JP2002110206A - Fuel cell power generating device - Google Patents

Fuel cell power generating device

Info

Publication number
JP2002110206A
JP2002110206A JP2000293523A JP2000293523A JP2002110206A JP 2002110206 A JP2002110206 A JP 2002110206A JP 2000293523 A JP2000293523 A JP 2000293523A JP 2000293523 A JP2000293523 A JP 2000293523A JP 2002110206 A JP2002110206 A JP 2002110206A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
pump
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000293523A
Other languages
Japanese (ja)
Other versions
JP4161527B2 (en
Inventor
Masahito Senda
仁人 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000293523A priority Critical patent/JP4161527B2/en
Publication of JP2002110206A publication Critical patent/JP2002110206A/en
Application granted granted Critical
Publication of JP4161527B2 publication Critical patent/JP4161527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell power generating device with a cell cooling water system allowing cell cooling water for a fuel cell main body to be stably supplied in small height of the device and capable of being manufactured at low cost. SOLUTION: This fuel cell power generating device is provided with a cooling water circulation and supply system having the fuel cell main body 1, a steam separator 2 for introducing two-phase flow from a cell cooling mechanism 1c and separating it into steam and cooling water, and a cooling water circulation pump 3 for circulating and supplying the cooling water stored in the steam separator 2 into the cell cooling mechanism 1c. An external cooling water branch circuit incorporating a heat exchanger 5B and a branch water pump 11 is provided between the steam separator 2 and the suction side of the cooling water circulation pump 3, and a part of the cooling water fed from the steam separator 2 is branched and cooled by external cooling water to keep the cooling water to be sucked into the cooling water circulation pump 3 at a low temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学反応を用
いて電気エネルギーを得る燃料電池発電装置に係わり、
特に燃料電池本体の冷却に用いられる電池冷却水系統の
構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator for obtaining electric energy using an electrochemical reaction,
In particular, the present invention relates to a configuration of a cell cooling water system used for cooling a fuel cell body.

【0002】[0002]

【従来の技術】図2は、従来の燃料電池発電装置の電池
冷却水系統の基本構成の一例を示すフロー図である(特
開2000―149969号参照)。図において、1は模式的に表
示した燃料電池本体であり、燃料極1a、空気極1b、
およびこれらを所定温度にほじするための電池冷却機構
1cよりなる。また、2は水蒸気分離器、3は冷却水循
環ポンプ、4は流量調節弁、5は外部冷却水により冷却
される熱交換器、7は外部より低温の補給水を供給する
ための補給水給水ポンプである。
2. Description of the Related Art FIG. 2 is a flowchart showing an example of a basic configuration of a battery cooling water system of a conventional fuel cell power generator (see Japanese Patent Application Laid-Open No. 2000-149969). In the figure, reference numeral 1 denotes a fuel cell body schematically shown, and includes a fuel electrode 1a, an air electrode 1b,
And a battery cooling mechanism 1c for adjusting these to a predetermined temperature. 2 is a steam separator, 3 is a cooling water circulation pump, 4 is a flow control valve, 5 is a heat exchanger cooled by external cooling water, and 7 is a makeup water feed pump for supplying cold makeup water from outside. It is.

【0003】この電池冷却水系統では、発電に伴って燃
料電池本体1で生じる発熱を受けて電池冷却機構1cよ
り排出される高温の気液二相流を、水蒸気分離器2に導
入して水蒸気と冷却水とに分離し、分離された冷却水を
冷却水循環ポンプ3の吸込み側へ送り、冷却水循環ポン
プ3より吐出した冷却水の一部を電池冷却水として燃料
電池本体1の電池冷却機構1cへ送り、残余の冷却水
は、流量調節弁4、外部冷却水により冷却する熱交換器
5を備えた循環回路を通流させて冷却し、水蒸気分離器
2より送られる高温の冷却水、および補給水給水ポンプ
8より供給される補給水と合流させて、再び冷却水循環
ポンプ3の吸込み側へ戻し、電池冷却水として電池冷却
機構1cへ供給している。このとき、温度計6の検知信
号によって流量調節弁4を制御することにより熱交換器
5に通流させる水量を調節し、電池冷却機構1cへの電
池冷却水の温度を調節している。また、水蒸気分離器2
において分離された水蒸気は燃料ガスの改質用水蒸気と
して取出されるので、取出される水蒸気を補って水位を
一定に保持するために、水位計2aの測定値が一定とな
るように補給水供給ラインに備えた補給水給水ポンプ7
をインバータ10により制御して、低温の補給水を連続
的に補給している。
In this battery cooling water system, a high-temperature gas-liquid two-phase flow discharged from the battery cooling mechanism 1c in response to heat generated in the fuel cell main body 1 due to power generation is introduced into the steam separator 2, And the cooling water is sent to the suction side of the cooling water circulation pump 3, and a part of the cooling water discharged from the cooling water circulation pump 3 is used as the cell cooling water as the cell cooling mechanism 1 c of the fuel cell body 1. And the remaining cooling water is cooled by flowing through a circulation circuit provided with a flow control valve 4 and a heat exchanger 5 for cooling with external cooling water, and high-temperature cooling water sent from the steam separator 2, and The water is combined with the makeup water supplied from the makeup water supply pump 8, returned to the suction side of the cooling water circulation pump 3 again, and supplied to the battery cooling mechanism 1 c as battery cooling water. At this time, the amount of water flowing through the heat exchanger 5 is adjusted by controlling the flow control valve 4 based on the detection signal of the thermometer 6, and the temperature of the battery cooling water to the battery cooling mechanism 1c is adjusted. In addition, steam separator 2
The steam separated in the step is taken out as the steam for reforming the fuel gas, so that the supplementary water is supplied so that the measured value of the water level meter 2a becomes constant in order to supplement the taken out steam and keep the water level constant. Supply water supply pump 7 for the line
Is controlled by the inverter 10 to continuously supply low-temperature make-up water.

【0004】図3は、従来の燃料電池発電装置の電池冷
却水系統の基本構成の他の一例を示すフロー図である
(特開2000―149969号参照)。この電池冷却水系統にお
いては、水蒸気分離器2と冷却水循環ポンプ3の吸込み
側との間に、外部循環ポンプ9と外部冷却水で冷却する
熱交換器5Aとを備えた外部冷却循環回路が配されてい
る。すなわち、この電池冷却水系統では、冷却水の一部
が外部循環ポンプ9によって外部冷却循環回路へと分岐
され、熱交換器5Aへと送られて外部冷却水で冷却され
たのち電池冷却水循環ポンプ3へと送られる。また、電
池冷却機構1cへと送られる電池冷却水の温度を検知す
る温度計6の検知信号に基づいてインバータ10により
外部循環ポンプ9の回転数を制御し、これによって外部
冷却循環回路に循環される水量を調整して電池冷却機構
1cへと送られる電池冷却水の温度を制御し、燃料電池
本体の温度が発電電流に対応した規定の温度になるよう
調整している。また、補給水給水ポンプ7と流量調節弁
8を組み込んだ補給水ラインが備えられており、水位計
2aの測定値に基づいて流量調節弁8を制御させること
により、水蒸気分離器2の水位を一定に保持するよう構
成されている。
FIG. 3 is a flowchart showing another example of the basic configuration of the battery cooling water system of the conventional fuel cell power generator (see Japanese Patent Application Laid-Open No. 2000-149969). In this battery cooling water system, an external cooling circulation circuit including an external circulation pump 9 and a heat exchanger 5A for cooling with external cooling water is provided between the steam separator 2 and the suction side of the cooling water circulation pump 3. Have been. That is, in this battery cooling water system, a part of the cooling water is branched by the external circulation pump 9 to the external cooling circulation circuit, sent to the heat exchanger 5A, cooled by the external cooling water, and then cooled by the battery cooling water circulation pump. Sent to 3. Also, the inverter 10 controls the rotation speed of the external circulation pump 9 based on the detection signal of the thermometer 6 which detects the temperature of the battery cooling water sent to the battery cooling mechanism 1c. The temperature of the battery cooling water sent to the battery cooling mechanism 1c is controlled by adjusting the amount of water to be supplied, and the temperature of the fuel cell body is adjusted to a specified temperature corresponding to the generated current. Further, a makeup water line incorporating a makeup water supply pump 7 and a flow control valve 8 is provided, and by controlling the flow control valve 8 based on the measured value of the water level meter 2a, the water level of the steam separator 2 is controlled. It is configured to keep it constant.

【0005】図2に示した電池冷却水系統においては循
環回路の熱交換器5で冷却された循環水を、また、図3
に示した電池冷却水系統においては外部冷却循環回路の
熱交換器5Aで冷却された循環水を、それぞれ冷却水循
環ポンプ3の吸込み側へ供給しているので、冷却水循環
ポンプ3に入る冷却水が低温に維持される。したがって
冷却水循環ポンプ3は、正味吸込み水頭(NPSH)、
すなわち水蒸気分離器2の水位と冷却水循環ポンプ3の
吸込み口の高低差を大きく採らずとも、キャビテイショ
ンを生じることなく安定に作動するので、本系統では装
置の所要高さが低く抑えられることとなり、屋内設置型
の燃料電池発電装置に用いる系統として効果的である。
In the battery cooling water system shown in FIG. 2, circulating water cooled by the heat exchanger 5 in the circulation circuit is used.
In the battery cooling water system shown in (1), the circulating water cooled by the heat exchanger 5A of the external cooling circulation circuit is supplied to the suction side of the cooling water circulation pump 3, respectively. Maintained at low temperatures. Therefore, the cooling water circulation pump 3 has a net suction head (NPSH),
That is, even if the height difference between the water level of the steam separator 2 and the suction port of the cooling water circulating pump 3 is not large, the operation can be performed stably without cavitation. This is effective as a system used for an indoor installation type fuel cell power generator.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ごとき従来の電池冷却水系統においても、なお以下のご
とき難点が残存する。すなわち、図2に示した電池冷却
水系統においては、循環回路の熱交換器5で冷却された
循環水を供給することによって冷却水循環ポンプ3に入
る冷却水を低温に維持する方式を採っているので、この
冷却水循環ポンプ3は、電池冷却機構1cへと送られる
電池冷却水の流量に、循環回路を流れる循環水の流量を
加えた量の水を通流させるに足るポンプ容量を持つ必要
がある。このため、大型のポンプを組み込む必要があ
り、コストが高くなる。さらに、また、循環回路を流れ
る循環水の流量の調節に流量調節弁4を用いているが、
この流量調節弁は高価であるため、さらにコストが上昇
するという難点がある。
However, the conventional battery cooling water system as described above still has the following difficulties. That is, the battery cooling water system shown in FIG. 2 adopts a method of maintaining the cooling water entering the cooling water circulation pump 3 at a low temperature by supplying the circulating water cooled by the heat exchanger 5 of the circulation circuit. Therefore, the cooling water circulation pump 3 needs to have a pump capacity enough to allow the flow of water in an amount obtained by adding the flow rate of the circulating water flowing in the circulation circuit to the flow rate of the battery cooling water sent to the battery cooling mechanism 1c. is there. For this reason, it is necessary to incorporate a large pump, which increases the cost. Furthermore, the flow control valve 4 is used to control the flow rate of the circulating water flowing through the circulation circuit.
Since the flow control valve is expensive, there is a problem that the cost is further increased.

【0007】これに対して、図3に示した電池冷却水系
統においては、冷却水循環ポンプ3は電池冷却機構1c
へと送られる電池冷却水の流量を通流させるに足るポン
プ容量を持てばよく、また、図2のごとき高価な流量調
節弁は用いていないので、これらの点でのコストの上昇
は抑えられるが、外部冷却循環回路に流れる循環水を駆
動する外部循環ポンプ9には、電池冷却水(通常、145
℃)と同等の温度の水が流入するので、キャビテーショ
ンを生じる可能性があり、低温仕様のポンプは使用でき
ず、コストが高くなるという問題点がある。
On the other hand, in the battery cooling water system shown in FIG. 3, the cooling water circulating pump 3 has a battery cooling mechanism 1c.
It is only necessary to have a pump capacity sufficient to allow the flow rate of the battery cooling water to be sent to the battery, and an expensive flow control valve as shown in FIG. 2 is not used, so that an increase in cost at these points can be suppressed. However, battery cooling water (usually 145
C), there is a possibility that cavitation may occur, a low-temperature pump cannot be used, and the cost increases.

【0008】本発明はこのような技術の現状を考慮して
なされたもので、本発明の目的は、装置の高さが低くと
も燃料電池本体への電池冷却水が安定して供給される、
低コストの電池冷却水系統を備えた燃料電池発電装置を
提供することにある。
The present invention has been made in view of such a state of the art, and an object of the present invention is to stably supply the cell cooling water to the fuel cell body even if the height of the apparatus is low.
It is an object of the present invention to provide a fuel cell power generator having a low-cost battery cooling water system.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、電池冷却機構を組み込んだ燃
料電池本体と、この電池冷却機構から排出される二相流
を導入して水蒸気と冷却水とに分離する水蒸気分離器
と、この水蒸気分離器に貯えられた冷却水を前記電池冷
却機構へ循環供給する、冷却水循環ポンプを組み込んだ
冷却水循環供給系を備える燃料電池発電装置において、 (1)上記冷却水循環供給系の、水蒸気分離器と冷却水
循環ポンプの吸込み側との間に、水蒸気分離器より送ら
れる冷却水の一部を分岐させ、外部冷却水で冷却する熱
交換器で冷却させた後、分岐水ポンプで合流させる外部
冷却分岐回路を備えることとする。
In order to achieve the above object, according to the present invention, there is provided a fuel cell body incorporating a cell cooling mechanism, and a two-phase flow discharged from the cell cooling mechanism to introduce steam. And a steam separator that separates the coolant into cooling water, and a fuel cell power generator including a cooling water circulation supply system incorporating a cooling water circulation pump that circulates and supplies the cooling water stored in the steam separator to the battery cooling mechanism. (1) A heat exchanger that branches a part of the cooling water sent from the steam separator between the steam separator and the suction side of the cooling water circulation pump in the cooling water circulation supply system, and cools the cooling water with external cooling water. After cooling, an external cooling branch circuit that is joined by a branch water pump is provided.

【0010】(2)さらに、上記(1)において、上記
冷却水循環供給系に、電池冷却機構へ供給される電池冷
却水の温度を検知する温度計を備え、かつ、電池冷却水
の温度が規定値となるように、上記の温度計の検知信号
によって分岐水ポンプの流量を制御することとする。 (3)さらに、上記(1)または(2)において、上記
冷却水循環供給系の外部冷却分岐回路と冷却水循環ポン
プの吸込み側との間に、外部より低温の補給水を導入す
る導入口を備えることとする。
(2) Further, in the above (1), the cooling water circulation supply system is provided with a thermometer for detecting the temperature of the battery cooling water supplied to the battery cooling mechanism, and the temperature of the battery cooling water is regulated. The flow rate of the branch water pump is controlled by the detection signal of the thermometer so that the value becomes a value. (3) Further, in the above (1) or (2), between the external cooling branch circuit of the cooling water circulation supply system and the suction side of the cooling water circulation pump, there is provided an introduction port for introducing makeup water having a lower temperature than the outside. It shall be.

【0011】上記(1)のごとくとすれば、水蒸気分離
器より送られる冷却水の一部が、外部冷却分岐回路の熱
交換器で冷却されたのち、残部の冷却水に合流して冷却
水循環ポンプの吸込み側へと送られるので、冷却水循環
ポンプの吸込み側へ供給される水は低温に維持される。
したがって、冷却水循環ポンプは、正味水頭(NPS
H)、すなわち、水蒸気分離器の水位と冷却水循環ポン
プの吸込み口の高低差を大きく採らずとも、キャビテイ
ションを生じることなく安定に作動する。したがって、
装置の高さを低く抑えることができる。さらに、本構成
では、冷却水循環ポンプには所定の電池冷却水のみを流
せばよいので、冷却水循環ポンプは小容量に抑えること
が可能である。また、図2の従来例に見られたごとき高
価な流量調節弁を組み込む必要がなく、さらに分岐水ポ
ンプに低価格の低温仕様のポンプを採用することで図3
の構成よりも安価に構成できる。
According to the above (1), part of the cooling water sent from the steam separator is cooled by the heat exchanger of the external cooling branch circuit, and then merges with the remaining cooling water to circulate the cooling water. Since the water is sent to the suction side of the pump, the water supplied to the suction side of the cooling water circulation pump is maintained at a low temperature.
Therefore, the cooling water circulation pump has a net head (NPS).
H), that is, it operates stably without generating cavitation even if the difference between the water level of the steam separator and the suction port of the cooling water circulation pump is not large. Therefore,
The height of the device can be kept low. Furthermore, in this configuration, only the predetermined battery cooling water needs to flow through the cooling water circulation pump, so that the cooling water circulation pump can be suppressed to a small capacity. Further, it is not necessary to incorporate an expensive flow control valve as in the conventional example shown in FIG. 2, and by adopting a low-priced low-temperature pump as the branch water pump, FIG.
Can be configured at a lower cost than the configuration of (1).

【0012】また、上記(2)のごとくとすれば、規定
温度に保持した電池冷却水が電池冷却機構へ安定して供
給され、燃料電池本体が規定の運転温度に保持されるこ
ととなる。また、上記(3)のごとくとすれば、改質用
水蒸気のごとく系外へ冷却水の一部が取り出される場合
があっても、不足分を効果的に補うことが可能となり、
特に、低温の補給水を導入することとすれば、冷却水循
環ポンプの吸込み側へ入る冷却水はより安定して低温に
維持されるので、冷却水循環ポンプは一層安定に作動す
ることとなる。
According to the above (2), the battery cooling water maintained at the specified temperature is stably supplied to the battery cooling mechanism, and the fuel cell body is maintained at the specified operating temperature. Further, according to the above (3), even if a part of the cooling water is taken out of the system like the reforming steam, the shortage can be effectively compensated,
In particular, if low-temperature make-up water is introduced, the cooling water flowing into the suction side of the cooling water circulation pump is more stably maintained at a low temperature, so that the cooling water circulation pump operates more stably.

【0013】[0013]

【発明の実施の形態】以下、本発明を実施例を用いて説
明する。図1は、本発明の燃料電池発電装置の実施例の
電池冷却水系統の基本構成を示すフロー図である。本実
施例の電池冷却水系統の第1の特徴は、水蒸気分離器2
の冷却水出口から冷却水循環ポンプ3の吸込み側へと冷
却水を送るラインに分岐して、外部冷却水で冷却される
熱交換器5Bと分岐水ポンプ11と分岐水遮断用電磁弁
12を備えた外部冷却分岐回路が配されている点にあ
る。また、第2の特徴は、電池冷却水の温度を検知する
温度計6を備え、この温度計6の検知信号をVVVFイ
ンバータ10Aへと送り、このVVVFインバータ10
Aによって分岐水ポンプ11の回転数を制御して外部冷
却分岐回路に分岐する冷却水の流量を調整し、電池冷却
水の温度を規定値に保持するよう構成している点にあ
る。また、本実施例の電池冷却水系統においても、外部
冷却分岐回路の合流点と冷却水循環ポンプ3の吸込み側
との間に、水蒸気分離器2より取出される水蒸気相当分
の冷却水補給用として、補給水ポンプ7を組み込んだ補
給水ラインが備えられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. FIG. 1 is a flowchart showing a basic configuration of a battery cooling water system of an embodiment of the fuel cell power generator according to the present invention. The first feature of the battery cooling water system of this embodiment is that the steam separator 2
Is branched into a line for sending cooling water from the cooling water outlet to the suction side of the cooling water circulation pump 3, and is provided with a heat exchanger 5B cooled by external cooling water, a branch water pump 11, and a branch water shutoff solenoid valve 12. In that an external cooling branch circuit is provided. The second feature is that a thermometer 6 for detecting the temperature of the battery cooling water is provided, and a detection signal of the thermometer 6 is sent to the VVVF inverter 10A, and the VVVF inverter 10
A is to control the number of revolutions of the branch water pump 11 by controlling the flow rate of the cooling water branched to the external cooling branch circuit, thereby maintaining the temperature of the battery cooling water at a specified value. Further, also in the battery cooling water system of the present embodiment, between the junction of the external cooling branch circuit and the suction side of the cooling water circulation pump 3, it is used for replenishing cooling water equivalent to the steam taken out from the steam separator 2. , A makeup water line incorporating a makeup water pump 7 is provided.

【0014】本電池冷却水系統において、水蒸気分離器
2の冷却水出口から供給される冷却水の温度をT2 、熱
交換器5Bを通過後の分岐水の温度をT5 、合流して冷
却水循環ポンプ3により電池冷却機構1cへと送られる
電池冷却水の温度をTとし、さらに、水蒸気分離器2か
ら供給される冷却水のうち、外部冷却分岐回路に流れる
冷却水の割合をX、分岐しないで冷却水循環ポンプ3へ
直接送られる冷却水の割合を1−Xとし、簡単のために
水の比熱を温度によらず一定とすれば、
In the present battery cooling water system, the temperature of the cooling water supplied from the cooling water outlet of the steam separator 2 is T 2 , and the temperature of the branch water after passing through the heat exchanger 5B is T 5 , and the cooling water is joined. The temperature of the battery cooling water sent to the battery cooling mechanism 1c by the water circulation pump 3 is represented by T, and the proportion of the cooling water flowing through the external cooling branch circuit among the cooling water supplied from the steam separator 2 is represented by X. If the ratio of the cooling water sent directly to the cooling water circulating pump 3 is set to 1-X and the specific heat of the water is kept constant regardless of the temperature for simplicity,

【0015】[0015]

【数1】(1−X)・T2 +X・T5 =1・T したがって、 X=(T2 −T)/(T2 −T5 ) (1) となる。代表的な値として、T2 = 155℃、T5 = 85
℃、T= 145℃を選定すれば、外部冷却分岐回路に流れ
る冷却水の割合Xは0.143 、したがって分岐水ポンプ1
1には、T5 = 85 ℃に冷却された分岐水が全体の約 1
4 %流れることとなる。
(1−X) · T 2 + X · T 5 = 1 · T Therefore, X = (T 2 −T) / (T 2 −T 5 ) (1) As typical values, T 2 = 155 ° C., T 5 = 85
° C, T = 145 ° C, the ratio X of the cooling water flowing to the external cooling branch circuit is 0.143, and therefore the branch water pump 1
1, the branched water cooled to T 5 = 85 ° C.
4% will flow.

【0016】これに対し、図3に示した従来例の電池冷
却水系統の外部循環ポンプ9に流れる循環水では、外部
冷却循環回路に流れる循環水の割合をY、また、上記と
同様に、水蒸気分離器2の冷却水出口から供給される冷
却水の温度をT2 、熱交換器5Aを通過後の循環水の温
度をT5 、合流して冷却水循環ポンプ3により電池冷却
機構1cへと送られる電池冷却水の温度をTとすれば、
On the other hand, in the circulating water flowing to the external circulating pump 9 of the conventional battery cooling water system shown in FIG. 3, the ratio of the circulating water flowing to the external cooling circulating circuit is represented by Y. The temperature of the cooling water supplied from the cooling water outlet of the steam separator 2 is T 2 , the temperature of the circulating water after passing through the heat exchanger 5A is T 5 , and the cooling water circulation pump 3 joins the cooling water to the battery cooling mechanism 1c. If the temperature of the battery cooling water sent is T,

【0017】[0017]

【数2】1・T2 +Y・T5 =(1+Y)・T したがって、 Y=(T2 −T)/(T−T5 ) (2) となり、T2 = 155℃、T5 = 85 ℃、T= 145℃を選
定すれば、Y= 0.167となる。すなわち、図3に示した
従来例の電池冷却水系統の外部循環ポンプ9には、T=
145℃の循環水が全体の約 17 %流れることとなる。
## EQU2 ## 1 · T 2 + Y · T 5 = (1 + Y) · T Therefore, Y = (T 2 −T) / (T−T 5 ) (2), T 2 = 155 ° C., T 5 = 85 If you choose ℃ and T = 145 ℃, then Y = 0.167. That is, the external circulation pump 9 of the conventional battery cooling water system shown in FIG.
Approximately 17% of the circulating water at 145 ° C flows.

【0018】以上より、図3の外部循環ポンプ9の場合
に比較して、本実施例の分岐水ポンプ11に流れる分岐
水は、温度も低く、所要流量も少量となるので、分岐水
ポンプ11に低温仕様の小容量ポンプを適用でき、低コ
ストで、安定して運転できるシステムが構成される。な
お、図1の電池冷却水系統において、燃料電池本体1で
の発熱量、したがって電池冷却機構1cで電池冷却水へ
伝熱される熱量が、水蒸気分離器2より取出される水蒸
気の熱量と拮抗し、補給水ラインからの低温の補給水に
より電池冷却水の温度が所定の温度に維持される場合等
においては、外部冷却分岐回路に組み込まれた分岐水ポ
ンプ11を停止し、分岐水遮断用電磁弁12を閉止して
運転される。
As described above, the temperature of the branch water flowing through the branch water pump 11 of the present embodiment is lower than that of the case of the external circulation pump 9 of FIG. A low-volume, small-capacity pump can be applied to the system, and a low-cost, stable system can be constructed. In the battery cooling water system shown in FIG. 1, the calorific value of the fuel cell main body 1, that is, the amount of heat transferred to the battery cooling water by the battery cooling mechanism 1c, antagonizes the calorific value of the steam extracted from the steam separator 2. For example, when the temperature of the battery cooling water is maintained at a predetermined temperature by low-temperature make-up water from the make-up water line, the branch water pump 11 incorporated in the external cooling branch circuit is stopped, and the branch water cutoff electromagnetic The operation is performed with the valve 12 closed.

【0019】[0019]

【発明の効果】上述のように、本発明によれば、電池冷
却機構を組み込んだ燃料電池本体と、この電池冷却機構
から排出される二相流を導入して水蒸気と冷却水とに分
離する水蒸気分離器と、この水蒸気分離器に貯えられた
冷却水を前記電池冷却機構へ循環供給する、冷却水循環
ポンプを組み込んだ冷却水循環供給系を備える燃料電池
発電装置を、請求項1、さらには、請求項2、あるいは
3のごとく構成することとしたので、装置の高さが低く
とも燃料電池本体への電池冷却水の安定供給が確保さ
れ、かつ、低コストで構成できる電池冷却水系統を備え
た燃料電池発電装置を得ることができることとなった。
As described above, according to the present invention, a fuel cell main body incorporating a cell cooling mechanism and a two-phase flow discharged from the cell cooling mechanism are introduced to separate them into steam and cooling water. A fuel cell power generator comprising: a steam separator; and a cooling water circulation supply system incorporating a cooling water circulation pump, which circulates and supplies cooling water stored in the steam separator to the battery cooling mechanism. Since it is configured as in claim 2 or 3, a stable supply of battery cooling water to the fuel cell body is ensured even if the height of the device is low, and a battery cooling water system that can be configured at low cost is provided. It is possible to obtain a fuel cell power generation device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池発電装置の実施例の電池冷却
水系統の基本構成を示すフロー図
FIG. 1 is a flowchart showing a basic configuration of a battery cooling water system of an embodiment of a fuel cell power generator according to the present invention.

【図2】従来の燃料電池発電装置の電池冷却水系統の基
本構成の一例を示すフロー図
FIG. 2 is a flowchart showing an example of a basic configuration of a battery cooling water system of a conventional fuel cell power generator.

【図3】従来の燃料電池発電装置の電池冷却水系統の基
本構成の他の一例を示すフロー図
FIG. 3 is a flowchart showing another example of the basic configuration of the battery cooling water system of the conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 燃料電池本体 1c 電池冷却機構 2 水蒸気分離器 2a 水位計 3 冷却水循環ポンプ 5B 熱交換器 6 温度計 7 補給水ポンプ 10A VVVFインバータ 11 分岐水ポンプ 12 分岐水遮断用電磁弁 DESCRIPTION OF SYMBOLS 1 Fuel cell main body 1c Battery cooling mechanism 2 Steam separator 2a Water level gauge 3 Cooling water circulation pump 5B Heat exchanger 6 Thermometer 7 Makeup water pump 10A VVVF inverter 11 Branch water pump 12 Branch water cutoff solenoid valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電池冷却機構を組み込んだ燃料電池本体
と、 該電池冷却機構から排出される二相流を導入して水蒸気
と冷却水とに分離する水蒸気分離器と、 該水蒸気分離器に貯えられた冷却水を前記電池冷却機構
へ循環供給する、冷却水循環ポンプを組み込んだ冷却水
循環供給系を備える燃料電池発電装置において、 前記冷却水循環供給系が、水蒸気分離器と冷却水循環ポ
ンプの吸込み側との間に、水蒸気分離器より送られる冷
却水の一部を分岐させ、外部冷却水で冷却する熱交換器
で冷却した後、分岐水ポンプで合流させる外部冷却分岐
回路を備えてなることを特徴とする燃料電池発電装置。
1. A fuel cell body incorporating a cell cooling mechanism, a steam separator for introducing a two-phase flow discharged from the cell cooling mechanism to separate into steam and cooling water, and storing the steam in the steam separator. In the fuel cell power generator including a cooling water circulation supply system incorporating a cooling water circulation pump, the cooling water circulation supply system includes a steam separator and a suction side of the cooling water circulation pump. And an external cooling branch circuit that branches a part of the cooling water sent from the steam separator, cools it with a heat exchanger that cools with external cooling water, and then joins it with a branch water pump. Fuel cell power generator.
【請求項2】請求項1に記載の燃料電池発電装置におい
て、 前記冷却水循環供給系が、電池冷却機構へ供給される電
池冷却水の温度を検知する温度計を備え、かつ、外部冷
却分岐回路に組み込まれた分岐水ポンプが、電池冷却水
の温度が規定値となるよう該温度計の検知信号によって
流量を制御されるポンプであることを特徴とする燃料電
池発電装置。
2. The fuel cell power generator according to claim 1, wherein the cooling water circulation supply system includes a thermometer for detecting a temperature of battery cooling water supplied to a battery cooling mechanism, and an external cooling branch circuit. Wherein the branch water pump incorporated in the fuel cell generator is a pump whose flow rate is controlled by a detection signal of the thermometer so that the temperature of the battery cooling water becomes a specified value.
【請求項3】請求項1または2に記載の燃料電池発電装
置において、 前記冷却水循環供給系が、外部冷却分岐回路と冷却水循
環ポンプの吸込み側との間に、外部より低温の補給水を
導入する導入口を備えてなることを特徴とする燃料電池
発電装置。
3. The fuel cell power generator according to claim 1, wherein the cooling water circulating supply system introduces low-temperature make-up water from the outside between the external cooling branch circuit and the suction side of the cooling water circulating pump. A fuel cell power generator, comprising:
JP2000293523A 2000-09-27 2000-09-27 Fuel cell power generator Expired - Lifetime JP4161527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293523A JP4161527B2 (en) 2000-09-27 2000-09-27 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293523A JP4161527B2 (en) 2000-09-27 2000-09-27 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2002110206A true JP2002110206A (en) 2002-04-12
JP4161527B2 JP4161527B2 (en) 2008-10-08

Family

ID=18776296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293523A Expired - Lifetime JP4161527B2 (en) 2000-09-27 2000-09-27 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4161527B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156018A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Device of cooling fuel cell
CN114430054A (en) * 2020-10-29 2022-05-03 郑州宇通客车股份有限公司 Fuel cell anode water management system and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156018A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Device of cooling fuel cell
JP4602056B2 (en) * 2004-11-26 2010-12-22 本田技研工業株式会社 Fuel cell cooling system
CN114430054A (en) * 2020-10-29 2022-05-03 郑州宇通客车股份有限公司 Fuel cell anode water management system and control method thereof
CN114430054B (en) * 2020-10-29 2023-09-01 宇通客车股份有限公司 Anode water management system of fuel cell and control method thereof

Also Published As

Publication number Publication date
JP4161527B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
US7662496B2 (en) Fuel cell cooling system and method for controlling circulation of cooling liquid in fuel cell
US8119300B2 (en) Air conditioning control system
US20030203258A1 (en) Fuel cell system with liquid cooling device
EP1465281A2 (en) Fuel cell system with liquid cooling device
JP2003151601A (en) Fuel cell system and its stop method
JP2007280827A (en) Temperature control system for fuel cell
JP2007250374A (en) Fuel cell system
JP2018163874A (en) Fuel battery system
JP2004014484A (en) Cooling water circulation/feed system for fuel cell
US8263283B2 (en) Fuel cell system and control method thereof
JP5570508B2 (en) Fuel cell system
JP3966839B2 (en) Waste heat utilization heat source device
JP2002110206A (en) Fuel cell power generating device
US10020521B2 (en) Fuel cell cogeneration system, method of starting operation of the fuel cell cogeneration system, and method of operating the fuel cell cogeneration system
JPH044572A (en) Vapor generator of fuel cell power generation system
JP2002319425A (en) Fuel cell condition detecting device
JP2006019124A (en) Fuel cell system
JP2002025590A (en) Fuel cell power generating device and its control method
EP1451886A2 (en) Fuel cell system
JP2006019123A (en) Fuel cell system
JP4098486B2 (en) Fuel cell system
JP4333931B2 (en) Fuel cell power generator
JP2004152592A (en) Fuel cell system
WO2010007759A1 (en) Fuel cell system
US20180069250A1 (en) Fuel cell system and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4161527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250