covers one end face via a gap and extends to at least the ground plane, and a ground electrode that covers the other end face and extends at least to the ground plane by continuous or capacitive coupling on the other side of the radiation electrode is provided. A chip type antenna element characterized by the above-mentioned.
【請求項4】 前記放射電極は、その幅を前記ギャップ
に向かって連続的および/または段階的に狭めながら延
在して設けたものであることを特徴とする請求項3記載
のチップ型アンテナ素子。
4. The chip antenna according to claim 3, wherein said radiation electrode is provided so as to extend while narrowing its width continuously and / or stepwise toward said gap. element.
【請求項5】 絶縁基体にマイクロストリップ導体を配
した放射電極と、接地電極と、給電電極とを有するチッ
プ型アンテナ素子であって、少なくとも一面に設け、一
方辺を開放端となしその幅を前記開放端に向かって連続
的および/または段階的に狭めながら延在して設けた放
射電極と、前記開放端とギャップを介して対向し、一方
の端面とその廻りの四面を覆って設けた第1の接地電極
と、前記放射電極の他方辺と連続あるいは容量結合し
て、他方の端面とその廻りの四面を覆って設けた第2の
接地電極とを有することを特徴とするチップ型アンテナ
素子。
5. A chip antenna element having a radiation electrode in which a microstrip conductor is disposed on an insulating base, a ground electrode, and a feed electrode, provided on at least one surface, one side of which is an open end, and whose width is reduced. A radiating electrode that extends while narrowing continuously and / or stepwise toward the open end, opposing the open end via a gap, and covering one end surface and four surfaces around it; A chip-type antenna comprising: a first ground electrode; and a second ground electrode provided continuously or capacitively coupled to the other side of the radiation electrode so as to cover the other end face and four surrounding areas. element.
【請求項6】 前記放射電極を挟むように長手方向の両
端部に配した接地電極のどちらか一方を前記放射電極に
接続することによって、前記放射電極の長さ方向の放射
電界強度を弱め、逆に垂直方向が強まる放射電極となし
たことを特徴とする請求項1乃至5の何れかに記載のチ
ップ型アンテナ素子。
6. A radiating electric field strength in a longitudinal direction of the radiation electrode is weakened by connecting one of ground electrodes arranged at both ends in a longitudinal direction so as to sandwich the radiation electrode to the radiation electrode, 6. The chip antenna element according to claim 1, wherein the radiation electrode has a reinforced vertical direction.
【請求項7】 前記放射電極の開放端から接地側の所定
のインピーダンスが得られる箇所に接触または非接触で
給電電極を設けることを特徴とする請求項1乃至6の何
れかに記載のチップ型アンテナ素子。
7. The chip type according to claim 1, wherein a power supply electrode is provided in a contact or non-contact manner at a location where a predetermined impedance is obtained on the ground side from the open end of the radiation electrode. Antenna element.
【請求項8】 前記放射電極の一方辺の開放端の幅を
S、他方辺の幅をWとしたとき、W/Sを2〜5の範囲
とすることを特徴とする請求項1乃至7の何れかに記載
のチップ型アンテナ素子。
8. The W / S is set in a range of 2 to 5, where S is the width of the open end of one side of the radiation electrode and W is the width of the other side. The chip-type antenna element according to any one of the above.
【請求項9】 前記放射電極は絶縁基体の隣り合う側面
に亘って配置されることを特徴とする請求項1乃至8の
何れかに記載のチップ型アンテナ素子。
9. The chip-type antenna element according to claim 1, wherein the radiation electrodes are arranged over adjacent side surfaces of the insulating base.
【請求項10】 請求項1〜9の何れかに記載するチッ
プ型アンテナ素子を、前記放射電極の開放端と接地電極
間のギャップ方向が回路基板の地導体と並行となるよう
になし、且つ前記放射電極のギャップを地導体から遠ざ
けるように配置したことを特徴とするアンテナ装置。
10. The chip antenna element according to claim 1, wherein a gap direction between an open end of said radiation electrode and a ground electrode is parallel to a ground conductor of a circuit board, and An antenna device, wherein a gap between the radiation electrodes is arranged to be away from a ground conductor.
【請求項11】 請求項1〜9の何れかに記載するチッ
プ型アンテナ素子の給電電極は基体中央に対し前記開放
端側に偏って設けてあり、両端の接地電極を回路基板の
地導体と接続するように長手方向を並行に配置し、前記
地導体の間に設けた給電線から前記給電電極に電力を供
給するようにしたことを特徴とするアンテナ装置。
11. The feed electrode of the chip-type antenna element according to any one of claims 1 to 9 is provided so as to be biased toward the open end with respect to the center of the base, and the ground electrodes at both ends are connected to the ground conductor of the circuit board. An antenna device wherein the longitudinal directions are arranged in parallel so as to be connected, and power is supplied to the power supply electrode from a power supply line provided between the ground conductors.
【請求項12】 前記チップ型アンテナ素子を地導体に
対して偏って配置することを特徴とする請求項10又は
11記載のアンテナ装置。
12. The antenna device according to claim 10, wherein the chip-type antenna element is arranged so as to be deviated from a ground conductor.
【請求項13】 請求項10〜12の何れかに記載のア
ンテナ装置を搭載したことを特徴とする通信機器。
13. A communication device comprising the antenna device according to claim 10.
JP2000353460A 2000-04-14 2000-11-20 Chip-type antenna element, antenna device, and communication device equipped with the same Expired - Fee Related JP3594127B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000353460A JP3594127B2 (en) 2000-04-14 2000-11-20 Chip-type antenna element, antenna device, and communication device equipped with the same
EP01109178A EP1146589B1 (en) 2000-04-14 2001-04-12 Chip antenna element and communication apparatus comprising the same
AT01109178T ATE311020T1 (en) 2000-04-14 2001-04-12 ANTENNA ARRANGEMENT AND COMMUNICATION DEVICE HAVING SUCH AN ANTENNA ARRANGEMENT
DE60115131T DE60115131T2 (en) 2000-04-14 2001-04-12 Chip antenna element and this having message transmission device
KR1020010019914A KR100798044B1 (en) 2000-04-14 2001-04-13 Chip antenna element, antenna apparatus and communications apparatus comprising same
US09/833,560 US6476767B2 (en) 2000-04-14 2001-04-13 Chip antenna element, antenna apparatus and communications apparatus comprising same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000113686 2000-04-14
JP2000-113686 2000-04-14
JP2000353460A JP3594127B2 (en) 2000-04-14 2000-11-20 Chip-type antenna element, antenna device, and communication device equipped with the same

Publications (2)

Publication Number Publication Date
JP2001358515A true JP2001358515A (en) 2001-12-26
JP3594127B2 JP3594127B2 (en) 2004-11-24

Family

ID=26590146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353460A Expired - Fee Related JP3594127B2 (en) 2000-04-14 2000-11-20 Chip-type antenna element, antenna device, and communication device equipped with the same

Country Status (1)

Country Link
JP (1) JP3594127B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051002A (en) * 2002-12-11 2004-06-18 한국전자통신연구원 Printed Multiband Antenna
JP2005192183A (en) * 2003-07-21 2005-07-14 Lg Electronics Inc Antenna for uwb (ultra-wide band) communication
WO2005078860A1 (en) * 2004-02-18 2005-08-25 Fdk Corporation Antenna
JP2007068058A (en) * 2005-09-01 2007-03-15 Nissei Electric Co Ltd Antenna
JP2008042368A (en) * 2006-08-03 2008-02-21 Yokowo Co Ltd Broad band antenna
JP2011139308A (en) * 2009-12-28 2011-07-14 Fujitsu Ltd Antenna device
JP2014506070A (en) * 2011-01-14 2014-03-06 マイクロソフト コーポレーション Antenna device
CN113138680A (en) * 2020-01-16 2021-07-20 华为技术有限公司 Writing pen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051002A (en) * 2002-12-11 2004-06-18 한국전자통신연구원 Printed Multiband Antenna
JP2005192183A (en) * 2003-07-21 2005-07-14 Lg Electronics Inc Antenna for uwb (ultra-wide band) communication
WO2005078860A1 (en) * 2004-02-18 2005-08-25 Fdk Corporation Antenna
JP2007068058A (en) * 2005-09-01 2007-03-15 Nissei Electric Co Ltd Antenna
JP2008042368A (en) * 2006-08-03 2008-02-21 Yokowo Co Ltd Broad band antenna
JP2011139308A (en) * 2009-12-28 2011-07-14 Fujitsu Ltd Antenna device
JP2014506070A (en) * 2011-01-14 2014-03-06 マイクロソフト コーポレーション Antenna device
US9728845B2 (en) 2011-01-14 2017-08-08 Microsoft Technology Licensing, Llc Dual antenna structure having circular polarisation characteristics
CN113138680A (en) * 2020-01-16 2021-07-20 华为技术有限公司 Writing pen
CN113138680B (en) * 2020-01-16 2023-02-14 华为技术有限公司 Writing pen

Also Published As

Publication number Publication date
JP3594127B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
KR100798044B1 (en) Chip antenna element, antenna apparatus and communications apparatus comprising same
US6686886B2 (en) Integrated antenna for laptop applications
KR100707242B1 (en) Dielectric chip antenna
US6970135B2 (en) Antenna apparatus
JP3468201B2 (en) Surface mount antenna, frequency adjustment setting method of multiple resonance thereof, and communication device equipped with surface mount antenna
KR100265510B1 (en) Omnidirectional dipole antenna
US20060119517A1 (en) Antenna
JP2005094360A (en) Antenna device and radio communication apparatus
JP2002232223A (en) Chip antenna and antenna device
KR20050085045A (en) Chip antenna, chip antenna unit and radio communication device using them
EP1498985B1 (en) Antenna device and method for manufacturing the same
JP3594127B2 (en) Chip-type antenna element, antenna device, and communication device equipped with the same
JP4047283B2 (en) Microwave antenna
KR100516830B1 (en) Built-in Patch Antenna for Mobile Communication Terminal and Method for Manufacturing it
JP3625191B2 (en) Chip-type antenna element, antenna device, and communication device equipped with the same
JP2003037423A (en) Surface mounting antenna, and communication system loaded with the same
US6717550B1 (en) Segmented planar antenna with built-in ground plane
JP2002368528A (en) Surface mounting type antenna and communication equipment equipped with the same
JP6004173B2 (en) Antenna device
JP3809999B2 (en) Small antenna and electronic component using the same
JP2003037422A (en) Surface mounting antenna, and communication system loading the same
JP6826318B2 (en) Antenna device
KR200322363Y1 (en) Small dielectric antenna
JP2002368517A (en) Surface-mounting type antenna and communication equipment mounted with the same
JP2002158521A (en) Chip antenna, antenna device and communications equipment using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees