JP4333931B2 - Fuel cell power generator - Google Patents

Fuel cell power generator Download PDF

Info

Publication number
JP4333931B2
JP4333931B2 JP14301299A JP14301299A JP4333931B2 JP 4333931 B2 JP4333931 B2 JP 4333931B2 JP 14301299 A JP14301299 A JP 14301299A JP 14301299 A JP14301299 A JP 14301299A JP 4333931 B2 JP4333931 B2 JP 4333931B2
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
water
battery
battery cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14301299A
Other languages
Japanese (ja)
Other versions
JP2000149969A (en
Inventor
仁人 千田
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP14301299A priority Critical patent/JP4333931B2/en
Publication of JP2000149969A publication Critical patent/JP2000149969A/en
Application granted granted Critical
Publication of JP4333931B2 publication Critical patent/JP4333931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学反応を用いて電気エネルギーを得る燃料電池発電装置に係わり、特に燃料電池本体の冷却に用いられる電池冷却系の構成に関する。
【0002】
【従来の技術】
図2は、従来の燃料電池発電装置の電池冷却水系統の基本構成を示すフロー図である。図において、1は模式的に表示した燃料電池本体であり、燃料極1a、空気極1b、およびこれらを所定温度に保持するための電池冷却機構1cよりなる。また、2は水蒸気分離器、3は冷却水循環ポンプ、4は流量調節弁、5は外部冷却水により冷却される熱交換器、7はオリフィス、8は外部より低温の補給水を供給するための補給水給水ポンプである。
【0003】
本電池冷却水系統では、発電に伴って燃料電池本体1で生じる発熱を受けて電池冷却機構1cより排出される高温の気液二相流を、水蒸気分離器2に導入して水蒸気と冷却水とに分離し、分離された冷却水を冷却水循環ポンプ3の吸込み側へ送り、吐出した冷却水を熱交換器5に通流させて冷却し、再び電池冷却水として電池冷却機構1cへ供給している。このとき、温度計6の検知信号によって流量調節弁4を制御することにより熱交換器5に通流させる水量を調節し、電池冷却機構1cへの電池供給水の温度を調整している。また、水蒸気分離器2において分離された水蒸気は燃料ガスの改質用水蒸気として取出されるので、取出される水蒸気量を補って水位を一定に保持するために、補給水給水ポンプ8と流量調節弁9とを備えた補給水供給ラインより、低温の補給水を流量制御して連続的に補給している。
【0004】
【発明が解決しようとする課題】
上記の構成においては、冷却水循環ポンプ3の吸込み側へ水蒸気分離器2で分離された高温の冷却水が導入されるので、冷却水循環ポンプ3でキャビテイションが生じるのを防止するためには、低温の水を同時に導入して吸込む水の温度を常時低温度に保持するか、あるいは、正味吸込み水頭(NPSH)、すなわち水蒸気分離器2の水位と冷却水循環ポンプ3の吸込み口の高低差を十分にとることが必要となる。これに対し、上記の構成では、補給水供給ラインより低温の補給水を供給しているが、補給水は制御上一時的に断となる場合があり、この場合にはキャビテーションが生じてしまうため、水蒸気分離器2を相対的に高い位置に配置して所定のNPSHが得られるよう構成している。しかしながら、このように構成すると燃料電池発電装置の高さが高くなり、装置高さを屋内設置型の燃料電池発電装置で要求されている装置高さ、例えば2.5m以下に抑えることが極めて困難となり、市場性のあるコンパクトな燃料電池発電装置を製作する際の問題点となっている。 また、上記の構成では、冷却水循環ポンプ3より吐出された水を流量調節弁4、熱交換器5を通流させて電池冷却機構1cへ供給しているので圧力損失が大きく、冷却水循環ポンプ3の吐出圧を高くして使用しなければならないという難点があった。
【0005】
この発明の目的は、上記のごとき従来技術の問題点を解消し、燃料電池本体へ冷却水が安定して循環供給される冷却水循環供給系を備え、かつ、装置高さが低く、特に屋内設置型として効果的な燃料電池発電装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、電池冷却機構を組み込んだ燃料電池本体と、該電池冷却機構から排出される二相流を導入して水蒸気と冷却水とに分離する水蒸気分離器と、該水蒸気分離器に貯えられた冷却水を前記電池冷却機構へ循環供給する、冷却水循環ポンプを組み込んだ冷却水循環供給系と、を備える燃料電池発電装置において、 前記冷却水循環供給系が、電池冷却機構へ供給される電池冷却水の温度を検知する温度計と、 前記冷却水循環ポンプより吐出される電池冷却水の一部を分岐させて、外部冷却水が通流する熱交換器で冷却したのち循環ポンプの吸込み側へと循環させる循環回路と前記循環回路に組み込まれ、前記循環回路を通流する冷却水の流量を制御する流量調節弁とを有し、前記温度計の検知信号に基づいて前記電池冷却機構へ供給される電池冷却水の温度が規定値となるよう前記流量調節弁を制御することを特徴とする燃料電池発電装置とすることとした。
【0008】
さらに、前記冷却水循環供給系の前記水蒸気分離器と前記循環回路との間に、外部より低温の補給水を導入する導入口を設けることとした。
【0011】
上記のごとくとすれば、冷却水循環ポンプの吸込み側に、循環回路に組み込まれた熱交換器により冷却された冷却水が循環供給されるので、冷却水循環ポンプの吸込み側に入る冷却水は低温に維持される。したがって、冷却水循環ポンプは、正味吸込み水頭(NPSH)、すなわち水蒸気分離器の水位と冷却水循環ポンプの吸込み口の高低差を大きく採らずとも、キャビテイションを生じることなく安定に作動する。したがって、本構成とすれば装置高さを低く抑えることができる。
【0012】
また、規定温度に保持した電池冷却水が電池冷却機構へ安定して供給され、燃料電池本体が規定の運転温度に保持されることとなる。
【0015】
さらに、また、外部より低温の補給水を導入する構成を上記のごとくすれば、例えば改質用水蒸気のごとく系外に冷却水の一部が取出される場合にも、不足分を効果的に補うことが可能となり、さらに低温の補給水を導入することとすれば、冷却水循環ポンプの吸込み側に入る冷却水はより低温に維持されるので、冷却水循環ポンプを一層安定に作動させることができる。
【0016】
【発明の実施の形態】
<実施例1>
図1は、本発明による燃料電池発電装置の実施例1の電池冷却水系統の基本構成を示すフロー図である。本実施例の電池冷却水系統の特徴は、冷却水循環ポンプ3の吐出側と吸込み側との間に、流量調節弁4と外部冷却水で冷却する熱交換器5とを備えた循環回路が配され、冷却水がこの循環回路を循環して流れるよう構成されている点にある。すなわち、電池冷却水系統では、本冷却水循環ポンプ3より吐出した冷却水の一部を電池冷却水として燃料電池本体1の電池冷却機構1cへ送り、残余の冷却水は循環回路を通流させて冷却水循環ポンプ3の吸込み側へ戻し、水蒸気分離器2より送られる高温の冷却水、および補給水給水ポンプ8より供給される補給水と合流させて冷却水循環ポンプ3の吸込み側へ送るよう構成されている。このとき、電池冷却機構1cへ送られる電池冷却水の温度を検知する温度計6の検知信号により流量調節弁4の開度を制御し、これによって電池冷却水の流量を調整することにより、燃料電池本体の温度が発電電流に対応した規定の温度となるよう調整される。
【0017】
上記のごとく、本構成では、水蒸気分離器2より送られる高温の冷却水と補給水に加えて、循環回路の熱交換器5で低温に冷却された循環水が冷却水循環ポンプ3の吸込み側へ送られるので、吸込まれる冷却水の温度は常時低温に保持されることとなる。したがって、冷却水循環ポンプ3は、従来例のように正味吸込み水頭(NPSH)を大きく採らなくとも、また、一時的に補給水が断となっても、キャビテイションを生じることなく安定して運転できることとなり、本構成の電池冷却水系統を用いれば、装置高さが低く、屋内設置が可能な燃料電池発電装置を構成することができる。
【0018】
また、本構成では、冷却水循環ポンプ3の吸込み側の冷却水の温度が常時低温に保持されるので、軸受けに加わる負担が軽減し、長寿命化が可能となる。また、従来例の構成と異なり、熱交換器5と流量調節弁4が冷却水循環ポンプ3と並列に配されているので、系の圧力損失が低減され、冷却水循環ポンプ3の吐出圧も低くてよく、より安定に作動するシステムが得られることとなる。
【0019】
なお、図1に示した構成においては、水蒸気分離器2より改質用水蒸気として取出される水量を補うために、水位計2aの検知信号をVVVFインバータ10へと送り、このVVVFインバータ10により補給水給水ポンプ8の回転数を制御して外部から取り込む補給水の流量を調整し、水蒸気分離器2の水位を一定に保持している。
【0023】
【発明の効果】
上述のように、本発明によれば、燃料電池発電装置を、請求項1に記載のごとく構成することとしたので、低温に冷却された循環水が冷却水循環ポンプ3の吸込み側へ送られ、燃料電池本体へ電池冷却水を供給する冷却水循環ポンプ3が、正味吸込み水頭(NPSH)が小さくとも、キャビテイションを生じることなく安定して運転できることとなり、装置高さが低く、特に屋内設置型として効果的な燃料電池発電装置が得られることとなった。
【0025】
また、請求項2に記載のごとく構成することとすれば、冷却水循環ポンプをより一層安定に作動させることが可能となるので、装置高さが低く、特に屋内設置型として効果的な燃料電池発電装置として好適である。
【図面の簡単な説明】
【図1】本発明による燃料電池発電装置の実施例1の電池冷却水系統の基本構成を示すフロー図
【図2】従来の燃料電池発電装置の電池冷却水系統の基本構成を示すフロー図
【符号の説明】
1 燃料電池本体
1c 電池冷却機構
2 水蒸気分離器
2a 水位計
3 冷却水循環ポンプ
4 流量調節弁
5 熱交換器
6 温度計
8 補給水給水ポンプ
10 VVVFインバータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell power generation apparatus that obtains electrical energy using an electrochemical reaction, and more particularly to a configuration of a battery cooling system used for cooling a fuel cell main body.
[0002]
[Prior art]
FIG. 2 is a flowchart showing a basic configuration of a battery cooling water system of a conventional fuel cell power generator. In the figure, reference numeral 1 denotes a fuel cell main body schematically shown, which includes a fuel electrode 1a, an air electrode 1b, and a cell cooling mechanism 1c for keeping them at a predetermined temperature. Also, 2 is a steam separator, 3 is a cooling water circulation pump, 4 is a flow rate control valve, 5 is a heat exchanger cooled by external cooling water, 7 is an orifice, and 8 is for supplying low-temperature makeup water from the outside. It is a makeup water feed pump.
[0003]
In this battery cooling water system, a high-temperature gas-liquid two-phase flow discharged from the battery cooling mechanism 1c in response to the heat generated in the fuel cell main body 1 during power generation is introduced into the steam separator 2 to supply steam and cooling water. The separated cooling water is sent to the suction side of the cooling water circulation pump 3, the discharged cooling water is passed through the heat exchanger 5 to be cooled, and supplied again to the battery cooling mechanism 1c as battery cooling water. ing. At this time, the flow rate control valve 4 is controlled by the detection signal of the thermometer 6 to adjust the amount of water to be passed through the heat exchanger 5 to adjust the temperature of the battery supply water to the battery cooling mechanism 1c. Further, since the water vapor separated in the water vapor separator 2 is taken out as reforming water vapor for the fuel gas, in order to make up the amount of water vapor taken out and keep the water level constant, the makeup water supply pump 8 and the flow rate adjustment are performed. From a makeup water supply line provided with a valve 9, low-temperature makeup water is continuously supplied by controlling the flow rate.
[0004]
[Problems to be solved by the invention]
In the above configuration, since the high-temperature cooling water separated by the water vapor separator 2 is introduced to the suction side of the cooling water circulation pump 3, in order to prevent cavitation from occurring in the cooling water circulation pump 3, Of water to be sucked in at the same time, or the temperature of water sucked in is always kept at a low temperature, or the net suction head (NPSH), that is, the difference in level between the water level of the water vapor separator 2 and the suction port of the cooling water circulation pump 3 It is necessary to take. On the other hand, in the above configuration, makeup water having a low temperature is supplied from the makeup water supply line. However, makeup water may be temporarily cut off due to control, and in this case, cavitation occurs. The steam separator 2 is arranged at a relatively high position so as to obtain a predetermined NPSH. However, with this configuration, the height of the fuel cell power generation device becomes high, and it becomes extremely difficult to suppress the device height to a device height required for an indoor installation type fuel cell power generation device, for example, 2.5 m or less. This is a problem when manufacturing a compact fuel cell power generator with marketability. In the above configuration, the water discharged from the cooling water circulation pump 3 is supplied to the battery cooling mechanism 1c through the flow rate adjusting valve 4 and the heat exchanger 5, so that the pressure loss is large, and the cooling water circulation pump 3 However, there is a problem that the discharge pressure must be increased.
[0005]
The object of the present invention is to solve the problems of the prior art as described above, and to have a cooling water circulation supply system in which cooling water is stably circulated and supplied to the fuel cell main body, and the apparatus height is low, especially indoor installation. An object of the present invention is to provide a fuel cell power generator that is effective as a mold.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a fuel cell body incorporating a battery cooling mechanism, and a water vapor separation that separates water vapor and cooling water by introducing a two-phase flow discharged from the cell cooling mechanism And a cooling water circulation supply system incorporating a cooling water circulation pump that circulates and supplies cooling water stored in the water vapor separator to the battery cooling mechanism, wherein the cooling water circulation supply system comprises: A thermometer that detects the temperature of the battery cooling water supplied to the battery cooling mechanism, and a part of the battery cooling water discharged from the cooling water circulation pump is branched and cooled by a heat exchanger through which the external cooling water flows. and circulating circuits for circulating into the suction side of the circulation pump After, incorporated in the circulation circuit, and a flow control valve for controlling the flow rate of the cooling water flowing through the circulation circuit, the detection of the thermometer Trust It was decided to fuel cell power plant and controls the flow rate adjusting valve so that the temperature of the battery coolant supplied to the battery cooling mechanism becomes a specified value based on.
[0008]
Furthermore, an inlet for introducing low-temperature makeup water from outside is provided between the water vapor separator of the cooling water circulation supply system and the circulation circuit.
[0011]
As described above, since the cooling water cooled by the heat exchanger incorporated in the circulation circuit is circulated and supplied to the suction side of the cooling water circulation pump, the cooling water entering the suction side of the cooling water circulation pump has a low temperature. Maintained. Therefore, the cooling water circulation pump operates stably without causing cavitation even if the net suction head (NPSH), that is, the level difference between the water level of the water vapor separator and the suction port of the cooling water circulation pump is not taken large. Therefore, with this configuration, the apparatus height can be kept low.
[0012]
Further, the battery cooling water held at the specified temperature is stably supplied to the battery cooling mechanism, and the fuel cell main body is held at the specified operating temperature.
[0015]
Further, if the configuration for introducing the low-temperature makeup water from the outside is made as described above, the deficiency can be effectively reduced even when a part of the cooling water is taken out of the system, for example, reforming steam. If it is possible to make up for it, and if cold supply water is introduced, the cooling water entering the suction side of the cooling water circulation pump is maintained at a lower temperature, so that the cooling water circulation pump can be operated more stably. .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1>
FIG. 1 is a flowchart showing a basic configuration of a battery cooling water system of a first embodiment of a fuel cell power generator according to the present invention. The battery cooling water system of the present embodiment is characterized in that a circulation circuit including a flow rate adjusting valve 4 and a heat exchanger 5 cooled by external cooling water is arranged between the discharge side and the suction side of the cooling water circulation pump 3. The cooling water is configured to flow through the circulation circuit. That is, in the battery cooling water system, a part of the cooling water discharged from the main cooling water circulation pump 3 is sent to the battery cooling mechanism 1c of the fuel cell main body 1 as the battery cooling water, and the remaining cooling water is passed through the circulation circuit. It is configured to return to the suction side of the cooling water circulation pump 3 and join the high-temperature cooling water sent from the water vapor separator 2 and the makeup water supplied from the makeup water feed water pump 8 to the suction side of the cooling water circulation pump 3. ing. At this time, the degree of opening of the flow rate adjusting valve 4 is controlled by a detection signal of a thermometer 6 that detects the temperature of the battery cooling water sent to the battery cooling mechanism 1c, thereby adjusting the flow rate of the battery cooling water, thereby The temperature of the battery body is adjusted to a specified temperature corresponding to the generated current.
[0017]
As described above, in this configuration, in addition to the high-temperature cooling water and make-up water sent from the water vapor separator 2, the circulating water cooled to a low temperature by the heat exchanger 5 of the circulation circuit goes to the suction side of the cooling water circulation pump 3. Since it is sent, the temperature of the sucked cooling water is always kept at a low temperature. Therefore, the cooling water circulation pump 3 can be stably operated without causing cavitation even if the net suction head (NPSH) is not taken as large as in the conventional example, or even if the makeup water is temporarily cut off. Thus, by using the battery cooling water system of this configuration, it is possible to configure a fuel cell power generator that is low in device height and can be installed indoors.
[0018]
Further, in this configuration, the temperature of the cooling water on the suction side of the cooling water circulation pump 3 is always kept at a low temperature, so that the burden on the bearing is reduced and the life can be extended. Further, unlike the configuration of the conventional example, the heat exchanger 5 and the flow rate adjusting valve 4 are arranged in parallel with the cooling water circulation pump 3, so that the system pressure loss is reduced and the discharge pressure of the cooling water circulation pump 3 is also low. Well, a more stable system will be obtained.
[0019]
In the configuration shown in FIG. 1, in order to supplement the amount of water taken out as steam for reforming from the steam separator 2, a detection signal from the water level gauge 2 a is sent to the VVVF inverter 10 and replenished by the VVVF inverter 10. The flow rate of makeup water taken in from the outside is adjusted by controlling the rotation speed of the water feed pump 8, and the water level of the water vapor separator 2 is kept constant.
[0023]
【The invention's effect】
As described above, according to the present invention, since the fuel cell power generator is configured as described in claim 1, the circulating water cooled to a low temperature is sent to the suction side of the cooling water circulation pump 3, Even if the cooling water circulation pump 3 for supplying the battery cooling water to the fuel cell main body has a small net suction head (NPSH), it can be stably operated without causing cavitation, and the apparatus height is low. An effective fuel cell power generator was obtained.
[0025]
Further, if configured as described in claim 2, the cooling water circulation pump can be operated more stably, so that the height of the apparatus is low, and the fuel cell power generation that is particularly effective as an indoor installation type It is suitable as a device.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a basic configuration of a battery cooling water system of a first embodiment of a fuel cell power generator according to the present invention. FIG. 2 is a flowchart showing a basic configuration of a battery cooling water system of a conventional fuel cell power generator. Explanation of symbols]
1 Fuel Cell Body 1c Battery Cooling Mechanism 2 Steam Separator 2a Water Level Meter 3 Cooling Water Circulation Pump 4 Flow Control Valve 5 Heat Exchanger 6 Thermometer 8 Makeup Water Supply Pump 10 VVVF Inverter

Claims (2)

電池冷却機構を組み込んだ燃料電池本体と、該電池冷却機構から排出される二相流を導入して水蒸気と冷却水とに分離する水蒸気分離器と、該水蒸気分離器に貯えられた冷却水を前記電池冷却機構へ循環供給する、冷却水循環ポンプを組み込んだ冷却水循環供給系と、を備える燃料電池発電装置において、
前記冷却水循環供給系が、電池冷却機構へ供給される電池冷却水の温度を検知する温度計と、
前記冷却水循環ポンプより吐出される電池冷却水の一部を分岐させて、外部冷却水が通流する熱交換器で冷却したのち循環ポンプの吸込み側へと循環させる循環回路と
前記循環回路に組み込まれ、前記循環回路を通流する冷却水の流量を制御する流量調節弁とを有し、
前記温度計の検知信号に基づいて前記電池冷却機構へ供給される電池冷却水の温度が規定値となるよう前記流量調節弁を制御することを特徴とする燃料電池発電装置。
A fuel cell body incorporating a battery cooling mechanism, a water vapor separator that introduces a two-phase flow discharged from the battery cooling mechanism and separates into water vapor and cooling water, and cooling water stored in the water vapor separator. In a fuel cell power generator comprising: a cooling water circulation supply system incorporating a cooling water circulation pump that circulates and supplies the battery cooling mechanism;
The cooling water circulation supply system detects a temperature of battery cooling water supplied to the battery cooling mechanism, and
Said part of the battery coolant discharged from the coolant circulating pump is branched, a circulation circuits for circulating into the suction side of the circulation pump after the external coolant is cooled in the heat exchanger flowing through,
A flow rate adjustment valve that is incorporated in the circulation circuit and controls the flow rate of cooling water flowing through the circulation circuit;
The fuel cell power generator, wherein the flow rate control valve is controlled based on a detection signal of the thermometer so that a temperature of battery cooling water supplied to the battery cooling mechanism becomes a specified value.
前記冷却水循環供給系が、前記水蒸気分離器と前記循環回路との間に、外部より低温の補給水を導入する導入口を備えてなることを特徴とする請求項1に記載の燃料電池発電装置。  2. The fuel cell power generator according to claim 1, wherein the cooling water circulation supply system includes an introduction port for introducing low-temperature makeup water from outside between the water vapor separator and the circulation circuit. .
JP14301299A 1998-09-02 1999-05-24 Fuel cell power generator Expired - Lifetime JP4333931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14301299A JP4333931B2 (en) 1998-09-02 1999-05-24 Fuel cell power generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-248029 1998-09-02
JP24802998 1998-09-02
JP14301299A JP4333931B2 (en) 1998-09-02 1999-05-24 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2000149969A JP2000149969A (en) 2000-05-30
JP4333931B2 true JP4333931B2 (en) 2009-09-16

Family

ID=26474843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14301299A Expired - Lifetime JP4333931B2 (en) 1998-09-02 1999-05-24 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4333931B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602056B2 (en) * 2004-11-26 2010-12-22 本田技研工業株式会社 Fuel cell cooling system

Also Published As

Publication number Publication date
JP2000149969A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
KR101136897B1 (en) Air conditioning control system
KR100967686B1 (en) Cooling system and method of a fuel cell
US7309538B2 (en) Fuel cell stack
JP2004185968A (en) Fuel cell system
CA2389197C (en) Fuel cell and method of operating same
JP2002100383A (en) Cooling system for fuel cell
JP2000208157A (en) Fuel cell operation system
JP2010267471A (en) Device for control of cooling water temperature in fuel cell system
JP2010272342A (en) Solid-oxide fuel cell system
WO2004004034A2 (en) Fuel cell cooling system
JP2018163874A (en) Fuel battery system
JP4098484B2 (en) Fuel cell system
CN116344861A (en) Proton exchange membrane hydrogen fuel cell cogeneration system
JP2008147184A (en) Temperature control of cathode ingress air flow for fuel cell system
JP2004014484A (en) Cooling water circulation/feed system for fuel cell
JP2010123441A (en) Fuel cell system
JP3966839B2 (en) Waste heat utilization heat source device
JP4333931B2 (en) Fuel cell power generator
JP3979581B2 (en) Cooling water circulation supply system for fuel cell
JP2004152666A (en) Fuel cell system
KR100514997B1 (en) Fuel cell system
JP2008226810A (en) Fuel cell power generation system
JP3879435B2 (en) Fuel cell system
JP4161527B2 (en) Fuel cell power generator
JP4098486B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070827

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term