JP2002104827A - Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it - Google Patents

Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it

Info

Publication number
JP2002104827A
JP2002104827A JP2000299215A JP2000299215A JP2002104827A JP 2002104827 A JP2002104827 A JP 2002104827A JP 2000299215 A JP2000299215 A JP 2000299215A JP 2000299215 A JP2000299215 A JP 2000299215A JP 2002104827 A JP2002104827 A JP 2002104827A
Authority
JP
Japan
Prior art keywords
manganese
lithium
spinel
type lithium
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000299215A
Other languages
Japanese (ja)
Inventor
Katsuyuki Tanabe
克行 田辺
Kazuo Hirota
一雄 広田
Yoshinari Ikegami
良成 池上
Hiroshi Nakajima
中島  宏
Yoshinobu Uozumi
嘉伸 魚住
Yoshiyuki Takahara
由行 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ako Kasei Co Ltd
Unitika Ltd
Original Assignee
Ako Kasei Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ako Kasei Co Ltd, Unitika Ltd filed Critical Ako Kasei Co Ltd
Priority to JP2000299215A priority Critical patent/JP2002104827A/en
Publication of JP2002104827A publication Critical patent/JP2002104827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a new spinel type lithium manganese compound oxide superior in electrical charge or discharge capacity and electrical charge or discharge cycle property and dense packing property as a cathode material for a lithium ion secondary battery. SOLUTION: The compositional formula of the spinel type lithium manganese compound oxide is shown as LixMn2-yMyOz (M is at least one kind among metal elements except Li and Mn, and 1.0<=x<=1.2, 0<=y<=0.5, 3.8<=z<=4.4). The average primary particle diameter is 0.01 μm or more and 0.2 μm or less. The average secondary particle diameter is 0.2 μm or more and 100 μm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオン二次電
池の正極材料として有用な、充放電容量、充放電サイク
ル特性、及び高充填性に優れた、新規なスピネル型リチ
ウムマンガン複合酸化物とその製造方法、またこれを用
いたリチウムイオン二次電池に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a novel spinel-type lithium manganese composite oxide which is useful as a positive electrode material of a lithium ion secondary battery and has excellent charge / discharge capacity, charge / discharge cycle characteristics, and high filling properties. The present invention relates to a method for manufacturing the same and a lithium ion secondary battery using the same.

【0002】[0002]

【従来の技術】近年、携帯用電子機器の急速な普及に伴
い、電源として、小型かつ軽量であり高エネルギー密度
を有し、かつ安価な二次電池への要望がますます高まっ
ている。さらに今後、電気自動車用バッテリーとして大
量に利用されると予想されている。このような現状にお
いて、高電圧・高エネルギー密度を有するリチウムイオ
ン二次電池への期待はますます大きくなっている。
2. Description of the Related Art In recent years, with the rapid spread of portable electronic devices, there has been an increasing demand for inexpensive secondary batteries which are small, lightweight, have a high energy density and are used as power supplies. In the future, it is expected to be used in large quantities as batteries for electric vehicles. Under such circumstances, expectations for a lithium ion secondary battery having a high voltage and a high energy density are increasing.

【0003】リチウムイオン二次電池の正極材料には、
従来、主にLiCoO2が使用されているが、原料となるコバ
ルト化合物は高価であり、供給量も少ない。一方、スピ
ネル型リチウムマンガン複合酸化物は主原料であるマン
ガン化合物がコバルト化合物に比較して安価であり、供
給量も多く、かつ環境適正も良いため、今後のリチウム
イオン二次電池用正極材料として期待が大きい。
[0003] Positive electrode materials for lithium ion secondary batteries include:
Conventionally, LiCoO 2 is mainly used, but the cobalt compound as a raw material is expensive and the supply amount is small. On the other hand, spinel-type lithium manganese composite oxides are cheaper in manganese compound as the main raw material than cobalt compounds, have a large supply, and are environmentally friendly. Expectations are great.

【0004】スピネル型リチウムマンガン酸化物のLiMn
2O4については古くから知られており、近年、リチウム
イオン二次電池用正極材料として注目されてきた。例え
ば特開昭63-114605号公報では、リチウムを含む負極
と、LiMn2O4を主体とする正極と、有機電解液とからな
る有機電解液二次電池が、また、特開昭63-187659号公
報では、リチウム或いはリチウム合金を活物質とする負
極と、スピネル型リチウムマンガン酸化物、λ型二酸化
マンガン、或いはこれらの中間的な結晶構造を有するマ
ンガン酸化物を活物質とする正極とを備えた非水系二次
電池などが提案されている。
The spinel-type lithium manganese oxide LiMn
2 O 4 has been known for a long time, and has recently attracted attention as a positive electrode material for lithium ion secondary batteries. For example, JP-A-63-114605 discloses an organic electrolyte secondary battery comprising a negative electrode containing lithium, a positive electrode mainly composed of LiMn 2 O 4 , and an organic electrolyte. The publication discloses a negative electrode using lithium or a lithium alloy as an active material, and a positive electrode using spinel-type lithium manganese oxide, λ-type manganese dioxide, or a manganese oxide having an intermediate crystalline structure as the active material. Non-aqueous secondary batteries have been proposed.

【0005】スピネル型リチウムマンガン酸化物である
LiMn2O4は、低融点のリチウム化合物とマンガン化合物
とを混合し、焼成することで得られる。例えば特開昭63
-114605号公報では、炭酸リチウムと二酸化マンガンと
を窒素雰囲気中で400℃に加熱して反応させることで、
また特開昭63-187659号公報では、Mn2O3と炭酸リチウム
とを混合し650℃で6時間、850℃で14時間空気中におい
て熱処理することで得ている。しかしながらこれらの方
法で得られたスピネル型リチウムマンガン酸化物は、充
放電特性(例えば充放電容量)が十分ではなかった。
[0005] Spinel type lithium manganese oxide
LiMn 2 O 4 is obtained by mixing a low-melting lithium compound and a manganese compound and firing the mixture. For example, JP 63
In the -114605 publication, lithium carbonate and manganese dioxide are heated and reacted at 400 ° C. in a nitrogen atmosphere,
In JP-A-63-187659, it is obtained by mixing Mn 2 O 3 and lithium carbonate and performing heat treatment in air at 650 ° C. for 6 hours and at 850 ° C. for 14 hours. However, the spinel-type lithium manganese oxide obtained by these methods has insufficient charge / discharge characteristics (for example, charge / discharge capacity).

【0006】また、特許第2870741号公報では、オキシ
水酸化マンガンを水酸化リチウム水溶液中に分散させた
後、加熱処理を行うことで、一次粒子サイズの平均粒径
が0.1〜5μm、二次粒子の平均粒径が1〜100μm、比表
面積が0.1〜10m2/gであるマンガン酸リチウムを得たと
してあるが、実施例により得られたリチウムマンガン複
合酸化物のX線回折ピークは、これがLiMnO2であること
を示しており、充放電の繰り返しによる性能劣化が生
じ、充放電特性も十分ではなかった。さらには、出発原
料にオキシ水酸化マンガンを使用するため、焼成時に発
生する水分によるエネルギー損失や焼成炉の損傷により
製造コストが高くなるという問題があった。
[0006] In Japanese Patent No. 2870741, manganese oxyhydroxide is dispersed in an aqueous solution of lithium hydroxide and then subjected to a heat treatment, so that the average primary particle size is 0.1 to 5 μm and the secondary particles are Of lithium manganate having an average particle size of 1 to 100 μm and a specific surface area of 0.1 to 10 m 2 / g, the X-ray diffraction peak of the lithium manganese composite oxide obtained in the example is LiMnO This indicates that the performance was deteriorated due to repeated charging and discharging, and the charging and discharging characteristics were not sufficient. Furthermore, since manganese oxyhydroxide is used as a starting material, there is a problem in that the production cost increases due to energy loss due to moisture generated during firing and damage to the firing furnace.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる従来技
術の課題に鑑みなされたものであり、リチウムイオン二
次電池の正極材料として、充放電容量及び充放電サイク
ル特性と高充填性に優れた新規なスピネル型リチウムマ
ンガン複合酸化物とその製造方法、ならびに、これを用
いてなるリチウムイオン二次電池を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has excellent charge / discharge capacity, charge / discharge cycle characteristics, and high filling properties as a positive electrode material of a lithium ion secondary battery. An object of the present invention is to provide a novel spinel-type lithium-manganese composite oxide, a method for producing the same, and a lithium-ion secondary battery using the same.

【0008】[0008]

【課題を解決するための手段】本発明はこのような課題
を解決するものであって、本発明の要旨は、組成式LixM
n2-yMyOz(MはLiとMn以外の金属元素、1.0≦x≦1.2、0
≦y≦0.5、3.8≦z≦4.4)で示された酸化物であって、
一次粒子の平均粒径が0.01μm以上、0.2μm以下であ
り、かつ該リチウムマンガン複合酸化物の二次粒子の平
均粒径が0.2μm以上、100μm以下であることを特徴とす
るスピネル型リチウムマンガン複合酸化物である。ま
た、本発明は、平均粒径が0.01μm以上、0.2μm以下で
ある酸化マンガンを主成分とする微粒子とリチウム含有
化合物および金属化合物(マンガン、リチウムを除く)
との混合物または一次粒子サイズの平均粒径が0.01μm
以上、0.2μm以下であるマンガンと他金属の複合微粒子
酸化物とリチウム化合物との混合物を加熱処理すること
を特徴とするスピネル型リチウムマンガン複合酸化物の
製造方法である。更に、本発明は、上記スピネル型リチ
ウムマンガン酸化物を正極材料に用いることを特徴とす
るリチウムイオン二次電池である。
SUMMARY OF THE INVENTION The present invention solves such a problem, and the gist of the present invention is to provide a composition formula LixM
n 2-y M y O z (M is a metal element other than Li and Mn, 1.0 ≦ x ≦ 1.2, 0
≦ y ≦ 0.5, 3.8 ≦ z ≦ 4.4)
The average particle diameter of the primary particles is 0.01 μm or more and 0.2 μm or less, and the average particle diameter of the secondary particles of the lithium manganese composite oxide is 0.2 μm or more and 100 μm or less. It is a composite oxide. In addition, the present invention provides fine particles mainly composed of manganese oxide having an average particle diameter of 0.01 μm or more and 0.2 μm or less, lithium-containing compounds and metal compounds (excluding manganese and lithium).
Mixture or primary particle size average particle size is 0.01μm
As described above, there is provided a method for producing a spinel-type lithium-manganese composite oxide, which comprises heat-treating a mixture of a composite fine particle oxide of manganese and another metal having a particle size of 0.2 μm or less and a lithium compound. Further, the present invention is a lithium ion secondary battery characterized in that the above spinel type lithium manganese oxide is used as a positive electrode material.

