JP2002110126A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002110126A
JP2002110126A JP2000296602A JP2000296602A JP2002110126A JP 2002110126 A JP2002110126 A JP 2002110126A JP 2000296602 A JP2000296602 A JP 2000296602A JP 2000296602 A JP2000296602 A JP 2000296602A JP 2002110126 A JP2002110126 A JP 2002110126A
Authority
JP
Japan
Prior art keywords
microporous membrane
battery
separator
positive electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000296602A
Other languages
Japanese (ja)
Other versions
JP4910230B2 (en
Inventor
Koyo Watari
亘  幸洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000296602A priority Critical patent/JP4910230B2/en
Publication of JP2002110126A publication Critical patent/JP2002110126A/en
Application granted granted Critical
Publication of JP4910230B2 publication Critical patent/JP4910230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high temperature performance, high temperature cycle service life characteristics and excellent standing performance. SOLUTION: The nonaqueous electrolyte secondary battery is characterized in a multilayer separator consisting of the first layer of cross-linked polyethylene minute porous membrane and the second layer of non-cross-linked polyethylene minute porous membrane, in which the second layer is abutted with a positive plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特に、高温サイクル寿命、放置性能及び安全性に優
れた非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery excellent in high-temperature cycle life, standing performance and safety.

【0002】[0002]

【従来の技術】近年、携帯電話、携帯用パソコン等の電
子機器の小型軽量化・高機能化に伴い、内蔵される電池
としても、高エネルギー密度を有し、かつ軽量なものが
採用されている。そのような要求を満たす典型的な電池
は、特にリチウム金属やリチウム合金等の活物質、また
はリチウムイオンをホスト物質(ここでホスト物質と
は、リチウムイオンを吸蔵及び放出できる物質をいう)
である炭素に吸蔵させたリチウムインターカレーション
化合物を負極とし、LiClO4、LiPF6等のリチウ
ム塩を溶解した非プロトン性の有機溶媒を電解液とし、
正極と負極との間に設置するセパレータには、有機溶媒
に不溶であり、かつ電解質や電極活物質に対して安定な
ポリオレフィン系材料を微多孔質膜や不織布に加工した
ものを用いた非水電解質二次電池である。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and portable personal computers have become smaller, lighter, and more sophisticated, lightweight batteries having a high energy density have been adopted as built-in batteries. I have. A typical battery that satisfies such a requirement is an active material such as lithium metal or lithium alloy, or a lithium ion as a host material (here, a host material refers to a material that can occlude and release lithium ions).
A lithium intercalation compound occluded in carbon as a negative electrode, and an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used as an electrolyte,
A non-aqueous separator made of a polyolefin-based material that is insoluble in an organic solvent and stable to an electrolyte or an electrode active material processed into a microporous membrane or nonwoven fabric is used as a separator between the positive electrode and the negative electrode. It is an electrolyte secondary battery.

【0003】前記非水電解質二次電池用セパレータに
は、微多孔膜の機械的強度や透過性のような一般的特性
に加えて、電池内部が異常に発熱した際に、セパレータ
が溶融して電流を遮断することによって、電池の安全性
を確保するという「シャットダウン効果」が求められて
いる。
[0003] In addition to the general properties such as the mechanical strength and permeability of a microporous membrane, the separator for a non-aqueous electrolyte secondary battery may be melted when the inside of the battery generates abnormal heat. There is a demand for a "shutdown effect" in which the safety of the battery is ensured by interrupting the current.

【0004】ポリオレフィン系材料としてポリエチレン
を用いたポリエチレン微多孔膜の場合には、シャットダ
ウン効果が発現する温度は、おおよそ130〜150℃
であることが知られており、外部短絡等の何らかの理由
により電池内部が発熱しても、シャットダウン温度に達
した時点で、前記微多孔膜が溶融して微多孔が閉塞する
ため、電流が遮断され、電池反応が停止する。ところ
が、温度上昇が極めて急激な場合には、シャットダウン
後もさらに温度が上昇し、結果的に前記微多孔質膜が、
破膜・破断し、短絡(ショート)してしまうことがあっ
た。このような過酷な条件下でも電池の短絡を防ぐこと
が可能な高い耐熱性を持ったポリエチレン微多孔質膜の
開発が課題とされており、近年、様々な手法が提案され
ている。
[0004] In the case of a polyethylene microporous membrane using polyethylene as a polyolefin-based material, the temperature at which the shutdown effect appears is approximately 130 to 150 ° C.
Even if the inside of the battery generates heat due to an external short circuit or the like for some reason, when the shutdown temperature is reached, the microporous film is melted and the micropores are closed, so that the current is interrupted. And the battery reaction stops. However, when the temperature rise is extremely rapid, the temperature further rises even after shutdown, and as a result, the microporous membrane has
In some cases, the membrane was ruptured or broken, resulting in a short circuit. Development of a microporous polyethylene film having high heat resistance capable of preventing short-circuiting of a battery even under such severe conditions has been an issue, and various techniques have been proposed in recent years.

【0005】例えば、特開昭62−10857号公報で
は、ポリエチレンよりも高融点のポリプロピレンの微多
孔質膜とポリエチレン微多孔質膜を積層することによっ
て、耐熱性を向上させる方法が提案されている。かかる
方法によれば、耐熱性は向上するが、ポリプロピレン層
のシャットダウン温度が高いため、膜全体のシャットダ
ウン性能が低下するという欠点があった。
For example, Japanese Patent Application Laid-Open No. Sho 62-10857 proposes a method of improving heat resistance by laminating a microporous film of polypropylene having a higher melting point than polyethylene and a microporous film of polyethylene. . According to this method, the heat resistance is improved, but the shutdown temperature of the polypropylene layer is high, so that there is a disadvantage that the shutdown performance of the entire film is reduced.

【0006】また、特開平4−206257号公報で
は、ポリエチレンにポリプロピレンをブレンドすること
によって耐熱性を向上させる方法が提案されているが、
ポリプロピレンがブレンドされているとはいえ、発熱に
よる溶融後に容易に流動して破膜してしまい耐熱性の向
上という点では、本質的な改善とはなっていなかった。
また、ポリエチレンとポリプロピレンの相溶性が低いた
め、微多孔質膜中で両者が分離するため、強度が低下す
るという欠点があった。
Japanese Patent Application Laid-Open No. Hei 4-206257 proposes a method of improving heat resistance by blending polypropylene with polyethylene.
Although polypropylene is blended, it has not been an essential improvement in terms of improvement in heat resistance due to easy flow after melting due to heat generation and film breakage.
In addition, since the compatibility between polyethylene and polypropylene is low, they are separated from each other in the microporous membrane, so that the strength is reduced.

【0007】特開平3−105851号公報では、特定
量の超高分子ポリエチレンを高分子のポリエチレンにブ
レンドすることによって、機械強度を向上させる方法が
提案されている。超高分子量ポリエチレンは、溶融後も
かなりの粘度、すなわち形状保持性を有するため、前記
公開公報に開示の方法によるポリエチレン微多孔質膜
は、副次的に溶融後の破膜も生じにくくなったが、過酷
な条件下では、やはり破膜してしまい、先の公報に開示
の発明と同様に本質的な解決とはなっていない。
Japanese Patent Application Laid-Open No. 3-1055851 proposes a method for improving mechanical strength by blending a specific amount of ultra-high-molecular polyethylene with high-molecular polyethylene. Ultra-high molecular weight polyethylene has a considerable viscosity even after melting, that is, has shape retention properties, so the polyethylene microporous membrane according to the method disclosed in the above-mentioned publication makes it difficult to cause secondary fracture after melting. However, under severe conditions, the membrane is still broken, and is not an essential solution like the invention disclosed in the above-mentioned publication.

【0008】また、特開平3−274661号公報など
では、ポリオレフィン微多孔質膜を架橋することによっ
て、機械強度、耐熱性等を向上させる方法が開示されて
いる。この方法によれば、架橋によって溶融時の粘度が
上昇するため、高い形状保持性を付与することが可能で
あるが、高温環境下で長時間使用されたり放置された場
合には、架橋の切断等の酸化劣化が進行し、高温サイク
ル寿命・放置性能が低下するという欠点があった。
Japanese Patent Application Laid-Open No. 3-274661 discloses a method for improving mechanical strength, heat resistance and the like by crosslinking a polyolefin microporous membrane. According to this method, the viscosity at the time of melting is increased by the crosslinking, so that it is possible to impart high shape retention. However, when used or left for a long time in a high-temperature environment, the crosslinking is cut. However, there is a disadvantage that the oxidative deterioration such as the above proceeds, and the high-temperature cycle life and the leaving performance deteriorate.

【0009】[0009]

【発明が解決しようとする課題】本願発明は、上述の問
題点を解決し、高温性能に優れる、すなわち耐酸化性に
優れ、かつ過酷な状況下でも、膜の破膜・破断等により
生じる電池の短絡を防ぐことが可能である極めて高い耐
熱性を有し、高温サイクル寿命特性および放置性能の優
れた非水電解質二次電池を提供することにある。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and is excellent in high-temperature performance, that is, excellent in oxidation resistance. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having extremely high heat resistance capable of preventing short-circuit of the battery, and having excellent high-temperature cycle life characteristics and standing performance.

【0010】[0010]

【課題を解決するための手段】上記の電池の短絡が生じ
る原因は、シャットダウン後にさらに温度が上昇した際
の破膜・破断による内部短絡、また、高温におけるサイ
クル寿命、放置性能低下の問題は、セパレータの正極に
対向する面での酸化劣化によるものと考えられ、それら
に耐え得る性能をセパレータに付与することが必要であ
る。
The short-circuiting of the battery is caused by internal short-circuiting due to film breakage or rupture when the temperature further rises after shutdown, and the problems of cycle life at high temperature and deterioration of storage performance are as follows. It is thought to be due to oxidative degradation on the surface of the separator facing the positive electrode, and it is necessary to give the separator a performance that can withstand them.

【0011】本願発明者は、上記課題を解決するため
に、鋭意研究を重ねた結果、特定構成のセパレータを用
い、正極と負極の間に特定の位置関係で配置することに
より、異常時においても短絡が生じず、かつ高温サイク
ル寿命、放置性能に優れる電池が得られることを見い出
し、本願発明をなすに至ったものである。
The inventor of the present invention has conducted intensive studies in order to solve the above-mentioned problems, and as a result, by using a separator having a specific configuration and arranging it in a specific positional relationship between the positive electrode and the negative electrode, even when abnormal, It has been found that a battery having no short circuit, excellent in high-temperature cycle life, and excellent in storage performance can be obtained, and the present invention has been accomplished.

【0012】すなわち、本願発明は、架橋したポリエチ
レン微多孔質膜の第1の層と、架橋していないポリエチ
レン微多孔質膜の第2の層とを有する多層セパレータで
あって、正極板に前記第2の層が当接されてなることを
特徴とする非水電解質二次電池である。
That is, the present invention provides a multilayer separator having a first layer of a crosslinked polyethylene microporous membrane and a second layer of a non-crosslinked polyethylene microporous membrane, wherein the positive electrode plate has the above-mentioned structure. A nonaqueous electrolyte secondary battery, wherein the second layer is in contact with the nonaqueous electrolyte secondary battery.

【0013】さらに、前記架橋していないポリエチレン
微多孔質膜としては、重量平均分子量が100万以上2
50万以下のポリエチレンからなる微多孔質膜が好適で
ある。前記架橋したポリエチレン微多孔質膜の重量平均
分子量には、20万〜250万の範囲を有するものが好
ましい。また、前記第1の層が負極板に当接されてなる
ことがより好ましい。
Further, the non-crosslinked polyethylene microporous membrane has a weight average molecular weight of 1,000,000 or more.
Microporous membranes of less than 500,000 polyethylene are preferred. The crosslinked polyethylene microporous membrane preferably has a weight average molecular weight in the range of 200,000 to 2.5 million. More preferably, the first layer is in contact with a negative electrode plate.

【0014】なお、上記の架橋したポリエチレン微多孔
質膜層と架橋していないポリエチレン微多孔質膜層が2
層以上積層されてなるセパレータにおいて、正極側では
非常に強い酸化雰囲気下にさらされるが、本願発明で
は、それに対応して、正極側に、架橋したポリエチレン
微多孔質膜層よりも優れた耐酸化性を有する架橋してい
ないポリエチレン微多孔質膜層を配しているため、セパ
レータの酸化劣化による性能の低下を抑制することがで
きる。
The above-mentioned crosslinked polyethylene microporous membrane layer and the non-crosslinked polyethylene microporous membrane layer are two
In the separator formed by laminating more than one layer, the positive electrode side is exposed to a very strong oxidizing atmosphere. However, in the present invention, the positive electrode side has a correspondingly higher oxidation resistance than the crosslinked polyethylene microporous membrane layer. Since the non-crosslinked polyethylene microporous membrane layer having the property is provided, it is possible to suppress a decrease in performance due to oxidative deterioration of the separator.

【0015】また、温度上昇が極めて急激な場合におい
ても、本願発明では、膜内に溶融後も優れた形状保持性
を有する架橋したポリエチレン微多孔質膜層を含むた
め、セパレータの破膜・破断による短絡(ショート)を
防ぐことができ、過酷な条件下においても優れた耐熱性
を維持した電池を得ることができる。
Further, even when the temperature rise is extremely rapid, the present invention includes a crosslinked polyethylene microporous membrane layer having excellent shape retention even after melting in the membrane. Can be prevented, and a battery maintaining excellent heat resistance even under severe conditions can be obtained.

【0016】[0016]

【発明の実施の形態】以下、本願発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0017】本願発明において用いられる積層セパレー
タは、架橋したポリエチレン微多孔質膜及び架橋してい
ないポリエチレン微多孔質膜、それぞれを、例えば、T
ダイ押出法、インフレーション法等のすでに公知の方法
により成形した後に、圧着・接着等の方法により張り合
わせることによって成形することができる。
The laminated separator used in the present invention is a crosslinked polyethylene microporous membrane and a non-crosslinked polyethylene microporous membrane, each of which is made of, for example, T
After molding by a known method such as a die extrusion method or an inflation method, it can be molded by bonding by a method such as pressure bonding or adhesion.

【0018】ポリエチレンの架橋手法としては、紫外
線、電子線、ガンマ線に代表される電離放射線、架橋剤
や架橋助剤の添加による化学架橋等があげられるが、こ
れらのなかで電子線照射による方法がより望ましい。
Examples of the method of crosslinking polyethylene include ionizing radiation typified by ultraviolet rays, electron beams, and gamma rays, and chemical crosslinking by adding a crosslinking agent or a crosslinking assistant. Among these, the method of electron beam irradiation is used. More desirable.

【0019】ポリエチレンとしては、高密度、中密度、
低密度の各種分岐ポリエチレン、線状ポリエチレン、高
分子量及び超高分子量ポリエチレンなど、何れのポリエ
チレンも使用できる。また、適宜、各種の可塑剤、酸化
防止剤、難燃剤などの添加剤を適量含有したものでも良
い。
As polyethylene, high density, medium density,
Any polyethylene, such as various types of low-density branched polyethylene, linear polyethylene, high molecular weight and ultrahigh molecular weight polyethylene, can be used. Further, those containing appropriate amounts of additives such as various plasticizers, antioxidants and flame retardants may be used.

【0020】本願発明にかかる、非水電解質二次電池を
作製する場合には、上記のようにして成形されるセパレ
ータを用い、架橋していないポリエチレン微多孔質膜層
を正極板側に配し、通常の方法により作製すれば良い。
In producing the non-aqueous electrolyte secondary battery according to the present invention, a separator formed as described above is used, and a non-crosslinked polyethylene microporous membrane layer is disposed on the positive electrode plate side. What is necessary is just to manufacture by a normal method.

【0021】正極板は、正極活物質を用いて構成される
が、例えば、リチウム二次電池を作製する場合に正極活
物質としては、リチウムを吸蔵放出可能な化合物であ
る、組成式LixMO2、またはLiy24(ただしM
は遷移金属、0≦x≦1、0≦y≦2)で表される、複
合酸化物、トンネル状の空孔を有する酸化物、層状構造
の金属カルコゲン化物を用いることができる。その具体
例としては、LiCoO 2、LiNiO2、LiMn
24、Li2Mn24、MnO2、FeO2、V25、V6
13、TiO2、TiS2等がある。また、ポリアニリン
等の導電性ポリマー等の有機化合物を用いることもで
き、さらに、これらを混合して用いてもよい。また、粒
状の活物質を用いる場合には、例えば、活物質粒子と導
電助剤と結着剤とからなる合材をアルミニウム等の金属
集電体上に形成することで作製できる。
The positive electrode plate is constituted by using a positive electrode active material.
However, for example, when producing a lithium secondary battery, the positive electrode active
The substance is a compound capable of inserting and extracting lithium.
The composition formula LixMOTwoOr LiyMTwoOFour(However, M
Is a transition metal, represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2),
Compound oxides, oxides with tunnel-like vacancies, layered structure
Metal chalcogenide can be used. Its concrete
For example, LiCoO Two, LiNiOTwo, LiMn
TwoOFour, LiTwoMnTwoOFour, MnOTwo, FeOTwo, VTwoOFive, V6
O13, TiOTwo, TiSTwoEtc. Also, polyaniline
Organic compounds such as conductive polymers can also be used.
And may be used in combination. Also grain
When an active material in the form of particles is used, for example, the active material particles
A mixture consisting of an electric assistant and a binder is made of a metal such as aluminum.
It can be manufactured by forming it on a current collector.

【0022】負極板は、負極活物質を用いて構成される
が、例えば、リチウム二次電池を作製する場合に負極活
物質としては、Al、Si、Pb、Sn、Zn、Cd等
とリチウムとの合金、LiFe23、WO2、MoO2
の遷移金属酸化物、グラファイト、カーボン等の炭素質
材料、Li5(Li3N)等の窒化リチウム、もしくは金
属リチウム箔、又はこれらの混合物を用いてもよい。ま
た、粒状の炭素質材料を用いる場合には、例えば、活物
質粒子と結着剤とからなる合材を銅等の金属集電体上に
形成することで作製できる。
The negative electrode plate is formed using a negative electrode active material. For example, when a lithium secondary battery is manufactured, the negative electrode active material includes Al, Si, Pb, Sn, Zn, Cd and the like and lithium. Alloys, transition metal oxides such as LiFe 2 O 3 , WO 2 and MoO 2 , carbonaceous materials such as graphite and carbon, lithium nitride such as Li 5 (Li 3 N), or metallic lithium foil, or a mixture thereof May be used. When a granular carbonaceous material is used, it can be produced, for example, by forming a mixture of active material particles and a binder on a metal current collector such as copper.

【0023】電解質としては、無機固体電解質、ポリマ
ー固体電解質、電解液等を用いることができるが、非水
電解質リチウム二次電池を作製する場合、電解液溶媒と
して、例えば、エチレンカーボネート、プロピレンカー
ボネート、ジメチルカーボネート、ジエチルカーボネー
ト、γ−ブチロラクトン、スルホラン、ジメチルスルホ
キシド、アセトニトリル、ジメチルホルムアミド、ジメ
チルアセトアミド、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、テトラヒドロフラン、2−メチル
テトラヒドロフラン、ジオキソラン、メチルアセテート
等の極性溶媒、もしくはこれらの混合物が使用できる。
As the electrolyte, an inorganic solid electrolyte, a polymer solid electrolyte, an electrolyte and the like can be used. When a non-aqueous electrolyte lithium secondary battery is manufactured, for example, ethylene carbonate, propylene carbonate, or propylene carbonate is used as the electrolyte solvent. Dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2
Polar solvents such as diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, or mixtures thereof;

【0024】また、これらの電解液溶媒に溶解させるリ
チウム塩としては、LiPF6、LiClO4、LiBF
4、LiAsF6、LiCF3CO2、LiCF3SO3、L
iN(SO2CF32、LiN(SO2CF2CF32
LiN(COCF32およびLiN(COCF2CF3
2などの塩もしくはこれらの混合物が使用できる。
Lithium salts dissolved in these electrolyte solvents include LiPF 6 , LiClO 4 , LiBF
4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , L
iN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 ,
LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 )
Salts such as 2 , or mixtures thereof, can be used.

【0025】また、電池の形状は、特に限定されるもの
ではなく、本願発明は、角形、円筒形、長円筒形、コイ
ン形、ボタン形、シート形電池等の様々な形状の非水電
解質二次電池に適用可能である。
The shape of the battery is not particularly limited, and the present invention is applicable to non-aqueous electrolyte batteries having various shapes such as a square, cylindrical, long cylindrical, coin, button, and sheet batteries. Applicable to secondary batteries.

【0026】[0026]

【実施例】以下、本願発明を適用した具体的な実施例に
ついて説明するが、本願発明は、本実施例により、何ら
限定されるものではなく、その主旨を変更しない範囲に
おいて、適宜変更して実施することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments to which the present invention is applied will be described. However, the present invention is not limited to the present embodiments at all, and may be appropriately changed within a scope not changing the gist of the present invention. Can be implemented.

【0027】(実施例1)図1は、本実施例の角形非水
電解質二次電池の構成断面図である。
Embodiment 1 FIG. 1 is a sectional view showing the configuration of a prismatic nonaqueous electrolyte secondary battery according to this embodiment.

【0028】本実施例1の角形非水電解質二次電池1
は、アルミニウム集電体にリチウムイオンを吸蔵・放出
する物質を構成要素とする正極合材を塗布してなる正極
3と、銅集電体にリチウムイオンを吸蔵・放出する物質
を構成要素とする負極合材を塗布してなる負極4とがセ
パレータ5を介して巻回された扁平状電極群2と、電解
質塩を含有した非水電解液とを電池ケース6に収納して
なるものである。
The prismatic nonaqueous electrolyte secondary battery 1 of the first embodiment
Are composed of a positive electrode 3 formed by applying a positive electrode mixture containing a substance capable of absorbing and releasing lithium ions to an aluminum current collector, and a substance capable of absorbing and releasing lithium ions to a copper current collector. A flat electrode group 2 in which a negative electrode 4 coated with a negative electrode mixture is wound via a separator 5 and a non-aqueous electrolyte containing an electrolyte salt are housed in a battery case 6. .

【0029】電池ケース6には、安全弁8を設けた電池
蓋がレーザー溶接によって取り付けられ、正極端子9は
正極リード10を介して正極3と接続され、負極4は電
池ケース6の内壁と接触により電気的に接続されてい
る。
A battery lid provided with a safety valve 8 is attached to the battery case 6 by laser welding, a positive electrode terminal 9 is connected to the positive electrode 3 via a positive electrode lead 10, and the negative electrode 4 contacts the inner wall of the battery case 6. It is electrically connected.

【0030】正極合材は、活物質のLiCoO2:90
重量部と、導電助剤のアセチレンブラック5重量部と、
結着剤のポリフッ化ビニリデン5重量部とを混合した上
で、N−メチル−2−ピロリドンを適宜加えて分散さ
せ、スラリーを調製した。このスラリーを厚さ20μm
のアルミニウム集電体に均一に塗布、乾燥させた後、ロ
ールプレスで圧縮成型することにより正極3を作製し
た。
The positive electrode mixture was made of LiCoO 2 : 90 as an active material.
Parts by weight, 5 parts by weight of acetylene black as a conductive additive,
After mixing with 5 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone was appropriately added and dispersed to prepare a slurry. This slurry is 20 μm thick
After uniformly applying and drying the aluminum current collector of Example 1, the positive electrode 3 was produced by compression molding with a roll press.

【0031】負極合材は、リチウムイオンを吸蔵放出す
る炭素材料90重量部と、ポリフッ化ビニリデン10重
量部とを混合した上で、N−メチル−2−ピロリドンを
適宜加えて分散させ、スラリーを調製した。このスラリ
ーを厚さ10μmの銅集電体に均一に塗布、乾燥させた
後、ロールプレスで圧縮成型することにより負極4を作
製した。
The negative electrode mixture is prepared by mixing 90 parts by weight of a carbon material that absorbs and releases lithium ions and 10 parts by weight of polyvinylidene fluoride, and then appropriately adding N-methyl-2-pyrrolidone to disperse the slurry. Prepared. The slurry was uniformly applied to a 10 μm-thick copper current collector, dried, and then compression-molded by a roll press to produce a negative electrode 4.

【0032】電解液は、エチレンカーボネート(EC)
/ジエチルカーボネート(DEC)=1/1(vol/
vol)からなる溶媒中に、LiPF6:1molを溶
解したものである。
The electrolytic solution is ethylene carbonate (EC)
/ Diethyl carbonate (DEC) = 1/1 (vol /
vol.) in which 1 mol of LiPF 6 is dissolved.

【0033】セパレータ5は、延伸法により多孔化し、
可塑剤を抽出した後に架橋した、重量平均分子量約80
万のポリエチレン微多孔質膜1枚、および延伸により多
孔化し、可塑剤を抽出した後に架橋せずに成膜した重量
平均分子量約80万のポリエチレン微多孔質膜1枚を、
ロールプレスを用いて積層圧着したものを用い、正極板
側に架橋していないポリエチレン微多孔質膜層が、負極
板側に架橋したポリエチレン微多孔質膜層が配するよう
に巻回した。なお、このセパレータの膜厚は25μm
で、突き刺し強度は660gであった。上述のような構
成、手順により、設計容量600mAhの本願発明電池
を作製した。
The separator 5 is made porous by a stretching method.
Crosslinked after extraction of plasticizer, weight average molecular weight of about 80
10,000 polyethylene microporous membranes, and a polyethylene microporous membrane having a weight average molecular weight of about 800,000 formed into a porous form by stretching and extracting without crosslinking after extracting a plasticizer,
Using what was press-bonded by lamination using a roll press, it was wound so that the non-crosslinked polyethylene microporous membrane layer was arranged on the positive electrode plate side and the crosslinked polyethylene microporous membrane layer was arranged on the negative electrode plate side. The thickness of this separator was 25 μm.
And the piercing strength was 660 g. According to the above-described configuration and procedure, a battery of the present invention having a design capacity of 600 mAh was manufactured.

【0034】(実施例2)正極板側に配する架橋してい
ないポリエチレン微多孔質膜の重量平均分子量を約15
0万とした他は、実施例1と全く同様に電池を作製し
た。なお、このセパレータの膜厚は25μmで、突き刺
し強度は700gであった。
Example 2 The weight average molecular weight of the non-crosslinked polyethylene microporous membrane disposed on the positive electrode plate side was about 15
A battery was fabricated in exactly the same manner as in Example 1, except that the battery was set at 100,000. The thickness of the separator was 25 μm, and the piercing strength was 700 g.

【0035】(比較例1)正極板側に、架橋した重量平
均分子量約80万のポリエチレン微多孔質膜層を、負極
板側に、架橋していない重量平均分子量約80万のポリ
エチレン微多孔質膜層を配したほかは、実施例1と全く
同様に電池を作製した。なお、このセパレータの膜厚は
25μmで、突き刺し強度は660gであった。
Comparative Example 1 A crosslinked polyethylene microporous membrane layer having a weight average molecular weight of about 800,000 was provided on the positive electrode plate side, and a noncrosslinked polyethylene microporous polyethylene having a weight average molecular weight of about 800,000 was provided on the negative electrode plate side. A battery was fabricated in exactly the same manner as in Example 1 except that the membrane layer was provided. The thickness of this separator was 25 μm, and the piercing strength was 660 g.

【0036】(比較例2)正極板側に、架橋していない
重量平均分子量約150万のポリエチレン微多孔質膜層
を、負極板側に、架橋していない重量平均分子量約80
万のポリエチレン微多孔質膜層を配したほかは、実施例
1と全く同様に電池を作製した。なお、このセパレータ
の膜厚は25μmで、突き刺し強度は640gであっ
た。
Comparative Example 2 A non-crosslinked polyethylene microporous membrane layer having a weight average molecular weight of about 1.5 million was provided on the positive electrode plate side, and a non-crosslinked weight average molecular weight of about 80 was provided on the negative electrode plate side.
A battery was produced in exactly the same manner as in Example 1 except that 10,000 polyethylene microporous membrane layers were provided. The thickness of this separator was 25 μm, and the piercing strength was 640 g.

【0037】(比較例3)架橋した重量平均分子量約8
0万のポリエチレン単層微多孔質膜を用いたほかは、実
施例1と全く同様に電池を作製した。なお、このセパレ
ータの膜厚は25μmで、突き刺し強度は720gであ
った。
(Comparative Example 3) Crosslinked weight average molecular weight of about 8
A battery was fabricated in exactly the same manner as in Example 1, except that a polyethylene single-layer microporous membrane of 100,000 was used. The thickness of this separator was 25 μm, and the piercing strength was 720 g.

【0038】(比較例4)架橋していない重量平均分子
量約80万のポリエチレン単層微多孔質膜を用いたほか
は、実施例1と全く同様に電池を作製した。なお、この
セパレータの膜厚は25μmで、突き刺し強度は550
gであった。
Comparative Example 4 A battery was produced in exactly the same manner as in Example 1, except that a non-crosslinked polyethylene single-layer microporous membrane having a weight average molecular weight of about 800,000 was used. The thickness of this separator was 25 μm, and the piercing strength was 550.
g.

【0039】(比較試験) 高温サイクル寿命試験:上記の電池を、温度45℃の雰
囲気下において、1CAの電流で4.2Vまで定電圧・
定電流で3時間充電し、その後、1CAの定電流で放電
する充放電サイクルを300回繰り返した。そして、1
サイクル目の放電容量に対する300サイクル目の放電
容量の割合を求め、1サイクル目の放電容量に対して8
0%以上の容量を保持しているものを良好とした。
(Comparative test) High-temperature cycle life test: The above battery was subjected to a constant voltage up to 4.2 V at a current of 1 CA under an atmosphere of a temperature of 45 ° C.
A charge / discharge cycle of charging at a constant current for 3 hours and then discharging at a constant current of 1 CA was repeated 300 times. And 1
The ratio of the discharge capacity at the 300th cycle to the discharge capacity at the cycle was determined, and 8 times the discharge capacity at the first cycle.
Those holding a capacity of 0% or more were evaluated as good.

【0040】高温放置試験:上記の電池を1CAの電流
で4.2Vまで定電圧・定電流で3時間充電し、充電状
態で30日間、60℃で放置した。そして、保存後、電
池を1CAの定電流で放電した後の初期容量に対する放
電容量を求めた。そして、放置前の放電容量に対する放
置後の放電容量の割合を求め、放置前の放電容量に対し
て80%以上の容量を保持しているものを良好とした。
High temperature storage test: The above battery was charged at a current of 1 CA to 4.2 V at a constant voltage and a constant current for 3 hours, and left in a charged state at 60 ° C. for 30 days. After storage, the discharge capacity with respect to the initial capacity after the battery was discharged at a constant current of 1 CA was determined. Then, the ratio of the discharge capacity after being left to the discharge capacity before being left was determined, and those having a capacity of 80% or more of the discharge capacity before being left were evaluated as good.

【0041】耐熱性試験:オーブン中に、放電状態の電
池を設置して、5℃/分の速度で180℃まで昇温し
た。昇温後、オーブンから電池を取り出し、電池を解体
した。取り出したセパレータの収縮・破膜の有無、閉塞
の程度を観察し、電池の短絡、すなわち、セパレータの
収縮・破膜が生じていたものを×、電池の短絡が生じな
かったもの、すなわち、セパレータの収縮・破膜が生じ
ていなかったものを○とした。
Heat resistance test: A battery in a discharged state was placed in an oven, and the temperature was raised to 180 ° C. at a rate of 5 ° C./min. After the temperature was raised, the battery was taken out of the oven and disassembled. Observation of the presence or absence of contraction and film breakage of the separator taken out, the degree of blockage, the battery short-circuit, that is, those in which the separator contraction and film breakage occurred ×, those in which the battery did not short-circuit, that is, the separator When no shrinkage or rupture of the film occurred, it was evaluated as ○.

【0042】高温サイクル寿命、放置試験および耐熱性
調査結果を、表1(実施例および比較例)に示す。
Table 1 (Examples and Comparative Examples) shows the results of the high-temperature cycle life, the standing test, and the heat resistance investigation.

【0043】[0043]

【表1】 [Table 1]

【0044】高温サイクル寿命、放置試験においては、
セパレータの正極板側が強い酸化雰囲気下におかれる
が、表1の実施例1,2に示すように、耐酸化性に優れ
る架橋していないポリエチレン微多孔質膜層を正極板側
に当接したことにより、酸化による劣化が、架橋したポ
リエチレン微多孔質膜層を正極側に当接した場合より抑
制されたため、高温サイクル寿命、放置性能が向上した
ものと考えられる。また、この効果は、実施例1,2の
比較から、セパレータの正極板側に当接する架橋してい
ないポリエチレン微多孔膜の分子量が大きいほど、特に
顕著に現れることがわかった。さらに、実施例1,2の
電池は、負極板側に耐熱性に優れる架橋したポリエチレ
ン微多孔質膜層を当接したことにより、ポリエチレンの
融点以上の非常に高い温度下においても電池の短絡が生
じないため、外部短絡等の何らかの異常が発生し、電池
が発熱した際においても、高い耐熱性を有する電池が得
られるものと考えられる。
In the high-temperature cycle life and standing test,
Although the positive electrode plate side of the separator was placed in a strong oxidizing atmosphere, as shown in Examples 1 and 2 in Table 1, a non-crosslinked polyethylene microporous membrane layer having excellent oxidation resistance was brought into contact with the positive electrode plate side. Thus, it is considered that the deterioration due to oxidation was suppressed as compared with the case where the crosslinked polyethylene microporous membrane layer was brought into contact with the positive electrode side, so that the high-temperature cycle life and the leaving performance were improved. Further, from a comparison between Examples 1 and 2, it was found that this effect was particularly prominent as the molecular weight of the non-crosslinked polyethylene microporous membrane in contact with the positive electrode plate side of the separator was larger. Further, in the batteries of Examples 1 and 2, the short-circuit of the batteries was prevented even at a very high temperature equal to or higher than the melting point of polyethylene by contacting the crosslinked polyethylene microporous membrane layer having excellent heat resistance to the negative electrode plate side. Since this does not occur, it is considered that a battery having high heat resistance can be obtained even when some abnormality such as an external short circuit occurs and the battery generates heat.

【0045】一方、比較例2,4では、正極板側に架橋
していないポリエチレン微多孔質膜層を当接したため、
高温性能は良好であるが、セパレータの耐熱性が低いた
め、ポリエチレンの融点以上に電池が加熱された場合に
は、ポリエチレンの溶融に伴う流動によりセパレータが
破膜・破断し、電池の短絡が生じた。
On the other hand, in Comparative Examples 2 and 4, since the non-crosslinked polyethylene microporous membrane layer was in contact with the positive electrode plate side,
High temperature performance is good, but due to the low heat resistance of the separator, if the battery is heated above the melting point of polyethylene, the separator will break and break due to the flow accompanying the melting of polyethylene, causing a short circuit in the battery. Was.

【0046】比較例1,3では、耐熱性に優れる架橋し
たポリエチレン微多孔膜を用いているため、ポリエチレ
ンの融点以上まで電池が加熱された場合においても、セ
パレータの破膜等は生じず、電池が短絡することはなか
ったが、高温サイクル及び放置性能は非常に劣るもので
あった。これは、これらの試験においては、正極板側が
強い酸化雰囲気下にさらされるため、ポリエチレンの架
橋部が切断し、発生したラジカルにより、連鎖的に進行
するポリエチレン(セパレータ)の劣化反応や同じく生
成したラジカルによる電解液の分解反応が促進されたこ
とが原因であると考えられる。また、この架橋の切断に
より、セパレータの機械強度が著しく低下する問題も認
められた。
In Comparative Examples 1 and 3, since a crosslinked polyethylene microporous film having excellent heat resistance was used, even when the battery was heated to a temperature higher than the melting point of polyethylene, the separator did not break, and the battery was not damaged. Although no short circuit occurred, the high-temperature cycle and standing performance were very poor. This is because, in these tests, the positive electrode plate side was exposed to a strong oxidizing atmosphere, so that the cross-linked portion of the polyethylene was cut, and the generated radicals caused the degradation reaction of the polyethylene (separator) that proceeded in a chain and likewise generated. It is considered that the reason is that the decomposition reaction of the electrolytic solution by the radical was promoted. In addition, there was also a problem that the mechanical strength of the separator was significantly reduced due to the cutting of the cross-link.

【0047】以上の結果より、架橋したポリエチレン微
多孔質膜の第1の層と、架橋していないポリエチレン微
多孔質膜の第2の層とを有する多層セパレータであっ
て、かつ正極板に前記第2の架橋していないポリエチレ
ン微多孔質膜の層を当接して配することにより、高温サ
イクル寿命、高温放置性能に優れ、かつ、耐熱性に優れ
た電池を提供することが可能であることがわかった。さ
らに、セパレータの正極板に当接する前記架橋していな
いポリエチレン微多孔質膜として、重量平均分子量が1
00万以上250万以下の架橋していないポリエチレン
微多孔質膜を用いることにより、この効果がより顕著に
現れることがわかった。
From the above results, it is a multilayer separator having a first layer of a crosslinked polyethylene microporous membrane and a second layer of an uncrosslinked polyethylene microporous membrane, and the positive electrode plate has the above-mentioned structure. By arranging the second non-crosslinked polyethylene microporous membrane layer in contact, it is possible to provide a battery having excellent high-temperature cycle life, high-temperature storage performance, and excellent heat resistance. I understood. Further, as the non-crosslinked polyethylene microporous membrane which is in contact with the positive electrode plate of the separator, the weight average molecular weight is 1
It has been found that this effect is more remarkably exhibited by using a non-crosslinked polyethylene microporous membrane having a size of from 0,000,000 to 2.5,000,000.

【0048】[0048]

【発明の効果】本発明によれば、高温サイクル寿命、放
置性能及び耐熱性に優れる電池を作製することができ、
高温下で使用される電子機器の高性能化を測ることが可
能となる。
According to the present invention, a battery having excellent high-temperature cycle life, standing performance and heat resistance can be produced.
It is possible to measure the high performance of electronic devices used at high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の角形非水電解質二次電池の構成断面
図である。
FIG. 1 is a configuration sectional view of a prismatic nonaqueous electrolyte secondary battery of the present embodiment.

【符号の説明】[Explanation of symbols]

1 非水電解質二次電池 2 電極群 3 正極 4 負極 5 セパレータ 6 電池ケース 7 蓋 8 安全弁 9 正極端子 10 正極リード DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Lid 8 Safety valve 9 Positive electrode terminal 10 Positive electrode lead

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、負極と、セパレータと、非水電解
質とを備えた非水電解質二次電池において、前記セパレ
ータが、架橋したポリエチレン微多孔質膜の第1の層
と、架橋していないポリエチレン微多孔質膜の第2の層
とを有する多層セパレータであって、正極板に前記第2
の層が当接されてなることを特徴とする非水電解質二次
電池。
1. A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the separator is cross-linked with a first layer of a cross-linked polyethylene microporous membrane. And a second layer of a polyethylene microporous membrane, wherein the positive electrode plate has the second layer.
A non-aqueous electrolyte secondary battery characterized by being contacted with a layer of:
【請求項2】前記架橋していないポリエチレン微多孔質
膜が、重量平均分子量が100万以上250万以下のポ
リエチレンからなる微多孔質膜であることを特徴とする
請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte according to claim 1, wherein the non-crosslinked polyethylene microporous membrane is a microporous membrane made of polyethylene having a weight average molecular weight of 1,000,000 to 2.5,000,000. Rechargeable battery.
JP2000296602A 2000-09-28 2000-09-28 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4910230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296602A JP4910230B2 (en) 2000-09-28 2000-09-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296602A JP4910230B2 (en) 2000-09-28 2000-09-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002110126A true JP2002110126A (en) 2002-04-12
JP4910230B2 JP4910230B2 (en) 2012-04-04

Family

ID=18778855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296602A Expired - Fee Related JP4910230B2 (en) 2000-09-28 2000-09-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4910230B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017411A1 (en) * 2001-08-06 2003-02-27 Sony Corporation Non-aqueous electrolytic battery and its manufacturing method
CN110326128A (en) * 2018-01-31 2019-10-11 株式会社Lg化学 Diaphragm includes the lithium secondary battery of diaphragm and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359947A (en) * 1989-07-27 1991-03-14 Nitto Denko Corp Separator for battery and battery using the separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359947A (en) * 1989-07-27 1991-03-14 Nitto Denko Corp Separator for battery and battery using the separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017411A1 (en) * 2001-08-06 2003-02-27 Sony Corporation Non-aqueous electrolytic battery and its manufacturing method
US7132194B2 (en) 2001-08-06 2006-11-07 Sony Corporation Non-aqueous electrolytic battery and its manufacturing method
CN110326128A (en) * 2018-01-31 2019-10-11 株式会社Lg化学 Diaphragm includes the lithium secondary battery of diaphragm and its manufacturing method
US20200006737A1 (en) * 2018-01-31 2020-01-02 Lg Chem, Ltd. Separator, lithium secondary battery including separator, and manufacturing method thereof
JP2020511736A (en) * 2018-01-31 2020-04-16 エルジー・ケム・リミテッド Separation membrane, lithium secondary battery including the same, and method for manufacturing the same
US11637311B2 (en) 2018-01-31 2023-04-25 Lg Chem, Ltd. Separator, lithium secondary battery including separator, and manufacturing method thereof

Also Published As

Publication number Publication date
JP4910230B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
KR102284480B1 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery containing the same, and manufacturing method of the electrode-electrolyte assembly
KR100587438B1 (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
EP2238643B1 (en) Pouch-type lithium secondary battery
US20040096733A1 (en) Battery
EP3193396A1 (en) Non-aqueous electrolyte battery, method for manufacturing same, and non-aqueous electrolyte battery system
KR20060106622A (en) Negative electrode for non-aqueous secondary battery
KR19980024955A (en) Battery electrode and battery containing same
KR102600124B1 (en) Electrode with Insulation Film, Manufacturing Method thereof, and Lithium Secondary Battery Comprising the Same
KR102390657B1 (en) Electrode with Insulation Film, Manufacturing Method thereof, and Lithium Secondary Battery Comprising the Same
US9490479B2 (en) Non-aqueous electrolyte battery
KR102510888B1 (en) Positive electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same
KR101025415B1 (en) Case for electrochemical device, preparation method thereof, and electrochemical device comprsing the same
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
KR101288650B1 (en) Separator and lithium secondary battery
JP4701599B2 (en) Nonaqueous electrolyte secondary battery
KR20170062170A (en) Heat resisting separator for secondary battery and lithium secondary battery comprising the same
KR100687377B1 (en) Non-aqueous electrolyte secondary battery
EP3996196A1 (en) Electrode assembly with insulation film formed on tab, manufacturing method thereof, and lithium secondary battery comprising same
JP2001185213A5 (en)
JP2004095382A (en) Lithium-ion secondary battery
JP2001273880A (en) Nonaqueous electrolyte secondary battery
JP2004172114A (en) Nonaqueous electrolyte secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP4910230B2 (en) Nonaqueous electrolyte secondary battery
JP3794283B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees