JP2002104816A - Activated carbon and its manufacturing method - Google Patents

Activated carbon and its manufacturing method

Info

Publication number
JP2002104816A
JP2002104816A JP2000346457A JP2000346457A JP2002104816A JP 2002104816 A JP2002104816 A JP 2002104816A JP 2000346457 A JP2000346457 A JP 2000346457A JP 2000346457 A JP2000346457 A JP 2000346457A JP 2002104816 A JP2002104816 A JP 2002104816A
Authority
JP
Japan
Prior art keywords
activated carbon
acid
electrode
activating
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000346457A
Other languages
Japanese (ja)
Inventor
Hideji Iwasaki
秀治 岩崎
Nozomi Sugo
望 須郷
Nobuyuki Nishimura
修志 西村
Yoshifumi Egawa
義史 江川
Motoi Aoki
基 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Kuraray Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd, Kuraray Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2000346457A priority Critical patent/JP2002104816A/en
Publication of JP2002104816A publication Critical patent/JP2002104816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electrode which is for a capacitor and has high affinity for water and has high electrostatic capacity per volume. SOLUTION: An activated carbon which is obtained by activating a carbonaceous material is further acid-treated at an elevated temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活性炭及びその製
造方法に関する。さらに詳しくは、炭素質材料を賦活し
て得た活性炭をさらに酸処理した活性炭及びその製造方
法に関する。本発明による活性炭は、水との親和性に優
れているので浄水用として好適であり、また静電容量が
大きいので、電気二重層キャパシタ用の電極として好適
である。
[0001] The present invention relates to activated carbon and a method for producing the same. More specifically, the present invention relates to activated carbon obtained by further activating activated carbon obtained by activating a carbonaceous material, and a method for producing the same. The activated carbon according to the present invention is suitable for water purification because of its excellent affinity with water, and is suitable as an electrode for an electric double layer capacitor because of its large capacitance.

【0002】[0002]

【従来の技術】活性炭は、食品工業、化学工業、医薬工
業、その他各種工業にわたって広く使用されている。こ
れらは主として活性炭の吸着性能を利用するものである
が、さらに吸着性能に優れる吸着剤が指向されている。
また、近年、バックアップ電源、補助電源として電気二
重層キャパシターが注目を集めており、活性炭の電気二
重層キャパシタの電極としての性能に着目した開発が広
くなされている。活性炭を分極性電極として使用した電
気二重層キャパシターは静電容量に優れるため、エレク
トロニクス分野の発展と共に、需要も急成長している。
また、最近では、従来のメモリーバックアップ電源等の
小型化に加え、モーター等の補助電源に使われるような
大容量製品の開発も行われている。
2. Description of the Related Art Activated carbon is widely used in the food industry, chemical industry, pharmaceutical industry and other various industries. Although these mainly utilize the adsorption performance of activated carbon, adsorbents having even better adsorption performance are being pursued.
In recent years, electric double-layer capacitors have been attracting attention as backup power supplies and auxiliary power supplies, and developments of activated carbon focusing on the performance of the electric double-layer capacitors as electrodes have been made widely. An electric double layer capacitor using activated carbon as a polarizable electrode has excellent capacitance, and the demand is rapidly growing with the development of the electronics field.
Recently, in addition to miniaturization of conventional memory backup power supplies and the like, large-capacity products used for auxiliary power supplies such as motors have been developed.

【0003】電気二重層キャパシターの原理は古くから
知られていたが、実際にデバイスとして使用され始めた
のは近年に至ってからである。電気二重層キャパシタの
静電容量は、電気二重層の形成される分極性電極の表面
積、単位面積当たりの電気二重層容量や電極の抵抗等に
よって主に支配されている。実用面では、単位体積当た
りの静電容量を高くし、電気二重層キャパシターの体積
を小さくするために、電極自体の密度を高めることも重
要である。 従来、電気二重層キャパシタ向け活性炭と
しては、(1)樹脂材料、椰子殻、ピッチおよび石炭な
どを水蒸気、ガスなどの酸性条件下で賦活した活性炭
(大容量キャパシタ技術と材料、シーエムシー社刊行
(1998) 参照)、(2)上記原料をKOHなど強
酸化力を有する薬品によって賦活した活性炭(WO91
/12203号公報、特開平10−199767号公
報)などが使用されてきた。
[0003] The principle of the electric double layer capacitor has been known for a long time, but it has only recently been started to use it as a device. The capacitance of the electric double layer capacitor is mainly controlled by the surface area of the polarizable electrode on which the electric double layer is formed, the electric double layer capacitance per unit area, the resistance of the electrode, and the like. In practical terms, it is also important to increase the density of the electrodes themselves in order to increase the capacitance per unit volume and reduce the volume of the electric double layer capacitor. Conventionally, as activated carbon for electric double layer capacitors, (1) activated carbon obtained by activating resin material, coconut shell, pitch and coal under acidic conditions such as steam and gas (Large-capacity capacitor technology and materials, published by CMC Corporation ( 1998)), (2) Activated carbon (WO 91) obtained by activating the above-mentioned raw material with a chemical having a strong oxidizing power such as KOH.
/ 12203, JP-A-10-199767) and the like have been used.

【0004】炭素質材料をアルカリで賦活し、電気二重
層キャパシターの分極性電極として使用する例として、
例えば、特開平1−139865号公報に、過剰量のア
ルカリ金属水酸化物の存在下に、炭素繊維を500℃を
越える温度にて不活性ガスの雰囲気中で加熱して大表面
積炭素繊維を得る方法が開示されている。また、特開平
5−258996号公報に、ピッチを原料として溶融紡
糸し、熱処理して得た炭素質繊維をアルカリ金属水酸化
物の水溶液で賦活し、脱灰後、粉砕して成形した電気二
重層コンデンサー用電極が開示され、特開平7−161
587号公報に、炭素質原料を水蒸気で賦活し、さらに
アルカリ金属水酸化物により賦活した後、粉砕して成形
した電気二重層コンデンサー用電極が開示されている。
As an example of activating a carbonaceous material with an alkali and using it as a polarizable electrode of an electric double layer capacitor,
For example, Japanese Patent Application Laid-Open No. 1-139865 discloses that a carbon fiber is heated in an inert gas atmosphere at a temperature exceeding 500 ° C. in the presence of an excess amount of an alkali metal hydroxide to obtain a large surface area carbon fiber. A method is disclosed. Japanese Patent Application Laid-Open No. Hei 5-258996 discloses an electric element formed by melt spinning a pitch as a raw material, activating a carbonaceous fiber obtained by a heat treatment with an aqueous solution of an alkali metal hydroxide, decalcifying the powder, and then pulverizing and shaping the powder. An electrode for a multilayer capacitor is disclosed in JP-A-7-161.
No. 587 discloses an electrode for an electric double layer capacitor which is obtained by activating a carbonaceous raw material with steam, further activating it with an alkali metal hydroxide, and then pulverizing and forming the same.

【0005】[0005]

【発明が解決しようとする課題】前述したように、吸着
剤としては吸着性能をさらに増大させることが要望さ
れ、一方、キャパシタ用の電極としては、高い静電容量
が要望されている。しかしながら、(1)の方法で得ら
れた活性炭を使用した場合、十分な静電容量を得ること
が出来ず、必要な静電容量を得るためには、大型のデバ
イスになってしまい、(2)の方法によれば、水酸化カ
リウムなどの強酸化力を有する賦活剤を用いて高温で賦
活することにより、ある程度の高容量の活性炭を得るこ
とができるが、それでも近年の高容量化の要請に対して
はまだまだ十分なものであるとは言い難い。また、上記
した特開平1−139865号公報、特開平5−258
996号公報、特開平7−161587号公報によって
もまだ十分なものであるとは言い難い。したがって、本
発明の目的は、水中に溶存した汚濁物質の吸着性能に優
れるとともに、静電容量の大きな活性炭及びその製造方
法を提供することにある。
As described above, the adsorbent is required to further increase the adsorption performance, while the electrode for the capacitor is required to have a high capacitance. However, when the activated carbon obtained by the method (1) is used, a sufficient capacitance cannot be obtained, and in order to obtain a required capacitance, a large device is required. According to the method of (1), by activating at a high temperature using an activator having strong oxidizing power such as potassium hydroxide, it is possible to obtain a certain amount of high-capacity activated carbon. Is still not enough. In addition, the above-mentioned JP-A-1-139865 and JP-A-5-258
996 and JP-A-7-161587 are still not satisfactory. Accordingly, an object of the present invention is to provide an activated carbon having a high capacitance while having excellent adsorption performance for pollutants dissolved in water and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、炭素質材料を賦活して得た活性炭を高められ
た温度において、さらに酸処理することによって前記課
題を解決できることを見出し、本発明を完成するに至っ
た。すなわち、本発明は、炭素質材料を賦活して得た活
性炭をさらに酸処理した活性炭である。本発明のもう一
つの発明は、このような活性炭を成形した電気二重層キ
ャパシタ用電極である。本発明のさらにもう一つの発明
は、炭素質材料を賦活して得た活性炭を、高められた温
度においてさらに酸処理する活性炭の製造方法である。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that the above problem can be solved by further treating an activated carbon obtained by activating a carbonaceous material at an elevated temperature with an acid. Thus, the present invention has been completed. That is, the present invention is an activated carbon obtained by further activating an activated carbon obtained by activating a carbonaceous material. Another aspect of the present invention is an electrode for an electric double layer capacitor obtained by molding such activated carbon. Yet another aspect of the present invention is a method for producing activated carbon, in which activated carbon obtained by activating a carbonaceous material is further subjected to an acid treatment at an elevated temperature.

【0007】[0007]

【発明の実施の形態】本発明で使用する炭素質材料とし
ては、賦活することによって活性炭を形成するものであ
ればとくに制限はなく、例えば、椰子殻、石油系および
/または石炭系ピッチ、コークス、フェノール系樹脂、
塩ビなどをあげることができる。炭素質材料の形状は限
定されるものではなく、粒状、微粉状、繊維状、シート
状など種々の形状のものを使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The carbonaceous material used in the present invention is not particularly limited as long as it forms activated carbon upon activation. For example, coconut shell, petroleum and / or coal pitch, coke , Phenolic resin,
PVC can be given. The shape of the carbonaceous material is not limited, and various shapes such as granular, fine powder, fibrous, and sheet shapes can be used.

【0008】繊維状物又はシート状物としては、賦活す
ることによって活性炭を形成するものであればとくに制
限はなく、例えば、椰子殻、石油系および/または石炭
系ピッチ、コークス、フェノール系樹脂などの炭素質材
料の繊維状物又はシート状物をあげることができる。具
体的には、木綿などの天然セルロース繊維、ビスコース
レーヨン、ポリノジックレーヨンなどの再生セルロース
繊維、パルプ繊維、ポリビニルアルコール繊維、エチレ
ンビニルアルコール繊維などの合成繊維などの織布又は
不織布、フィルム、フェルト、シート状物を例示するこ
とができる。
[0008] The fibrous or sheet-like material is not particularly limited as long as it forms activated carbon upon activation. For example, coconut shell, petroleum and / or coal pitch, coke, phenolic resin, etc. Fibrous or sheet-like carbonaceous materials. Specifically, natural cellulose fiber such as cotton, viscose rayon, regenerated cellulose fiber such as polynosic rayon, pulp fiber, polyvinyl alcohol fiber, woven or non-woven fabric such as synthetic fiber such as ethylene vinyl alcohol fiber, film, felt, A sheet-like material can be exemplified.

【0009】これらの炭素質材料を賦活して活性化する
ことにより活性炭を得ることができるが、賦活方法とし
ては従来公知の、塩化亜鉛、リン酸、硫酸、塩化カルシ
ウム、水酸化ナトリウム、重クロム酸カリウム、過マン
ガン酸カリウムなどの酸化性をもつ薬品による薬品賦活
法、又は、水蒸気、プロパンガス、燃焼廃ガス、炭酸ガ
スなどのガス賦活法が採用される。
[0009] Activated carbon can be obtained by activating and activating these carbonaceous materials. Conventionally known activation methods include zinc chloride, phosphoric acid, sulfuric acid, calcium chloride, sodium hydroxide, and bichromium. A chemical activation method using an oxidizing chemical such as potassium acid or potassium permanganate, or a gas activation method such as steam, propane gas, combustion waste gas, or carbon dioxide gas is employed.

【0010】賦活法としては、高い静電容量を発現する
点でアルカリ賦活法を採用するのが好ましい。アルカリ
賦活法としては、例えば、DENKI KAGAKU,
12(1998)p.1311−1317、炭素,17
7(1997)p.76−79などに具体的に示されて
いる公知の方法を使用すればよい。アルカリとしては、
水酸化ナトリウム、水酸化カリウムなどのアルカリ金属
水酸化物、水酸化カルシウム、水酸化マグネシウムなど
のアルカリ土類水酸化物などを例示することができる
が、とくに水酸化ナトリウム、水酸化カリウムが好まし
い。アルカリの使用量は、炭素質材料100重量部に対
し、0.01〜10重量部が好ましく、操作性、安全性
の面からは、0.1〜10重量部で実施するのがさらに
好ましい。
As the activation method, it is preferable to use an alkali activation method from the viewpoint of exhibiting a high capacitance. As the alkali activation method, for example, DENKI KAGAKU,
12 (1998) p. 1311-1317, carbon, 17
7 (1997) p. Known methods specifically shown in 76-79 and the like may be used. As the alkali,
Examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth hydroxides such as calcium hydroxide and magnesium hydroxide. Particularly preferred are sodium hydroxide and potassium hydroxide. The amount of the alkali used is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the carbonaceous material, and more preferably 0.1 to 10 parts by weight in terms of operability and safety.

【0011】本発明の活性炭は、例えば上記のようにし
て得た活性炭を、高められた温度でさらに酸で処理する
ことによって得ることができる。かかる酸としては、濃
硫酸、発煙硫酸、希硝酸、リン酸、ポリリン酸、ピロリ
ン酸、メタリン酸などの鉱酸類、メタンスルホン酸、エ
タンスルホン酸、ベンゼンスルホン酸、トルエンスルホ
ン酸などのスルホン酸類を使用することが出来るが、特
に、濃硫酸、リン酸又はポリリン酸を使用するのが好ま
しい。なかでもポリリン酸が好ましい。これらの酸は通
常単独で使用するが、混合して使用しても差し支えな
い。
The activated carbon of the present invention can be obtained, for example, by further treating the activated carbon obtained as described above with an acid at an elevated temperature. Examples of the acid include mineral acids such as concentrated sulfuric acid, fuming sulfuric acid, diluted nitric acid, phosphoric acid, polyphosphoric acid, pyrophosphoric acid, and metaphosphoric acid, and sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid. Although it can be used, it is particularly preferable to use concentrated sulfuric acid, phosphoric acid or polyphosphoric acid. Among them, polyphosphoric acid is preferable. These acids are usually used alone, but may be used in combination.

【0012】賦活方法として、アルカリ賦活を除く従来
公知の薬品賦活や水蒸気、プロパンガス、燃焼廃ガス、
炭酸ガスなどのガス賦活を採用する場合、硫酸、リン酸
などの酸は水溶液で使用してもよく、その場合の酸濃度
は、0.01〜100重量%であり、反応効率、操作
性、安全性の点からは、0.1〜80重量%で使用する
のが好ましく、0.5〜60重量%で使用するのがさら
に好ましい。上記希硝酸を使用する場合は、5〜20重
量%水溶液で使用するのが好ましい。
As the activation method, there are conventionally known chemical activation excluding alkali activation, steam, propane gas, combustion waste gas, and the like.
When gas activation such as carbon dioxide is employed, an acid such as sulfuric acid or phosphoric acid may be used in an aqueous solution. In this case, the acid concentration is 0.01 to 100% by weight, and the reaction efficiency, operability, From the viewpoint of safety, it is preferably used at 0.1 to 80% by weight, more preferably 0.5 to 60% by weight. When the above-mentioned diluted nitric acid is used, it is preferable to use a 5 to 20% by weight aqueous solution.

【0013】使用する酸量としては、活性炭に対して
0.01〜100重量倍で実施される。反応処理効率、
操作性、安全性の点から0.1〜50重量倍で実施する
のが好ましく、0.5〜20重量倍で実施するのがさら
に好ましい。処理温度は使用する酸の種類によって異な
り、一概に決めることはできないが、賦活時の温度より
も低く、室温より高められた温度、すなわち、30℃〜
500℃、好ましくは40℃〜300℃の範囲で実施す
るのが望ましい。酸処理は、空気雰囲気下で実施するこ
とも可能であるが、窒素、アルゴンなどの不活性ガスの
雰囲気下で実施するのが安全であり、好ましい。実施に
あたって如何なる圧力下でも実施可能であるが、一般に
は大気圧下で実施することが多い。
The amount of the acid used is 0.01 to 100 times the weight of activated carbon. Reaction processing efficiency,
From the viewpoint of operability and safety, the operation is preferably performed at 0.1 to 50 times by weight, and more preferably at 0.5 to 20 times by weight. The treatment temperature varies depending on the type of acid used and cannot be unconditionally determined, but is lower than the temperature at the time of activation and higher than room temperature, that is, 30 ° C.
It is desirable to carry out at a temperature of 500 ° C, preferably 40 ° C to 300 ° C. The acid treatment can be carried out in an air atmosphere, but it is safe and preferable to carry out the treatment in an atmosphere of an inert gas such as nitrogen or argon. Although it can be carried out under any pressure, it is generally carried out under atmospheric pressure.

【0014】酸処理した活性炭は、水に投入して酸を除
去する。酸の除去には、水洗などの洗浄処理で十分であ
る。余剰の酸が残存することが活性炭性能に影響を与え
る場合は、中和等の処理を加えて、除去することも可能
である。酸を除去した活性炭は、大気圧下および/また
は減圧下において、常温または加熱することによって乾
燥される。しかしながら、電極を作製する場合は、この
時点での極度の乾燥は大きな意味を持たないため、支障
をきたさない程度の乾燥を行うことで十分である。
The acid-treated activated carbon is introduced into water to remove the acid. Washing treatment such as washing with water is sufficient for removing the acid. When the surplus acid remains on the activated carbon performance, it can be removed by a treatment such as neutralization. The activated carbon from which the acid has been removed is dried by heating at normal temperature or under atmospheric pressure and / or reduced pressure. However, in the case of manufacturing an electrode, extreme drying at this point does not have a significant meaning, so that it is sufficient to perform drying to such an extent that no trouble is caused.

【0015】本発明の活性炭は、赤外分光分析におい
て、1600〜1800cm-1に吸収スペクトルを有す
るものが好ましい。活性炭を赤外分光分析するには、粉
体又は固体を反射法で測定する方法、流動パラフィンに
分散する方法、KBr錠剤法(以下、KBr法と略称す
る)などの公知の方法によればよい。測定に使用する活
性炭の量は、赤外光が透過すればよく、とくにその濃度
は規定されるものではないが、KBrに対して、0.0
01〜10重量%、好ましくは0.01〜5重量%、さ
らに好ましくは0.05〜2重量%で実施される。図1
は、後述する実施例3で得た活性炭の赤外吸収スペクト
ル、図2は、実施例5で得た活性炭の赤外吸収スペクト
ル、図3は、10%の硝酸で120℃6時間酸処理を実
施して得た活性炭の赤外吸収スペクトルであり、図4
は、酸処理する前のフェノール系活性炭(クラレケミカ
ル株式会社製BP−20)の赤外吸収スペクトルであ
る。
The activated carbon of the present invention preferably has an absorption spectrum at 1600 to 1800 cm -1 in infrared spectroscopy. In order to analyze the activated carbon by infrared spectroscopy, a known method such as a method of measuring a powder or a solid by a reflection method, a method of dispersing in a liquid paraffin, and a KBr tablet method (hereinafter abbreviated as KBr method) may be used. . The amount of activated carbon used for the measurement may be such that infrared light can be transmitted therethrough, and its concentration is not particularly limited.
It is carried out at 01 to 10% by weight, preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight. FIG.
Is an infrared absorption spectrum of the activated carbon obtained in Example 3 described below, FIG. 2 is an infrared absorption spectrum of the activated carbon obtained in Example 5, and FIG. 3 is an acid treatment with 10% nitric acid at 120 ° C. for 6 hours. FIG. 4 is an infrared absorption spectrum of activated carbon obtained by performing the method.
Is an infrared absorption spectrum of phenolic activated carbon (BP-20 manufactured by Kuraray Chemical Co., Ltd.) before acid treatment.

【0016】得られた活性炭は、水との親和性に優れる
ので、そのまま又は成形し、遊離塩素、トリハロメタ
ン、クロロホルムなど水中の微量有害物質を除去するた
めの浄水器などの水処理用に使用される。また、キャパ
シタ用として、好ましくは成形して電極化する。電極に
成形する方法は、通常知られた方法を適用することが可
能である。即ち、市販されている、ポリ四フッ化エチレ
ンなどバインダーとして知られた物質を必要に応じて、
0〜数%加えてよく混合した後、金型に入れて加圧成形
したり、圧延してシート化し、必要な形状に打ちぬくこ
とで電極に成形することが出来る。その際、必要に応じ
て、熱を加えることも可能である。必要以上に高い温度
は、使用したバインダー成分の劣化だけでなく、活性炭
成分の表面構造による物性、例えば比表面積などに影響
を与えるため、その温度条件を考慮しなければならない
ことは言うまでもない。
The obtained activated carbon has excellent affinity for water, and is used as it is or molded, and is used for water treatment such as a water purifier for removing trace harmful substances in water such as free chlorine, trihalomethane and chloroform. You. Further, for a capacitor, it is preferably formed into an electrode. As a method of forming an electrode, a generally known method can be applied. That is, if necessary, commercially available materials known as binders such as polytetrafluoroethylene,
After adding 0 to several percent and mixing well, it can be formed into an electrode by placing it in a mold and performing pressure molding or rolling to form a sheet and punching it into a required shape. At that time, if necessary, heat can be applied. An unnecessarily high temperature affects not only the deterioration of the binder component used but also the physical properties due to the surface structure of the activated carbon component, for example, the specific surface area. Therefore, it is needless to say that the temperature condition must be considered.

【0017】また、成形時に、導電性カーボン、金属微
粒子などの導電性物質を添加し、電極の抵抗を低下させ
ても良い。これは、分極性電極の内部抵抗を下げ、電極
体積を小さくするのに有効である。電極は、好ましくは
電気二重層キャパシタに組み込まれ、キャパシタとして
使用される。キャパシタの概略図を図5に示す。1及び
2は集電部材、3及び4は本発明の活性炭からなる分極
性電極、5はポリプロピレン不織布などから構成される
セパレーター、6はステンレスなどの素材で構成される
蓋である。以下、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。なお、
実施例及び比較例における赤外分光分析はKBr法によ
り行った。すなわち、活性炭10mgとKBr1gを混
合し、加圧成型機を使用して1000kg/cm2の圧
力下で1時間かけて打錠成型し、得られたタブレットを
赤外吸収スペクトロメーターによりスペクトルを測定し
た。
Further, at the time of molding, a conductive substance such as conductive carbon or metal fine particles may be added to lower the resistance of the electrode. This is effective in lowering the internal resistance of the polarizable electrode and reducing the electrode volume. The electrodes are preferably incorporated into an electric double layer capacitor and used as a capacitor. A schematic diagram of the capacitor is shown in FIG. Reference numerals 1 and 2 denote current collecting members, reference numerals 3 and 4 denote polarizable electrodes made of the activated carbon of the present invention, reference numeral 5 denotes a separator made of a polypropylene non-woven fabric or the like, and reference numeral 6 denotes a lid made of a material such as stainless steel. Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In addition,
Infrared spectroscopy in Examples and Comparative Examples was performed by the KBr method. That is, 10 mg of activated carbon and 1 g of KBr were mixed, tablet-molded using a pressure molding machine under a pressure of 1000 kg / cm2 for 1 hour, and the spectrum of the obtained tablet was measured by an infrared absorption spectrometer.

【0018】[0018]

【実施例】参考実験例1 温度計及び攪拌機を装着した三口フラスコに燃焼廃ガス
雰囲気下で賦活した椰子殻炭(クラレケミカル製YP−
17)10gを入れ、濃硫酸20gを加え、反応器内を
窒素で置換した。攪拌しながら、200℃に加熱したオ
イル浴に入れ、2時間加熱攪拌した。得られた混合物
を、氷水500gにあけた。活性炭を十分に分散させた
後、濾過し、更にイオン交換水2リットル(L)にて洗
浄した。洗浄後、減圧下100℃で加熱乾燥し、活性炭
10.7gを得た。
EXAMPLES Reference Experimental Example 1 Coconut shell charcoal (YP-Kuraray Chemical Co., Ltd.) activated in a three-neck flask equipped with a thermometer and a stirrer under a combustion waste gas atmosphere.
17) 10 g was added, 20 g of concentrated sulfuric acid was added, and the inside of the reactor was replaced with nitrogen. While stirring, the mixture was placed in an oil bath heated to 200 ° C. and stirred with heating for 2 hours. The obtained mixture was poured into 500 g of ice water. After the activated carbon was sufficiently dispersed, the mixture was filtered and washed with 2 liters (L) of ion-exchanged water. After washing, it was dried by heating at 100 ° C. under reduced pressure to obtain 10.7 g of activated carbon.

【0019】参考実験例2 温度計及び攪拌機を装着した2インチのハステロイ製反
応器に、石炭ピッチ(アドケムコ製MPM−BL)10
g及び85%の水酸化カリウムを入れ、系中を窒素で置
換した後、窒素気流下700℃まで、200℃/時間で
昇温した。700℃に達した後、2時間攪拌を続け、そ
の後室温まで2時間かけて冷却した。蒸留水バブラーを
通した窒素を1時間通流し、10%塩酸水で中和洗浄
し、さらに蒸留水で洗浄し、塩類を除去し、乾燥してピ
ッチ炭6.8gを得た。
REFERENCE EXPERIMENTAL EXAMPLE 2 A coal pitch (MPM-BL manufactured by Adchemco) was placed in a 2-inch Hastelloy reactor equipped with a thermometer and a stirrer.
g and 85% potassium hydroxide were added, and the system was replaced with nitrogen. Then, the temperature was increased to 700 ° C. at a rate of 200 ° C./hour under a nitrogen stream. After reaching 700 ° C., stirring was continued for 2 hours, and then cooled to room temperature over 2 hours. Nitrogen was passed through a distilled water bubbler for 1 hour, washed neutralized with 10% hydrochloric acid, washed with distilled water to remove salts, and dried to obtain 6.8 g of pitch charcoal.

【0020】三口フラスコに上記ピッチ炭6gを入れ、
濃硫酸20gを加え、反応器内を窒素で置換した。攪拌
しながら、200℃に加熱したオイル浴に入れ、2時間
加熱攪拌した。得られた混合物を、氷水500gにあけ
た。活性炭を十分に分散させた後、濾過し、更にイオン
交換水2Lにて洗浄した。洗浄後、減圧下100℃で加
熱乾燥し、ピッチ炭5.8gを得た。
Into a three-necked flask, put 6 g of the above pitch charcoal,
20 g of concentrated sulfuric acid was added, and the inside of the reactor was replaced with nitrogen. While stirring, the mixture was placed in an oil bath heated to 200 ° C. and stirred with heating for 2 hours. The obtained mixture was poured into 500 g of ice water. After the activated carbon was sufficiently dispersed, the mixture was filtered and washed with 2 L of ion-exchanged water. After washing, it was dried by heating at 100 ° C. under reduced pressure to obtain 5.8 g of pitch charcoal.

【0021】参考実験例3 参考実験例2の石炭ピッチの代わりにフェノール系のレ
ゾール樹脂(昭和高分子製BBL141B)を使用した以外は
同様にしてフェノール樹脂炭4.1gを得た。
Reference Experimental Example 3 4.1 g of phenolic resin charcoal was obtained in the same manner as in Reference Experimental Example 2, except that a phenolic resole resin (BBL141B manufactured by Showa Kobunshi) was used in place of the coal pitch.

【0022】参考実験例4 ガラス製バットに硫酸50gと活性炭不織布(クラレケ
ミカル製ACF)20gを投入し、室温下で30分間浸
漬処理し、活性炭不織布に硫酸を含浸させた。室温にて
30分間脱液した後、15分間窒素気流下にて乾燥し、
更に220℃に昇温し、乾燥炉で15分間乾燥した。乾
燥した活性炭不織布を精製水200gに入れ、酸を除去
した。この操作を3回繰り返し、精製水が酸性を示さな
いことを確認した。脱液した後、熱風乾燥機中にて50
℃で乾燥し、更に同温度で10時間真空乾燥し、硫酸処
理した活性炭不織布19.3gを得た。
REFERENCE EXPERIMENTAL EXAMPLE 4 A glass vat was charged with 50 g of sulfuric acid and 20 g of activated carbon nonwoven fabric (ACF made by Kuraray Chemical Co., Ltd.), and immersed at room temperature for 30 minutes to impregnate the activated carbon nonwoven fabric with sulfuric acid. After dewatering at room temperature for 30 minutes, drying under a nitrogen stream for 15 minutes,
The temperature was further raised to 220 ° C., and drying was performed for 15 minutes in a drying oven. The dried activated carbon nonwoven fabric was placed in 200 g of purified water to remove the acid. This operation was repeated three times, and it was confirmed that the purified water did not show acidity. After draining, 50
C., and further vacuum-dried at the same temperature for 10 hours to obtain 19.3 g of activated carbon nonwoven fabric treated with sulfuric acid.

【0023】実施例1、比較例1 参考実験例1で得た活性炭200gを内径40mm、長
さ90mmの円筒状の容器に充填し、全有機炭素(TO
C)濃度2.5ppmの河川水に、次亜塩素酸ナトリウ
ムを遊離塩素濃度が2ppmになるように加え、さらに
クロロホルム、ブロモホルム、ブロモジクロロメタン及
びジブロモクロロメタンを各々50ppb、20pp
b、20ppb、20ppbとなるように加えた試験用
原水をSV600hr 1で2時間通水した。処理後の
水中のクロロホルムの量及び上記4種のトリハロメタン
の合計量をJIS K 0125に従って分析したとこ
ろ、クロロホルムは2ppb以下、トリハロメタンの合
計は8ppb以下であった。比較のため、酸処理しない
椰子殻炭(YP−17クラレケミカル株式会社製)につ
いて通水し、同様に測定したところ、クロロホルムは5
0ppb、トリハロメタンの合計は90ppbであっ
た。
Example 1, Comparative Example 1 200 g of the activated carbon obtained in Reference Experimental Example 1 was charged into a cylindrical container having an inner diameter of 40 mm and a length of 90 mm, and the total organic carbon (TO) was measured.
C) Sodium hypochlorite was added to the river water having a concentration of 2.5 ppm so that the free chlorine concentration became 2 ppm, and chloroform, bromoform, bromodichloromethane and dibromochloromethane were added at 50 ppb and 20 pp, respectively.
b, 20 ppb, and 20 ppb of the raw test water added thereto were passed at SV 600 hr - 1 for 2 hours. When the amount of chloroform in the water after the treatment and the total amount of the above four types of trihalomethanes were analyzed according to JIS K 0125, chloroform was 2 ppb or less, and the total of trihalomethanes was 8 ppb or less. For comparison, coconut shell charcoal (YP-17 Kuraray Chemical Co., Ltd.) not subjected to acid treatment was passed through, and the same measurement was performed.
The total of 0 ppb and trihalomethane was 90 ppb.

【0024】実施例2 参考実験例1で得た活性炭を平均粒径5〜20μに粉砕
して粉末活性炭とし、該粉末活性炭80重量%、導電性
カーボン10重量%、ポリテトラフルオロエチレン10
重量%からなる混合物を調製し、混練した。次いで、該
混合物をロール圧延によって厚さ300μmのシートに
成形し、直径2cmの円形に打ち抜き器を用いて成形し
た。ついで150℃、減圧下4時間乾燥してシート電極
を得た。
Example 2 The activated carbon obtained in Reference Example 1 was pulverized to an average particle size of 5 to 20 μm to obtain powdered activated carbon. The powdered activated carbon was 80% by weight, the conductive carbon was 10% by weight, and the polytetrafluoroethylene 10% was used.
A mixture consisting of% by weight was prepared and kneaded. Next, the mixture was formed into a sheet having a thickness of 300 μm by roll rolling, and formed into a circular shape having a diameter of 2 cm using a punch. Then, drying was performed at 150 ° C. under reduced pressure for 4 hours to obtain a sheet electrode.

【0025】これを、露点−80℃以下のグローボック
ス中で、図5に示すように、ステンレス蓋に、集電電
極、分極性電極シート、ポリプロピレン不織布、分極性
電極、及び集電電極を積層した後、1モルのテトラエチ
ルアンモニウムテトラフルオロボレートを含有するプロ
ピレンカーボネート溶液を分極性電極に含浸せしめ、ポ
リプロピレン製の絶縁ガスケットを用いて、ステンレス
上蓋にかしめ封印した。日置電機製電気二重層キャパシ
ター評価装置を使用して、室温下、2.5Vまでの定電
流、充放電サイクルテスト10回を行い、静電容量を測
定した。放電カーブより定法にて求めた静電容量の平均
値は、15.4F/CCであった。
As shown in FIG. 5, a current collecting electrode, a polarizable electrode sheet, a polypropylene nonwoven fabric, a polarizable electrode, and a current collecting electrode were laminated on a stainless steel lid in a glow box having a dew point of -80 ° C. or less. After that, the polarizable electrode was impregnated with a propylene carbonate solution containing 1 mol of tetraethylammonium tetrafluoroborate, and was caulked and sealed on a stainless steel upper lid using a polypropylene insulating gasket. Using a Hioki Electric Double Layer Capacitor Evaluation Apparatus, a constant current up to 2.5 V and 10 charge / discharge cycle tests were performed at room temperature to measure the capacitance. The average value of the capacitance obtained from the discharge curve by an ordinary method was 15.4 F / CC.

【0026】実施例3〜10、比較例2〜3 活性炭をフェノール樹脂系(クラレケミカル製BP−2
0)にして参考実験例1と同様にして酸処理した(実施
例3〜5、7〜8、10)。また、活性炭YP−17を
参考実験例1と同様にして酸処理した(実施例6及び
9)。酸処理をしないものを各々比較例2、3とした。
静電容量及び赤外分光分析によるスペクトルの測定結果
を表1に示し、実施例3、実施例5、実施例10及び比
較例2の活性炭について赤外分光分析したスペクトルを
図1〜図4に示した。
Examples 3 to 10 and Comparative Examples 2 to 3 Activated carbon was converted to a phenolic resin (BP-2 manufactured by Kuraray Chemical Co., Ltd.).
0) and acid treatment was performed in the same manner as in Reference Experimental Example 1 (Examples 3 to 5, 7 to 8, and 10). Activated carbon YP-17 was treated with acid in the same manner as in Reference Example 1 (Examples 6 and 9). Those not subjected to the acid treatment were referred to as Comparative Examples 2 and 3, respectively.
The measurement results of the capacitance and the spectrum by infrared spectroscopy are shown in Table 1, and the spectra obtained by infrared spectroscopy of the activated carbons of Example 3, Example 5, Example 10 and Comparative Example 2 are shown in FIGS. Indicated.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例11 参考実験例2で得たピッチ炭を使用し、実施例2と同様
にして静電容量及び赤外分光分析によるスペクトルを測
定した。結果を表1に示す。
Example 11 Using the pitch charcoal obtained in Reference Experimental Example 2, the capacitance and the spectrum by infrared spectroscopy were measured in the same manner as in Example 2. Table 1 shows the results.

【0029】実施例12〜14 参考実験例2及び3で得た炭素質材料を表2に示す条件
で酸処理し、実施例2と同様に静電容量及び赤外分光分
析によるスペクトルを測定した。結果を表2に示す。
Examples 12 to 14 The carbonaceous materials obtained in Reference Examples 2 and 3 were subjected to an acid treatment under the conditions shown in Table 2, and the capacitance and the spectrum by infrared spectroscopy were measured in the same manner as in Example 2. . Table 2 shows the results.

【0030】比較例4〜5 酸処理をしないピッチ炭及び樹脂炭について実施例2と
同様に静電容量及び赤外分光分析によるスペクトルを測
定した。結果を表2に示す。
Comparative Examples 4 and 5 For the pitch coal and the resin coal not subjected to the acid treatment, the capacitance and the spectrum by infrared spectroscopy were measured in the same manner as in Example 2. Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例15 参考実験例4で得られた活性炭不織布を直径2cmの円
形に打ち抜き器を用いて成形し、次いで減圧下150℃
で4時間乾燥して分極性電極を作製した。これを、露点
―80℃以下のグローボックス中で、図1に示すよう
に、ステンレス蓋6に集電電極5、分極性電極シート
3、ポリプロピレン不織布2、分極性電極1、集電電極
4を積層し、1モルのテトラエチルアンモニウムテトラ
フルオロボレートを含有するプロピレンカーボネート溶
液を分極性電極に含浸せしめ、ポリプロピレン製の絶縁
ガスケットを用いてステンレス上蓋にかしめ封印した。
日置電機製電機二重層キャパシタ評価装置を使用し、室
温下、2.5Vまでの定電流、充放電サイクルテストを
10回行い、静電容量容量を測定した。放電カーブより
定法にて求めた静電容量容量の平均値は40.1F/g
であった。赤外分光分析によるスペクトルを測定し、結
果を表2に併せて示す。
Example 15 The activated carbon nonwoven fabric obtained in Reference Experimental Example 4 was formed into a circular shape having a diameter of 2 cm using a punching machine, and then 150 ° C. under reduced pressure.
For 4 hours to produce a polarizable electrode. In a glow box having a dew point of −80 ° C. or less, the current collecting electrode 5, the polarizable electrode sheet 3, the polypropylene nonwoven fabric 2, the polarizable electrode 1, and the current collecting electrode 4 are placed on a stainless steel lid 6 as shown in FIG. The laminate was laminated, a polarizable electrode was impregnated with a propylene carbonate solution containing 1 mol of tetraethylammonium tetrafluoroborate, and the stainless steel upper lid was caulked and sealed using a polypropylene insulating gasket.
Using an electric double layer capacitor evaluation device manufactured by Hioki Electric Co., a constant current up to 2.5 V and a charge / discharge cycle test were performed 10 times at room temperature to measure the capacitance. The average value of the capacitance obtained from the discharge curve by an ordinary method is 40.1 F / g.
Met. The spectrum was measured by infrared spectroscopy, and the results are shown in Table 2.

【0033】実施例16 酸としてリン酸を使用した以外は実施例15と同様にし
て分極性電極を作製し、静電容量及び赤外分光分析によ
るスペクトルを測定した。結果を表3に示す。
Example 16 A polarizable electrode was prepared in the same manner as in Example 15 except that phosphoric acid was used as the acid, and the capacitance and the spectrum by infrared spectroscopy were measured. Table 3 shows the results.

【0034】実施例17 硫酸含浸後の乾燥を200℃で2時間行う以外は実施例
15と同様にして分極性電極を作製し、静電容量及び赤
外分光分析によるスペクトルを測定した。結果を表3に
示す。
Example 17 A polarizable electrode was prepared in the same manner as in Example 15 except that drying after impregnation with sulfuric acid was performed at 200 ° C. for 2 hours, and a capacitance and a spectrum by infrared spectroscopy were measured. Table 3 shows the results.

【0035】比較例6 酸処理を行わない活性炭不織布で分極性電極を作製し、
静電容量及び赤外分光分析によるスペクトルを測定し
た。結果を表3に示す。
Comparative Example 6 A polarizable electrode was made of an activated carbon nonwoven fabric which was not subjected to an acid treatment.
The capacitance and the spectrum by infrared spectroscopy were measured. Table 3 shows the results.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】本発明により、水との親和性が大きく、
静電容量の大きな活性炭を得ることができる。かかる活
性炭は、水処理に好適であり、また、成形してキャパシ
タ用の電極として好適である。
According to the present invention, the affinity with water is high,
Activated carbon with a large capacitance can be obtained. Such activated carbon is suitable for water treatment, and is preferably molded and used as an electrode for a capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素質材料BP−20を硫酸で処理した活性炭
の赤外吸収スペクトルである。
FIG. 1 is an infrared absorption spectrum of activated carbon obtained by treating carbonaceous material BP-20 with sulfuric acid.

【図2】炭素質材料BP−20を硫酸で処理した別の活
性炭の赤外吸収スペクトルである。
FIG. 2 is an infrared absorption spectrum of another activated carbon obtained by treating a carbonaceous material BP-20 with sulfuric acid.

【図3】炭素質材料BP−20を10%硝酸で処理した
活性炭の赤外吸収スペクトルである。
FIG. 3 is an infrared absorption spectrum of activated carbon obtained by treating carbonaceous material BP-20 with 10% nitric acid.

【図4】炭素質材料BP−20の赤外吸収スペクトルで
ある。
FIG. 4 is an infrared absorption spectrum of a carbonaceous material BP-20.

【図5】本発明の活性炭をキャパシタの電極に適用した
一例を示す概略図である。
FIG. 5 is a schematic view showing an example in which the activated carbon of the present invention is applied to an electrode of a capacitor.

【符号の説明】[Explanation of symbols]

1 集電部材 2 集電部材 3 分極性電極 4 分極性電極 5 セパレーター 6 蓋 DESCRIPTION OF SYMBOLS 1 Current collection member 2 Current collection member 3 Polarized electrode 4 Polarized electrode 5 Separator 6 Lid

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願2000−221784(P2000−221784) (32)優先日 平成12年7月24日(2000.7.24) (33)優先権主張国 日本(JP) (72)発明者 西村 修志 岡山県備前市鶴海4342 クラレケミカル株 式会社内 (72)発明者 江川 義史 岡山県備前市鶴海4342 クラレケミカル株 式会社内 (72)発明者 青木 基 岡山県備前市鶴海4342 クラレケミカル株 式会社内 Fターム(参考) 4D024 AA05 AB11 BA02 BB01 BC01 4G046 HC03 HC05 HC07 HC14 4G066 AA04A AA05B AA13D AA47D AA50D AA53D AC25A AE05B BA03 DA08 FA12  ──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application No. 2000-221784 (P2000-221784) (32) Priority date July 24, 2000 (July 24, 2000) (33) Countries claiming priority Japan (JP) (72) Inventor Shuji Nishimura 4342 Tsuruumi, Bizen City, Okayama Prefecture Inside Kuraray Chemical Co., Ltd. (72) Inventor Yoshifumi Egawa 4342 Tsuruumi, Bizen City, Okayama Prefecture Inside Kuraray Chemical Co., Ltd. (72) Inventor Motoki Aoki Okayama 4342 Tsuruumi, Bizen Prefecture Kuraray Chemical Co., Ltd. F-term (reference) 4D024 AA05 AB11 BA02 BB01 BC01 4G046 HC03 HC05 HC07 HC14 4G066 AA04A AA05B AA13D AA47D AA50D AA53D AC25A AE05B BA03 DA08 FA12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭素質材料を賦活して得た活性炭をさら
に酸処理した活性炭。
An activated carbon obtained by further treating an activated carbon obtained by activating a carbonaceous material with an acid.
【請求項2】 該賦活がアルカリ賦活である請求項1記
載の活性炭。
2. The activated carbon according to claim 1, wherein the activation is an alkali activation.
【請求項3】 該酸が鉱酸である請求項1又は2記載の
活性炭。
3. The activated carbon according to claim 1, wherein the acid is a mineral acid.
【請求項4】 該鉱酸が硫酸又は希硝酸である請求項3
記載の活性炭。
4. The method according to claim 3, wherein said mineral acid is sulfuric acid or dilute nitric acid.
Activated carbon as described.
【請求項5】 該鉱酸がリン酸類である請求項3記載の
活性炭。
5. The activated carbon according to claim 3, wherein said mineral acid is a phosphoric acid.
【請求項6】 赤外分光分析において、1600〜18
00cm-1に吸収スペクトルを有する請求項1〜5いず
れかに記載の活性炭。
6. An infrared spectroscopic analysis of 1600 to 18
6. The activated carbon according to claim 1, which has an absorption spectrum at 00 cm -1 .
【請求項7】 請求項1〜6いずれかに記載の活性炭を
成形した電気二重層キャパシタ用電極。
7. An electrode for an electric double layer capacitor obtained by molding the activated carbon according to claim 1.
【請求項8】 炭素質材料を賦活して得た活性炭を、高
められた温度においてさらに酸処理する活性炭の製造方
法。
8. A method for producing activated carbon, wherein the activated carbon obtained by activating the carbonaceous material is further subjected to an acid treatment at an elevated temperature.
JP2000346457A 1999-11-16 2000-11-14 Activated carbon and its manufacturing method Pending JP2002104816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000346457A JP2002104816A (en) 1999-11-16 2000-11-14 Activated carbon and its manufacturing method

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP32527999 1999-11-16
JP32985799 1999-11-19
JP2000-75809 2000-03-17
JP2000075809 2000-03-17
JP2000221784 2000-07-24
JP11-325279 2000-07-24
JP11-329857 2000-07-24
JP2000-221784 2000-07-24
JP2000346457A JP2002104816A (en) 1999-11-16 2000-11-14 Activated carbon and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002104816A true JP2002104816A (en) 2002-04-10

Family

ID=27531144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000346457A Pending JP2002104816A (en) 1999-11-16 2000-11-14 Activated carbon and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002104816A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053846A1 (en) * 2003-12-05 2005-06-16 Nisshoku Corporation Anion-adsorbing carbon material, and method and apparatus for producing same
WO2007105802A1 (en) * 2006-03-10 2007-09-20 Nippon Oil Corporation Carbon-based solid acid, catalyst comprising the solid acid, and reaction using the solid acid as catalyst
WO2008102913A1 (en) * 2007-02-21 2008-08-28 Nippon Oil Corporation Sulfonic acid group-containing carbonaceous material
WO2011111577A1 (en) * 2010-03-10 2011-09-15 株式会社ダステック Adsorption carbon, and adsorbent
JP5339453B2 (en) * 2007-05-11 2013-11-13 Jx日鉱日石エネルギー株式会社 Method for producing sulfonic acid group-containing carbonaceous material, solid acid catalyst, method for producing alkylation reaction product, and method for producing olefin polymer
CN104760956A (en) * 2015-03-11 2015-07-08 广东工业大学 Method of preparing activated charcoal from waste dust removal cloth bag
JP2020050991A (en) * 2018-09-27 2020-04-02 日本製紙株式会社 Method of producing activated carbon fiber material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139865A (en) * 1987-10-15 1989-06-01 British Petroleum Co Plc:The Production of large surface area carbon fiber
JPH05258996A (en) * 1992-03-09 1993-10-08 Mitsubishi Kasei Corp Electrode of electrical double-layer capacitor
JPH07242407A (en) * 1994-03-02 1995-09-19 Okayama Pref Gov High performance activated carbon and production thereof
JPH09320906A (en) * 1996-05-27 1997-12-12 Honda Motor Co Ltd Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JPH11349318A (en) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp Production of activated carbon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139865A (en) * 1987-10-15 1989-06-01 British Petroleum Co Plc:The Production of large surface area carbon fiber
JPH05258996A (en) * 1992-03-09 1993-10-08 Mitsubishi Kasei Corp Electrode of electrical double-layer capacitor
JPH07242407A (en) * 1994-03-02 1995-09-19 Okayama Pref Gov High performance activated carbon and production thereof
JPH09320906A (en) * 1996-05-27 1997-12-12 Honda Motor Co Ltd Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JPH11349318A (en) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp Production of activated carbon

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222182B2 (en) 2003-12-05 2012-07-17 Nisshoku Corporation Anion adsorbing carbon material, as well as manufacturing method and manufacturing facilities for same
KR100795118B1 (en) 2003-12-05 2008-01-17 니혼쇼꾸세이가부시끼가이샤 Anion-adsorbing carbon material, and method for producing same
WO2005053846A1 (en) * 2003-12-05 2005-06-16 Nisshoku Corporation Anion-adsorbing carbon material, and method and apparatus for producing same
WO2007105802A1 (en) * 2006-03-10 2007-09-20 Nippon Oil Corporation Carbon-based solid acid, catalyst comprising the solid acid, and reaction using the solid acid as catalyst
US8013130B2 (en) 2006-03-10 2011-09-06 Nippon Oil Corporation Carbon-based solid acid, catalyst comprising the solid acid, and reaction using the solid acid as catalyst
JP5152992B2 (en) * 2006-03-10 2013-02-27 Jx日鉱日石エネルギー株式会社 Carbon-based solid acid, catalyst comprising the same, and reaction using the same as a catalyst
US8575281B2 (en) 2007-02-21 2013-11-05 Nippon Oil Company Sulfonic acid group-containing carbonaceous material
WO2008102913A1 (en) * 2007-02-21 2008-08-28 Nippon Oil Corporation Sulfonic acid group-containing carbonaceous material
KR101432341B1 (en) 2007-02-21 2014-08-20 제이엑스 닛코닛세키에너지주식회사 Sulfonic acid group-containing carbonaceous material
JP5614737B2 (en) * 2007-02-21 2014-10-29 Jx日鉱日石エネルギー株式会社 Solid acid catalyst containing sulfonic acid group-containing carbonaceous material and method for producing various compounds by reaction using the same
JP5339453B2 (en) * 2007-05-11 2013-11-13 Jx日鉱日石エネルギー株式会社 Method for producing sulfonic acid group-containing carbonaceous material, solid acid catalyst, method for producing alkylation reaction product, and method for producing olefin polymer
KR101459171B1 (en) * 2007-05-11 2014-11-07 제이엑스 닛코닛세키에너지주식회사 Method for producing sulfonic acid group-containing carbonaceous material, solid acid catalyst, method for producing alkylation reaction product, and method for producing olefin polymer
WO2011111577A1 (en) * 2010-03-10 2011-09-15 株式会社ダステック Adsorption carbon, and adsorbent
US9034789B2 (en) 2010-03-10 2015-05-19 Disease Adsorption System Technologies Co., Ltd. Adsorption carbon, and adsorbent
CN104760956A (en) * 2015-03-11 2015-07-08 广东工业大学 Method of preparing activated charcoal from waste dust removal cloth bag
JP2020050991A (en) * 2018-09-27 2020-04-02 日本製紙株式会社 Method of producing activated carbon fiber material
JP7107801B2 (en) 2018-09-27 2022-07-27 日本製紙株式会社 Method for producing activated carbon fiber material

Similar Documents

Publication Publication Date Title
KR100744984B1 (en) Electrode for electric double-layer capacitor and method for producing it
CA2353770C (en) Activated carbon, process for producing the same, polarizable electrode, and electric double layer capacitor
JP3446339B2 (en) Activated carbon production method
KR100932158B1 (en) Activated Carbon and Its Manufacturing Method
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
JP5599186B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
RU2447531C2 (en) Compound containing carbonated biopolymers and carbon nanotubes
JP2003051430A (en) Ingredient composition of carbon material for electric double-layer capacitor and manufacturing method therefor, and electric double-layer capacitor and manufacturing method therefor
WO2003089371A1 (en) Process for producing active carbon, polarizable electrode and electric double layer capacitor
JP5770550B2 (en) Activated carbon and manufacturing method thereof
EP2418664A1 (en) Carbon material for electric double layer capacitor electrode and method for producing same
KR20110063472A (en) Carbon material for electric double layer capacitor and process for producing the carbon material
JP5004501B2 (en) Activated carbon and electric double layer capacitor using the same
WO2005038836A1 (en) Electric double layer capacitor, activated carbon for electrode thereof and method for producing same
KR20190008859A (en) An electrode material for an electric double layer capacitor containing a carbonaceous material and a carbonaceous material, an electrode for an electric double layer capacitor, and an electric double layer capacitor
CN110300728B (en) Carbonaceous material and electrode material for electric double layer capacitor containing the carbonaceous material
KR20190120757A (en) Carbonaceous Material and Manufacturing Method Thereof
WO2001013390A1 (en) Method for producing activated carbon for electrode of electric double-layer capacitor
JP2002104816A (en) Activated carbon and its manufacturing method
JP2008037733A (en) Manufacturing methods of activated carbon and electric double layer capacitor
JP2008147283A (en) Electric double-layer capacitor, active carbon for electrode of the capacitor, and manufacturing method for the active carbon
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP2004083337A (en) Porous carbon material with low ash content, its manufacturing method, and electric double layer capacitor
JP2007169117A (en) Activated carbon and electrical double layer capacitor using same
JP2005129707A (en) Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105