【0009】[0009]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明のスピネル型リチウムマンガン複合酸化物は、組
成式LixMn2-yMyOz(MはLiとMn以外の少なくとも一種以
上の金属元素、1.0≦x≦1.2、0≦y≦0.5、3.8≦z≦4.
4)で表されるものであり、x=1.0、y=0、z=4のスピネル
型リチウムマンガン酸化物であるLiMn2O4であってもよ
く、1.0≦x≦1.2、0≦y≦0.5、3.8≦z≦4.4の範囲に相
当するスピネル型リチウムマンガン複合酸化物であれば
よい。x、y、zが上記の範囲を超えた場合、二次電池の
充放電容量が減少し、また、構造が不安定になることで
充放電サイクル特性も低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The spinel-type lithium manganese composite oxide of the present invention has a composition formula of Li x Mn 2-y M y O z (M is at least one or more metal elements other than Li and Mn, 1.0 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.5 , 3.8 ≦ z ≦ 4.
4), x = 1.0, y = 0, may be LiMn 2 O 4 which is a spinel type lithium manganese oxide with z = 4, and 1.0 ≦ x ≦ 1.2, 0 ≦ y ≦ Any spinel-type lithium manganese composite oxide corresponding to the range of 0.5, 3.8 ≦ z ≦ 4.4 may be used. When x, y, and z exceed the above ranges, the charge / discharge capacity of the secondary battery decreases, and the charge / discharge cycle characteristics also deteriorate due to the unstable structure.

【0010】上記金属元素とは、Li、Mnを除く金属元素
であり、具体的には、B、Mg、Al、Si、Sc、Ti、V、Cr、
Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、S
b、La、Ce、Pr、Nd、Hf、TaおよびPbからなる群より選
択される少なくとも1種の元素のことであり、2種以上
の元素が含まれていてもよい。上記スピネル型リチウム
マンガン複合酸化物は、スピネル構造であり、そのX線
回折パターンは、JCPDSカードのNo.35-0782に記載され
ているLiMn2O4のパターンと同じである。
The above-mentioned metal elements are metal elements other than Li and Mn, and specifically, B, Mg, Al, Si, Sc, Ti, V, Cr,
Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, S
b, La, Ce, Pr, Nd, Hf, Ta, and at least one element selected from the group consisting of Pb, and may include two or more elements. The spinel-type lithium manganese composite oxide has a spinel structure, and its X-ray diffraction pattern is the same as that of LiMn 2 O 4 described in JCPDS card No. 35-0782.

【0011】本発明のスピネル型リチウムマンガン複合
酸化物の一次粒子の平均粒径は0.01μm以上、0.2μm以
下であり、好ましくは0.02μm以上、0.1μm以下であ
る。一次粒子とは、電子顕微鏡で観察した場合に粒子状
として確認できる最小単位のものであり、本発明のスピ
ネル型リチウムマンガン複合酸化物は、水等の溶媒中で
超音波照射したり、ホモジナイザーや各種ミル等で強い
せん断力などの外力を加えることで再分散した際には、
その一部がこの一次粒子に分散させることができる。上
記一次粒子の平均粒径とは、数平均粒径であり、電子顕
微鏡写真から100個以上の一次粒子径の平均をとったも
のである。上記一次粒子の平均粒径が0.01μm未満であ
ると、リチウムイオン二次電池正極材料として用いた場
合、反応性が非常に高くなり、マンガン等の溶出などに
よる性能劣化が生じる。上記一次粒子の平均粒径が0.2
μmを超えると、充放電の際のリチウムイオンの移動が
十分行われず、充放電容量が低下する。
The average particle size of the primary particles of the spinel-type lithium manganese composite oxide of the present invention is 0.01 μm or more and 0.2 μm or less, preferably 0.02 μm or more and 0.1 μm or less. The primary particles are the smallest units that can be confirmed as particles when observed with an electron microscope.The spinel-type lithium manganese composite oxide of the present invention is irradiated with ultrasonic waves in a solvent such as water, or a homogenizer. When re-dispersed by applying an external force such as a strong shear force with various mills,
Some of them can be dispersed in the primary particles. The average particle diameter of the primary particles is a number average particle diameter, which is an average of 100 or more primary particle diameters from an electron micrograph. When the average particle size of the primary particles is less than 0.01 μm, when used as a positive electrode material for a lithium ion secondary battery, the reactivity becomes extremely high, and performance degradation due to elution of manganese or the like occurs. The average particle size of the primary particles is 0.2
If it exceeds μm, the movement of lithium ions during charge / discharge is not sufficiently performed, and the charge / discharge capacity is reduced.

【0012】本発明のスピネル型リチウムマンガン複合
酸化物の二次粒子の平均粒径は0.2μm以上、100μm以下
であり、好ましくは0.5μm以上、50μm以下であり、さ
らに好ましくは1.0μm以上、40μm以下である。二次粒
子とは、電子顕微鏡で観察した場合に一次粒子が物理的
または化学的に凝集あるいは集合しているものであり、
平均粒径は100個以上のものの数平均粒径である。上記
二次粒子の平均粒径が0.2μm未満であると、リチウムイ
オン二次電池の正極材料として用いた場合、充填率が低
くなり、電池の単位体積あたりの電気容量が小さくな
る。上記二次粒子の平均粒径が100μmを超えると、その
粒子がリチウムイオン二次電池のセパレータを破損し、
電気的短絡が生じるおそれがある。
The average particle size of the secondary particles of the spinel-type lithium manganese composite oxide of the present invention is from 0.2 μm to 100 μm, preferably from 0.5 μm to 50 μm, more preferably from 1.0 μm to 40 μm. It is as follows. Secondary particles are those in which primary particles are physically or chemically aggregated or aggregated when observed with an electron microscope,
The average particle size is a number average particle size of 100 or more. When the average particle diameter of the secondary particles is less than 0.2 μm, when the secondary particles are used as a positive electrode material of a lithium ion secondary battery, the filling rate is low, and the electric capacity per unit volume of the battery is low. When the average particle size of the secondary particles exceeds 100 μm, the particles damage the separator of the lithium ion secondary battery,
An electrical short circuit may occur.

【0013】本発明のスピネル型リチウムマンガン複合
酸化物は、一次粒子の平均粒径が0.01μm以上、0.2μm
以下である酸化マンガンを主成分とする微粒子とリチウ
ム含有化合物と、マンガン、リチウムを除く金属の化合
物とを加熱処理したり、あるいは一次粒子の平均粒子径
が0.01μm以上0.2μm以下であるマンガンと他金属の複
合微粒子酸化物とリチウム含有化合物とを加熱処理する
ことで製造することができる。
The spinel-type lithium manganese composite oxide of the present invention has an average primary particle diameter of 0.01 μm or more and 0.2 μm
Fine particles containing manganese oxide as the main component and a lithium-containing compound, manganese, or a heat-treated metal compound other than lithium, or manganese having an average primary particle diameter of 0.01 μm or more and 0.2 μm or less. It can be produced by heat-treating a composite fine particle oxide of another metal and a lithium-containing compound.

【0014】本発明の製造方法で用いられる酸化マンガ
ンを主成分とする微粒子とは、マンガンの酸化物を主成
分とするものであればよく、マンガンの酸化物として
は、Mn 3O4、Mn2O3、MnO、MnO2などが挙げられ、Mn3O4
MnO2が好ましく用いられる。また、微粒子の一次粒子の
平均粒径は0.01μm以上、0.2μm以下である。平均粒径
とは、電子顕微鏡で観察した場合の100個以上の微粒子
の数平均粒径である。微粒子の平均粒径が0.01μm未満
の場合、その表面活性が高いため、加熱処理で得られた
スピネル型リチウムマンガン複合酸化物は、一次粒子が
成長しやすく、平均粒径を0.2μm以下とすることが困難
となり、また、微粒子の平均粒径が0.2μmを超えた場
合、スピネル型リチウムマンガン複合酸化物の一次粒子
の平均粒径は0.2μmを超えてしまう。
Oxidized manganese used in the production method of the present invention
Fine particles mainly containing manganese are mainly composed of manganese oxides.
And manganese oxide.
Is Mn ThreeOFour, MnTwoOThree, MnO, MnOTwoAnd MnThreeOFourAnd
MnOTwoIs preferably used. In addition, the primary particles of fine particles
The average particle size is from 0.01 μm to 0.2 μm. Average particle size
Means more than 100 particles when observed with an electron microscope
Is the number average particle size. Average particle size of fine particles is less than 0.01μm
In the case of, because of its high surface activity, obtained by heat treatment
Spinel-type lithium manganese composite oxide has primary particles
Easy to grow, difficult to reduce average particle size below 0.2μm
And when the average particle diameter of the fine particles exceeds 0.2 μm.
Primary particles of spinel-type lithium manganese composite oxide
Has a mean particle size of more than 0.2 μm.

【0015】本発明の製造方法で用いられるリチウム含
有化合物としては、水酸化リチウム、炭酸リチウムなど
を主成分とする化合物を挙げることができる。
As the lithium-containing compound used in the production method of the present invention, there can be mentioned a compound containing lithium hydroxide, lithium carbonate or the like as a main component.

【0016】本発明の製造方法で用いられるマンガン、
リチウムを除く金属の化合物とは、B、Mg、Al、Si、S
c、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Nb、M
o、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、TaおよびPbから
なる群より選択される少なくとも1種の金属元素を含む
化合物のことであり、2種以上の金属元素が含まれてい
てもよい。
Manganese used in the production method of the present invention,
Compounds of metals other than lithium include B, Mg, Al, Si, S
c, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, M
o, Ru, Sn, Sb, La, Ce, Pr, Nd, Hf, Ta and a compound containing at least one metal element selected from the group consisting of Ta and Pb, including two or more metal elements It may be.

【0017】本発明で用いられる複合酸化物微粒子と
は、マンガンとB、Mg、Al、Si、Sc、Ti、V、Cr、Fe、C
o、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、
Ce、Pr、Nd、Hf、TaおよびPbからなる群より選択される
少なくとも1種の金属元素とを含む複合酸化物の微粒子
のことであり、3種以上の金属元素が含まれていてもよ
い。
The composite oxide fine particles used in the present invention include manganese and B, Mg, Al, Si, Sc, Ti, V, Cr, Fe, C
o, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La,
Fine particles of a composite oxide containing at least one metal element selected from the group consisting of Ce, Pr, Nd, Hf, Ta and Pb, and may contain three or more metal elements .

【0018】本発明で用いられる酸化マンガンを主成分
とする微粒子ならびにマンガンと他金属元素との複合酸
化物の微粒子の平均粒径は0.01μm以上0.2μm以下であ
り、平均粒径は電子顕微鏡で観察した場合の100個以上
の微粒子の数平均粒径である。
The fine particles mainly composed of manganese oxide and the fine particles of a composite oxide of manganese and another metal element used in the present invention have an average particle size of 0.01 μm or more and 0.2 μm or less, and the average particle size is determined by an electron microscope. It is the number average particle diameter of 100 or more fine particles when observed.

【0019】本発明のスピネル型リチウムマンガン複合
酸化物の製造方法では、上記酸化マンガンを主成分とす
る微粒子とリチウム含有化合物と金属化合物とを混合
し、加熱処理することで合成されるが、その加熱処理条
件は、スピネル型リチウムマンガン複合酸化物の一次粒
子の平均粒径が0.2μmを超えないようにして加熱温度、
加熱時間が決定される。実際の加熱温度は、250℃以
上、900℃以下であり、好ましくは350℃以上、850℃以
下である。250℃未満であれば、スピネル型リチウムマ
ンガン複合酸化物は得られず、900℃を超えれば、リチ
ウムマンガン酸化物の結晶型変化を伴う場合や、得られ
るスピネル型リチウムマンガン複合酸化物の一次粒子の
粒子成長を促進する場合がある、後者の場合、一次粒子
の平均粒径を0.2μm以下にすることは困難である。ま
た、加熱時間については、特に制約はないが、スピネル
型リチウムマンガン複合酸化物が合成できれば、なるべ
く加熱時間が短い方が、製造コストの面から有利であ
る。加熱処理において、加熱処理の前に圧縮してペレッ
ト状にしたものを加熱してもよい。加熱処理後、得られ
たスピネル型リチウムマンガン複合酸化物が大きな凝集
体を形成している場合、二次粒子の平均粒径が100μm以
下となるまで粉砕を行う。
In the method for producing a spinel-type lithium manganese composite oxide according to the present invention, the fine particles containing manganese oxide as a main component, a lithium-containing compound and a metal compound are mixed and heat-treated. Heat treatment conditions, the heating temperature such that the average primary particle diameter of the spinel-type lithium manganese composite oxide does not exceed 0.2μm,
The heating time is determined. The actual heating temperature is from 250 ° C to 900 ° C, preferably from 350 ° C to 850 ° C. If the temperature is lower than 250 ° C., a spinel-type lithium manganese composite oxide cannot be obtained. In some cases, it is difficult to reduce the average particle size of the primary particles to 0.2 μm or less. The heating time is not particularly limited, but if the spinel-type lithium manganese composite oxide can be synthesized, the shorter the heating time is, the more advantageous from the viewpoint of manufacturing cost. In the heat treatment, the material that has been compressed into pellets before the heat treatment may be heated. After the heat treatment, when the obtained spinel-type lithium manganese composite oxide forms a large aggregate, pulverization is performed until the average particle size of the secondary particles becomes 100 μm or less.

【0020】本発明のリチウムイオン二次電池は、本発
明のスピネル型リチウムマンガン複合酸化物を正極材料
に用いたものである。さらに詳しく説明すると、正極に
は上述のスピネル型リチウムマンガン複合酸化物と導電
材と結合材とフィラー等を混合した材料が使用され、負
極にはリチウム又はリチウムを挿入、脱挿入可能な炭素
などの材料が用いられる。また、電解質には、カーボネ
ート類、スルホラン類、ラクトン類、エーテル類等の有
機溶媒中にリチウム塩を溶解したものや、リチウムイオ
ン導電性の固体電解質などが用いられる。
The lithium ion secondary battery of the present invention uses the spinel-type lithium manganese composite oxide of the present invention as a positive electrode material. More specifically, for the positive electrode, a material obtained by mixing the above-described spinel-type lithium manganese composite oxide, a conductive material, a binder, a filler, and the like is used. Materials are used. In addition, as the electrolyte, a solution in which a lithium salt is dissolved in an organic solvent such as carbonates, sulfolane, lactones, and ethers, and a solid electrolyte having lithium ion conductivity are used.

【0021】[0021]

【実施例】以下、実施例を述べるが、本発明はこれに制
限されるものではない。
EXAMPLES Examples will be described below, but the present invention is not limited to these examples.

【0022】(a)一次粒子及び二次粒子の平均粒径 透過型電子顕微鏡で撮影した写真より、ランダムに100
個の一次または二次粒子の粒径を測定し、数平均して求
めた。 (b)電池放電容量 スピネル型リチウムマンガン複合酸化物50mg、アセチレ
ンブラック10mg、ポリテトラフルオロエチレン10mgを混
合、混錬し、80Mpaの圧力でチタンメッシュ上に圧着
後、200℃で24時間減圧乾燥を行って正極を作製した。
ついで、この正極材料を3極式セルに収納し、負極にリ
チウム箔を、電解液にはLiClO4を用いてリチウムイオン
二次電池を構成した。この電池を用いて、40μA/cm2
一定電流で、電池電圧4.3〜3.0Vの間で充放電を繰り返
し、放電容量を測定した。 (c)充填性 電池への充填性の評価としては、タップ密度を測定し
た。すなわち、セイシン企業社製粉体物性測定器マルチ
テスターMT-1000を使用して、6回/10秒の条件で60分
間タッピング後の密度をタップ密度とした。
(A) Average particle size of primary particles and secondary particles From a photograph taken with a transmission electron microscope, 100
The particle size of the primary or secondary particles was measured and averaged. (b) Battery discharge capacity 50 mg of spinel-type lithium manganese composite oxide, 10 mg of acetylene black and 10 mg of polytetrafluoroethylene were mixed and kneaded, pressed on a titanium mesh with a pressure of 80 MPa, and dried under reduced pressure at 200 ° C. for 24 hours. This was performed to produce a positive electrode.
Next, this positive electrode material was accommodated in a three-electrode cell, and a lithium ion secondary battery was constructed using lithium foil for the negative electrode and LiClO 4 for the electrolyte. Using this battery, charging and discharging were repeated at a constant current of 40 μA / cm 2 at a battery voltage of 4.3 to 3.0 V, and the discharge capacity was measured. (c) Filling property In order to evaluate the filling property of the battery, the tap density was measured. That is, the density after tapping for 60 minutes under the condition of 6 times / 10 seconds using a powder property measuring device multi-tester MT-1000 manufactured by Seishin Enterprise Co., Ltd. was defined as the tap density.

【0023】実施例1 一次粒子の平均粒径が0.04μmの四三酸化マンガン(シ
ーアイ化成社製 ナノテック)15.2gと炭酸リチウム
(石津製薬社製 特級)3.7gとを混合し、プレス機で10
0MPaの荷重をかけて成型したものを電気炉で空気雰囲気
下で750℃、12時間焼成した後、乳鉢で粉砕して、微粉
末を得た。この微粉末は、X線回折測定結果(図1)よ
り、スピネル型リチウムマンガン複合酸化物(LiMn
2O4)であった。この微粒子の平均粒径、タップ密度、
およびリチウムイオン二次電池の放電容量を表1に示し
た。
Example 1 15.2 g of manganese tetroxide (Nanotech manufactured by CI Kasei Co., Ltd.) having an average primary particle size of 0.04 μm and 3.7 g of lithium carbonate (special grade manufactured by Ishizu Pharmaceutical Co., Ltd.) were mixed, and the mixture was mixed with a press machine.
The product molded under a load of 0 MPa was fired in an electric furnace at 750 ° C. for 12 hours in an air atmosphere, and then pulverized in a mortar to obtain a fine powder. From the results of X-ray diffraction measurement (FIG. 1), this fine powder was found to be spinel-type lithium manganese composite oxide (LiMn
2 O 4 ). The average particle size, tap density,
Table 1 shows the discharge capacities of the lithium ion secondary batteries.

【0024】実施例2 一次粒子の平均粒径が0.08μmの四三酸化マンガン(東
ソー社製 ブラウノックスX)15.2gを用いた以外は、実
施例1と同様に行い、結果を表1に示した。
Example 2 The procedure of Example 1 was repeated except that 15.2 g of manganese tetroxide (Brownox X, manufactured by Tosoh Corporation) having an average primary particle size of 0.08 μm was used. The results are shown in Table 1. Was.

【0025】実施例3 0.01モル/リットルの硫酸マンガン(II)50リットル
に0.02モル/リットルの水酸化ナトリウム水溶液を約50
リットル添加し、pH=12に調製した後、エアーポンプ
で50リットル/分の空気を液中でバブリングさせなが
ら、1時間撹拌を行い、茶褐色の沈殿物を得て、これを
常法により、ろ過・洗浄を行い、150℃で1日乾燥を行
い、一次粒子の平均粒径が26nmの四三酸化マンガン35g
を得た。この四三酸化マンガン15.2gを用いた以外は、
実施例1と同様に行い、結果を表1に示した。
Example 3 0.05 mol / L of sodium hydroxide aqueous solution was added to 50 L of 0.01 mol / L manganese (II) sulfate for about 50 L.
After adding 1 liter and adjusting to pH = 12, the mixture was stirred for 1 hour while bubbling 50 liter / min of air in the liquid with an air pump to obtain a brown precipitate, which was filtered by a conventional method.・ After washing, drying at 150 ° C for 1 day, 35 g of manganese tetroxide with an average primary particle size of 26 nm
I got Except for using 15.2 g of this manganese tetroxide,
The procedure was performed in the same manner as in Example 1, and the results are shown in Table 1.

【0026】実施例4 一次粒子の平均粒径が0.04μmの四三酸化マンガン(シ
ーアイ化成社製 ナノテック)14.5g と酸化コバルト
(シーアイ化成社製 ナノテック)0.8gと炭酸リチウム
(石津製薬社製 特級)3.7gとを混合した以外は、実施
例1と同様に行い、結果を表1に示した。
Example 4 14.5 g of manganese tetroxide (Nanotec manufactured by C-I Kasei Co., Ltd.) having an average primary particle size of 0.04 μm, 0.8 g of cobalt oxide (Nano Tech manufactured by C-I Kasei Co., Ltd.) and lithium carbonate (special grade manufactured by Ishizu Pharmaceutical Co., Ltd.) ) Was carried out in the same manner as in Example 1 except for mixing 3.7 g), and the results are shown in Table 1.

【0027】実施例5 0.01モル/リットルの硫酸マンガン(II)50リットル
と0.01モル/リットルの硫酸コバルト(II)4.5リット
ルの混合水溶液に0.02モル/リットルの水酸化ナトリウ
ム水溶液を約55リットル添加し、pH=12に調製した
後、エアーポンプで50リットル/分の空気を液中でバブ
リングさせながら、1時間撹拌を行い、茶褐色の沈殿物
を得て、これを常法により、ろ過・洗浄を行い、150℃
で1日乾燥を行い、一次粒子の平均粒径が30nmの複合酸
化物38.5gを得た。この複合酸化物の組成分析を行った
ところ、Co/Mn=11.9wt%であった。この複合酸化物15.
3gと炭酸リチウム(石津製薬社製 特級)3.7gとを混合
した以外は、実施例1と同様に行い、結果を表1に示し
た。
Example 5 A mixture of 50 liters of 0.01 mol / l manganese (II) sulfate and 4.5 liters of 0.01 mol / l cobalt (II) sulfate was mixed with about 55 liters of a 0.02 mol / l sodium hydroxide aqueous solution. After adding to adjust the pH to 12, the mixture was stirred for 1 hour while bubbling 50 liters / min of air in the liquid with an air pump to obtain a brown precipitate, which was filtered and filtered by a conventional method. After washing, 150 ℃
For 1 day to obtain 38.5 g of a composite oxide having an average primary particle size of 30 nm. A composition analysis of this composite oxide revealed Co / Mn = 11.9 wt%. This composite oxide 15.
The procedure was performed in the same manner as in Example 1 except that 3 g and 3.7 g of lithium carbonate (special grade manufactured by Ishizu Pharmaceutical Co., Ltd.) were mixed. The results are shown in Table 1.

【0028】比較例1 1モル/リットルの硫酸マンガン(II)50リットルに
2モル/リットルの水酸化ナトリウム水溶液を約50リッ
トル添加し、pH=12に調製した後、エアーポンプで50
リットル/分の空気を液中でバブリングさせながら、1
時間撹拌を行い、茶褐色の沈殿物を得て、これを常法に
より、ろ過・洗浄を行い、150℃で1日乾燥を行い、一
次粒子の平均粒径が250nmの四三酸化マンガンを得た。
この四三酸化マンガン15.2gを用いた以外は、実施例1
と同様に行い、結果を表1に示した。
Comparative Example 1 To 50 liters of 1 mol / l manganese (II) sulfate
About 50 liters of a 2 mol / l sodium hydroxide aqueous solution was added to adjust the pH to 12, and then 50
While bubbling air through the liquid at 1 liter / min.
Stirring was carried out for a time to obtain a brown precipitate, which was filtered and washed by a conventional method, and dried at 150 ° C. for one day to obtain trimanganese oxide having an average primary particle size of 250 nm. .
Example 1 except that 15.2 g of this manganese tetroxide was used.
And the results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に示すように、実施例1〜5の電池
は、放電容量、充放電サイクル特性及び充填性のいずれ
も良好な結果を示した。比較例では放電容量が低かっ
た。
As shown in Table 1, the batteries of Examples 1 to 5 showed good results in all of the discharge capacity, charge / discharge cycle characteristics, and fillability. In the comparative example, the discharge capacity was low.

【0031】[0031]

【発明の効果】本発明により、放電容量、充放電サイク
ル特性及び充填性のいずれにも優れたスピネル型リチウ
ムマンガン複合酸化物を提供することが可能となった。
本発明のスピネル型リチウムマンガン複合酸化物を正極
材料として用いたリチウムイオン二次電池は、高容量か
つ高性能であり、電子機器の小型化、電池寿命の向上に
つながる。
According to the present invention, it has become possible to provide a spinel-type lithium manganese composite oxide having excellent discharge capacity, charge / discharge cycle characteristics, and filling properties.
A lithium ion secondary battery using the spinel-type lithium manganese composite oxide of the present invention as a positive electrode material has high capacity and high performance, which leads to miniaturization of electronic devices and improvement of battery life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスピネル型リチウムマンガン複合酸化
物のX線回折測定結果を示す図である。
FIG. 1 is a view showing the results of X-ray diffraction measurement of a spinel-type lithium manganese composite oxide of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池上 良成 兵庫県赤穂市坂越329番地 赤穂化成株式 会社内 (72)発明者 中島 宏 兵庫県赤穂市坂越329番地 赤穂化成株式 会社内 (72)発明者 魚住 嘉伸 兵庫県赤穂市坂越329番地 赤穂化成株式 会社内 (72)発明者 高原 由行 兵庫県赤穂市坂越329番地 赤穂化成株式 会社内 Fターム(参考) 4G048 AA04 AB06 AC06 AD04 AD06 5H029 AJ03 AJ05 AK03 AL06 AL12 AM03 AM04 AM06 AM07 AM12 AM16 CJ02 CJ08 DJ17 EJ03 EJ05 HJ02 HJ05 5H050 AA07 AA08 BA17 CA09 DA02 FA17 FA19 GA02 GA10 HA02 HA05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshinari Ikegami 329 Sakagoshi, Ako-shi, Hyogo Prefecture Inside Ako Kasei Co., Ltd. (72) Inventor Hiroshi Nakajima 329 Sakakoshi, Ako-shi, Hyogo Prefecture Inside Ako Kasei Co., Ltd. (72) Inventor Yoshinobu Uozumi 329 Sakagoe, Ako-shi, Hyogo Aka Kasei Co., Ltd. (72) Inventor Yoshiyuki Takahara 329, Sakagoe, Ako-shi, Hyogo Ako Kasei Co., Ltd.F-term (reference) 4G048 AA04 AB06 AC06 AD04 AD06 5H029 AJ03 AJ05 AK03 AL06 AL12 AM03 AM04 AM06 AM07 AM12 AM16 CJ02 CJ08 DJ17 EJ03 EJ05 HJ02 HJ05 5H050 AA07 AA08 BA17 CA09 DA02 FA17 FA19 GA02 GA10 HA02 HA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成式LixMn2-yMyOz(MはLiとMn以外の
少なくとも一種以上の金属元素、1.0≦x≦1.2、0≦y≦
0.5、3.8≦z≦4.4)で示された酸化物であって、一次粒
子の平均粒径が0.01μm以上、0.2μm以下であり、二次
粒子の平均粒径が0.2μm以上、100μm以下であることを
特徴とするスピネル型リチウムマンガン複合酸化物。
The composition formula Li x Mn 2-y M y O z (M is at least one metal element other than Li and Mn, 1.0 ≦ x ≦ 1.2, 0 ≦ y ≦
0.5, 3.8 ≤ z ≤ 4.4) oxide, the average particle size of the primary particles is 0.01μm or more, 0.2μm or less, the average particle size of the secondary particles is 0.2μm or more, 100μm or less A spinel-type lithium manganese composite oxide, characterized in that:
【請求項2】 一次粒子の平均粒径が0.01μm以上、0.2
μm以下である酸化マンガンを主成分とする微粒子と、
リチウム含有化合物と、マンガン、リチウムを除く金属
の化合物とを加熱処理することを特徴とする請求項1記
載のスピネル型リチウムマンガン複合酸化物の製造方
法。
2. The method according to claim 1, wherein the primary particles have an average particle size of 0.01 μm or more,
micron-based manganese oxide-based fine particles,
The method for producing a spinel-type lithium-manganese composite oxide according to claim 1, wherein the lithium-containing compound and a compound of a metal other than manganese and lithium are subjected to heat treatment.
【請求項3】 一次粒子の平均粒径が0.01μm以上、0.2
μm以下であるマンガンと他金属元素との複合酸化物微
粒子と、リチウム含有化合物とを加熱処理することを特
徴とする請求項1記載のスピネル型リチウムマンガン複
合酸化物の製造方法。
3. The method according to claim 1, wherein the primary particles have an average particle size of 0.01 μm or more,
The method for producing a spinel-type lithium-manganese composite oxide according to claim 1, wherein the lithium-containing compound and a composite oxide fine particle of manganese and another metal element having a size of not more than μm are heat-treated.
【請求項4】 請求項1記載のスピネル型リチウムマン
ガン複合酸化物を正極材料に用いることを特徴とするリ
チウムイオン二次電池。
4. A lithium ion secondary battery using the spinel-type lithium manganese composite oxide according to claim 1 as a cathode material.
JP2000299215A 2000-09-29 2000-09-29 Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it Pending JP2002104827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299215A JP2002104827A (en) 2000-09-29 2000-09-29 Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299215A JP2002104827A (en) 2000-09-29 2000-09-29 Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it

Publications (1)

Publication Number Publication Date
JP2002104827A true JP2002104827A (en) 2002-04-10

Family

ID=18781058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299215A Pending JP2002104827A (en) 2000-09-29 2000-09-29 Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it

Country Status (1)

Country Link
JP (1) JP2002104827A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114408A (en) * 2004-10-15 2006-04-27 Izumi Taniguchi Lithium manganese complex oxide particle and positive electrode for secondary battery using this, as well as lithium secondary battery
WO2006095594A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2008529253A (en) * 2005-02-02 2008-07-31 アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same
WO2008126823A1 (en) 2007-04-09 2008-10-23 Kao Corporation Process for producing active material for positive electrode for battery
WO2008126824A1 (en) 2007-04-09 2008-10-23 Kao Corporation Positive electrode active material sintered body for battery
EP2051319A2 (en) 2007-10-17 2009-04-22 Hitachi Vehicle Energy, Ltd. Cathode active material and lithium ion secondary battery containing the same
WO2010050348A1 (en) 2008-10-27 2010-05-06 花王株式会社 Process for producing positive electrode active material particles for battery
WO2010050347A1 (en) 2008-10-27 2010-05-06 花王株式会社 Sintered lithium complex oxide
JP2014107033A (en) * 2012-11-23 2014-06-09 Nippon Chemicon Corp Lithium ion secondary battery electrode material, method for manufacturing lithium ion secondary battery electrode material, and lithium ion secondary battery
US9023530B2 (en) 2005-03-09 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114408A (en) * 2004-10-15 2006-04-27 Izumi Taniguchi Lithium manganese complex oxide particle and positive electrode for secondary battery using this, as well as lithium secondary battery
US8956759B2 (en) 2005-02-02 2015-02-17 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
JP2008529253A (en) * 2005-02-02 2008-07-31 アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same
US9553313B2 (en) 2005-02-02 2017-01-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
WO2006095594A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
KR100886545B1 (en) * 2005-03-09 2009-03-02 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
US9023530B2 (en) 2005-03-09 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2008126823A1 (en) 2007-04-09 2008-10-23 Kao Corporation Process for producing active material for positive electrode for battery
WO2008126824A1 (en) 2007-04-09 2008-10-23 Kao Corporation Positive electrode active material sintered body for battery
US8273267B2 (en) 2007-04-09 2012-09-25 Kao Corporation Method for producing positive electrode active material for battery
US8465872B2 (en) 2007-04-09 2013-06-18 Kao Corporation Positive electrode active material sintered body for battery
EP2051319A2 (en) 2007-10-17 2009-04-22 Hitachi Vehicle Energy, Ltd. Cathode active material and lithium ion secondary battery containing the same
WO2010050347A1 (en) 2008-10-27 2010-05-06 花王株式会社 Sintered lithium complex oxide
US8562857B2 (en) 2008-10-27 2013-10-22 Kao Corporation Process for producing positive electrode active material particles for battery
WO2010050348A1 (en) 2008-10-27 2010-05-06 花王株式会社 Process for producing positive electrode active material particles for battery
JP2014107033A (en) * 2012-11-23 2014-06-09 Nippon Chemicon Corp Lithium ion secondary battery electrode material, method for manufacturing lithium ion secondary battery electrode material, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4000041B2 (en) Positive electrode active material for lithium secondary battery
US9640794B2 (en) Lithium transition metal oxide having layered structure
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4784608B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
US9337473B2 (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2003142101A (en) Positive electrode for secondary battery and secondary battery using the same
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
KR20190006907A (en) Spherical or spherical-like cathode material for lithium-ion battery and lithium-ion battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JPH11204110A (en) Manufacture of anode material for lithium ion battery
EP3086389B1 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
JP2006107818A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this and its manufacturing method
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JPWO2019087503A1 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP7371364B2 (en) Positive electrode active material for lithium ion secondary batteries and its manufacturing method, positive electrode for lithium ion secondary batteries, and lithium ion secondary batteries
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
JP2002104827A (en) Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2021141064A (en) Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
JP2002321920A (en) Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery