JP2003037423A - Surface mounting antenna, and communication system loaded with the same - Google Patents

Surface mounting antenna, and communication system loaded with the same

Info

Publication number
JP2003037423A
JP2003037423A JP2001226228A JP2001226228A JP2003037423A JP 2003037423 A JP2003037423 A JP 2003037423A JP 2001226228 A JP2001226228 A JP 2001226228A JP 2001226228 A JP2001226228 A JP 2001226228A JP 2003037423 A JP2003037423 A JP 2003037423A
Authority
JP
Japan
Prior art keywords
electrode
base
antenna
radiation electrode
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001226228A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
博志 青山
Keiko Kikuchi
慶子 菊地
Hidetoshi Hagiwara
英俊 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001226228A priority Critical patent/JP2003037423A/en
Publication of JP2003037423A publication Critical patent/JP2003037423A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small surface mounting antenna having small height, high radiation efficiency and a wide band, and to provide provide a communication system with the surface mounting antenna. SOLUTION: A radiating electrode 2A, elongated with a width that becomes narrower from one edge to the other elongated edge, is formed on an upper face (face C) and an adjoining side face (face D) of a rectangular parallelepiped dielectric base 1. In a central area or a top narrow area and a base wide area of the radiating electrode 2A, each meandering type radiating electrode 20m is formed and connected or capacitively coupled, with a grounding electrode 3 formed on an edge face (face E) of the base, while one narrow side thereof being opened to an edge face (face F). A power feed electrode 4 driving the radiating electrode 2A in a non-contacted state is formed on a side face (face B) of the base, in the surface mounting antenna.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に携帯電話や無
線LAN(ローカルエリアネットワーク)等のマイクロ
波無線通信機器に好適な表面実装型アンテナ(以下、単
にアンテナと言うことがある。)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-mounted antenna (hereinafter sometimes simply referred to as an antenna) suitable for a microwave wireless communication device such as a mobile phone and a wireless LAN (local area network). Is.

【0002】[0002]

【従来の技術】マイクロ波無線通信機器、とりわけ携帯
電話などの携帯通信機器では、小形低背化を図るために
アンテナ素子としてモノポールアンテナやマイクロスト
リップアンテナ等が、一般に用いられている。このう
ち、最近適用が増加しているマイクロストリップアンテ
ナの構造および原理に関しては、アンテナ工学ハンドブ
ック(p109〜111 電子情報通信学会編 オーム社)にそ
の詳しい記載がある。
2. Description of the Related Art In microwave radio communication devices, especially mobile communication devices such as mobile phones, monopole antennas, microstrip antennas and the like are generally used as antenna elements in order to reduce the size and height. Among them, the structure and principle of the microstrip antenna, which has been increasingly applied recently, is described in detail in the Antenna Engineering Handbook (p109-111 Ohmsha, edited by the Institute of Electronics, Information and Communication Engineers).

【0003】現在、マイクロストリップアンテナとして
は表面実装型が主流であり、例えば、特開平9−153
734号公報や特開平10−107535号公報等に開
示されている。このアンテナは図10に示すように、略
直方体状の基体90の上面に例えばミアンダ状の放射電
極91を形成し、基体の側面92から上面に掛けて放射
電極91と直接接続するか、容量接続した給電電極93
と給電端子94から給電するものである。等価回路的に
は、放射電極の放射抵抗RとインダクタンスL、放射電
極の開放端とグランド電極間で形成される容量Cが並列
に接続された並列共振回路を構成している。これをアン
テナとして動作させる場合は、アンテナ基体の一側面9
2に設けたグランド端子95と給電端子94を、それぞ
れ回路基板96の地導体97と給電線98の上に配置
し、下面側から給電線を介して高周波信号を流すことに
よって、この高周波信号が並列共振して放射電極から電
磁波となって放射される。尚、放射電極の形状として
は、ミアンダ状の他にL字状、コ字状、クランク状等の
屈曲したものを用いて小型化を図っている。
At present, a surface mount type is mainly used as a microstrip antenna. For example, Japanese Laid-Open Patent Publication No. 9-153.
No. 734 and Japanese Patent Laid-Open No. 10-107535. As shown in FIG. 10, this antenna has, for example, a meandering radiation electrode 91 formed on the upper surface of a substantially rectangular parallelepiped base body 90, and is directly connected to the radiation electrode 91 by hanging from the side surface 92 of the base body to the upper surface or by capacitive connection. Feeding electrode 93
Power is supplied from the power supply terminal 94. In terms of an equivalent circuit, a radiation resonance R and an inductance L of the radiation electrode and a capacitance C formed between the open end of the radiation electrode and the ground electrode constitute a parallel resonance circuit. When operating this as an antenna, one side surface of the antenna base 9
By disposing the ground terminal 95 and the power supply terminal 94 provided in 2 on the ground conductor 97 and the power supply line 98 of the circuit board 96, respectively, and by passing the high frequency signal from the lower surface side through the power supply line, the high frequency signal is generated. Electromagnetic waves are radiated from the radiation electrode due to parallel resonance. In addition, as the shape of the radiation electrode, in addition to the meander shape, a bent shape such as an L-shape, a U-shape, or a crank shape is used to reduce the size.

【0004】[0004]

【発明が解決しようとする課題】携帯通信機器に使用さ
れるアンテナは、小形低背であると同時に放射効率が良
く且つ指向性がなくて広帯域であることが要求される。
この点で従来の表面実装型アンテナでは、小形低背化を
進めていくと逆に前記アンテナ特性が劣化する方向にあ
り、単純には小型低背化は実現できなかった。そこで、
本願発明者らは、先に小型低背化と共に高利得で広帯域
なアンテナを得ることを目的として、梯子型の並列共振
回路を構成する放射電極を持った表面実装型アンテナを
提案している(特願2001−45354号他)。即
ち、このアンテナは、図9に示すように、略直方体状の
基体80の少なくとも上面に基体の一方端から長手方向
の他方端に向かって連続的および/または段階的に実質
的に幅を狭めながら延びる放射電極81を形成し、この
放射電極の一方端は、前記基体80の端面82に設けた
接地電極85と接続して接地されており、放射電極81
の途中でインピーダンス整合する側面位置には非接触の
形で給電電極83を形成したものである。このアンテナ
は基体下面のほとんどにグランド電極を設けておらず、
回路基板86に実装する際は基体端面の接地電極85及
びダミー電極(図示せず)と回路基板86の地導体8
7、87’とをそれぞれ図示のように接続する。このア
ンテナの最大の特徴は、幅が一定でない放射電極81の
形状にあり、この形状に対応して複数の共振回路が等価
的に形成されることにより多重共振が生じる点である。
An antenna used in a portable communication device is required to have a small size, a low profile, good radiation efficiency, no directivity and a wide band.
In this respect, the conventional surface mount antenna tends to deteriorate in the antenna characteristics as the size and height of the antenna are further reduced, and simply the size and height of the antenna cannot be reduced. Therefore,
The inventors of the present application have previously proposed a surface-mount antenna having radiation electrodes that form a ladder-type parallel resonant circuit for the purpose of obtaining a high-gain, wide-band antenna with a reduction in size and height ( Japanese Patent Application No. 2001-45354, etc.). That is, as shown in FIG. 9, this antenna continuously and / or stepwise narrows the width from at least one end of the base to at least the upper surface of the base 80 having a substantially rectangular parallelepiped shape. The radiation electrode 81 is formed to extend while one end of the radiation electrode 81 is connected to the ground electrode 85 provided on the end surface 82 of the base body 80 and grounded.
A power supply electrode 83 is formed in a non-contact manner at a side surface position where impedance matching is performed in the middle of. This antenna does not have a ground electrode on most of the bottom surface of the base,
When mounting on the circuit board 86, the ground electrode 85 and the dummy electrode (not shown) on the end surface of the base and the ground conductor 8 of the circuit board 86.
7, 87 'are respectively connected as shown. The greatest feature of this antenna is that the radiation electrode 81 has a non-uniform width, and multiple resonance circuits are equivalently formed corresponding to this shape to cause multiple resonance.

【0005】これらの誘電体アンテナは、最近では無線
LAN用やGPS(Global Positioning System)用のチ
ップアンテナとしての用途が多く、携帯電話等の極限ら
れた小空間内に搭載する必要がある。このようなことか
ら、上記のアンテナ構造においても例えば長さ10mm
以下、幅と厚さが3〜2mm程度と、さらに小型低背化
したアンテナが求められている。ところが基体寸法が制
限されると、周波数調整が困難となり、また放射効率が
悪く利得が低下する、また帯域幅が低下すると言う問題
が生じる。
Recently, these dielectric antennas are often used as chip antennas for wireless LAN and GPS (Global Positioning System), and it is necessary to mount them in a very small space such as a mobile phone. Therefore, even in the above antenna structure, for example, the length is 10 mm.
Hereafter, there is a demand for an antenna having a width and a thickness of about 3 to 2 mm, which is further reduced in size and height. However, when the size of the substrate is limited, it becomes difficult to adjust the frequency, the radiation efficiency is poor, the gain is lowered, and the bandwidth is lowered.

【0006】そこで、本発明は、上記した既提案のアン
テナの改良に係わり、一層の小型低背化を実現すると共
に周波数調整の幅を広げ、放射利得の向上と帯域幅を広
げた表面実装型アンテナを提供することを目的とする。
また、このアンテナを利得の低下を抑制するように回路
基板に搭載した通信機器を提供することを目的とする。
Therefore, the present invention relates to the improvement of the above-mentioned already proposed antenna, which realizes further downsizing and height reduction, widens the range of frequency adjustment, improves the radiation gain and widens the bandwidth. The purpose is to provide an antenna.
Another object of the present invention is to provide a communication device in which this antenna is mounted on a circuit board so as to suppress a decrease in gain.

【0007】[0007]

【課題を解決するための手段】本発明は、誘電体又は磁
性体よりなる直方体状の基体の少なくとも1つの表面に
前記基体の一方端から長手方向の他方端に向かって連続
的および/または段階的に実質的に幅を狭めながら延び
る放射電極を形成し、該放射電極の一方端は前記基体の
端面に設けた接地電極と接続あるいは容量結合し、前記
放射電極に接触または非接触で結合する給電電極を基体
表面に形成した表面実装型アンテナであって、前記放射
電極の中央の領域をミアンダ状の屈曲部に形成した表面
実装型アンテナである。
According to the present invention, at least one surface of a rectangular parallelepiped base made of a dielectric or magnetic material is continuously and / or stepwise from one end of the base to the other end in the longitudinal direction. A radiation electrode that extends substantially narrower in width, and one end of the radiation electrode is connected or capacitively coupled to a ground electrode provided on the end surface of the base body, and is coupled to the radiation electrode in contact or non-contact. It is a surface-mounted antenna in which a feeding electrode is formed on the surface of a base body, and is a surface-mounted antenna in which a central region of the radiation electrode is formed in a meandering bent portion.

【0008】また、本発明は、誘電体又は磁性体よりな
る直方体状の基体の少なくとも1つの表面に前記基体の
一方端から長手方向の他方端に向かって連続的および/
または段階的に実質的に幅を狭めながら延びる放射電極
を形成し、該放射電極の一方端は前記基体の端面に設け
た接地電極と接続あるいは容量結合し、前記放射電極に
接触または非接触で結合する給電電極を基体表面に形成
した表面実装型アンテナであって、前記放射電極の幅の
狭い領域および幅の広い領域をミアンダ状の屈曲部に形
成した表面実装型アンテナである。
Further, according to the present invention, at least one surface of a rectangular parallelepiped base made of a dielectric or magnetic material is continuously and / or continuously formed from one end of the base toward the other end in the longitudinal direction.
Alternatively, a radiating electrode extending gradually narrowing gradually is formed, and one end of the radiating electrode is connected or capacitively coupled to a ground electrode provided on the end surface of the base body, and is in contact with or not in contact with the radiant electrode. A surface mount antenna in which feed electrodes to be coupled are formed on the surface of a substrate, wherein a narrow region and a wide region of the radiation electrode are formed in meandering bent portions.

【0009】本発明のアンテナは、放射電極を先端の開
放端に向かって幅の狭まる形状としたことにより、複数
の共振回路が多重共振することによる帯域幅の拡大が図
られる。このとき、放射電極にミアンダ状の屈曲部を形
成することによって、放射電極長を伸ばしインダクタン
スを稼いで基体の小型化を図ることができる。但し、一
般にミアンダ等の屈曲部を設けると導体損失が大きくな
り放射効率(利得)を低下させることに繋がる。ここで
屈曲部を設ける領域について考えると、放射電極のうち
根元側の幅の広い領域は、先端側の幅の狭い領域に比べ
て電流強度が大きく、放射効率の低下幅が大きいが、そ
の反面帯域幅は格段に向上する。他方、先端側の幅の狭
い領域について言えば、電流が流れ易く導体損失が小さ
いため、放射効率の低下は抑制されるが帯域幅の増大量
も少ない。よって、放射効率と帯域幅の両特性を中庸的
に得るために、中央部の領域にミアンダ状の屈曲部を設
けること、あるいは幅の狭い領域と幅の広い領域の両端
に適宜ミアンダ状の屈曲部を設けることが有効である。
以上により、帯域幅が広がり且つ放射効率も向上したア
ンテナを得ることができる。
In the antenna of the present invention, the radiation electrode has a shape in which the width is narrowed toward the open end of the tip, so that the bandwidth can be expanded by multiple resonance of a plurality of resonance circuits. At this time, by forming a meandering bent portion on the radiation electrode, it is possible to extend the length of the radiation electrode, increase the inductance, and reduce the size of the substrate. However, in general, when a bent portion such as meander is provided, the conductor loss increases and the radiation efficiency (gain) is reduced. Considering the area where the bent portion is provided, the wide area on the base side of the radiation electrode has a larger current intensity and a larger reduction in radiation efficiency than the narrow area on the tip side. Bandwidth is greatly improved. On the other hand, in the narrow region on the front end side, since the current easily flows and the conductor loss is small, the decrease in the radiation efficiency is suppressed but the increase in the bandwidth is small. Therefore, in order to obtain both radiation efficiency and bandwidth characteristics moderately, it is necessary to provide meander-shaped bends in the central region, or to appropriately bend meander-shaped bends at both ends of the narrow and wide regions. It is effective to provide a section.
As described above, it is possible to obtain an antenna having a wide bandwidth and improved radiation efficiency.

【0010】また、前記ミアンダ状の屈曲部は、放射電
極全長に対して少なくとも1/15の長さがないと小型
化や周波数調整の融通性がない。屈曲部が放射電極全長
に占める割合は屈曲部を設ける位置によっても異なる
が、放射電極全長の半分程度が望ましく、長くても4/
5程度までである。例えば全長10〜15mmの放射電
極を用いて2.45GHzの中心周波数を得る場合、中
央部に4〜6mm程度または、先端から5mm程度、接
地側から1mm程度の領域にミアンダ状屈曲部を設ける
ことが望ましいと言える。さらに、ミアンダ状の屈曲部
の曲がり角は、丸面取りあるいは角面取りを施し一様に
角を削ることは望ましいことである。これにより屈曲部
の線路幅と電流の流れがほぼ一様となりインピーダンス
の不連続性が改善されるため、曲がり角での反射ロスが
抑えられて利得が向上する。また、ミアンダ状の電極線
路の本数は2n+1で奇数本とすると電流のキャンセル
分が完全に相殺されないので利得向上には望ましい。ま
た、前記基体の他方端の端面に、前記放射電極の先端と
ギャップを介して対向する第2の接地電極を設けること
も出来る。これにより、容量装荷が達成され、小型化お
よびギャップを調整することによって容易に共振周波数
を調整することが出来る。
Further, the meandering bent portion has no flexibility for downsizing and frequency adjustment unless it has a length of at least 1/15 of the total length of the radiation electrode. The ratio of the bent portion to the entire length of the radiation electrode varies depending on the position where the bending portion is provided, but it is preferably about half of the entire length of the radiation electrode, and at most 4 /
Up to about 5. For example, when a center frequency of 2.45 GHz is obtained using a radiation electrode with a total length of 10 to 15 mm, a meandering bent portion should be provided in the central portion in a region of 4 to 6 mm or 5 mm from the tip and 1 mm from the ground side. Can be said to be desirable. Furthermore, it is desirable to round or chamfer the corners of the meandering bent portion so that the corners are uniformly chamfered. As a result, the line width of the bent portion and the current flow are substantially uniform and the impedance discontinuity is improved, so that the reflection loss at the bend angle is suppressed and the gain is improved. Further, if the number of meandering electrode lines is 2n + 1 and is an odd number, the amount of current cancellation is not completely offset, which is desirable for gain improvement. Further, a second ground electrode facing the tip of the radiation electrode via a gap can be provided on the other end face of the base. As a result, capacitive loading is achieved, and the resonance frequency can be easily adjusted by downsizing and adjusting the gap.

【0011】また、本発明は、上記した表面実装型アン
テナを回路基板に実装する際、前記放射電極が延びる基
体長手方向を回路基板の地導体端部の境界線と並行とな
るように、且つ前記放射電極の先端側を地導体から遠ざ
けるように配置し、このような回路基板を搭載した通信
機器である。これは表面実装型アンテナとして携帯電
話、ヘッドフォン、パソコン、ノートパソコン、デジタ
ルカメラ等に搭載した通信機器に好適である。
Further, according to the present invention, when the above-mentioned surface mount antenna is mounted on a circuit board, the longitudinal direction of the base body on which the radiation electrode extends is parallel to the boundary line of the ground conductor end of the circuit board. Moreover, it is a communication device in which the tip end side of the radiation electrode is arranged away from the ground conductor and such a circuit board is mounted. This is suitable for a communication device mounted on a mobile phone, a headphone, a personal computer, a notebook computer, a digital camera or the like as a surface mount antenna.

【0012】[0012]

【発明の実施の形態】以下、本発明の表面実装型アンテ
ナの実施例を図面と共に説明する。図1は第1の実施例
を示す表面実装型アンテナの斜視図、図2は図1の展開
図である。このアンテナ1Aは、セラミックス、樹脂等
の誘電体からなる直方体状の基体1と、その上面及び隣
り合う側面に形成された放射電極2Aと、放射電極の一
方端に接続され基体の端面を覆って形成した接地電極3
と、基体の長手方向側面に設けた給電電極4とからなっ
ている。放射電極2Aは、基本的に根元の幅広領域から
長手方向に連続的および/または段階的に実質的に幅を
狭めながら延びる先細りの形状となし、略中央の領域を
ミアンダ状の屈曲部20cに形成している。またこの放
射電極2Aは、図2に展開図で示すように、基体上面
(C面)に設けた放射電極20と、隣り合う側面(D
面)に連続的に形成した放射電極21からなり基体の稜
線上で一体化している。放射電極の先端は開放端15と
なっており、他方の根元側の一端は端面(E面)の接地
電極3に接続されている。尚、ここでの接続は非接触の
容量結合の形でも良い。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the surface mount antenna of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a surface mount antenna showing a first embodiment, and FIG. 2 is a development view of FIG. This antenna 1A includes a rectangular parallelepiped base 1 made of a dielectric material such as ceramics and resin, a radiation electrode 2A formed on the upper surface and adjacent side surfaces thereof, and connected to one end of the radiation electrode to cover an end surface of the base. Formed ground electrode 3
And a feeding electrode 4 provided on the side surface in the longitudinal direction of the base. The radiation electrode 2A basically has a tapered shape extending continuously and / or stepwise in the longitudinal direction while narrowing the width substantially from the wide region at the base, and the substantially central region is formed into a meandering bent portion 20c. Is forming. The radiation electrode 2A has a side surface (D) adjacent to the radiation electrode 20 provided on the upper surface (C surface) of the base, as shown in a developed view in FIG.
The radiation electrodes 21 are continuously formed on the surface) and are integrated on the ridgeline of the substrate. The tip of the radiation electrode is an open end 15, and the other end on the root side is connected to the ground electrode 3 on the end face (E face). The connection here may be in the form of non-contact capacitive coupling.

【0013】給電電極4は、放射電極とインピーダンス
マッチング(通常50Ω)する基体側面の任意の位置に
形成し、容量を介して非接触に励振し整合が取りやすい
ようにしているが、給電電極4は基体上面まで延ばして
も良く、放射電極と直接接続させることもできる。接地
電極3は、基体1の一方端面(E面)を含む端部を取り
囲むように設けても良いが、少なくとも下面(A面)に
も延長電極30を形成し、回路基板の地導体に接続でき
るようにする。また、給電電極4も基体下面(A面)側
に延長して半田付け用の延長電極40を設け、また回路
基板への取り付けを補強する固定電極50を設けてい
る。
The feeding electrode 4 is formed at an arbitrary position on the side surface of the base body that impedance-matches with the radiation electrode (usually 50Ω) and is excited in a non-contact manner through a capacitor to facilitate matching. May extend to the upper surface of the substrate, or may be directly connected to the radiation electrode. The ground electrode 3 may be provided so as to surround an end portion including one end surface (E surface) of the base body 1, but the extension electrode 30 is also formed at least on the lower surface (A surface) and connected to the ground conductor of the circuit board. It can be so. Further, the feeding electrode 4 is also extended to the lower surface (A surface) side of the base body to provide an extension electrode 40 for soldering, and a fixed electrode 50 for reinforcing the attachment to the circuit board.

【0014】本発明の表面実装型アンテナの第2の実施
例を図3の斜視図と図4の展開図に示す。尚、図1のア
ンテナと同じ構成については同一符号を付して説明は省
略する。この実施例のアンテナ1Bは、放射電極22の
うち幅の狭い領域にミアンダ状の屈曲部22tと幅の広
い領域にミアンダ状の屈曲部22rを設けたものであ
る。そして、放射電極2Bは図4の展開図で示すよう
に、基体上面(C面)に設けた放射電極22と、隣り合
う側面(D面)に先端側と根元側に同様のミアンダ状屈
曲部23t、23rを設けた放射電極23とからなって
いる。また、ここでは先端側の屈曲部22t、23tは
スリット11を図のように形成して電極線路12を9本
となし、根元側の屈曲部22r、23rは2本のスリッ
ト11を形成して電極線路12は2本となしている。
尚、ここでは帯域幅を拡大しつつ放射効率の低下を抑制
するために最低限の長さとしたが、電極線路は下記する
理由も考慮して奇数本にすることが望ましい。
A second embodiment of the surface mount antenna of the present invention is shown in the perspective view of FIG. 3 and the developed view of FIG. It should be noted that the same components as those of the antenna of FIG. The antenna 1B of this embodiment is provided with a meandering bent portion 22t in a narrow region of the radiation electrode 22 and a meandering bent portion 22r in a wide region of the radiation electrode 22. As shown in the development view of FIG. 4, the radiation electrode 2B has a radiation electrode 22 provided on the upper surface (C surface) of the base body and a meandering bent portion similar to the tip side and the root side on the adjacent side surface (D surface). The radiation electrode 23 is provided with 23t and 23r. Further, here, the bent portions 22t and 23t on the tip side form the slits 11 as shown in the figure to form nine electrode lines 12, and the bent portions 22r and 23r on the root side form two slits 11. The number of electrode lines 12 is two.
Although the minimum length is used here in order to suppress the reduction in radiation efficiency while expanding the bandwidth, it is desirable to use an odd number of electrode lines in consideration of the following reasons.

【0015】次に、放射電極の作用効果について説明す
る。まず、放射電極の基本形状は、高周波電流の流れ
(基体長手方向)に対して垂直方向の電極長さ、即ち幅
を一定とせずに、開放端側に接近するに従い徐々に減少
する形状とした。給電電源から給電電極を介して供給さ
れた高周波電流は、放射電極のインダクタンスと大地と
の間で形成されるコンデンサ容量で決まる周波数で共振
を起こし、空間に電磁エネルギとして放射される。この
時、接地電極と開放端を節と腹とする電流分布モードに
なる。放射電極の幅が一定ならば、この電流分布モード
は1つしか存在しないが、本発明のように放射電極の幅
が一定でないこと、さらに図示する各電極配置とするこ
とによって、アンテナには複数の共振回路が等価的に形
成される。このとき各共振回路の共振周波数は、かなり
接近して発生するため共振が連続して複数存在すること
になり、結果的に帯域幅が広がった広帯域な共振特性が
得られるものである。また、図2の展開図で示すように
基体の上面だけでなく隣接する側面に渡って放射電極を
形成すると、より小型化し、より無指向性に近い放射指
向性が得られる。
Next, the function and effect of the radiation electrode will be described. First, the basic shape of the radiation electrode is such that the electrode length in the direction perpendicular to the flow of the high-frequency current (longitudinal direction of the substrate), that is, the width is not constant, but gradually decreases as it approaches the open end side. did. The high-frequency current supplied from the power supply source via the power supply electrode resonates at a frequency determined by the capacitance of the capacitor formed between the inductance of the radiation electrode and the ground, and is radiated as space electromagnetic energy. At this time, it becomes a current distribution mode in which the ground electrode and the open end serve as nodes and antinodes. If the width of the radiation electrode is constant, there is only one current distribution mode. However, since the width of the radiation electrode is not constant as in the present invention, and the electrode arrangements shown in the figure make it possible to provide a plurality of antennas. The resonant circuit of is formed equivalently. At this time, the resonance frequencies of the respective resonance circuits are generated so close to each other that a plurality of resonances continuously exist, and as a result, a wide-band resonance characteristic having a widened bandwidth is obtained. Further, as shown in the development view of FIG. 2, when the radiation electrode is formed not only on the upper surface of the base body but also on the adjacent side surfaces, the size is further reduced, and radiation directivity closer to non-directionality can be obtained.

【0016】さらに、本発明では放射電極の中央の領域
にミアンダ状の屈曲部20cを設けた構成あるいは先端
側の幅の狭い領域と根元側の幅の広い領域にそれぞれミ
アンダ状の屈曲部22t、22rを設けた構成とした。
これにより、先ずは放射電極のインダクタンス成分Lが
増し、より小型化を図ることが出来る。さらに根元側に
屈曲部を設けた場合、幅の広い領域では電流強度が大き
く、屈曲部に互い違いに流れる電流量も多い。よって、
抵抗Rが大きく導体損失も大きいので電力損失が大きく
放射効率が低下してしまう。しかしながら、他方で帯域
幅はRL0.5に比例することから、L及びRの増加に伴
い帯域幅は拡大する。また、先端側に屈曲部を設けた場
合、放射効率の低下を抑制して所望の周波数に調整がで
きるが帯域幅の増加は余り期待できない。先端側は電流
が流れ易いのでインダクタンス成分を稼ぐことができる
と共に放射効率を阻害しない点で有利である。以上のこ
とより、ミアンダ状屈曲部を設ける位置を、放射電極の
中央部にすれば中庸的に広帯域化と利得向上の利点を享
受できる。一方、幅の狭い先端側と幅の広い根元側との
両方に適宜設けることで帯域化を拡大し放射効率(利
得)も低くないアンテナを得ることが出来る。また、周
波数調整効果の高い根元側でおおよその周波数を調整
し、周波数微調整の容易な先端側で微調整を行うことが
できる。
Further, according to the present invention, the meandering bent portion 20c is provided in the central region of the radiation electrode, or the meandering bent portion 22t is provided in the narrow region on the tip side and the wide region on the root side, respectively. 22r is provided.
Thereby, first, the inductance component L of the radiation electrode is increased, and the size can be further reduced. Further, when the bent portion is provided on the root side, the current intensity is large in a wide region, and the amount of current flowing in the bent portion alternately is large. Therefore,
Since the resistance R is large and the conductor loss is also large, the power loss is large and the radiation efficiency is reduced. However, on the other hand, since the bandwidth is proportional to RL 0.5 , the bandwidth increases as L and R increase. Further, when the bent portion is provided on the tip side, it is possible to suppress the decrease in radiation efficiency and adjust to a desired frequency, but an increase in bandwidth cannot be expected very much. Since the current easily flows on the tip side, it is advantageous in that the inductance component can be gained and the radiation efficiency is not hindered. From the above, if the position where the meandering bent portion is provided is set to the central portion of the radiation electrode, the advantages of moderately widening the band and improving the gain can be enjoyed. On the other hand, by appropriately providing both the narrow tip side and the wide root side, it is possible to obtain an antenna in which banding is expanded and radiation efficiency (gain) is not low. Further, the approximate frequency can be adjusted on the base side where the frequency adjusting effect is high, and the fine adjustment can be performed on the tip side where the frequency fine adjustment is easy.

【0017】また、ミアンダ状の屈曲部では、線路方向
の電流は互い違いに逆方向に流れるため、空間に放出さ
れる電磁界がキャンセルしあい屈曲部全体として放出電
磁界が小さくなる。この点において電極線路の本数を2
n+1と奇数本にしておくことによって電流のキャンセ
ル分を少なくできる。上記した例ではスリット11を適
宜設けることによって電極線路12も奇数本設けるよう
にしている。また、ミアンダ状の放射電極20c、22
t、22rを夫々設ける領域は、基体寸法と所望周波数
等の関係から適宜設定できるものであるが、下記する比
較検討によれば放射電極全長に対し略1/15以内では
効果はあまり望めず、1/5〜4/5程度が良いと考え
る。
In the meandering bent portion, the electric currents in the line direction alternately flow in opposite directions, so that the electromagnetic fields emitted into the space cancel each other out, and the emitted electromagnetic field becomes small as a whole of the bent portion. At this point, the number of electrode lines is 2
By canceling the current by reducing the number to n + 1 and odd-numbered lines. In the above-described example, the slits 11 are appropriately provided so that an odd number of electrode lines 12 are provided. In addition, the meandering radiation electrodes 20c, 22
The regions in which t and 22r are provided can be appropriately set based on the relationship between the substrate size and the desired frequency, etc., but according to the following comparative study, the effect is not expected so much within approximately 1/15 of the total length of the radiation electrode. I think about 1/5 to 4/5 is good.

【0018】次に、実施例のアンテナの製造に関して説
明する。通常、アンテナの基体はセラミックスからな
り、セラミックスのブロックから直方体状のチップを複
数個切り出し、所定の寸法に研削加工する。次いでこの
チップを複数個並べて治具の中に設置し、多数チップの
一表面毎にAg電極をスクリーン印刷して形成する。各
表面に電極を形成した後、850℃で焼成しチップ状ア
ンテナ素子を得る。印刷する電極は、A面に接地電極3
と給電電極4の延長電極と固定用(半田付け)の電極、
B面に給電電極4、C面に放射電極20C、D面に放射
電極21C、E面に接地電極3を形成する。また第2の
接地電極を設ける場合にはF面にも電極を形成すること
になる。
Next, manufacturing of the antenna of the embodiment will be described. Usually, the base of the antenna is made of ceramics, and a plurality of rectangular parallelepiped chips are cut out from the ceramic block and ground to a predetermined size. Next, a plurality of these chips are arranged side by side in a jig, and Ag electrodes are formed by screen printing on each surface of the many chips. After forming an electrode on each surface, it is baked at 850 ° C. to obtain a chip-shaped antenna element. The electrode to print is the ground electrode 3 on the A side.
And an extension electrode of the feeding electrode 4 and an electrode for fixing (soldering),
The feeding electrode 4 is formed on the B surface, the radiation electrode 20C is formed on the C surface, the radiation electrode 21C is formed on the D surface, and the ground electrode 3 is formed on the E surface. When the second ground electrode is provided, the electrode is also formed on the F surface.

【0019】次に、本発明の表面実装型アンテナの第3
の実施例を図5の斜視図に示す。尚、図1のアンテナと
同じ構成については同一符号を付して説明は省略する。
この実施例のアンテナ1Cは、ミアンダ状の放射電極2
4cの屈曲部に丸み13をもたせて電極線路を繋げたこ
とに特長がある。尚、D面にも同様のミアンダ状の放射
電極を設けている。図1のミアンダ状放射電極では線路
の直線部分と屈曲部分が不等幅で連なっていた。このこ
とは電極線路のインピーダンスとしては不連続に変化す
る結果となり、その不連続性により進行波の一部が反射
される。さらに、曲がり角部に注目すると内側の経路長
が外側の経路長に比べて短く、結果、内側寄りに強い電
流が流れ易くインピーダンスの不連続性がここでも生じ
る。このようなことから、曲がり角部に丸みを持った面
取りあるいは角部を切り落とした角面取りを施すことに
よって前記インピーダンスの不連続性が改善され、曲り
角部での反射ロスの発生が抑制される。その結果、アン
テナの放射電極を流れる共振電流の伝送損失を低減でき
るため利得が向上する。また、本例では屈曲部の曲がり
角を外径側だけでなく内径側についても円弧で結び、丸
面取り14を施している。よって、外径側だけを丸くし
た場合に比べ曲がり角部分での電極線路幅がさらに等幅
になり、電極線路の曲がり角部でのインピーダンスの不
連続性が減少するため、反射ロスの発生がいっそう抑制
される。また、本実施例では接地電極3を基体の端面に
設けず側面のD面側に設け、A面に延長電極30を形成
している。このような構成とすることによって、電極の
経路長すなわちインダクタンスLを増加させ、より小さ
なアンテナを用いて所望周波数が実現できる。
Next, the third surface mount antenna of the present invention will be described.
Is shown in the perspective view of FIG. It should be noted that the same components as those of the antenna of FIG.
The antenna 1C of this embodiment is a meandering radiation electrode 2
It is characterized in that the bent portion of 4c has a roundness 13 to connect the electrode lines. A similar meandering radiation electrode is also provided on the D surface. In the meandering radiating electrode of FIG. 1, the straight line portion and the bent portion of the line were connected with unequal width. This results in a discontinuous change in the impedance of the electrode line, and a part of the traveling wave is reflected due to the discontinuity. Furthermore, when paying attention to the corners, the inner path length is shorter than the outer path length, and as a result, a strong current easily flows toward the inner side, and impedance discontinuity occurs here. Therefore, the chamfering with rounded corners or the chamfering with the corners cut off improves the impedance discontinuity and suppresses the occurrence of reflection loss at the corners. As a result, the transmission loss of the resonance current flowing through the radiation electrode of the antenna can be reduced, and the gain is improved. Further, in this example, the round chamfer 14 is provided by connecting the bending angle of the bent portion not only on the outer diameter side but also on the inner diameter side with an arc. Therefore, compared to the case where only the outer diameter side is rounded, the electrode line width at the bend corner becomes more equal, and the impedance discontinuity at the bend corner of the electrode line decreases, so the occurrence of reflection loss is further suppressed. To be done. Further, in the present embodiment, the ground electrode 3 is not provided on the end face of the base body but on the side of the D face, and the extension electrode 30 is formed on the A face. With such a configuration, the path length of the electrode, that is, the inductance L can be increased, and the desired frequency can be realized by using a smaller antenna.

【0020】本発明の表面実装型アンテナの第4の実施
例を図6に示す。上記実施例のアンテナと同じ構成につ
いては同一符号を付して説明は省略する。本例では放射
電極先端の開放端に対向する基体端部にギャップGを介
して第2の接地電極を設けたものである。基体1の端面
(F面)とこれを囲む4面に渡って接地電極5を形成し
ている。これによって、放射電極26の開放端15と地
導体との間に容量装荷し、また、容量を安定化させて周
波数の調整を容易にすることが出来る。また、ギャップ
部で容量が稼げる分小さいインダクタンスでも所望周波
数が得られるので小型化に適しているし、発生電磁界を
ギャップ部近傍に集中できるので周囲への影響あるいは
周辺からの影響が小さいと言う効果もある。尚、第3、
第4の実施例共にミアンダ状の放射電極については図示
にとらわれることなく図3の形態でも良いことは無論で
ある。
A fourth embodiment of the surface mount antenna of the present invention is shown in FIG. The same components as those of the antenna of the above embodiment are designated by the same reference numerals, and the description thereof will be omitted. In this example, a second ground electrode is provided via a gap G at the end of the base body facing the open end of the tip of the radiation electrode. The ground electrode 5 is formed over the end face (F face) of the base 1 and the four faces surrounding it. As a result, capacitance can be loaded between the open end 15 of the radiation electrode 26 and the ground conductor, and the capacitance can be stabilized to facilitate frequency adjustment. In addition, it is suitable for downsizing because the desired frequency can be obtained with a small inductance as much as the capacity can be gained in the gap portion, and the generated electromagnetic field can be concentrated in the vicinity of the gap portion, so there is little influence on the surroundings or from the surroundings. There is also an effect. The third,
It goes without saying that the meandering radiation electrode of the fourth embodiment is not limited to the one shown in FIG.

【0021】次に、上記した表面実装型アンテナを回路
基板に実装する構成について説明する。図7は図1に説
明したアンテナ1Aを回路基板6上に実装した様子を示
している。無論この図ではアンテナの配置のみを示し他
の部品は図示していない。アンテナ1Aは、回路基板6
の露出部65上で地導体62の端部境界線63と基体長
手方向が並行となるように、且つ放射電極2Aの開放端
15を地導体62から遠ざけるような向きに配置してい
る。これによって、給電電源60から供給された高周波
信号は給電線61を介し給電電極4に供給され放射電極
を励振し、放射電極先端の開放端から電磁波が空間に放
射される。
Next, a structure for mounting the above surface mount antenna on a circuit board will be described. FIG. 7 shows a state in which the antenna 1A described in FIG. 1 is mounted on the circuit board 6. Of course, in this figure, only the antenna arrangement is shown and the other parts are not shown. The antenna 1A is a circuit board 6
On the exposed portion 65, the end boundary line 63 of the ground conductor 62 and the longitudinal direction of the base body are parallel to each other, and the open end 15 of the radiation electrode 2A is arranged so as to be away from the ground conductor 62. As a result, the high frequency signal supplied from the power supply 60 is supplied to the power supply electrode 4 via the power supply line 61 to excite the radiation electrode, and electromagnetic waves are radiated into space from the open end of the radiation electrode tip.

【0022】従来はアンテナ素子を地導体に対して垂直
(縦方向)に配置する場合が多かった。このような場合
デッドスペースが大きくなり設計の自由度が低いことは
言うまでもない。横方向(並行)に置くことによって占
有面積は格段に減少し、実装レイアウトの自由度と密度
を上げて省スペース化を図ることが出来る。一方で並行
に置いた場合は縦置きに対して利得低下を補う必要があ
るが、この点で図示しているように地導体62の端部境
界線63とアンテナ基体との間に若干の隙間を設けるこ
とによって利得を向上できる。間隙は数ミリ、例えば1
〜3mm程度で効果が現れるので占有面積の許される範
囲で設定できる。
Conventionally, the antenna element is often arranged vertically (longitudinal direction) with respect to the ground conductor. In such a case, it goes without saying that the dead space becomes large and the degree of freedom in design is low. By arranging them in the horizontal direction (parallel), the occupied area is remarkably reduced, and the degree of freedom and density of the mounting layout can be increased to save space. On the other hand, when they are placed in parallel, it is necessary to compensate for the gain reduction compared to the vertical placement. However, as shown in this point, a slight gap is present between the end boundary line 63 of the ground conductor 62 and the antenna base. The gain can be improved by providing. The gap is a few millimeters, eg 1
Since the effect appears at about 3 mm, it can be set within the range where the occupied area is allowed.

【0023】また、回路基板との電気的相互作用とし
て、アンテナの共振電流により基板の接地導体に鏡像電
流が発生し、この鏡像電流と基体を流れる電流が逆位相
となると、アンテナからの電磁放射が妨げられ、利得低
下や共振周波数のシフトが起こることがある。この点で
共振電流が最も強く流れる放射電極の開放端を地導体か
ら最も遠い位置に配置すると、電界を接地導体から離れ
た位置に誘起でき、鏡像電流を極力弱くできる。また、
アンテナの裏面のほとんどには接地電極を有していない
ので、接地導体に鏡像電流が流れることを抑制すること
ができる。このようにアンテナを実装した回路基板を図
6に模式的に示した携帯電話やパソコンの内部に搭載す
ることによりブルートゥース機能を備えた通信機器とし
て利用できる(図8参照)。
Further, as an electrical interaction with the circuit board, a mirror image current is generated in the ground conductor of the board due to the resonance current of the antenna, and when the mirror image current and the current flowing through the substrate have opposite phases, electromagnetic radiation from the antenna is generated. May be hindered, resulting in a decrease in gain and a shift in resonance frequency. At this point, if the open end of the radiation electrode through which the resonance current flows most strongly is arranged at the position farthest from the ground conductor, the electric field can be induced at a position away from the ground conductor, and the mirror image current can be made as weak as possible. Also,
Since most of the back surface of the antenna does not have a ground electrode, it is possible to prevent the mirror image current from flowing through the ground conductor. By mounting the circuit board on which the antenna is mounted in a mobile phone or a personal computer schematically shown in FIG. 6, it can be used as a communication device having a Bluetooth function (see FIG. 8).

【0024】以下、本発明による実施例1及び実施例2
のアンテナと、本願発明者らが先に提案している図9の
アンテナの特性比較を下記する。ここで実施例1は図1
に示した中央部にミアンダ状屈曲部を設けた場合であ
り、実施例2は図3に示した先端側と根元側の夫々にミ
アンダ状屈曲部を設けた場合であり、実施例3は図5に
示した屈曲部の曲り角を丸面取りした場合である。比較
例1は図9に示したミアンダ状屈曲部を設けない場合で
ある。まず、アンテナ基体は、比誘電率εr=8のAl2
3系セラミックス材料を使用し、長さ10mm×幅3
mm×厚さ2mmの寸法とした。設計的には伝搬周波数
の中心周波数2.45GHz±10MHz、帯域幅90
MHz、比帯域3.5%、放射効率60%以上、電圧定
在波比(VSWR)3以下等の性能を満たすことを目標
に各電極を設定した。電極はAg電極材料を用い同じプ
ロセスにより印刷形成した。また、回路基板上でのアン
テナ配置については、図7と同じように配置した。
The first and second embodiments of the present invention will be described below.
A characteristic comparison between the antenna of FIG. 9 and the antenna of FIG. 9 previously proposed by the inventors of the present application will be described below. Here, the first embodiment is shown in FIG.
3 is a case where a meandering bent portion is provided in the central portion shown in FIG. 3, and Example 2 is a case where meandering bent portions are provided on the tip side and the root side shown in FIG. 3, respectively. This is a case where the bending angle of the bent portion shown in FIG. Comparative Example 1 is a case where the meandering bent portion shown in FIG. 9 is not provided. First, the antenna substrate is made of Al 2 with a relative permittivity εr = 8.
10 mm length x 3 width using O 3 based ceramic material
mm × thickness 2 mm. By design, the center frequency of the propagation frequency is 2.45 GHz ± 10 MHz and the bandwidth is 90.
Each electrode was set with the goal of satisfying performances such as MHz, 3.5% of specific band, radiation efficiency of 60% or more, and voltage standing wave ratio (VSWR) of 3 or less. The electrodes were printed using the same process using Ag electrode material. Further, the antennas were arranged on the circuit board in the same manner as in FIG.

【0025】特性の評価項目としては、電圧定在波比
(VSWR)3の時の帯域幅と指向性および利得特性
(放射効率)を測定し評価した。VSWRの測定は、給
電端子にネットワークアナライザを接続し、端子側から
みたインピーダンスを測定することにした。また、利得
の測定に際しては、電波無響暗室内で送信用アンテナと
して用いた被試験アンテナからの放射電力を受信用基準
アンテナで受信し、この受信電力と送信用アンテナとし
て基準アンテナを用いた場合の受信電力に対する比とし
て評価した。指向性については、被試験アンテナ素子を
回転テーブルに搭載し、回転させながら放射電界の強度
を利得の測定と同じ手順で各回転角度における利得を測
定した。指向性および中心周波数への調整可否について
は○、△、×の相対評価とした。結果を表1に示す。
As the characteristic evaluation items, the bandwidth, directivity and gain characteristics (radiation efficiency) at the voltage standing wave ratio (VSWR) 3 were measured and evaluated. The VSWR was measured by connecting a network analyzer to the power supply terminal and measuring the impedance seen from the terminal side. When measuring the gain, when the radiated power from the antenna under test used as the transmitting antenna in the anechoic chamber is received by the receiving reference antenna and the receiving power and the reference antenna are used as the transmitting antennas. Was evaluated as the ratio to the received power. Regarding the directivity, the antenna element under test was mounted on a rotary table, and while rotating, the intensity of the radiated electric field was measured for the gain at each rotation angle by the same procedure as the measurement of the gain. Regarding the directivity and the possibility of adjusting to the center frequency, relative evaluations of ○, Δ, and × were made. The results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】指向特性については、実施例と比較例とも
にX、Y、Zの3軸の利得がほぼ円に近く、指向性のな
い無指向特性が得られた。また帯域幅については、比較
例1では目標値90MHz程度であったが、実施例では
いずれも大幅に目標値を上回る値を得ることができてい
る。放射効率についても、実施例は比較例より若干低下
するものの、いずれも目標値60%を満足できる特性が
得られている。ミアンダ状屈曲部を増加させてインダク
タンスを増加させる程、周波数は低下する。実施例1で
は、ミアンダ状屈曲部を放射電極長さの1/15に設け
た場合中心周波数が高めとなり目標値に設定し難く、ミ
アンダ状屈曲部を放射電極長さの3/5まで設けた場合
は中心周波数が目標周波数よりも低めとなってしまっ
た。これらのことは、ミアンダ状屈曲部を設けることは
望ましいことであるが、その長さについては適宜望まし
い範囲があることを示唆している。以上、いずれの実施
例についても周波数に対応する範囲にミアンダ状屈曲部
を設けることにより、中心周波数が調整可能となった。
また、実施例1、2,3とも放射効率は若干低下するも
のの帯域幅は格段に広がる。よって、本発明の放射電極
形状を用いることにより、所望の中心周波数で広帯域高
効率な小型アンテナを得ることができることが確認でき
た。
Regarding the directional characteristics, in both the embodiment and the comparative example, the gains of the three axes of X, Y and Z are almost circular, and non-directional characteristics having no directivity were obtained. Regarding the bandwidth, the target value was about 90 MHz in Comparative Example 1, but in each of the Examples, a value significantly exceeding the target value could be obtained. As for the radiation efficiency, although the examples are slightly lower than those of the comparative examples, the characteristics satisfying the target value of 60% are obtained. The frequency decreases as the inductance increases by increasing the meandering bent portion. In Example 1, when the meandering bent portion is provided at 1/15 of the length of the radiation electrode, the center frequency becomes high and it is difficult to set the target value, and the meandering bending portion is provided up to 3/5 of the length of the radiation electrode. In this case, the center frequency is lower than the target frequency. These facts suggest that it is desirable to provide the meandering bent portion, but the length thereof has an appropriate desirable range. As described above, in any of the examples, the center frequency can be adjusted by providing the meandering bent portion in the range corresponding to the frequency.
In addition, although the radiation efficiency is slightly lowered in Examples 1, 2 and 3, the bandwidth is significantly widened. Therefore, it was confirmed that by using the radiation electrode shape of the present invention, it is possible to obtain a small antenna with a wide band and high efficiency at a desired center frequency.

【0028】本発明の他の実施例としては、基体材料を
磁性体、樹脂体、またこれらの積層基板としても良い。
ミアンダ状放射電極の屈曲部の形状を不規則に曲がった
クランク状としても良い。また電極線路の幅やスリット
の幅寸法も適宜変更ができる。また、帯域幅を広げたり
周波数調整のために放射電極あるいは基体をトリミング
することが有効である。例えば、図1の放射電極の先端
部を平行部16に形成し、この部分を平行に削ると周波
数調整が容易で有効である。また、放射電極は、台形
状、階段状、曲線状等種々の形状が考えられるが、長手
方向に連続的および/または段階的に実質的に幅を狭め
ながら延びるものであれば良い。また、放射電極の一端
側は必ずしも連続的に接地電極を形成する必要はなく、
非連続とした容量結合となし最終的に接地できていれば
良い。また、接地電極は最小限その端面を覆い、接地面
に連接して接地できていれば良いが、基体端面からの電
界の放射を抑制する効果を得るためには基体端部におい
て端面とその廻りの四面を確実に覆うように形成してお
くと良い。
In another embodiment of the present invention, the base material may be a magnetic material, a resin material, or a laminated substrate of these materials.
The bent portion of the meandering radiation electrode may have a crank shape that is irregularly bent. Further, the width of the electrode line and the width dimension of the slit can be appropriately changed. Further, it is effective to trim the radiation electrode or the substrate for widening the bandwidth or adjusting the frequency. For example, if the tip portion of the radiation electrode in FIG. 1 is formed in the parallel portion 16 and this portion is ground in parallel, frequency adjustment is easy and effective. The radiation electrode may have various shapes such as a trapezoidal shape, a stepped shape, and a curved shape, but may be any shape that extends continuously and / or stepwise in the longitudinal direction while substantially narrowing the width. Further, it is not always necessary to continuously form the ground electrode on one end side of the radiation electrode,
There is no capacitive coupling that is discontinuous, and it suffices if it is finally grounded. The ground electrode should cover at least its end face and be connected to the ground face so as to be grounded. However, in order to obtain the effect of suppressing the emission of the electric field from the end face of the substrate, the end face and its surroundings at the end of the substrate. It is advisable to form so as to surely cover the four surfaces.

【0029】[0029]

【発明の効果】本発明によれば、小形低背化ができると
共に放射効率と帯域幅も一様に向上することができ、周
波数調整も比較的容易となり製造面でも有利で安価で、
且つより高性能な表面実装型アンテナが得られた。ま
た、このアンテナを回路基板上に実装する際は、占有面
積を小さくして、利得を向上できる。よって、これを携
帯電話や小型情報端末等の通信機器に搭載した場合、機
器の小形化に貢献すると共に、機器の姿勢に関係なく安
定した通信性能を持つことができる。
According to the present invention, the size and height can be reduced, the radiation efficiency and the bandwidth can be uniformly improved, the frequency can be adjusted relatively easily, and the manufacturing is advantageous and inexpensive.
Moreover, a higher performance surface mount antenna was obtained. Further, when this antenna is mounted on a circuit board, the occupied area can be reduced and the gain can be improved. Therefore, when this is mounted on a communication device such as a mobile phone or a small information terminal, it can contribute to downsizing of the device and have stable communication performance regardless of the posture of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すアンテナの斜視図
である。
FIG. 1 is a perspective view of an antenna showing a first embodiment of the present invention.

【図2】図1のアンテナの展開図である。2 is a development view of the antenna of FIG. 1. FIG.

【図3】本発明の第2の実施例を示すアンテナの斜視図
である。
FIG. 3 is a perspective view of an antenna showing a second embodiment of the present invention.

【図4】図3のアンテナの展開図である。4 is a development view of the antenna of FIG.

【図5】本発明の第3の実施例を示すアンテナの斜視図
である。
FIG. 5 is a perspective view of an antenna showing a third embodiment of the present invention.

【図6】本発明の第4の実施例を示すアンテナの斜視図
である。
FIG. 6 is a perspective view of an antenna showing a fourth embodiment of the present invention.

【図7】本発明のアンテナを回路基板に実装した状態を
示す実装図である。
FIG. 7 is a mounting view showing a state in which the antenna of the present invention is mounted on a circuit board.

【図8】本発明のアンテナを通信機器に搭載する概念図
である。
FIG. 8 is a conceptual diagram of mounting the antenna of the present invention on a communication device.

【図9】本発明の実施例に対する一比較例を示すアンテ
ナの斜視図である。
FIG. 9 is a perspective view of an antenna showing a comparative example with respect to the embodiment of the present invention.

【図10】従来の面実装型アンテナの一例を示す斜視図
である。
FIG. 10 is a perspective view showing an example of a conventional surface mount antenna.

【符号の説明】[Explanation of symbols]

1A、1B、1C、1D:表面実装型アンテナ 1、80、90:誘電体基体 2A、2B、2C、2D、20、21、22、23、2
4、26、81、91:放射電極 3、85:接地電極 4、83、93:給電電極 5:第2の接地電極 6、86、96:回路基板 11:スリット部 12:ミアンダ状放射電極の線路 13、14:屈曲部の丸面取り 15:放射電極の開放端 16:放射電極先端の平行部 20C,21C、24C、26C:放射電極の中央の領
域 22t、23t、24t:放射電極の幅の広い領域 22r、23r:放射電極の幅の狭い領域 30:接地電極の延長電極、40:給電電極の延長電極 50:基板への取付けを補強する固定電極 60:給電電源、61、88、98:給電線、62:接
地導体 63:接地導体の境界線、64:接地導体の延長部、6
5:回路基板の露出部 82:誘電体基体の端面、87、87’、97:回路基
板の地導体 92:誘電体基体の一側面、94:給電端子
1A, 1B, 1C, 1D: Surface mount antennas 1, 80, 90: Dielectric substrates 2A, 2B, 2C, 2D, 20, 21, 22, 23, 2
4, 26, 81, 91: Radiation electrodes 3, 85: Ground electrodes 4, 83, 93: Feed electrode 5: Second ground electrodes 6, 86, 96: Circuit board 11: Slit portion 12: Meander-shaped radiation electrode Lines 13 and 14: Round chamfer of bent portion 15: Open end of radiation electrode 16: Parallel portions 20C, 21C, 24C, 26C of radiation electrode tip: Central regions 22t, 23t, 24t of radiation electrode: width of radiation electrode Wide regions 22r, 23r: Narrow region of the radiation electrode 30: Extension electrode of the ground electrode, 40: Extension electrode of the feeding electrode 50: Fixed electrode 60 for reinforcing the attachment to the substrate 60: Feeding power source, 61, 88, 98: Feed line, 62: ground conductor 63: boundary line of ground conductor, 64: extension of ground conductor, 6
5: exposed portion 82 of circuit board: end surface of dielectric substrate, 87, 87 ', 97: ground conductor of circuit board 92: one side surface of dielectric substrate, 94: power supply terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01Q 9/42 H01Q 9/42 Fターム(参考) 5J046 AA04 AA07 AB13 PA04 PA07 5J047 AA04 AA07 AB13 FD01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01Q 9/42 H01Q 9/42 F term (reference) 5J046 AA04 AA07 AB13 PA04 PA07 5J047 AA04 AA07 AB13 FD01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 誘電体又は磁性体よりなる直方体状の基
体の少なくとも1つの表面に前記基体の一方端から長手
方向の他方端に向かって連続的および/または段階的に
実質的に幅を狭めながら延びる放射電極を形成し、該放
射電極の一方端は前記基体の端面に設けた接地電極と接
続あるいは容量結合し、前記放射電極に接触または非接
触で結合する給電電極を基体表面に形成した表面実装型
アンテナであって、前記放射電極の中央の領域をミアン
ダ状の屈曲部に形成したことを特徴とする表面実装型ア
ンテナ。
1. A width of a rectangular parallelepiped base made of a dielectric or magnetic material is reduced continuously and / or stepwise from one end of the base to the other end in the longitudinal direction on at least one surface of the base. A radiating electrode that extends while forming one end of the radiating electrode connected to or capacitively coupled to a ground electrode provided on the end face of the base, and forming a feeding electrode on the surface of the base that connects the radiative electrode in contact or non-contact. A surface-mounted antenna, wherein a central region of the radiation electrode is formed in a meandering bent portion.
【請求項2】 誘電体又は磁性体よりなる直方体状の基
体の少なくとも1つの表面に前記基体の一方端から長手
方向の他方端に向かって連続的および/または段階的に
実質的に幅を狭めながら延びる放射電極を形成し、該放
射電極の一方端は前記基体の端面に設けた接地電極と接
続あるいは容量結合し、前記放射電極に接触または非接
触で結合する給電電極を基体表面に形成した表面実装型
アンテナであって、前記放射電極の幅の狭い領域および
幅の広い領域をミアンダ状の屈曲部に形成したことを特
徴とする表面実装型アンテナ。
2. The width of at least one surface of a rectangular parallelepiped base made of a dielectric or magnetic material is reduced continuously and / or stepwise from one end of the base toward the other end in the longitudinal direction. A radiating electrode that extends while forming one end of the radiating electrode connected to or capacitively coupled to a ground electrode provided on the end face of the base, and forming a feeding electrode on the surface of the base that connects the radiative electrode in contact or non-contact. A surface-mounted antenna, wherein the radiation electrode has a narrow region and a wide region formed in a meandering bent portion.
【請求項3】 前記放射電極のうちミアンダ状の屈曲部
は、放射電極全長に対し、4/5以内の領域に設けたこ
とを特徴とする請求項1又は2記載の表面実装型アンテ
ナ。
3. The surface mount antenna according to claim 1, wherein the meandering bent portion of the radiation electrode is provided in a region within 4/5 of the entire length of the radiation electrode.
【請求項4】 前記放射電極の屈曲部の曲がり角を丸面
取りあるいは角面取りを施したことを特徴とする請求項
1乃至3に記載の表面実装型アンテナ。
4. The surface mount antenna according to claim 1, wherein the bent corner of the radiation electrode is rounded or chamfered.
【請求項5】 前記放射電極のミアンダ状の電極線路の
本数を2n+1としたことを特徴とする請求項1乃至4
の何れかに記載の表面実装型アンテナ。
5. The number of meander-shaped electrode lines of the radiation electrode is set to 2n + 1.
The surface mount antenna according to any one of 1.
【請求項6】 前記基体の他方端の端面に、前記放射電
極の先端とギャップを介して対向する第2の接地電極を
設けたことを特徴とする請求項1乃至5の何れかに記載
の表面実装型アンテナ。
6. The second ground electrode facing the tip of the radiation electrode with a gap provided on the end face of the other end of the base body according to any one of claims 1 to 5. Surface mount antenna.
【請求項7】 請求項1〜6の何れかに記載する表面実
装型アンテナを回路基板に搭載した通信機器であって、
前記放射電極が延びる基体長手方向を回路基板の地導体
端部の境界線と並行となるようになし、且つ前記放射電
極の先端側を地導体から遠ざけるように配置したことを
特徴とする通信機器。
7. A communication device in which the surface mount antenna according to claim 1 is mounted on a circuit board,
The communication is characterized in that the longitudinal direction of the base on which the radiation electrode extends is arranged in parallel with the boundary line of the ground conductor end of the circuit board, and the tip end side of the radiation electrode is arranged away from the ground conductor. machine.
JP2001226228A 2001-07-26 2001-07-26 Surface mounting antenna, and communication system loaded with the same Pending JP2003037423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226228A JP2003037423A (en) 2001-07-26 2001-07-26 Surface mounting antenna, and communication system loaded with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226228A JP2003037423A (en) 2001-07-26 2001-07-26 Surface mounting antenna, and communication system loaded with the same

Publications (1)

Publication Number Publication Date
JP2003037423A true JP2003037423A (en) 2003-02-07

Family

ID=19059081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226228A Pending JP2003037423A (en) 2001-07-26 2001-07-26 Surface mounting antenna, and communication system loaded with the same

Country Status (1)

Country Link
JP (1) JP2003037423A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005192183A (en) * 2003-07-21 2005-07-14 Lg Electronics Inc Antenna for uwb (ultra-wide band) communication
JP2008148356A (en) * 2008-02-04 2008-06-26 Murata Mfg Co Ltd Antenna apparatus
JP2008167172A (en) * 2006-12-28 2008-07-17 Tdk Corp Antenna device
US7564424B2 (en) 2005-05-10 2009-07-21 Sharp Kabushiki Kaisha Antenna having multiple radiating elements
JP2012212999A (en) * 2011-03-30 2012-11-01 Mitsubishi Materials Corp Antenna device
WO2018155600A1 (en) * 2017-02-23 2018-08-30 株式会社ヨコオ Antenna device
CN112106253A (en) * 2017-12-19 2020-12-18 Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 Configurable multi-band wire antenna apparatus and method of designing same
US11804653B2 (en) 2017-02-23 2023-10-31 Yokowo Co., Ltd. Antenna device having a capacitive loading element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005192183A (en) * 2003-07-21 2005-07-14 Lg Electronics Inc Antenna for uwb (ultra-wide band) communication
US7564424B2 (en) 2005-05-10 2009-07-21 Sharp Kabushiki Kaisha Antenna having multiple radiating elements
JP2008167172A (en) * 2006-12-28 2008-07-17 Tdk Corp Antenna device
JP2008148356A (en) * 2008-02-04 2008-06-26 Murata Mfg Co Ltd Antenna apparatus
JP4656158B2 (en) * 2008-02-04 2011-03-23 株式会社村田製作所 Antenna device
JP2012212999A (en) * 2011-03-30 2012-11-01 Mitsubishi Materials Corp Antenna device
WO2018155600A1 (en) * 2017-02-23 2018-08-30 株式会社ヨコオ Antenna device
US11152692B2 (en) 2017-02-23 2021-10-19 Yokowo Co., Ltd. Antenna device having a capacitive loading element
US11804653B2 (en) 2017-02-23 2023-10-31 Yokowo Co., Ltd. Antenna device having a capacitive loading element
CN112106253A (en) * 2017-12-19 2020-12-18 Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 Configurable multi-band wire antenna apparatus and method of designing same
CN112106253B (en) * 2017-12-19 2024-01-02 Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 Configurable multi-band linear antenna device and design method thereof

Similar Documents

Publication Publication Date Title
US6873291B2 (en) Surface-mounted antenna and communications apparatus comprising same
KR100798044B1 (en) Chip antenna element, antenna apparatus and communications apparatus comprising same
JP4423809B2 (en) Double resonance antenna
JP3114605B2 (en) Surface mount antenna and communication device using the same
US6680700B2 (en) Miniaturized microwave antenna
US7274338B2 (en) Meander line capacitively-loaded magnetic dipole antenna
JP2004088218A (en) Planar antenna
JP2002517925A (en) antenna
EP2204881A1 (en) Wide-band antenna device comprising a U-shaped conductor antenna
US7427965B2 (en) Multiple band capacitively-loaded loop antenna
JP3730112B2 (en) Antenna device
JP4263972B2 (en) Surface mount antenna, antenna device, and wireless communication device
JP2005020266A (en) Multiple frequency antenna system
JP4302676B2 (en) Parallel 2-wire antenna
JP4047283B2 (en) Microwave antenna
JP2005117490A (en) Compact antenna and multi-frequency shared antenna
JP2003037423A (en) Surface mounting antenna, and communication system loaded with the same
JP3952385B2 (en) Surface mount antenna and communication device equipped with the same
JP2002368528A (en) Surface mounting type antenna and communication equipment equipped with the same
JP2004186731A (en) Chip antenna and wireless communication apparatus using the same
JP2003037422A (en) Surface mounting antenna, and communication system loading the same
JP2001358515A (en) Chip type antenna element and antenna device as well as communication apparatus mounting the same
JP2002368517A (en) Surface-mounting type antenna and communication equipment mounted with the same
JP2003087050A (en) Slot-type bowtie antenna device, and constituting method therefor
JP2004120296A (en) Antenna and antenna device