JP2002105221A - Heat-resistant film and print circuit board using it as substrate, and method of manufacturing them - Google Patents
Heat-resistant film and print circuit board using it as substrate, and method of manufacturing themInfo
- Publication number
- JP2002105221A JP2002105221A JP2000304455A JP2000304455A JP2002105221A JP 2002105221 A JP2002105221 A JP 2002105221A JP 2000304455 A JP2000304455 A JP 2000304455A JP 2000304455 A JP2000304455 A JP 2000304455A JP 2002105221 A JP2002105221 A JP 2002105221A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- temperature
- weight
- crystallization
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、エレクトロニクス
用部材等として好適に使用できる耐熱性フィルム及びこ
れを基材とするプリント配線基板並びにこれらの製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant film which can be suitably used as an electronic member, a printed wiring board using the same as a base material, and a method for producing the same.
【0002】[0002]
【従来の技術】ポリエーテルエーテルケトン樹脂に代表
される結晶性ポリアリールケトン樹脂は、耐熱性、難燃
性、耐加水分解性、耐薬品性などに優れている為、航空
機部品、電気・電子部品を中心に多く採用されている。
しかしながら、ポリアリールケトン樹脂は原料価格が非
常に高価な上、樹脂自体のガラス転移温度が約140〜
170℃程度と比較的低いことから、耐熱性等の改良検
討が種々行われてきた。その中でも良好な相溶性を示す
系として、非晶性ポリエーテルイミド樹脂とのブレンド
が注目されている。例えば、特開昭59−187054
号公報や特表昭61−500023号公報には、結晶性
ポリアリールケトン樹脂と非晶性ポリエーテルイミド樹
脂との混合組成物が開示されており、また、特開昭59
−115353号公報には、これらの組成物が回路板基
材に有用であることも開示されている。さらに、本発明
者等も特開2000−38464号公報、特開2000
−200950号公報等で上記混合組成物を用いたプリ
ント配線基板及びその製造方法を提案している。2. Description of the Related Art Crystalline polyaryl ketone resins typified by polyether ether ketone resins are excellent in heat resistance, flame retardancy, hydrolysis resistance, chemical resistance, etc., and are therefore used in aircraft parts, electric and electronic equipment. It is widely used mainly for parts.
However, polyaryl ketone resins are very expensive in raw materials and have a glass transition temperature of about 140 to
Since the temperature is relatively low at about 170 ° C., various studies for improving heat resistance and the like have been made. Among them, a blend with an amorphous polyetherimide resin has attracted attention as a system showing good compatibility. For example, JP-A-59-187054
JP-A No. 61-500023 and JP-A-61-500023 disclose a mixed composition of a crystalline polyarylketone resin and an amorphous polyetherimide resin.
JP-A-115353 also discloses that these compositions are useful for circuit board substrates. Further, the present inventors have also disclosed JP-A-2000-38464 and JP-A-2000-38464.
-200950 and the like have proposed a printed wiring board using the above mixed composition and a method for producing the same.
【0003】しかしながら、結晶性ポリアリールケトン
樹脂と非晶性ポリエーテルイミド樹脂との混合組成物
(通常、寸法安定性向上のため無機充填材等を含む)か
らなるフィルムを用いて、フレキシブルプリント配線基
板を作製すると、寸法安定性や耐熱性等は良好なもの
の、機械的強度、特に端裂強度は必ずしも充分なレベル
にはなく、耐折性、耐屈曲性が損なわれるため基板の接
続信頼性が確保出来ず、用途範囲が限定されてしまうと
いう問題があり、その改良が望まれていた。また、上記の
特許公報には、この原因や改良方法に関して何ら技術的
開示がなく示唆する記載もなかった。[0003] However, flexible printed wiring is used by using a film made of a mixed composition of a crystalline polyarylketone resin and an amorphous polyetherimide resin (usually containing an inorganic filler or the like for improving dimensional stability). When a board is manufactured, the dimensional stability and heat resistance are good, but the mechanical strength, especially the edge crack strength, is not always at a sufficient level, and the folding and bending resistances are impaired. However, there is a problem that the range of use is limited, and improvement thereof has been desired. In addition, the above patent publication has no technical disclosure about this cause or improvement method, and has no suggestion.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、エレ
クトロニクス用部材等として好適な、特に端裂強度が向
上された耐熱性フィルム及びこれを基材とするプリント
配線基板並びにこれらの製造方法を提供することにあ
る。SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat-resistant film which is suitable for use as a member for electronics and the like, and in particular, has an improved edge crack strength, a printed wiring board using the same as a base material, and a method for producing the same. To provide.
【0005】[0005]
【課題を解決するための手段】本発明者は、鋭意検討を
重ねた結果、結晶性ポリアリールケトン樹脂と非晶性ポ
リエーテルイミド樹脂との樹脂組成物を主成分とし、特
定の熱特性を付与することで、上記課題を解決すること
のできる耐熱性フィルム及びこれを基材とするプリント
配線基板並びにこれらの製造方法を見出し、本発明を完
成するに至った。すなわち、本発明の要旨とするところ
は、結晶融解ピーク温度が260℃以上であるポリアリ
ールケトン樹脂(A)70〜30重量%と非晶性ポリエ
ーテルイミド樹脂(B)30〜70重量%とからなる樹
脂組成物100重量部に対して無機充填材を5〜50重
量部の範囲で混合し、結晶化処理したフィルムであっ
て、該フィルムを示差走査熱量測定により加熱速度10
℃/分で昇温した時に吸熱ピークが少なくとも2つ現
れ、これらの吸熱ピークのうち、ポリアリールケトン樹脂
の結晶融解に由来する吸熱ピークよりも低温側に現れる
吸熱ピーク温度が260℃未満であることを特徴とする
耐熱性フィルムに存する。Means for Solving the Problems As a result of intensive studies, the present inventor has found that a resin composition comprising a crystalline polyarylketone resin and an amorphous polyetherimide resin as a main component has a specific thermal property. By providing such a film, a heat-resistant film, a printed wiring board using the same as a base material, and a method for producing the same, which can solve the above-described problems, have been completed, and the present invention has been completed. That is, the gist of the present invention is that the polyarylketone resin (A) having a crystal melting peak temperature of 260 ° C. or more is 70 to 30% by weight and the amorphous polyetherimide resin (B) is 30 to 70% by weight. A crystallization-treated film obtained by mixing an inorganic filler in a range of 5 to 50 parts by weight with respect to 100 parts by weight of a resin composition comprising
At least two endothermic peaks appear when the temperature is raised at a rate of ° C./min, and of these endothermic peaks, the endothermic peak temperature that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyarylketone resin is less than 260 ° C. A heat-resistant film characterized by that.
【0006】また、本発明の別の要旨は、結晶融解ピー
ク温度が260℃以上であるポリアリールケトン樹脂
(A)70〜30重量%と非晶性ポリエーテルイミド樹
脂(B)30〜70重量%とからなる樹脂組成物100
重量部に対して無機充填材を5〜50重量部の範囲で混
合したフィルムの少なくとも片面に接着層を介すること
なく導体箔を熱融着・結晶化処理し、この導体箔に導電
性回路を形成してなるプリント配線基板において、該フ
ィルムを示差走査熱量測定により加熱速度10℃/分で
昇温した時に吸熱ピークが少なくとも2つ現れ、これら
の吸熱ピークのうち、ポリアリールケトン樹脂の結晶融
解に由来する吸熱ピークよりも低温側に現れる吸熱ピー
ク温度が260℃未満であることを特徴とするプリント
配線基板に存する。Another gist of the present invention is that a polyarylketone resin (A) having a crystal melting peak temperature of 260 ° C. or more is 70 to 30% by weight and an amorphous polyetherimide resin (B) is 30 to 70% by weight. % Of the resin composition 100
A conductive foil is heat-sealed and crystallized on at least one side of a film in which an inorganic filler is mixed in a range of 5 to 50 parts by weight with respect to parts by weight, without using an adhesive layer. In the printed wiring board thus formed, at least two endothermic peaks appear when the film is heated at a heating rate of 10 ° C./min by differential scanning calorimetry, and of these endothermic peaks, the crystal melting of the polyarylketone resin Wherein the temperature of the endothermic peak appearing on the lower temperature side than the endothermic peak derived from is less than 260 ° C.
【0007】さらに、本発明の別の要旨は、上記の結晶
化処理を下記関係式を満足する温度範囲で行うことを特
徴とする上記の耐熱性フィルム又はプリント配線基板の
製造方法に存する。 Tc(A+B)−20≦Tx≦Tg(B)+20 ここで式中、Tc(A+B)は、結晶性ポリアリールケ
トン樹脂(A)と非晶性ポリエーテルイミド樹脂(B)
からなる樹脂組成物を示差走査熱量測定により昇温した
ときに発現する結晶化温度(℃)を示し、また、Tg
(B)は、非晶性ポリエーテルイミド樹脂(B)単体の
ガラス転移温度(℃)を示し、さらにTxは、結晶化処
理温度(℃)を示す。また、上記結晶性ポリアリールケ
トン樹脂としては、下記構造式(1)の繰り返し単位を
有するポリエーテルエーテルケトン樹脂、非晶性ポリエ
ーテルイミド樹脂としては、下記構造式(2)の繰り返
し単位を有するポリエーテルイミド樹脂を主成分として
特に好適に用いることができる。Still another aspect of the present invention resides in the above-mentioned method for producing a heat-resistant film or printed wiring board, wherein the crystallization treatment is performed in a temperature range satisfying the following relational expression. Tc (A + B) -20 ≦ Tx ≦ Tg (B) +20 where Tc (A + B) is a crystalline polyarylketone resin (A) and an amorphous polyetherimide resin (B)
Shows the crystallization temperature (° C.) that appears when the temperature of the resin composition is increased by differential scanning calorimetry.
(B) shows the glass transition temperature (° C.) of the amorphous polyetherimide resin (B) alone, and Tx shows the crystallization temperature (° C.). The crystalline polyaryl ketone resin has a repeating unit represented by the following structural formula (1), and the amorphous polyether imide resin has a repeating unit represented by the following structural formula (2). Polyetherimide resin can be particularly preferably used as a main component.
【0008】[0008]
【式1】 (Equation 1)
【0009】[0009]
【式2】 (Equation 2)
【0010】[0010]
【発明の実施の形態】以下、本発明を詳しく説明する。
本発明のフィルムは、結晶性ポリアリールケトン樹脂
(A)70〜30重量%と非晶性ポリエーテルイミド樹
脂(B)30〜70重量%とからなる樹脂組成物100
重量部に対して無機充填材を5〜40重量部の範囲で混
合したフィルムである。本発明にいうフィルムには肉厚
が比較的厚い500μm程度以上のシートも含んでい
る。ここで、本発明を構成する結晶性ポリアリールケト
ン樹脂は、その構造単位に芳香核結合、エーテル結合及
びケトン結合を含む熱可塑性樹脂であり、その代表例と
しては、ポリエーテルケトン、ポリエーテルエーテルケ
トン、ポリエーテルケトンケトン等があるが、本発明に
おいては、下記構造式(1)に示す繰り返し単位を有す
るポリエーテルエーテルケトンが好適に使用される。こ
の繰り返し単位を有するポリエーテルエーテルケトン
は、VICTREX社製の商品名「PEEK151G」
「PEEK381G」「PEEK450G」などとして
市販されている。なお、使用する結晶性ポリアリールケ
トン樹脂は、1種類を単独で、2種類以上を組み合わせ
て用いることが出来る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The film of the present invention comprises a resin composition 100 comprising 70 to 30% by weight of a crystalline polyarylketone resin (A) and 30 to 70% by weight of an amorphous polyetherimide resin (B).
It is a film in which an inorganic filler is mixed in a range of 5 to 40 parts by weight with respect to parts by weight. The film according to the present invention includes a relatively thick sheet of about 500 μm or more. Here, the crystalline polyarylketone resin constituting the present invention is a thermoplastic resin having an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, and typical examples thereof include polyetherketone and polyetherether. There are ketone, polyether ketone ketone and the like, and in the present invention, polyether ether ketone having a repeating unit represented by the following structural formula (1) is preferably used. A polyetheretherketone having this repeating unit is a product name “PEEK151G” manufactured by VICTREX.
It is commercially available as “PEEK381G”, “PEEK450G” and the like. In addition, the crystalline polyaryl ketone resin used can be used individually by 1 type and in combination of 2 or more types.
【0011】[0011]
【式1】 (Equation 1)
【0012】また、非晶性ポリエーテルイミド樹脂は、
その構造単位に芳香核結合、エーテル結合及びイミド結
合を含む非晶性熱可塑性樹脂であり、特に制限されるも
のでない。具体的には、下記構造式(2)、(3)に示
す繰り返し単位を有するポリエーテルイミドがそれぞ
れ、ゼネラルエレクトリック社製の商品名「Ultem
CRS5001」「Ultem 1000」として市販
されており、ともに適用することができる。本発明にお
いては、下記構造式(2)に示す繰り返し単位を有する
ポリエーテルイミドが、特に、好適に使用される。この理
由は明らかではないが、おそらく上記構造式(1)を有
するポリエーテルエーテルケトンと下記構造式(2)を
有するポリエーテルイミド樹脂との混合組成物では、分
子間の電子的な相互作用が、上記構造式(1)を有する
ポリエーテルエーテルケトンと下記構造式(3)を有す
るポリエーテルイミド樹脂との混合組成物とは異なり、
相溶性が異なるため特有の高次構造を形成し、このこと
も機械的強度(端裂強度)の向上に寄与しているものと
思われる。Further, the amorphous polyetherimide resin is
It is an amorphous thermoplastic resin having an aromatic nucleus bond, an ether bond and an imide bond in its structural unit, and is not particularly limited. Specifically, polyetherimides having the repeating units represented by the following structural formulas (2) and (3) are each manufactured by General Electric Corporation under the trade name “Ultem”.
It is commercially available as “CRS5001” and “Ultem 1000”, and both can be applied. In the present invention, a polyetherimide having a repeating unit represented by the following structural formula (2) is particularly preferably used. Although the reason for this is not clear, probably, in a mixed composition of the polyetheretherketone having the above structural formula (1) and the polyetherimide resin having the following structural formula (2), electronic interaction between molecules may be suppressed. Unlike a mixed composition of a polyetheretherketone having the above structural formula (1) and a polyetherimide resin having the following structural formula (3),
Due to the difference in compatibility, a unique higher-order structure is formed, which also seems to contribute to the improvement of mechanical strength (end crack strength).
【0013】[0013]
【式2】 (Equation 2)
【0014】[0014]
【式3】 (Equation 3)
【0015】非晶性ポリエーテルイミド樹脂の製造方法
は特に限定されるものではないが、通常、上記構造式
(2)を有する非晶性ポリエーテルイミド樹脂は、4,
4´−[イソプロピリデンビス(p−フェニレンオキ
シ)ジフタル酸二無水物とp−フェニレンジアミンとの
重縮合物として、また上記構造式(3)を有する非晶性
ポリエーテルイミド樹脂は、4,4´−[イソプロピリデ
ンビス(p−フェニレンオキシ)ジフタル酸二無水物と
m−フェニレンジアミンとの重縮合物として公知の方法
によって合成される。また、上述した非晶性ポリエーテ
ルイミド樹脂には、本発明の主旨を超えない範囲で共重
合可能な他の単量体単位を導入してもかまわない。なお、
使用する非晶性ポリエーテルイミド樹脂は、1種類を単
独で、2種類以上を組み合わせて用いることが出来る。The method for producing the amorphous polyetherimide resin is not particularly limited, but usually, the amorphous polyetherimide resin having the structural formula (2) is 4,4.
As a polycondensate of 4 '-[isopropylidenebis (p-phenyleneoxy) diphthalic dianhydride and p-phenylenediamine, and an amorphous polyetherimide resin having the above structural formula (3), It is synthesized by a known method as a polycondensate of 4 '-[isopropylidenebis (p-phenyleneoxy) diphthalic dianhydride and m-phenylenediamine. Further, other monomer units that can be copolymerized may be introduced into the above-mentioned amorphous polyetherimide resin without departing from the scope of the present invention. In addition,
As the amorphous polyetherimide resin to be used, one kind can be used alone, and two or more kinds can be used in combination.
【0016】上記樹脂組成物において、結晶性ポリアリ
ールケトン樹脂が70重量%を越えたり、非晶性ポリエ
ーテルイミド樹脂が30重量%未満では、組成物全体と
しての結晶性が高く、結晶化処理を行うと球晶などの結
晶構造が高度に成長、発達するため機械的強度(端裂強
度)が低下しやすく、また、結晶化に伴う体積収縮(寸
法変化)が大きくなり回路基板としての信頼性が低下す
る為好ましくない。また、結晶性ポリアリールケトン樹
脂が30重量%未満であったり、非晶性ポリエーテルイ
ミド樹脂が70重量%を越えると組成物全体としての結
晶性自体が低く、また結晶化速度も遅くなり過ぎ、結晶
融解ピーク温度が260℃以上であってもはんだ耐熱性
が低下するため好ましくない。このことから本発明にお
いては、上記ポリアリールケトン樹脂65〜35重量%
と非晶性ポリエーテルイミド樹脂35〜65重量%とか
らなる樹脂組成物が好適に用いられる。In the above resin composition, when the content of the crystalline polyarylketone resin exceeds 70% by weight or the content of the amorphous polyetherimide resin is less than 30% by weight, the crystallinity of the whole composition is high, and the crystallization treatment is performed. The crystal structure such as spherulite grows and develops to a high degree, so that mechanical strength (end crack strength) tends to decrease, and volume shrinkage (dimensional change) due to crystallization increases, resulting in reliability as a circuit board. It is not preferable because the property is lowered. If the content of the crystalline polyarylketone resin is less than 30% by weight or the content of the amorphous polyetherimide resin exceeds 70% by weight, the crystallinity itself of the composition as a whole is low, and the crystallization rate is too slow. However, even if the crystal melting peak temperature is 260 ° C. or more, the solder heat resistance decreases, which is not preferable. From this, in the present invention, 65 to 35% by weight of the polyaryl ketone resin is used.
And a resin composition comprising 35 to 65% by weight of an amorphous polyetherimide resin.
【0017】また、上述した樹脂組成物100重量部に
対して混合する無機充填材が50重量部を超えると、フ
ィルムの可とう性、引き裂き強度などの機械的強度が低
下するため好ましくない。一方、5重量部未満では、線
膨張係数を低下して寸法安定性を向上させる効果が少な
いため好ましくない。このことから好適な無機充填材の
混合量は、上述した樹脂組成物100重量部に対して1
0〜30重量部である。用いる無機充填材としては、特
に制限はなく、公知のいかなるものも使用することがで
きる。例えば、タルク、マイカ、クレー、ガラス、アル
ミナ、シリカ、窒化アルミニウム、窒化珪素などが挙げ
られ、これらは1種類を単独で、2種類以上を組み合わ
せて用いることができる。また、用いる無機充填材には、
チタネートなどのカップリング剤処理、脂肪酸、樹脂酸、
各種界面活性剤処理などの表面処理を行ってもよい。特
に、平均粒径が1〜20μm程度、平均アスペクト比(粒
径/厚み)が20〜30程度以上の無機充填材が、低添
加量(10〜25重量部程度)で、機械的強度を低下さ
せることなく寸法安定性を向上させる効果が高く好まし
い。When the amount of the inorganic filler mixed with 100 parts by weight of the above resin composition exceeds 50 parts by weight, the mechanical strength such as the flexibility and tear strength of the film is undesirably reduced. On the other hand, if the amount is less than 5 parts by weight, the effect of lowering the linear expansion coefficient and improving the dimensional stability is small, which is not preferable. For this reason, the preferable mixing amount of the inorganic filler is 1 to 100 parts by weight of the above resin composition.
0 to 30 parts by weight. The inorganic filler used is not particularly limited, and any known inorganic filler can be used. For example, talc, mica, clay, glass, alumina, silica, aluminum nitride, silicon nitride and the like can be mentioned, and these can be used alone or in combination of two or more. In addition, the inorganic filler used,
Coupling agent treatment such as titanate, fatty acid, resin acid,
Surface treatment such as various surfactant treatments may be performed. In particular, an inorganic filler having an average particle diameter of about 1 to 20 μm and an average aspect ratio (particle diameter / thickness) of about 20 to 30 or more decreases mechanical strength at a low addition amount (about 10 to 25 parts by weight). The effect of improving the dimensional stability without causing the above is preferable.
【0018】次に、本発明のフィルムは、上述した混合組
成物からなるフィルムを結晶化処理したフィルムであっ
て、該フィルムを示差走査熱量測定により加熱速度10
℃/分で昇温した時に吸熱ピークが少なくとも2つ現
れ、これらの吸熱ピークのうち、ポリアリールケトン樹脂
の結晶融解に由来する吸熱ピークよりも低温側に現れる
吸熱ピーク温度が260℃未満であることを特徴とする
耐熱性フィルムである。ここで、本発明において結晶化処
理とは、結晶化処理後のフィルムを用いて示差走査熱量
測定を行った際に得られる特性値が、下記の関係式を満
たすことをいう。 [(ΔHm−ΔHc)/ΔHm]≧0.90 上記の式において、ΔHmは、示差走査熱量測定により
昇温した時に測定される結晶融解熱量(J/g)のこと
であり、ΔHcは、昇温中の結晶化により発生する結晶
化熱量(J/g)のことである。なお、結晶融解熱量Δ
Hm(J/g)と結晶化熱量ΔHc(J/g)は、次の
ようにして求めた値である。すなわち、パーキンエルマ
ー社製DSC−7を用いて、試料10mgをJIS−K
7122に準じて、加熱速度10℃/分で室温から40
0℃まで昇温したときのサーモグラムから求めた。Next, the film of the present invention is a film obtained by crystallizing a film comprising the above-mentioned mixed composition, and the film is heated at a heating rate of 10 by differential scanning calorimetry.
At least two endothermic peaks appear when the temperature is raised at a rate of ° C./min, and of these endothermic peaks, the endothermic peak temperature that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyarylketone resin is less than 260 ° C. It is a heat-resistant film characterized by the above-mentioned. Here, in the present invention, the crystallization treatment means that a characteristic value obtained when performing differential scanning calorimetry using a film after the crystallization treatment satisfies the following relational expression. [(ΔHm−ΔHc) / ΔHm] ≧ 0.90 In the above equation, ΔHm is the heat of crystal fusion (J / g) measured when the temperature is increased by differential scanning calorimetry. The heat of crystallization (J / g) generated by crystallization during warming. The heat of crystal fusion Δ
Hm (J / g) and heat of crystallization ΔHc (J / g) are values obtained as follows. That is, using Perkin Elmer's DSC-7, 10 mg of a sample was subjected to JIS-K
According to 7122, a heating rate of 10 ° C./min.
It was determined from a thermogram when the temperature was raised to 0 ° C.
【0019】上記の関係式[(ΔHm−ΔHc)/ΔH
m]の値は、原料ポリマーの種類・分子量・組成物の比
率等にも依存するが、フィルムの成形・加工条件、特に
結晶化処理条件に大きく依存する。すなわち、フィルム
を製膜する際に、原料ポリマーを溶融させた後、速やか
に冷却すれば該数値は小さくなる。また、結晶化処理条
件において、ある処理温度で処理時間を長くすれば、該
数値を大きくすることができる。該数値の最大値は1.
0であり、数値が大きいほど結晶化が進行していること
を意味している。ここで該数値が、0.90未満では、
充分に結晶化が進行しておらず、寸法安定性が低下した
り、はんだ耐熱性が不充分となり易く好ましくない。The above relational expression [(ΔHm−ΔHc) / ΔH]
The value of m] also depends on the type, molecular weight, composition ratio and the like of the raw material polymer, but greatly depends on the film forming and processing conditions, particularly the crystallization treatment conditions. That is, when a raw material polymer is melted at the time of forming a film and then cooled immediately, the numerical value becomes smaller. Further, if the processing time is increased at a certain processing temperature under the crystallization processing conditions, the numerical value can be increased. The maximum value of the numerical value is 1.
The value is 0, which means that the larger the value is, the more the crystallization is progressing. Here, when the numerical value is less than 0.90,
Crystallization is not sufficiently advanced, and dimensional stability is lowered, and solder heat resistance is likely to be insufficient, which is not preferable.
【0020】また、示差走査熱量測定によりポリアリー
ルケトン樹脂の結晶融解に由来する吸熱ピーク温度は、
結晶性ポリアリールケトン樹脂の種類により異なるが、
例えば、ポリエーテルエーテルケトン(PEEK)では、
330〜340℃程度、ポリエーテルケトン(PEK)
では、370〜380℃程度に現れる。本発明において
は、示差走査熱量測定により加熱速度10℃/分で昇温
した時に得られるポリアリールケトン樹脂の結晶融解に
由来する吸熱ピークよりも低温側に現れる吸熱ピーク温
度が260℃未満であることが最も重要である。Further, the endothermic peak temperature derived from the crystal melting of the polyarylketone resin by differential scanning calorimetry is as follows:
Depending on the type of crystalline polyaryl ketone resin,
For example, in polyetheretherketone (PEEK),
330-340 ° C, polyetherketone (PEK)
Appears at about 370 to 380 ° C. In the present invention, the endothermic peak temperature which appears on a lower temperature side than the endothermic peak derived from crystal melting of the polyarylketone resin obtained when the temperature is increased at a heating rate of 10 ° C./min by differential scanning calorimetry is lower than 260 ° C. That is most important.
【0021】ここで、ポリアリールケトン樹脂の結晶融
解に由来する吸熱ピークよりも低温側に現れる吸熱ピー
ク温度が260℃以上であると、端裂強度が低下するた
め好ましくない。この理由は明らかではないが、該ピーク
温度が上昇するほどポリアリールケトン樹脂(A)の結
晶成分に由来する球晶などの結晶構造が高度に成長、発
達し、これらの界面が欠陥となり機械的強度(端裂強
度)が低下するものと思われる。このことからポリアリ
ールケトン樹脂の結晶融解に由来する吸熱ピークよりも
低温側に現れる吸熱ピーク温度の好適な範囲は200℃
以上、260℃未満である。上記ポリアリールケトン樹脂
の結晶融解に由来する吸熱ピークよりも低温側に現れる
吸熱ピーク温度が200℃未満であると、結晶化が不十
分となり好ましくない。本発明において、ポリアリールケ
トン樹脂の結晶融解に由来する吸熱ピークよりも低温側
に現れる吸熱ピーク温度は、主に結晶化処理条件に依存
する。すなわち、結晶化処理温度が高く、処理時間が長い
ほど該ピーク温度は高温側にシフトし、逆に結晶化処理
温度が低く、処理時間が短いほど該ピーク温度は低温側
にシフトする。Here, if the endothermic peak temperature which is lower than the endothermic peak derived from the melting of the crystal of the polyarylketone resin is 260 ° C. or higher, it is not preferable because the end crack strength decreases. The reason for this is not clear, but as the peak temperature increases, a crystal structure such as a spherulite derived from the crystal component of the polyarylketone resin (A) grows and develops to a high degree, and these interfaces become defects and mechanical It seems that the strength (end crack strength) decreases. From this, the preferred range of the endothermic peak temperature that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyarylketone resin is 200 ° C.
As described above, the temperature is lower than 260 ° C. If the endothermic peak temperature, which appears on the lower temperature side than the endothermic peak derived from crystal melting of the polyarylketone resin, is less than 200 ° C., crystallization is insufficient, which is not preferable. In the present invention, the endothermic peak temperature that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyarylketone resin mainly depends on the crystallization treatment conditions. That is, the higher the crystallization temperature and the longer the processing time, the higher the peak temperature shifts to a higher temperature, and conversely, the lower the crystallization temperature and the shorter the processing time, the lower the peak temperature shifts to a lower temperature.
【0022】本発明においては、上述した結晶化処理を
次の関係式を満足する温度範囲で行うことが好ましい。 Tc(A+B)−20≦Tx≦Tg(B)+20 ここで式中、Tc(A+B)は、結晶性ポリアリールケ
トン樹脂(A)と非晶性ポリエーテルイミド樹脂(B)
からなる樹脂組成物を示差走査熱量測定により昇温した
ときに発現する結晶化温度(℃)を示し、また、Tg
(B)は、非晶性ポリエーテルイミド樹脂(B)単体の
ガラス転移温度(℃)を示し、さらにTxは、結晶化処
理温度(℃)を示す。上記の関係式において、結晶化処
理温度(Tx)がTc(A+B)−20未満、すなわ
ち、結晶性ポリアリールケトン樹脂(A)と非晶性ポリ
エーテルイミド樹脂(B)からなる樹脂組成物を示差走
査熱量測定により昇温したときに発現する結晶化温度
(℃)−20℃未満の結晶化処理温度(Tx)では、結
晶化の進行速度が遅く、また、結晶化が不十分となり易
いため好ましくなく、一方、Tg(B)+20℃を超え
ると、すなわち、非晶性ポリエーテルイミド樹脂(B)
単体のガラス転移温度+20℃を超えると、結晶化は充
分進行しはんだ耐熱性も発現するものの、後述する実施
例でも説明するように、端裂強度が低下し易く好ましく
ない。In the present invention, it is preferable that the above-mentioned crystallization treatment is performed in a temperature range satisfying the following relational expression. Tc (A + B) -20 ≦ Tx ≦ Tg (B) +20 where Tc (A + B) is a crystalline polyarylketone resin (A) and an amorphous polyetherimide resin (B)
Shows the crystallization temperature (° C.) that appears when the temperature of the resin composition is increased by differential scanning calorimetry.
(B) shows the glass transition temperature (° C.) of the amorphous polyetherimide resin (B) alone, and Tx shows the crystallization temperature (° C.). In the above relational expression, the crystallization temperature (Tx) is less than Tc (A + B) -20, that is, a resin composition comprising a crystalline polyarylketone resin (A) and an amorphous polyetherimide resin (B) At a crystallization temperature (Tx) of less than −20 ° C., which is a crystallization temperature (° C.) that appears when the temperature is raised by differential scanning calorimetry, the crystallization proceeds slowly, and crystallization tends to be insufficient. On the other hand, if the temperature exceeds Tg (B) + 20 ° C., that is, the amorphous polyetherimide resin (B)
If the temperature exceeds the glass transition temperature + 20 ° C. of the simple substance, crystallization proceeds sufficiently and solder heat resistance is also exhibited, but as described in the examples described later, the end crack strength tends to decrease, which is not preferable.
【0023】この理由は明確ではないが、おそらく結晶
化処理温度(Tx)が非晶性ポリエーテルイミド樹脂
(B)単体のガラス転移温度+20℃を超えると、非晶
性ポリエーテルイミド樹脂(B)成分の分子運動性が激
しくなり、このことからポリアリールケトン樹脂(A)
の結晶成分に由来する球晶などの結晶構造が高度に成
長、発達し、これらの界面が欠陥となり機械的強度(端
裂強度)が低下するものと思われる。このことから好適
な熱処理温度範囲は、Tc(A+B)−15℃以上、T
g(B)+15℃以下である。The reason for this is not clear, but probably when the crystallization temperature (Tx) exceeds the glass transition temperature of the amorphous polyetherimide resin (B) alone + 20 ° C., the amorphous polyetherimide resin (B )) The molecular mobility of the component becomes intense, which indicates that the polyarylketone resin (A)
It is considered that a crystal structure such as a spherulite derived from the crystal component of (1) grows and develops to a high degree, and these interfaces become defects to decrease the mechanical strength (end crack strength). From this, a preferable heat treatment temperature range is Tc (A + B) −15 ° C. or more,
g (B) + 15 ° C. or less.
【0024】本発明フィルムを構成する樹脂組成物に
は、その性質を損なわない程度に、他の樹脂や無機充填
材以外の各種添加剤、例えば、熱安定剤、紫外線吸収
剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜配
合しても良い。また無機充填材を含めた各種添加剤の混
合方法は、公知の方法を用いることができる。例えば、
(a)各種添加剤をポリアリールケトン樹脂及び/又は
非晶性ポリエーテルイミド樹脂などの適当なベース樹脂
に高濃度(代表的な含有量としては10〜60重量%程
度)に混合したマスターバッチを別途作製しておき、こ
れを使用する樹脂に濃度を調整して混合し、ニーダーや
押出機等を用いて機械的にブレンドする方法、(b)使
用する樹脂に直接各種添加剤をニーダーや押出機等を用
いて機械的にブレンドする方法などが挙げられる。上記
混合方法の中では、(a)のマスターバッチを作製し、
混合する方法が分散性や作業性の点から好ましい。さら
に、フィルムの表面にはハンドリング性の改良等のため
に、エンボス加工やコロナ処理等を適宜施してもかまわ
ない。In the resin composition constituting the film of the present invention, various additives other than other resins and inorganic fillers, such as a heat stabilizer, an ultraviolet absorber, a light stabilizer, A nucleating agent, a coloring agent, a lubricant, a flame retardant and the like may be appropriately blended. A known method can be used as a method for mixing various additives including the inorganic filler. For example,
(A) A masterbatch in which various additives are mixed with a suitable base resin such as a polyarylketone resin and / or an amorphous polyetherimide resin at a high concentration (typically about 10 to 60% by weight). Separately, a method of mixing and adjusting the concentration to the resin to be used, and mechanically blending using a kneader or an extruder, or (b) kneading various additives directly to the resin to be used. Examples include a method of mechanically blending using an extruder or the like. In the above mixing method, a master batch of (a) is prepared,
The method of mixing is preferable from the viewpoint of dispersibility and workability. Further, the surface of the film may be appropriately subjected to embossing, corona treatment, or the like, for the purpose of improving handling properties and the like.
【0025】本発明フィルムの製膜方法としては、公知
の方法、例えばTダイを用いる押出キャスト法やカレン
ダー法等を採用することができ、特に限定されるもので
はないが、フィルムの製膜性や安定生産性等の面から、
Tダイを用いる押出キャスト法が好ましい。Tダイを用
いる押出キャスト法での成形温度は、組成物の流動特性
や製膜性等によって適宜調整されるが、概ね融点以上、
430℃以下である。また、該フィルムの厚みは、特に
制限されるものではないが、通常10〜500μm程度
である。As a method for forming the film of the present invention, a known method, for example, an extrusion casting method using a T-die, a calendar method, or the like can be employed. And stable productivity,
Extrusion casting using a T-die is preferred. The molding temperature in the extrusion casting method using a T die is appropriately adjusted depending on the flow characteristics and film forming properties of the composition.
430 ° C or lower. The thickness of the film is not particularly limited, but is usually about 10 to 500 μm.
【0026】次に、本発明のプリント配線基板は、上述
したフィルムの少なくとも片面に接着層を介することな
く導体箔を熱融着・結晶化処理し、この導体箔に導電性
回路を形成してなる基板である。上述したように結晶化
処理においてその温度条件は非常に重要であるが、その
方式は、特に限定されるものではない。例えば、熱処理
方式としては、押出キャスト時に結晶化させる方法(キ
ャスト結晶化法)や製膜ライン内で、熱処理ロールや熱
風炉等により結晶化させる方法(インライン結晶化法)
及び製膜ライン外で、熱風炉や熱プレス等により結晶化
させる方法(アウトライン結晶化法)などを挙げること
ができる。本発明においては、生産の安定性及び物性の
均一性から、アウトライン結晶化法が好適に用いられ
る。また、熱処理時間については、数秒〜数十時間、好
適には数分から3時間程度の範囲が適用できる。Next, in the printed wiring board of the present invention, at least one surface of the above-mentioned film is subjected to heat fusion and crystallization treatment without interposing an adhesive layer to form a conductive circuit on the conductive foil. Substrate. As described above, the temperature condition is very important in the crystallization treatment, but the method is not particularly limited. For example, as a heat treatment method, a method of crystallizing at the time of extrusion casting (cast crystallization method) or a method of crystallizing with a heat treatment roll or a hot air furnace in a film forming line (in-line crystallization method)
And a method (outline crystallization method) in which crystallization is performed outside a film forming line by a hot-blast furnace, a hot press, or the like. In the present invention, the outline crystallization method is suitably used from the viewpoint of production stability and uniformity of physical properties. Further, the heat treatment time can be in the range of several seconds to several tens of hours, preferably several minutes to about 3 hours.
【0027】プリント配線板の製造過程において、上述
したフィルムと導体箔を接着層を介することなく熱融着
させる方法としては、加熱、加圧できる方法であれば公
知の方法を採用することができ、特に限定されるもので
はない。例えば、熱プレス法や熱ラミネートロール法、
又はこれらを組み合わせた方法を好適に採用することが
できる。また、導体箔に導電性回路を形成させる方法に
ついても、公知のいかなる方法も採用することができ、
特に限定されるものではない。例えば,サブトラクティ
ブ法(エッチング)、アディティブ法(メッキ),ダイ
スタンプ法(金型)、導体印刷法(導電ペースト)など
の公知の方法が適用できる。さらに多層基板とした場合
の層間接続の方法としては、例えば、スルーホールに銅メ
ッキする方法やスルーホール、インナーバイアホール中
へ導電性ペーストや半田ボールを充填する方法、微細な
導電粒子を含有した絶縁層による異方導電性材料を応用
する方法などが挙げられる。In the process of manufacturing a printed wiring board, as a method for heat-sealing the above-mentioned film and conductive foil without an interposition of an adhesive layer, a known method can be adopted as long as it can be heated and pressed. However, there is no particular limitation. For example, hot press method or hot laminating roll method,
Alternatively, a method in which these are combined can be suitably adopted. Also, as for the method of forming the conductive circuit on the conductive foil, any known method can be adopted,
There is no particular limitation. For example, known methods such as a subtractive method (etching), an additive method (plating), a die stamping method (die), and a conductor printing method (conductive paste) can be applied. Further, as a method of interlayer connection in the case of a multi-layer substrate, for example, a method of copper plating in a through hole or a method of filling a conductive paste or a solder ball into an inner via hole, containing fine conductive particles A method in which an anisotropic conductive material using an insulating layer is applied is exemplified.
【0028】本発明に使用される導体箔としては、例え
ば銅、金、銀、アルミニウム、ニッケル、錫等の、厚さ
5〜70μm程度の金属箔が挙げられる。金属箔として
は、通常銅箔が使用され、さらに表面を黒色酸化処理等
の化成処理を施したものが好適に使用される。導体箔
は、接着効果を高めるために、フィルムとの接触面(重
ねる面)側を予め化学的又は機械的に粗化したものを用
いることが好ましい。表面粗化処理された導体箔の具体
例としては、電解銅箔を製造する際に電気化学的に処理
された粗化銅箔などが挙げられる。Examples of the conductor foil used in the present invention include metal foils having a thickness of about 5 to 70 μm, such as copper, gold, silver, aluminum, nickel and tin. As the metal foil, a copper foil is usually used, and a foil whose surface has been subjected to a chemical conversion treatment such as a black oxidation treatment is preferably used. It is preferable to use a conductor foil whose contact surface (overlapping surface) with the film has been chemically or mechanically roughened in advance in order to enhance the adhesive effect. Specific examples of the conductor foil subjected to the surface roughening treatment include a roughened copper foil that has been electrochemically treated when producing an electrolytic copper foil.
【0029】[0029]
【実施例】以下に実施例でさらに詳しく説明するが、こ
れらにより本発明は何ら制限を受けるものではない。な
お、本明細書中に表示されるフィルムについての種々の
測定値及び評価は次のようにして行った。ここで、フィ
ルムの押出機からの流れ方向を縦方向、その直交方向を
横方向と呼ぶ。The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In addition, various measured values and evaluations of the film displayed in this specification were performed as follows. Here, the direction of flow of the film from the extruder is referred to as the vertical direction, and the direction perpendicular thereto is referred to as the horizontal direction.
【0030】(1)ガラス転移温度(Tg)、結晶化温
度(Tc)、結晶融解ピーク温度(Tm) パーキンエルマー(株)製DSC−7を用いて、試料1
0mgをJIS K7121に準じて、加熱速度を10
℃/分で昇温した時のサーモグラムから求めた。なお、
表1の樹脂組成物の結晶化温度は、急冷フィルム試料を
用いて測定した。(1) Glass transition temperature (Tg), crystallization temperature (Tc), crystal melting peak temperature (Tm) Sample 1 was prepared using DSC-7 manufactured by Perkin Elmer Co., Ltd.
0 mg according to JIS K7121 at a heating rate of 10
It was determined from the thermogram when the temperature was raised at ° C / min. In addition,
The crystallization temperature of the resin composition in Table 1 was measured using a quenched film sample.
【0031】(2)(ΔHm−ΔHc)/ΔHm パーキンエルマー(株)製DSC−7を用いて、試料1
0mgをJIS K7122に準じて、加熱速度を10
℃/分で昇温した時のサーモグラムから、結晶融解熱量
ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求
め、算出した。(2) (ΔHm−ΔHc) / ΔHm Sample 1 was obtained using DSC-7 manufactured by PerkinElmer Co., Ltd.
0 mg according to JIS K7122, heating rate is 10
The heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) were calculated from the thermogram when the temperature was raised at a rate of ° C./min.
【0032】(3)接着強度 JIS C6481の常態の引き剥がし強さに準拠して
測定した。(3) Adhesive strength Measured in accordance with the normal peel strength of JIS C6481.
【0033】(4)はんだ耐熱性 JIS C6481の常態のはんだ耐熱性に準拠し、2
60℃のはんだ浴に試験片を銅箔側とはんだ浴とが接触
するように10秒間浮かべ、室温まで冷却した後、膨れ
やはがれ等の有無を目視によって調べ、良否を判定し
た。(4) Solder heat resistance According to the normal solder heat resistance of JIS C6481, 2
The test piece was floated in a solder bath at 60 ° C. for 10 seconds so that the copper foil side and the solder bath were in contact with each other, cooled to room temperature, and visually inspected for swelling or peeling to determine the quality.
【0034】(5)端裂強度 JIS C2151の端裂抵抗試験に準拠して、厚さ7
5μmのフィルムから幅15mm、長さ300mmの試
験片を切り出し、試験金具Bを用いて、引張速度500
mm/分の条件で縦方向及び横方向を測定した。(5) Edge crack strength A thickness of 7 mm was determined in accordance with the edge crack resistance test of JIS C2151.
A test piece having a width of 15 mm and a length of 300 mm was cut out from a 5 μm film, and a tensile rate of 500 mm
The vertical and horizontal directions were measured under the condition of mm / min.
【0035】(実施例1)表1に示すようにポリエーテ
ルエーテルケトン樹脂[ビクトレックス社製、PEEK
381G、Tg:143℃、Tm:334℃](以下、
単にPEEKと略記することがある)50重量部と、ポ
リエーテルイミド樹脂[ゼネラルエレクトリック社製、
Ultem−CRS5001、Tg:226℃](以
下、単にPEI−1と略記することがある)50重量部
及び市販のマイカ(平均粒径:10μm、アスペクト
比:30)20重量部とからなる混合組成物を、Tダイ
を備えた押出機を用いて設定温度380℃で、厚さ75
μmのフィルムに押出し、同時に銅箔(厚さ:18μ
m、表面粗面化)をラミネートすることにより銅箔積層
板を得た。さらに得られた銅箔積層板の巻物(100m
巻き)を220℃の恒温槽で180分間結晶化処理する
ことにより目的とする結晶化処理済銅箔積層板を得た。
得られた結晶化処理済銅箔積層板を用いて、評価した熱
特性や機械的強度などの評価結果を表1に示す。(Example 1) As shown in Table 1, polyether ether ketone resin [PEEK, manufactured by Victrex Corporation]
381G, Tg: 143 ° C, Tm: 334 ° C] (hereinafter, referred to as
50 parts by weight of a polyetherimide resin [manufactured by General Electric Co., Ltd .;
Ultem-CRS5001, Tg: 226 ° C.] (hereinafter sometimes abbreviated as PEI-1) 50 parts by weight and 20 parts by weight of commercially available mica (average particle diameter: 10 μm, aspect ratio: 30) The product was prepared using an extruder equipped with a T-die at a set temperature of 380 ° C and a thickness of 75 ° C.
extruded into a film of thickness of 1 μm and simultaneously with copper foil (thickness: 18μ
m, surface roughening) to obtain a copper foil laminate. Furthermore, a roll of the obtained copper foil laminate (100 m
The wrapping was subjected to a crystallization treatment in a constant temperature bath at 220 ° C. for 180 minutes to obtain a desired crystallization-treated copper foil laminate.
Using the obtained crystallized copper foil laminate, evaluation results such as thermal properties and mechanical strength are shown in Table 1.
【0036】(実施例2)実施例1において結晶化処理
条件を240℃×120分間に変更した以外は、実施例
1と同様に目的とする結晶化処理済銅箔積層板を得た。
得られた結晶化処理済銅箔積層板を用いて、評価した熱
特性や機械的強度などの評価結果を表1に示す。(Example 2) A target crystallized copper foil laminate was obtained in the same manner as in Example 1 except that the crystallization conditions were changed to 240 ° C for 120 minutes.
Using the obtained crystallized copper foil laminate, evaluation results such as thermal properties and mechanical strength are shown in Table 1.
【0037】(実施例3)実施例1において使用したP
EI−1をポリエーテルイミド樹脂[ゼネラルエレクト
リック社製、Ultem−1000、Tg:216℃]
(以下、単にPEI−2と略記することがある)に変更
した以外は、実施例1と同様に目的とする結晶化処理済
銅箔積層板を得た。得られた結晶化処理済銅箔積層板を
用いて、評価した熱特性や機械的強度などの評価結果を
表1に示す。(Example 3) P used in Example 1
EI-1 was converted to a polyetherimide resin [Ultem-1000, manufactured by General Electric Company, Tg: 216 ° C].
(Hereinafter, the target was simply abbreviated as PEI-2), and a target crystallized copper foil laminate was obtained in the same manner as in Example 1 except for changing to PEI-2. Using the obtained crystallized copper foil laminate, evaluation results such as thermal properties and mechanical strength are shown in Table 1.
【0038】(比較例1)実施例1において結晶化処理
条件を260℃×120分間に変更した以外は、実施例
1と同様に目的とする結晶化処理済銅箔積層板を得た。
得られた結晶化処理済銅箔積層板を用いて、評価した熱
特性や機械的強度などの評価結果を表1に示す。(Comparative Example 1) A target crystallized copper foil laminate was obtained in the same manner as in Example 1 except that the crystallization conditions were changed to 260 ° C for 120 minutes.
Using the obtained crystallized copper foil laminate, evaluation results such as thermal properties and mechanical strength are shown in Table 1.
【0039】(比較例2)実施例3において結晶化処理
条件を240℃×120分間に変更した以外は、実施例
1と同様に目的とする結晶化処理済銅箔積層板を得た。
得られた結晶化処理済銅箔積層板を用いて、評価した熱
特性や機械的強度などの評価結果を表1に示す。(Comparative Example 2) A target crystallized copper foil laminate was obtained in the same manner as in Example 1, except that the crystallization conditions were changed to 240 ° C for 120 minutes.
Using the obtained crystallized copper foil laminate, evaluation results such as thermal properties and mechanical strength are shown in Table 1.
【0040】[0040]
【表1】 [Table 1]
【0041】表1より、本発明で規定する成分を有し、
かつポリアリールケトン樹脂の結晶融解に由来する吸熱
ピークよりも低温側に現れる吸熱ピーク温度が260℃
未満にある実施例1乃至3の結晶化処理済銅箔積層板
は、いずれもはんだ耐熱性と機械的強度(フィルムの端
裂強度が縦、横方向共に50N以上)の両方の特性に優
れていることが分かる。これに対して、ポリアリールケ
トン樹脂の結晶融解に由来する吸熱ピークよりも低温側
に現れる吸熱ピーク温度が260℃以上の基板は、はん
だ耐熱性は良好なものの横方向の端裂強度が劣ることが
分かる。From Table 1, it can be seen that the composition has the components specified in the present invention,
And an endothermic peak temperature appearing on a lower temperature side than an endothermic peak derived from crystal melting of the polyarylketone resin is 260 ° C.
The crystallized copper foil laminates of Examples 1 to 3 which are less than each have excellent properties of both solder heat resistance and mechanical strength (the end crack strength of the film is 50 N or more in both longitudinal and transverse directions). You can see that there is. On the other hand, a substrate having an endothermic peak temperature of 260 ° C. or higher, which appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyarylketone resin, has good soldering heat resistance but poor lateral edge crack strength. I understand.
【0042】[0042]
【発明の効果】本発明によれば、エレクトロニクス用部
材等として好適な、特に端裂強度が向上された耐熱性フ
ィルム及びこれを基材とするプリント配線基板並びにこ
れらの製造方法が提供できる。According to the present invention, it is possible to provide a heat-resistant film which is particularly suitable as a member for electronics and the like, and in particular, has improved edge crack strength, a printed wiring board using the same as a base material, and a method for producing these.
【図1】示差走査熱量測定により昇温した時に得られる
ポリアリールケトン樹脂の結晶融解に由来する吸熱ピー
ク及び低温側に現れる吸熱ピークを示す概念図である。FIG. 1 is a conceptual diagram showing an endothermic peak derived from crystal melting of a polyarylketone resin and an endothermic peak appearing on a lower temperature side when the temperature is raised by differential scanning calorimetry.
1 ポリアリールケトン樹脂の結晶融解に由来する吸熱
ピーク 2 ポリアリールケトン樹脂の結晶融解に由来する吸熱
ピークよりも低温側に現れる吸熱ピーク1 Endothermic peak derived from crystal melting of polyarylketone resin 2 Endothermic peak appearing at lower temperature side than endothermic peak derived from crystal melting of polyarylketone resin
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 3/00 C08K 3/00 C08L 73/00 C08L 73/00 79/08 79/08 Z H05K 1/03 610 H05K 1/03 610H 3/00 3/00 R Fターム(参考) 4F071 AA51 AA60 AA83 AA84 AB30 AE17 AF11 AF45 AG28 AH13 BA01 BB06 BC01 BC02 4F100 AA00A AA00H AB01B AB01C AB17 AB33B AB33C AK49A AK54A AL05A BA02 BA03 BA06 BA10B BA10C BA13 CA23A EC03 EH23 EJ42 GB43 JA04A JA11A JG01B JG01C JJ03 JJ03A JJ10A JK01 JK03A JK06 YY00A 4J002 CH09W CM04X DE146 DF016 DJ016 DJ036 DJ046 DJ056 DL006 FD016 GQ00 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C08K 3/00 C08K 3/00 C08L 73/00 C08L 73/00 79/08 79/08 Z H05K 1/03 610 H05K 1 / 03 610H 3/00 3/00 RF term (reference) 4F071 AA51 AA60 AA83 AA84 AB30 AE17 AF11 AF45 AG28 AH13 BA01 BB06 BC01 BC02 4F100 AA00A AA00H AB01B AB01C AB17 AB33B AB33C AK49A AK54A03A03 BA03 BA06 EJ42 GB43 JA04A JA11A JG01B JG01C JJ03 JJ03A JJ10A JK01 JK03A JK06 YY00A 4J002 CH09W CM04X DE146 DF016 DJ016 DJ036 DJ046 DJ056 DL006 FD016 GQ00
Claims (5)
るポリアリールケトン樹脂(A)70〜30重量%と非
晶性ポリエーテルイミド樹脂(B)30〜70重量%と
からなる樹脂組成物100重量部に対して無機充填材を
5〜50重量部の範囲で混合し、結晶化処理したフィル
ムであって、該フィルムを示差走査熱量測定により加熱
速度10℃/分で昇温した時に吸熱ピークが少なくとも
2つ現れ、これらの吸熱ピークのうち、ポリアリールケト
ン樹脂の結晶融解に由来する吸熱ピークよりも低温側に
現れる吸熱ピーク温度が260℃未満であることを特徴
とする耐熱性フィルム。1. A resin composition 100 comprising 70 to 30% by weight of a polyarylketone resin (A) having a crystal melting peak temperature of 260 ° C. or higher and 30 to 70% by weight of an amorphous polyetherimide resin (B). A crystallization-treated film obtained by mixing an inorganic filler in a range of 5 to 50 parts by weight with respect to parts by weight, and an endothermic peak when the film is heated at a heating rate of 10 ° C./min by differential scanning calorimetry. Wherein at least two endothermic peaks appear, and among these endothermic peaks, the endothermic peak temperature that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyarylketone resin is less than 260 ° C.
るポリアリールケトン樹脂(A)70〜30重量%と非
晶性ポリエーテルイミド樹脂(B)30〜70重量%と
からなる樹脂組成物100重量部に対して無機充填材を
5〜50重量部の範囲で混合したフィルムの少なくとも
片面に接着層を介することなく導体箔を熱融着・結晶化
処理し、この導体箔に導電性回路を形成してなるプリン
ト配線基板において、該フィルムを示差走査熱量測定に
より加熱速度10℃/分で昇温した時に吸熱ピークが少
なくとも2つ現れ、これらの吸熱ピークのうち、ポリアリ
ールケトン樹脂の結晶融解に由来する吸熱ピークよりも
低温側に現れる吸熱ピーク温度が260℃未満であるこ
とを特徴とするプリント配線基板。2. A resin composition 100 comprising 70 to 30% by weight of a polyarylketone resin (A) having a crystal melting peak temperature of 260 ° C. or higher and 30 to 70% by weight of an amorphous polyetherimide resin (B). A conductive foil is heat-sealed and crystallized on at least one side of a film in which an inorganic filler is mixed in a range of 5 to 50 parts by weight with respect to parts by weight, without using an adhesive layer. In the printed wiring board thus formed, at least two endothermic peaks appear when the film is heated at a heating rate of 10 ° C./min by differential scanning calorimetry, and of these endothermic peaks, the crystal melting of the polyarylketone resin Wherein the endothermic peak temperature which appears on the lower temperature side than the endothermic peak derived from the above is less than 260 ° C.
来する吸熱ピークよりも低温側に現れる吸熱ピーク温度
が200℃以上、260℃未満の範囲にあり、かつ端裂強
度(JIS C2151の端裂抵抗試験に準拠)が、縦
方向及び横方向ともに50N以上であることを特徴とす
る請求項1乃至2記載の耐熱性フィルム又はプリント配
線基板。3. An endothermic peak temperature appearing on a lower temperature side than an endothermic peak derived from crystal melting of the polyarylketone resin is in a range of 200 ° C. or more and less than 260 ° C., and a crack strength (crack resistance according to JIS C2151). 3. The heat-resistant film or the printed wiring board according to claim 1, wherein the thickness is 50 N or more in both the vertical and horizontal directions.
範囲で行うことを特徴とする請求項1乃至3記載の耐熱
性フィルム又はプリント配線基板の製造方法。 Tc(A+B)−20≦Tx≦Tg(B)+20 ここで式中、Tc(A+B)は、結晶性ポリアリールケ
トン樹脂(A)と非晶性ポリエーテルイミド樹脂(B)
からなる樹脂組成物を示差走査熱量測定により昇温した
ときに発現する結晶化温度(℃)を示し、また、Tg
(B)は、非晶性ポリエーテルイミド樹脂(B)単体の
ガラス転移温度(℃)を示し、さらにTxは、結晶化処
理温度(℃)を示す。4. The method for producing a heat-resistant film or printed wiring board according to claim 1, wherein the crystallization treatment is performed in a temperature range satisfying the following relational expression. Tc (A + B) -20 ≦ Tx ≦ Tg (B) +20 where Tc (A + B) is a crystalline polyarylketone resin (A) and an amorphous polyetherimide resin (B)
Shows the crystallization temperature (° C.) that appears when the temperature of the resin composition is increased by differential scanning calorimetry.
(B) shows the glass transition temperature (° C.) of the amorphous polyetherimide resin (B) alone, and Tx shows the crystallization temperature (° C.).
下記構造式(1)の繰り返し単位を有するポリエーテル
エーテルケトン樹脂が主成分であり、非晶性ポリエーテ
ルイミド樹脂(B)が下記構造式(2)の繰り返し単位
を有するポリエーテルイミド樹脂が主成分であることを
特徴とする請求項1又は2記載の耐熱性フィルム又はプ
リント配線基板。 【式1】 【式2】 5. The crystalline polyarylketone resin (A) is mainly composed of a polyetheretherketone resin having a repeating unit represented by the following structural formula (1), and the amorphous polyetherimide resin (B) has the following structure. 3. The heat-resistant film or printed wiring board according to claim 1, wherein a polyetherimide resin having a repeating unit represented by the formula (2) is a main component. (Equation 1) (Equation 2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000304455A JP4234896B2 (en) | 2000-10-04 | 2000-10-04 | HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000304455A JP4234896B2 (en) | 2000-10-04 | 2000-10-04 | HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002105221A true JP2002105221A (en) | 2002-04-10 |
JP4234896B2 JP4234896B2 (en) | 2009-03-04 |
Family
ID=18785500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000304455A Expired - Lifetime JP4234896B2 (en) | 2000-10-04 | 2000-10-04 | HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4234896B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1369450A1 (en) * | 2001-01-22 | 2003-12-10 | Mitsubishi Plastics Inc. | Polyaryl ketone resin film and laminates therof with metal |
WO2004015011A1 (en) * | 2002-08-07 | 2004-02-19 | Mitsubishi Plastics, Inc. | Heat-resistant film and metal laminate thereof |
JP2006341596A (en) * | 2005-05-12 | 2006-12-21 | Mitsubishi Plastics Ind Ltd | Heat resistant resin plate |
US7586060B2 (en) * | 2003-12-25 | 2009-09-08 | Nitto Denko Corporation | Protective sheet for laser processing and manufacturing method of laser processed parts |
US8168030B2 (en) | 2005-01-14 | 2012-05-01 | Nitto Denko Corporation | Manufacturing method of laser processed parts and adhesive sheet for laser processing |
US8624156B2 (en) | 2005-01-14 | 2014-01-07 | Nitto Denko Corporation | Manufacturing method of laser processed parts and protective sheet for laser processing |
US8778118B2 (en) | 2003-04-25 | 2014-07-15 | Nitto Denko Corporation | Manufacturing method of laser processed parts, and pressure-sensitive adhesive sheet for laser processing used for the same |
WO2015137033A1 (en) * | 2014-03-11 | 2015-09-17 | デクセリアルズ株式会社 | Anisotropic conductive film, connection method, and joined body |
JP2018125291A (en) * | 2018-02-14 | 2018-08-09 | デクセリアルズ株式会社 | Anisotropic conductive film, as well as, connection method and conjugate |
WO2022181804A1 (en) * | 2021-02-25 | 2022-09-01 | 三菱ケミカル株式会社 | Prepreg and production method therefor, and molded object |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006249443A (en) * | 2006-05-19 | 2006-09-21 | Mitsubishi Plastics Ind Ltd | Polyarylketone-based resin film |
-
2000
- 2000-10-04 JP JP2000304455A patent/JP4234896B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1369450A4 (en) * | 2001-01-22 | 2004-08-25 | Mitsubishi Plastics Inc | Polyaryl ketone resin film and laminates therof with metal |
US7033675B2 (en) | 2001-01-22 | 2006-04-25 | Mitsubishi Plastics, Inc. | Polyarlketone resin film and a laminate thereof with metal |
EP1369450A1 (en) * | 2001-01-22 | 2003-12-10 | Mitsubishi Plastics Inc. | Polyaryl ketone resin film and laminates therof with metal |
WO2004015011A1 (en) * | 2002-08-07 | 2004-02-19 | Mitsubishi Plastics, Inc. | Heat-resistant film and metal laminate thereof |
CN100415831C (en) * | 2002-08-07 | 2008-09-03 | 三菱树脂株式会社 | Heat resistant film and its metal laminate |
US7498086B2 (en) | 2002-08-07 | 2009-03-03 | Mitsubishi Platics, Inc. | Heat resistant film and metal laminate thereof |
US8778118B2 (en) | 2003-04-25 | 2014-07-15 | Nitto Denko Corporation | Manufacturing method of laser processed parts, and pressure-sensitive adhesive sheet for laser processing used for the same |
US7586060B2 (en) * | 2003-12-25 | 2009-09-08 | Nitto Denko Corporation | Protective sheet for laser processing and manufacturing method of laser processed parts |
US8168030B2 (en) | 2005-01-14 | 2012-05-01 | Nitto Denko Corporation | Manufacturing method of laser processed parts and adhesive sheet for laser processing |
US8624156B2 (en) | 2005-01-14 | 2014-01-07 | Nitto Denko Corporation | Manufacturing method of laser processed parts and protective sheet for laser processing |
JP2006341596A (en) * | 2005-05-12 | 2006-12-21 | Mitsubishi Plastics Ind Ltd | Heat resistant resin plate |
WO2015137033A1 (en) * | 2014-03-11 | 2015-09-17 | デクセリアルズ株式会社 | Anisotropic conductive film, connection method, and joined body |
JP2015170581A (en) * | 2014-03-11 | 2015-09-28 | デクセリアルズ株式会社 | Anisotropic conductive film, connection method and bonded body |
TWI628675B (en) * | 2014-03-11 | 2018-07-01 | 日商迪睿合股份有限公司 | Anisotropic conductive film, connection method, and joined structure |
KR101906025B1 (en) | 2014-03-11 | 2018-10-08 | 데쿠세리아루즈 가부시키가이샤 | Anisotropic conductive film, connection method, and joined body |
US10202524B2 (en) | 2014-03-11 | 2019-02-12 | Dexerials Corporation | Anisotropic conductive film, connection method, and joined body |
JP2018125291A (en) * | 2018-02-14 | 2018-08-09 | デクセリアルズ株式会社 | Anisotropic conductive film, as well as, connection method and conjugate |
WO2022181804A1 (en) * | 2021-02-25 | 2022-09-01 | 三菱ケミカル株式会社 | Prepreg and production method therefor, and molded object |
JP7193039B1 (en) * | 2021-02-25 | 2022-12-20 | 三菱ケミカル株式会社 | Prepreg, its manufacturing method, and compact |
Also Published As
Publication number | Publication date |
---|---|
JP4234896B2 (en) | 2009-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1369450B1 (en) | Polyaryl ketone resin film and laminates therof with metal | |
JP4201965B2 (en) | Heat-resistant resin composition, heat-resistant film or sheet comprising the same, and laminated board based thereon | |
JP5709878B2 (en) | Film made of polyarylene ether ketone | |
JP4234896B2 (en) | HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM | |
JP4094211B2 (en) | Method for producing metal foil laminate | |
JP2000200950A (en) | Flexible wiring board and manufacture thereof | |
JP3714876B2 (en) | Heat resistant film | |
JP3766263B2 (en) | Heat resistant film and flexible printed wiring board based on the heat resistant film | |
EP1550697B1 (en) | Heat-resistant film and metal laminate thereof | |
JP3803241B2 (en) | Method of joining heat-resistant resin molded body and metal body and joined body | |
JP4873903B2 (en) | Thermoplastic resin film and method for producing the same | |
JP2006008986A (en) | Thermoplastic resin film and its production method | |
JP2006249443A (en) | Polyarylketone-based resin film | |
JP2009238919A (en) | Sheet for reinforcing flexible printed wiring board, and flexible printed wiring board using same | |
KR100874080B1 (en) | Heat-resistant film and metal laminate thereof | |
JP2005330378A (en) | Thermoplastic resin composition and molded form using the same | |
JP2005330379A (en) | Thermoplastic resin composition and molded form using the same | |
JP2003213013A (en) | Polyphenylene sulfide film | |
JPH0453181A (en) | Manufacture of high-frequency copper-plated board | |
JP2005330377A (en) | Thermoplastic resin film and method for producing the same | |
JP2001031818A (en) | Heat-resistant insulating film and production of raw board for printed circuit board and substrate by using the same film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051013 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060424 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060612 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081212 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4234896 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131219 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |