JP2002107387A - Current value detecting method and current value detecting device - Google Patents

Current value detecting method and current value detecting device

Info

Publication number
JP2002107387A
JP2002107387A JP2000295564A JP2000295564A JP2002107387A JP 2002107387 A JP2002107387 A JP 2002107387A JP 2000295564 A JP2000295564 A JP 2000295564A JP 2000295564 A JP2000295564 A JP 2000295564A JP 2002107387 A JP2002107387 A JP 2002107387A
Authority
JP
Japan
Prior art keywords
current
output voltage
secondary output
data
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000295564A
Other languages
Japanese (ja)
Inventor
Takeshi Kamata
武 鎌田
Masao Imamoto
正夫 今本
Tetsuo Furumoto
哲男 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP2000295564A priority Critical patent/JP2002107387A/en
Publication of JP2002107387A publication Critical patent/JP2002107387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current detecting method capable of accurately detecting current value, regardless of the scattering of primary side current versus secondary side voltage characteristics of a current transformer and detecting current range wider than in the conventional methods, even if using the core with the same cross-sectional area and a small current detector using the method at a low cost. SOLUTION: In a device for measuring a current value which flows from a secondary output voltage of the current transformer to a primary side measured conductor, a known primary conductor current with different amplitude is sent to the transformer, used in the device at the manufacturing stage. The secondary output voltage of the transformer, according to the sent current, is measured. Data for calculating primary side measured current value by using the secondary output voltage of the transformer is extracted from each device, and the extracted data are stored in the device side of each device. When the current flowing in the primary side conductor is measured using the device, the primary side measured current is calculated from the secondary output voltage of the transformer by using the data stored in each device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本件の発明は変流器を用いて
電流値を検出する検出方法及び検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting a current value using a current transformer.

【0002】[0002]

【従来の技術】従来の、変流器を用いた電流値検出にお
いては、複数の変流器をサンプルとして変流器の1次側
入力電流−2次側出力電圧特性を予め測定し、その電流
−電圧特性の平均が比例関係を保つ電流範囲において直
線近似を行い、出力電圧値と電流値を一義的に求める方
法が用いられている。
2. Description of the Related Art Conventionally, in current value detection using a current transformer, a primary-side input current-secondary-side output voltage characteristic of the current transformer is measured in advance using a plurality of current transformers as samples. A method is used in which linear approximation is performed in a current range in which the average of the current-voltage characteristics maintains a proportional relationship, and the output voltage value and the current value are uniquely obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法においては変流器の1次側入力電流−2次側出力電
圧特性が比例関係を保つ電流範囲において電流値の検出
を行うために、電流測定範囲を1次側電流値を大きい方
向に広げて測定するためには相応してコアの断面積を大
きくする必要があった。そのため、大型の変流器を用い
ることなり、コストが高くなるという問題があった。さ
らに、複数の変流器をサンプルとして、変流器の1次側
入力電流−2次側出力電圧特性の平均が比例関係を保つ
電流範囲において直線近似を行い、その結果を代表させ
て全ての電流検出装置に適用して出力電圧値と電流値を
一義的に求める方法を用いるために、実際の装置に用い
る個々の変流器の特性のばらつきには対応できず誤差を
生じるという課題があった。
However, in the conventional method, the current value is detected in a current range in which the primary-side input current-secondary-side output voltage characteristic of the current transformer maintains a proportional relationship. In order to extend the measurement range and increase the primary-side current value in the larger direction, it was necessary to correspondingly increase the cross-sectional area of the core. Therefore, there is a problem that a large current transformer is used and the cost is increased. Further, using a plurality of current transformers as a sample, linear approximation is performed in a current range in which the average of the primary-side input current-secondary-side output voltage characteristics of the current transformers is in a proportional relationship, and the result is represented by Since this method is applied to a current detection device to uniquely determine the output voltage value and the current value, there is a problem that it is impossible to cope with variations in characteristics of individual current transformers used in an actual device and an error occurs. Was.

【0004】そこで本件の発明の目的とするところは、
実際の装置に用いる変流器の1次側電流―2次側電圧特
性のばらつきにかかわらず高精度に電流値を検出し、同
一の断面積のコアを用いても従来の方法より広い電流範
囲の検出を可能にする電流検出方法と、該方法を用いた
低コストで小さな電流検出装置を提供することにある。
Therefore, the object of the present invention is as follows.
The current value is detected with high accuracy regardless of the variation of the primary side current-secondary side voltage characteristics of the current transformer used in the actual device, and the current range is wider than the conventional method even if the core with the same cross-sectional area is used. It is an object of the present invention to provide a current detection method that enables detection of a current, and a low-cost and small current detection device using the method.

【0005】[0005]

【課題を解決しようとするための手段】上述の目的を達
成するため、請求項1は、変流器の2次出力電圧から1
次側被測定導体に流れている電流値を測定する装置にお
いて、装置の製造段階で、装置に用いる変流器に大きさ
の異なる既知の1次導体電流を通電し、通電した電流に
応じた変流器の2次出力電圧を計測し、通電した1次電
流と計測した2次出力電圧から、変流器の2次出力電圧
を用いて1次側被測定電流値を演算するためのデータを
装置毎に抽出し、抽出したデータを装置毎に装置側に記
憶させておき、装置を使用して1次側導体に流れる電流
を測定する際は、装置毎に記憶した前記データを用いて
変流器の2次出力電圧から1次側被測定電流を演算して
求めるようにしている。
SUMMARY OF THE INVENTION To achieve the above object, a first aspect of the present invention is to reduce the secondary output voltage of a current transformer by one.
In a device for measuring a current value flowing in a secondary side measured conductor, a known primary conductor current having a different size is applied to a current transformer used in the device at a manufacturing stage of the device, and the current is changed according to the applied current. Data for measuring the secondary output voltage of the current transformer and calculating the primary-side measured current value using the secondary output voltage of the current transformer from the energized primary current and the measured secondary output voltage. Is extracted for each device, the extracted data is stored in the device for each device, and when measuring the current flowing through the primary conductor using the device, the data stored for each device is used. The primary-side measured current is calculated from the secondary output voltage of the current transformer.

【0006】また請求項2では、前記データは、複数の
1次導体電流値と対応する2次出力電圧の値であって、
計測した2次出力電圧を基準として近傍の前記データの
うちの高低2点からの直線近似によって電流値を算出す
るものである。
According to a second aspect, the data is a value of a secondary output voltage corresponding to a plurality of primary conductor current values,
Based on the measured secondary output voltage, a current value is calculated by linear approximation from two high and low points in the data in the vicinity.

【0007】また請求項3では、前記データは、1次導
体電流値と2次出力電圧の値であって、幾何解析により
得た線形関数に計測した2次出力電圧を代入して1次電
流を解析するものである。
According to a third aspect of the present invention, the data is a primary conductor current value and a secondary output voltage value, and the measured secondary output voltage is substituted into a linear function obtained by geometrical analysis. Is to be analyzed.

【0008】また請求項4では、前記データは、2次出
力電圧から1次導体電流を求める演算式の係数であるよ
うにしたものである。
According to a fourth aspect of the present invention, the data is a coefficient of an arithmetic expression for calculating a primary conductor current from a secondary output voltage.

【0009】また請求項5では、前記データは、2次出
力電圧から1次導体電流を求める演算式であるものであ
る。
According to a fifth aspect of the present invention, the data is an arithmetic expression for calculating a primary conductor current from a secondary output voltage.

【0010】また請求項6では、電流値検出装置を、変
流器と、変流器の2次電圧測定手段と、前記の演算デー
タ記憶手段と、演算手段から構成し、請求項1から請求
項5に記載の電流値算出方法によって電流値を検出する
ようにしたものである。
According to a sixth aspect of the present invention, the current value detecting device comprises a current transformer, a secondary voltage measuring means of the current transformer, the arithmetic data storage means, and an arithmetic means. The current value is detected by the current value calculation method described in Item 5.

【0011】[0011]

【発明の実施の形態】次に本発明の一実施例を図面にて
詳細に説明する。図1は電流検出装置の製造工程におけ
る第一の方法の説明図である。図2は、変流器の1次側
入力電流値−2次側出力電圧値特性を示した略図であ
る。図3は、図2よりコアの断面積が大きな変流器にお
ける1次側入力電流値−2次側出力電圧値特性を示した
略図である。図4は、変流器における1次側入力電流値
−2次側出力電圧値特性の解析を示した略図である。図
5は、1次側入力電流値データ、2次側出力電圧値デー
タの記憶手段における記憶データ例を示した図である。
図6は、電流検出装置の構成を示した図である。図7
は、第一の演算の概略イメージを示した図である。図8
は、第二の演算の概略イメージを示した図である。図9
は、製造工程における電流検出装置の第二の方法を示し
た図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram of a first method in a manufacturing process of the current detection device. FIG. 2 is a schematic diagram showing a primary-side input current value-secondary-side output voltage value characteristic of a current transformer. FIG. 3 is a schematic diagram showing a primary-side input current value-secondary-side output voltage value characteristic of a current transformer having a larger core cross-sectional area than that of FIG. FIG. 4 is a schematic diagram showing an analysis of a primary-side input current value-secondary-side output voltage value characteristic in a current transformer. FIG. 5 is a diagram showing an example of data stored in storage means for primary-side input current value data and secondary-side output voltage value data.
FIG. 6 is a diagram illustrating a configuration of the current detection device. FIG.
FIG. 4 is a diagram showing a schematic image of a first calculation. FIG.
FIG. 4 is a diagram showing a schematic image of a second operation. FIG.
FIG. 4 is a view showing a second method of the current detection device in the manufacturing process.

【0012】図1において、1は被測定導体、2は前記
導体に流れる電流値を測定する電流測定手段、3は前記
導体1を貫通し2次側出力電圧出力を得る変流器、4は
変流器から得られる出力電圧を測定する出力電圧測定手
段、5は前記1次入力電流値データ及び前記2次出力電
圧値データを記憶するデータ記憶手段、6は前記データ
に基づいて、2次側出力電圧値に対する1次入力電流値
を演算により近似的に算出する演算手段であって、3か
ら6は製品にそのまま用いるもの、1、2は、製造工程
のみで用いるものである。
In FIG. 1, 1 is a conductor to be measured, 2 is a current measuring means for measuring a value of a current flowing through the conductor, 3 is a current transformer which penetrates the conductor 1 to obtain a secondary side output voltage output, and 4 is a current transformer. Output voltage measuring means for measuring an output voltage obtained from the current transformer, 5 is data storage means for storing the primary input current value data and the secondary output voltage value data, and 6 is a secondary storage based on the data. Calculation means for approximately calculating the primary input current value with respect to the side output voltage value by calculation, wherein 3 to 6 are used as they are for the product, and 1 and 2 are used only in the manufacturing process.

【0013】製造工程においては導体1を変流器3に貫
通させ電流を流す。電流測定手段2により導体1に流れ
る電流を測定し、出力電圧測定手段4にて変流器3から
発生する電圧を測定する。1次入力電流値を種々変えて
2次出力電圧値の測定を行い、データ記憶手段5に1次
入力電流値毎の2次出力電圧値を記憶させる。演算手段
6には前記データ記憶手段5のデータを用いて、変流器
の2次出力電圧から1次入力電流を算出するための計算
式を記憶させておく。
In the manufacturing process, a current flows through the conductor 1 through the current transformer 3. The current flowing through the conductor 1 is measured by the current measuring means 2, and the voltage generated from the current transformer 3 is measured by the output voltage measuring means 4. The secondary output voltage value is measured by changing the primary input current value variously, and the data storage means 5 stores the secondary output voltage value for each primary input current value. Using the data of the data storage means 5, the calculation means 6 stores a calculation formula for calculating the primary input current from the secondary output voltage of the current transformer.

【0014】図2には変流器における1次側入力電流値
−2次出力電圧値特性を示している。変流器への1次入
力電流が大きくなるにつれて2次出力電圧値は増加して
いく。1次入力電流が小さいうちは1次入力電流−2次
出力電圧特性は比例関係を保つように変化するが、1次
入力電流が大きくなってくると1次入力電流−2次出力
電圧特性は比例関係からは外れ、ある一定値に向かって
飽和していく傾向を見せる。理想的な変流器においては
図中直線で示したように1次入力電流−2次出力電圧特
性は比例関係を保ったままである。
FIG. 2 shows a primary side input current value-secondary output voltage value characteristic of the current transformer. The secondary output voltage value increases as the primary input current to the current transformer increases. While the primary input current is small, the primary input current-secondary output voltage characteristics change so as to maintain a proportional relationship, but as the primary input current increases, the primary input current-secondary output voltage characteristics change. It shows a tendency to saturate toward a certain value, deviating from the proportional relationship. In an ideal current transformer, the primary input current-secondary output voltage characteristic remains proportional as shown by the straight line in the figure.

【0015】図3には図2に示した変流器よりコアの断
面積が大きな変流器においての1次入力電流−2次出力
電圧特性を示している。この図のように、図2の場合と
比べて大きい電流まで比例関係が保たれる。これらのよ
うに1次電流の大きさによっては2次出力電圧は比例関
係から外れるために、従来の直線近似を用いた電流検出
方法では必然的に誤差が生じる。また大きな電流を測定
する場合には比例関係を保つ部分が大きくなるような、
コアの断面積が大きな変流器を用いて測定を行う必要が
あった。
FIG. 3 shows a primary input current-secondary output voltage characteristic in a current transformer having a larger core cross-sectional area than the current transformer shown in FIG. As shown in this figure, the proportional relationship is maintained up to a larger current than in the case of FIG. As described above, since the secondary output voltage deviates from the proportional relationship depending on the magnitude of the primary current, an error necessarily occurs in the conventional current detection method using linear approximation. Also, when measuring a large current, the part that maintains the proportional relationship becomes large,
It was necessary to perform measurement using a current transformer with a large core cross-sectional area.

【0016】図4には製造工程における種々の測定入力
電流とそのときの出力電圧値を示している。図中i1
2、・・inは1次入力電流値を示しており、V1
2、・・Vnはそれぞれの電流に対応する2次出力電圧
値を示している。α1、α2、・・αnは理想変流器の2
次出力電圧と実際の変流器の2次出力電圧の差を示して
いる。電流が大きくなるに伴い、差αi(i=1〜n)
が大きくなっている。
FIG. 4 shows various measured input currents and output voltage values at that time in the manufacturing process. In the figure, i 1 ,
i 2 ,... i n indicate primary input current values, and V 1 ,
V 2 ,... V n indicate secondary output voltage values corresponding to the respective currents. α 1, α 2, 2 of ·· α n is the ideal current transformer
It shows the difference between the secondary output voltage and the secondary output voltage of the actual current transformer. As the current increases, the difference α i (i = 1 to n)
Is getting bigger.

【0017】図5にはデータ記憶手段5に記憶される電
流値データと電圧値データの例を示している。
FIG. 5 shows an example of current value data and voltage value data stored in the data storage means 5.

【0018】演算手段6における演算方法について二通
りの例を示す。第一にデータ記憶手段5に記憶されたデ
ータを用いて実際の電流検出時に得られた出力電圧から
電流値を算出する方法である。実際の測定で得られた出
力電圧をVmとした場合、そのVmを基準とする直近の高
低の記憶データViおよびV(i+1)(大小関係はVi≦V m
≦V(i+1))をデータ記憶手段5から抽出し、対応する
電流値データIiおよびI(i+1)を抽出する。図7に示し
たように、これらVi、V(i+1)、Ii、I(i+1)の4つの
データを基に直線近似を行い測定出力電圧Vmに対応す
る電流Imを算出する。
There are two types of calculation methods in the calculation means 6.
An example is shown below. First, the data stored in the data storage means 5 is stored.
From the output voltage obtained during actual current detection using
This is a method of calculating a current value. Output obtained by actual measurement
Force voltage to Vm, Then VmThe latest height relative to
Low storage data ViAnd V(i + 1)(The relationship is Vi≤V m
≤V(i + 1)) Is extracted from the data storage means 5 and the corresponding
Current value data IiAnd I(i + 1)Is extracted. Shown in FIG.
As mentioned, these Vi, V(i + 1), Ii, I(i + 1)Four of
Perform a linear approximation based on the data and measure the output voltage VmCorresponding to
Current ImIs calculated.

【0019】第二はデータ記憶手段5に記憶されたデー
タを基に変流器の電流−電圧特性を幾何関数にて近似さ
せる方法である。変流器の電流−電圧特性の振る舞い
は、変流器3を貫通する導体1に電流を流すことで、変
流器を形成するコアに存在する磁気モーメントに環状磁
界が働き磁化を生ずる。コアには強磁性体材料を用いる
ため一般としてワイス理論を適用した場合、入力電流I
と出力電圧Vとの関係は V=a・tanh(b・I) (a、bは定数) として示されるため、簡易的にこの幾何関数に対して記
憶されたデータを適用し定数を定める。図8に示したよ
うに、実際の測定で得られた出力電圧をVmとした場
合、そのVmに対応する電流Imを上式より算出し電流を
検出する。
A second method is to approximate the current-voltage characteristics of the current transformer with a geometric function based on the data stored in the data storage means 5. The behavior of the current-voltage characteristic of the current transformer is as follows. When a current flows through the conductor 1 passing through the current transformer 3, an annular magnetic field acts on a magnetic moment existing in a core forming the current transformer to generate magnetization. When a Weiss theory is generally applied because a ferromagnetic material is used for the core, the input current I
Is expressed as V = a · tanh (b · I) (where a and b are constants), and the constant stored is simply applied to this geometric function to determine the constant. As shown in FIG. 8, if the output voltage obtained by actual measurement was V m, for detecting a current was calculated from the above equation current I m corresponding to the V m.

【0020】本実施例で示した電流検出の方法は、製造
工程時に測定しておいた入力電流値データおよび出力電
圧値データに基づいて、製品時における実際の入力電流
を算出するため、製造工程で計算する1次電流に対応す
る2次出力電圧のデータの数が増えるほど装置の精度は
よくなる。
In the current detection method shown in this embodiment, an actual input current in a product is calculated based on input current value data and output voltage value data measured during the manufacturing process. The accuracy of the device improves as the number of data of the secondary output voltage corresponding to the primary current calculated in (1) increases.

【0021】図6には電流検出装置の構成図を示してい
る。装置は変流器3と、出力電圧測定手段4と、データ
記憶手段5と、演算手段6とを含んで構成され、検出電
流値データを出力するアウトプット手段を設けている。
実際の電流検出には変流器3を貫通した導体1に流れる
電流により発生する出力電圧を出力電圧測定手段4にて
測定し、その結果を演算手段6が受けて、演算手段6は
設定された算出方法に応じてデータ蓄積手段5から適当
なデータを抽出し算出された電流値データをアウトプッ
ト手段へ出力する。
FIG. 6 shows a configuration diagram of the current detecting device. The device includes a current transformer 3, output voltage measuring means 4, data storage means 5, and arithmetic means 6, and is provided with output means for outputting detected current value data.
For the actual current detection, the output voltage generated by the current flowing through the conductor 1 passing through the current transformer 3 is measured by the output voltage measuring means 4, and the result is received by the calculating means 6, and the calculating means 6 is set. Appropriate data is extracted from the data storage means 5 according to the calculation method, and the calculated current value data is output to the output means.

【0022】図9は製造工程における電流検出装置の設
定の第二の方法を示している。製造工程において電流測
定手段2により導体1に流れる電流を測定し、出力電圧
測定手段4にて変流器3から発生する電圧を測定する。
これら入力電流値と出力電圧値を設定手段7に入力し、
設定手段7において、最適な幾何関数にフィッティング
を行い最適な係数と関数を設定する。設定された係数と
関数ははデータとして記憶手段8に入力され、記憶させ
ておく。以上において関数と係数は関数はある一つに定
めておき、係数のみを設定し、記憶する方法もある。
FIG. 9 shows a second method of setting the current detection device in the manufacturing process. In the manufacturing process, the current flowing through the conductor 1 is measured by the current measuring means 2, and the voltage generated from the current transformer 3 is measured by the output voltage measuring means 4.
These input current value and output voltage value are input to the setting means 7,
The setting means 7 performs fitting to an optimal geometric function to set optimal coefficients and functions. The set coefficients and functions are input to the storage means 8 as data and stored. In the above, there is a method in which the function and the coefficient are set to a certain one, and only the coefficient is set and stored.

【0023】[0023]

【発明の効果】本実施例の電流検出方法によれば、個々
の変流器ごとに製造工程で電流−電圧特性を測定してお
くために、個々の検出装置における変流器の電流―電圧
特性のばらつきにかかわらず正しい電流値を検出するこ
とが可能である。また、電流−電圧特性が比例関係を保
てない電流範囲においても製造時に得たデータを記憶し
そのデータから算出することでコアの断面積が小さな変
流器においても精度よく広い電流範囲の検出を可能にす
る電流検出方法を提供することが可能である。さらに、
使用する変流器を小さなものにすることができるため、
低コストで大きさも小さくできる電流検出装置を提供す
ることが可能である。
According to the current detecting method of this embodiment, the current-voltage characteristics of the current transformer in each detecting device are measured in order to measure the current-voltage characteristics in the manufacturing process for each current transformer. It is possible to detect a correct current value regardless of variations in characteristics. Even in a current range where the current-voltage characteristic cannot maintain a proportional relationship, data obtained at the time of manufacturing is stored and calculated from the data, so that a wide current range can be accurately detected even in a current transformer having a small cross-sectional area of a core. Can be provided. further,
Since the current transformer used can be small,
It is possible to provide a current detection device that can be reduced in size at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製造工程における電流検出装置の設定の方法を
示した図である。
FIG. 1 is a diagram showing a method of setting a current detection device in a manufacturing process.

【図2】変流器における入力電流値−出力電圧値特性を
示した概略図である。
FIG. 2 is a schematic diagram showing an input current value-output voltage value characteristic in a current transformer.

【図3】コアの断面積の大きな変流器における入力電流
値−出力電圧値特性を示した概略図である。
FIG. 3 is a schematic diagram showing an input current value-output voltage value characteristic in a current transformer having a large cross-sectional area of a core.

【図4】変流器における入力電流値−出力電圧値特性の
解析を示した概略図である。
FIG. 4 is a schematic diagram showing an analysis of an input current value-output voltage value characteristic in a current transformer.

【図5】入力電流値データ、出力電圧値データの記憶手
段における記憶データ例を示した図である。
FIG. 5 is a diagram showing an example of data stored in storage means for input current value data and output voltage value data.

【図6】電流検出装置の構成を示した図である。FIG. 6 is a diagram showing a configuration of a current detection device.

【図7】演算の概略イメージを示した図である。FIG. 7 is a diagram showing a schematic image of a calculation.

【図8】第二の演算の概略イメージを示した図である。FIG. 8 is a diagram showing a schematic image of a second calculation.

【図9】製造工程における電流検出装置の第二の設定の
方法を示した図である。
FIG. 9 is a diagram showing a second setting method of the current detection device in a manufacturing process.

【符号の説明】[Explanation of symbols]

1 導体 2 電流測定手段 3 変流器 4 出力電圧測定手段 5 データ記憶手段 6 演算手段 DESCRIPTION OF SYMBOLS 1 Conductor 2 Current measuring means 3 Current transformer 4 Output voltage measuring means 5 Data storage means 6 Arithmetic means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】変流器の2次出力電圧から1次側被測定導
体に流れている電流値を測定する装置において、装置の
製造段階で、装置に用いる変流器に大きさの異なる既知
の1次導体電流を通電し、通電した電流に応じた変流器
の2次出力電圧を計測し、通電した1次電流と計測した
2次出力電圧から、変流器の2次出力電圧を用いて1次
側被測定電流値を演算するためのデータを装置毎に抽出
し、抽出したデータを装置毎に装置側に記憶させてお
き、装置を使用して1次側導体に流れる電流を測定する
際は、装置毎に記憶した前記データを用いて変流器の2
次出力電圧から1次側被測定電流を演算して求めること
を特徴とする電流値検出方法。
An apparatus for measuring the value of a current flowing in a conductor to be measured on a primary side from a secondary output voltage of a current transformer. And the secondary output voltage of the current transformer according to the supplied current is measured, and the secondary output voltage of the current transformer is calculated from the supplied primary current and the measured secondary output voltage. The data for calculating the primary-side measured current value is extracted for each device by using the device, and the extracted data is stored in the device for each device, and the current flowing through the primary-side conductor is determined using the device. At the time of measurement, the current transformer 2
A current value detection method, wherein a primary-side measured current is calculated and obtained from a secondary output voltage.
【請求項2】前記データは、複数の1次導体電流値と対
応する2次出力電圧の値であって、計測した2次出力電
圧を基準として近傍の前記データのうちの高低2点から
の直線近似によって電流値を算出することを特徴とした
請求項1記載の電流値検出方法。
2. The data according to claim 1, wherein said data is a value of a secondary output voltage corresponding to a plurality of primary conductor current values, and is a value from two high and low points of said data based on the measured secondary output voltage. The current value detection method according to claim 1, wherein the current value is calculated by linear approximation.
【請求項3】前記データは、1次導体電流値と2次出力
電圧の値であって、幾何解析により得た線形関数に計測
した2次出力電圧を代入して1次電流を解析することを
特徴とした請求項1記載の電流値検出方法。
3. The primary current is analyzed by substituting the measured secondary output voltage into a linear function obtained by geometric analysis, wherein the data is a primary conductor current value and a secondary output voltage value. The current value detection method according to claim 1, wherein:
【請求項4】前記データは、2次出力電圧から1次導体
電流を求める演算式の係数であることを特徴とした請求
項1記載の電流値検出方法。
4. The current value detection method according to claim 1, wherein said data is a coefficient of an arithmetic expression for calculating a primary conductor current from a secondary output voltage.
【請求項5】前記データは、2次出力電圧から1次導体
電流を求める演算式であることを特徴とした請求項1記
載の電流値検出方法。
5. The current value detection method according to claim 1, wherein said data is an arithmetic expression for calculating a primary conductor current from a secondary output voltage.
【請求項6】変流器と、変流器の2次電圧測定手段と、
前記の演算データ記憶手段と、演算手段とを含み、請求
項1から請求項5のいずれかに記載の電流値算出方法に
よって電流値を検出することを特徴とする電流値検出装
置。
6. A current transformer, means for measuring a secondary voltage of the current transformer,
6. A current value detection device comprising the operation data storage means and the operation means, and detecting a current value by the current value calculation method according to claim 1.
JP2000295564A 2000-09-28 2000-09-28 Current value detecting method and current value detecting device Pending JP2002107387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295564A JP2002107387A (en) 2000-09-28 2000-09-28 Current value detecting method and current value detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295564A JP2002107387A (en) 2000-09-28 2000-09-28 Current value detecting method and current value detecting device

Publications (1)

Publication Number Publication Date
JP2002107387A true JP2002107387A (en) 2002-04-10

Family

ID=18777973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295564A Pending JP2002107387A (en) 2000-09-28 2000-09-28 Current value detecting method and current value detecting device

Country Status (1)

Country Link
JP (1) JP2002107387A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281881A (en) * 2008-05-22 2009-12-03 Mitsubishi Electric Corp Temperature correction method for current sensor device, power conversion device and power sensor device
CN103592501A (en) * 2013-11-27 2014-02-19 国家电网公司 Low-voltage current measuring bar
JP2015109440A (en) * 2013-12-05 2015-06-11 エルエス産電株式会社Lsis Co., Ltd. Power device including current transformer and compensation method for current transformer
CN105116201A (en) * 2015-09-29 2015-12-02 广东电网有限责任公司佛山供电局 Measuring device and method for return voltage parameter
JP6319929B1 (en) * 2017-03-24 2018-05-09 竹内マネージメント株式会社 DC ground fault detection device, solar power generation system, and program
JP2022182239A (en) * 2021-05-28 2022-12-08 三菱電機株式会社 Power conversion device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431017A (en) * 1987-07-28 1989-02-01 Omron Tateisi Electronics Co Sensor controller
JPH0514866A (en) * 1991-06-28 1993-01-22 Sony Corp Video signal transmission method
JPH0875499A (en) * 1994-09-07 1996-03-22 Rika Kogyo Kk Measurement data processing device and method therefor
JPH10153625A (en) * 1996-11-20 1998-06-09 Daikin Ind Ltd Input-current detecting circuit using current transformer
JPH10197567A (en) * 1996-12-27 1998-07-31 Yupiteru Ind Co Ltd Current measuring instrument
JPH10197284A (en) * 1997-01-16 1998-07-31 Opt Kk Measuring unit
JPH10253386A (en) * 1997-03-14 1998-09-25 Power Reactor & Nuclear Fuel Dev Corp Variable quantity distribution estimating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431017A (en) * 1987-07-28 1989-02-01 Omron Tateisi Electronics Co Sensor controller
JPH0514866A (en) * 1991-06-28 1993-01-22 Sony Corp Video signal transmission method
JPH0875499A (en) * 1994-09-07 1996-03-22 Rika Kogyo Kk Measurement data processing device and method therefor
JPH10153625A (en) * 1996-11-20 1998-06-09 Daikin Ind Ltd Input-current detecting circuit using current transformer
JPH10197567A (en) * 1996-12-27 1998-07-31 Yupiteru Ind Co Ltd Current measuring instrument
JPH10197284A (en) * 1997-01-16 1998-07-31 Opt Kk Measuring unit
JPH10253386A (en) * 1997-03-14 1998-09-25 Power Reactor & Nuclear Fuel Dev Corp Variable quantity distribution estimating method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281881A (en) * 2008-05-22 2009-12-03 Mitsubishi Electric Corp Temperature correction method for current sensor device, power conversion device and power sensor device
JP4753966B2 (en) * 2008-05-22 2011-08-24 三菱電機株式会社 Power conversion device and temperature correction method for current sensor device
CN103592501A (en) * 2013-11-27 2014-02-19 国家电网公司 Low-voltage current measuring bar
JP2015109440A (en) * 2013-12-05 2015-06-11 エルエス産電株式会社Lsis Co., Ltd. Power device including current transformer and compensation method for current transformer
US9612275B2 (en) 2013-12-05 2017-04-04 Lsis Co., Ltd. Power device including current transformer and method for compensating of current transformer
KR101798689B1 (en) * 2013-12-05 2017-11-16 엘에스산전 주식회사 Power device including current transformer and method for compensating of current trnasformer
CN105116201A (en) * 2015-09-29 2015-12-02 广东电网有限责任公司佛山供电局 Measuring device and method for return voltage parameter
JP6319929B1 (en) * 2017-03-24 2018-05-09 竹内マネージメント株式会社 DC ground fault detection device, solar power generation system, and program
JP2018164340A (en) * 2017-03-24 2018-10-18 竹内マネージメント株式会社 Dc ground fault detection device, photovoltaic power generation system, and program
JP2022182239A (en) * 2021-05-28 2022-12-08 三菱電機株式会社 Power conversion device
JP7412388B2 (en) 2021-05-28 2024-01-12 三菱電機株式会社 power converter

Similar Documents

Publication Publication Date Title
US5432444A (en) Inspection device having coaxial induction and exciting coils forming a unitary coil unit
US10393775B2 (en) Current-measuring device and method for determining an electric current
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US11112434B2 (en) Sensor apparatus for measuring direct and alternating currents
JPH03235067A (en) Electromagnetic type conductivity meter and method for measuring conductivity
JP2002107387A (en) Current value detecting method and current value detecting device
JPS6352345B2 (en)
JP2009192510A (en) Magnetic field calibration method
JP2003075475A (en) Ac current sensor
JP2008107119A (en) Current sensor
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JP5257811B2 (en) Fast response and low current consumption non-contact DC current sensor
CN106291431A (en) A kind of tracking accuracy measuring method of current sensor
JPH09166626A (en) Sensor for detecting very small current superposed upon large alternating current
JP2001356059A (en) Torque measuring apparatus and method
CN116953335B (en) Device and method for detecting direct current signal or magnetic field
JP2001228120A (en) METHOD FOR Si CONCENTRATION MEASUREMENT OF STEEL PRODUCT
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JPH0815229A (en) High resolution eddy current flaw detector
JP2001337146A (en) Sensitivity calibration device for magnetic sensor
US20040080326A1 (en) Device and method for determining the sheet resistance of samples
JPH09288018A (en) Load cell
JP2002006014A (en) Magnetic sensor
CN114280350B (en) High-precision current sensor and shunt-based high-current measurement method
JPH04120456A (en) Nondestructive inspecting apparatus by skid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221