JP2002103207A - Dry chemical mechanical polishing method - Google Patents

Dry chemical mechanical polishing method

Info

Publication number
JP2002103207A
JP2002103207A JP2000299105A JP2000299105A JP2002103207A JP 2002103207 A JP2002103207 A JP 2002103207A JP 2000299105 A JP2000299105 A JP 2000299105A JP 2000299105 A JP2000299105 A JP 2000299105A JP 2002103207 A JP2002103207 A JP 2002103207A
Authority
JP
Japan
Prior art keywords
polishing
sample
polished
plasma
chemical mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000299105A
Other languages
Japanese (ja)
Inventor
Seiji Yamamoto
清二 山本
Katanobu Yokogawa
賢悦 横川
Shinichi Taji
新一 田地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000299105A priority Critical patent/JP2002103207A/en
Priority to TW090113135A priority patent/TW508285B/en
Priority to US09/875,025 priority patent/US6579154B2/en
Priority to KR1020010033802A priority patent/KR20020025005A/en
Publication of JP2002103207A publication Critical patent/JP2002103207A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/336Changing physical properties of treated surfaces

Abstract

PROBLEM TO BE SOLVED: To efficiently carry out etching. SOLUTION: In this method for planarizing a surface of a sample to be polished, the surface of the sample 107 held in a sample base 114 is brought into contact with a polishing pad 119 while supplying a plasma 106 from a plasma source, and polishing is carried out by moving a relative position between the sample 107 and a polishing tool 119. The dry chemical mechanical polishing method is constituted such that, at polishing, a diameter of the sample 107 is made larger than that of the polishing tool 119 thereby exposing at least a part of the surface of the sample to an atmosphere of the plasma 106.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェーハ等
の被加工物の表面パターンを研磨し、平坦化する乾式化
学機械研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry chemical mechanical polishing method for polishing and flattening a surface pattern of a workpiece such as a semiconductor wafer.

【0002】[0002]

【従来の技術】半導体集積回路の製造工程の一つに、配
線工程前の半導体ウェーハ表面の微細な凹凸を平坦化す
る工程がある。この工程では、化学機械研磨(CMP:
Chemical Mechanical Polis
hing)加工装置が用いられている。この化学機械研
磨加工装置は、研磨液として半導体ウェーハに対して化
学作用がある成分を含んだものを用いること以外、一般
的な機械研磨加工装置と同一である。図4は従来の化学
機械研磨加工装置の概略を示す概略図である。モータ4
01の出力軸402に回転工具403が取付けられ、こ
の表面には、研磨に適した材質の研磨パッド404が貼
り付けられている。回転軸405に取り付けられた回転
ホルダー406に半導体ウェーハ407が取付けられ、
研磨液408を供給する供給ノズル409が研磨パッド
の上方に設けられている。
2. Description of the Related Art One of the manufacturing processes of a semiconductor integrated circuit is a process of flattening fine irregularities on the surface of a semiconductor wafer before a wiring process. In this step, chemical mechanical polishing (CMP:
Chemical Mechanical Polis
hing) processing equipment is used. This chemical mechanical polishing apparatus is the same as a general mechanical polishing apparatus except that a polishing liquid containing a component having a chemical action on a semiconductor wafer is used as a polishing liquid. FIG. 4 is a schematic view showing an outline of a conventional chemical mechanical polishing apparatus. Motor 4
The rotary tool 403 is attached to the output shaft 402 of No. 01, and a polishing pad 404 made of a material suitable for polishing is attached to this surface. The semiconductor wafer 407 is attached to the rotating holder 406 attached to the rotating shaft 405,
A supply nozzle 409 for supplying a polishing liquid 408 is provided above the polishing pad.

【0003】この研磨加工装置においては、回転工具及
び半導体ウェーハを回転させながら、研磨パッドに押し
付けるとともに研磨液供給ノズルからスラリーを懸濁さ
せた研磨液を研磨材上に供給すれば、半導体ウェーハの
表面を研磨加工することができる。
In this polishing apparatus, while rotating a rotary tool and a semiconductor wafer, the polishing tool is pressed against a polishing pad and a polishing liquid in which a slurry is suspended is supplied from a polishing liquid supply nozzle onto a polishing material. The surface can be polished.

【0004】また、特開平9−232257に開示され
ている方法は、研磨液を用いることは同様であるが、砥
粒ではなく、回転工具表面の研磨材に砥粒を埋めこんで
ある砥石を研磨に利用する形態をとっている。例えば、
酸化膜を研磨する場合には、フェノール系樹脂に、粒径
0.01〜1μm程度の二硫化珪素、酸化セリウム、ア
ルミナ等を埋め込んだ砥石が用いられる。この手法では
砥粒の使用量を減らすことができる。
The method disclosed in Japanese Patent Application Laid-Open No. 9-232257 is similar to using a polishing liquid, but instead of using abrasive grains, a grindstone having abrasive grains embedded in a polishing material on the surface of a rotary tool is used. The form used for polishing is taken. For example,
When polishing an oxide film, a grindstone in which silicon disulfide, cerium oxide, alumina, or the like having a particle size of about 0.01 to 1 μm is embedded in a phenolic resin is used. This technique can reduce the amount of abrasive used.

【0005】また、米国特許6057245には、気相
中での平坦化技術の記載がある。この方法は、プラズマ
を用い、研摩パッドをプラズマに対向させて行う方法で
ある。また、砥粒を気相中に供給する等の特徴がある。
Also, US Pat. No. 6,057,245 describes a planarization technique in a gas phase. This method is a method in which a polishing pad is opposed to plasma using plasma. In addition, there is a feature that abrasive grains are supplied into the gas phase.

【0006】[0006]

【発明が解決しようとする課題】これら従来の湿式研磨
加工方法は、下記のようないくつかの考慮されていない
点がある。まず、研磨するのに必要なランニングコスト
が高いことである。価格の高い研磨液(砥粒や溶媒)を
大量に使用するばかりでなく、研磨パッドはスラリー固
形物によって目詰まりしやすく、研磨面のコンディショ
ニングや交換が必要であり、総じてコストがかかる。
However, these conventional wet polishing methods have the following points that are not taken into consideration. First, the running cost required for polishing is high. In addition to using large amounts of expensive polishing liquids (abrasives and solvents), the polishing pad is liable to be clogged with the solid slurry and requires conditioning and replacement of the polishing surface, which is generally costly.

【0007】マクロな平坦化均一性の面では、ウェーハ
エッジ部での速度が不均一であり、エッジエクスクルー
ジョンが3mmから5mmあり不十分である。また、ミ
クロな平坦化均一性として、表面凸部の研磨選択性が十
分でないため、表面凹部も同時に削れてしまい、また、
粗密パターン依存性も無視できない範囲で起こる。さら
に、研磨の際、研磨液の化学的性質を利用しているた
め、酸性溶媒或いはアルカリ性溶媒等の残留化学物質に
より配線金属が腐食する場合がある。また、被研磨表面
に金属があるとき、電気化学的腐食(電解腐食)を引き
起こすときがあり、そのときには金属部の異常研磨が生
じる。この電解腐食について詳しく説明する。特開20
00−40679号公報に記載されているように、シリ
コン基板に形成されたpn接合に光が入射すると、シリ
コンの光起電力効果により、pn接合のp側(+側)に
接続されたCu配線−pn接合−pn接合のn側(−
側)に接続されたCu配線−ウェーハ間に付着した研磨
スラリーによって形成される閉回路に短絡電流が流れ、
pn接合のp側(+側)に接続されたCu配線の表面か
らCu2+イオンが解離して電解腐食を引き起こす。これ
によりCu表面の異常研磨が生じる。
In terms of macro planarization uniformity, the speed at the wafer edge is not uniform, and the edge exclusion is 3 mm to 5 mm, which is insufficient. In addition, as microplanarization uniformity, the polishing selectivity of the surface projections is not sufficient, so that the surface depressions are also shaved at the same time,
The coarse / fine pattern dependence also occurs within a non-negligible range. Furthermore, in polishing, since the chemical properties of the polishing liquid are utilized, the wiring metal may be corroded by residual chemicals such as an acidic solvent or an alkaline solvent. In addition, when there is a metal on the surface to be polished, electrochemical corrosion (electrolytic corrosion) may be caused, and at that time, abnormal polishing of the metal portion occurs. This electrolytic corrosion will be described in detail. JP 20
As described in JP-A-00-40679, when light enters a pn junction formed on a silicon substrate, a Cu wiring connected to the p-side (+ side) of the pn junction due to the photovoltaic effect of silicon. −pn junction −n side of the pn junction (−
Side), a short circuit current flows through a closed circuit formed by the polishing slurry adhered between the Cu wiring and the wafer connected to the
Cu 2+ ions dissociate from the surface of the Cu wiring connected to the p side (+ side) of the pn junction, causing electrolytic corrosion. This causes abnormal polishing of the Cu surface.

【0008】また、装置の構造と研磨の性質上、研磨層
除去終了の終点検出が極めて難しく、In−lineモ
ニタが困難である。また、研磨液や研磨パッドが、ある
膜質の材料に最適化されているため同一装置で、多種類
の膜種に対して連続して研磨する対応が困難である。ま
た、従来の研磨方法が基本的にウェットプロセスである
ため、折角エッチングやCVDを真空中で行っても、一
度大気中に出して、再び真空装置に戻すといった一連の
ステップが必要でありスループットを低下させる要因と
なる。これらの点を解決しながら、もちろん、スクラッ
チ等の加工ダメージを発生させず、寸法の大きなパター
ン部と微細なパターン部を同一平面に平坦化する基本的
な研磨性能も維持しなければならない。
In addition, due to the structure of the apparatus and the nature of polishing, it is extremely difficult to detect the end point of removal of the polishing layer, and it is difficult to monitor the in-line. In addition, since the polishing liquid and the polishing pad are optimized for a material having a certain film quality, it is difficult to continuously grind various kinds of films with the same apparatus. In addition, since the conventional polishing method is basically a wet process, even if the angle etching or CVD is performed in a vacuum, a series of steps such as once bringing it into the atmosphere and returning it to the vacuum device is necessary, and throughput is reduced. It becomes a factor to lower. While solving these points, it is, of course, necessary to maintain basic polishing performance for flattening a large pattern portion and a fine pattern portion on the same plane without causing processing damage such as scratching.

【0009】また、前記米国特許記載の乾式研磨方法
は、研摩パッドをプラズマに対向させているため、効率
よくエッチングを行うことについては、考慮されていな
かった。
Further, in the dry polishing method described in the above-mentioned US Patent, since the polishing pad is opposed to the plasma, efficient etching has not been considered.

【0010】本発明の目的は、効率よくエッチングを行
うことができる乾式化学機械研磨方法を提供することに
ある。
An object of the present invention is to provide a dry chemical mechanical polishing method capable of performing etching efficiently.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の乾式化学機械研磨方法は、プラズマ源から
プラズマを供給しながら、試料台に保持された被研磨試
料表面を研磨工具と接触させ、被研磨試料と研磨工具の
相対的な位置を移動させて研磨し、被研磨試料表面を平
坦化する方法であって、上記研磨のときに、被研磨試料
表面の少なくとも一部が、プラズマ雰囲気に曝される状
態におかれるようにしたものである。
In order to achieve the above object, a dry chemical mechanical polishing method according to the present invention comprises the steps of: supplying a plasma from a plasma source to a polishing tool; The method of contacting, polishing by moving the relative position of the sample to be polished and the polishing tool, and flattening the surface of the sample to be polished, at the time of the polishing, at least a part of the surface of the sample to be polished, It is designed to be exposed to a plasma atmosphere.

【0012】研磨のときに、被研磨試料表面の少なくと
も一部が、プラズマ雰囲気に曝される状態におかれるよ
うにするには、被研磨試料表面の大きさを研磨工具より
大きくすればよい。両者が共に円形であるならば、被研
磨試料の直径を研磨工具の直径より大きくすればよい。
両者の大きさが同じか、研磨工具が大きいときは、研磨
工具を被研磨試料よりはみ出すようにすればよい。この
とき、研磨中に研磨工具が被研磨試料より常時はみ出し
ていなくともよいが、常時はみ出している方が好まし
い。また、研磨工具に孔を設け、研磨工具内からプラズ
マを吹き出させるようにすれば、被研磨試料と研磨工具
の大きさには関係なく、被研磨試料表面の少なくとも一
部が、プラズマ雰囲気に曝される状態におかれる。
At the time of polishing, at least a part of the surface of the sample to be polished can be exposed to the plasma atmosphere by making the size of the surface of the sample to be polished larger than that of the polishing tool. If both are circular, the diameter of the sample to be polished may be larger than the diameter of the polishing tool.
When the two are the same size or the polishing tool is large, the polishing tool may be protruded from the sample to be polished. At this time, the polishing tool does not have to always protrude from the sample to be polished during polishing, but it is preferable that the polishing tool always protrudes. In addition, if a hole is formed in the polishing tool and plasma is blown out from inside the polishing tool, at least a part of the surface of the sample to be polished is exposed to the plasma atmosphere regardless of the size of the sample to be polished and the size of the polishing tool. It is in a state to be done.

【0013】また、上記目的を達成するために、本発明
の乾式化学機械研磨方法は、試料台に保持された被研磨
試料表面の少なくとも一部をプラズマ雰囲気に曝して被
研磨試料表面にラジカルを吸着させ、被研磨試料表面に
研磨手段を接触させ、被研磨試料と研磨手段の相対的な
位置を移動させて、摩擦により被研磨試料表面の凸部を
加熱して、この凸部を研磨し、被研磨試料表面を平坦化
するようにしたものである。
In order to achieve the above object, the dry chemical mechanical polishing method of the present invention exposes at least a part of the surface of the sample to be polished held on the sample stage to a plasma atmosphere to generate radicals on the surface of the sample to be polished. Then, the polishing means is brought into contact with the surface of the sample to be polished, the relative position between the sample to be polished and the polishing means is moved, and the protrusion on the surface of the sample to be polished is heated by friction, and the protrusion is polished. The surface of the sample to be polished is flattened.

【0014】いずれの方法においても、研磨雰囲気の圧
力は減圧下でも、大気圧でもよく、大気圧以上の圧力で
もよい。好ましくは研磨雰囲気の圧力を1Pa〜約10
0000Paの範囲内とすることである。
In any of the methods, the pressure of the polishing atmosphere may be under reduced pressure, atmospheric pressure, or a pressure higher than atmospheric pressure. Preferably, the pressure of the polishing atmosphere is 1 Pa to about 10
0000 Pa.

【0015】[0015]

【発明の実施の形態】本発明の一つの実施の形態につい
て、図1を用いて説明する。図1に示すように、本発明
では、乾式化学機械研磨装置(プラズマ化学機械研磨装
置)101を用いて、半導体表面の凹凸を研磨する。こ
の装置はダウンフロー型プラズマの拡散領域を利用する
研磨装置の一例である。装置は、回転機構のある試料台
114、被研磨試料107の材質に合わせて選択した研
磨パッド119を装着した、回転、振動、並進等移動す
る研磨工具、プラズマ発生部、ガス供給系、排気系とか
ら構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, in the present invention, a dry chemical mechanical polishing apparatus (plasma chemical mechanical polishing apparatus) 101 is used to polish irregularities on a semiconductor surface. This apparatus is an example of a polishing apparatus using a diffusion region of a downflow type plasma. The apparatus includes a polishing table 119 having a rotating mechanism, a polishing pad 119 selected according to the material of the sample to be polished 107, a polishing tool that moves, rotates, vibrates, translates, etc., a plasma generator, a gas supply system, and an exhaust system. It is composed of

【0016】プラズマ発生部ではマイクロ波発生装置1
02から発生させたマイクロ波を導波管103で導き、
誘電体104を通して装置に導入する。本実施の形態で
は、マイクロ波を用いたが、UHFやラジオ波、さらに
は、それらの電磁波とともに磁石105を用いて発生さ
せた磁場を印加してプラズマ106を生成しても同様の
機能を発現する。電磁波の導入方法や磁場印加方法の工
夫により、被研磨試料107に降り注ぐ活性種のフラッ
クスを研磨に最適に制御できる。ガス供給系は、プラズ
マ原料ガスの流量やオン・オフを制御するバルブ108
とガス供給路109とからなる。装置は、真空排気装置
110により減圧にすることができ、圧力測定器111
により常時、モニター、制御できる。駆動機構112で
発生した力は伝達機構113を介して試料台114に伝
達され、試料固定器115により固定された被研磨試料
107を載せて回転、振動、或いは並進運動を行うこと
ができる。
In the plasma generator, the microwave generator 1
The microwave generated from 02 is guided by the waveguide 103,
It is introduced into the device through the dielectric 104. In the present embodiment, microwaves are used, but the same function is exhibited even when a plasma 106 is generated by applying a magnetic field generated by using a magnet 105 together with UHF, radio waves, and those electromagnetic waves. I do. By devising a method of introducing an electromagnetic wave and a method of applying a magnetic field, the flux of active species falling onto the sample to be polished 107 can be optimally controlled for polishing. The gas supply system includes a valve 108 for controlling the flow rate and on / off of the plasma raw material gas.
And a gas supply path 109. The apparatus can be evacuated by an evacuation device 110 and a pressure measuring device 111
Monitor and control at any time. The force generated by the driving mechanism 112 is transmitted to the sample stage 114 via the transmission mechanism 113, and the sample 107 fixed by the sample fixing device 115 can be placed on the sample table 114 to perform rotation, vibration, or translation.

【0017】次に、研磨工具部を説明する。研磨工具
は、支持台駆動機構116で可動な支持台117に搭載
されている。この支持台は、前後左右上下に可動で、位
置を制御できるとともに、研磨工具を押し付ける際の加
圧に耐える構造となっている。研磨工具には、研磨駆動
機構118により動作する研磨パッド119がホルダー
120に保持されている。研磨工具の被研磨試料への押
し付け圧は、歪ゲージ、バネ、圧電素子等のいずれかの
押し付け圧計測器121でモニタし、制御される。
Next, the polishing tool will be described. The polishing tool is mounted on a support 117 movable by a support drive mechanism 116. The support table is movable up and down, left and right, up and down, and can be controlled in position, and has a structure that withstands pressure when a polishing tool is pressed. In the polishing tool, a polishing pad 119 operated by a polishing drive mechanism 118 is held by a holder 120. The pressing pressure of the polishing tool against the sample to be polished is monitored and controlled by a pressing pressure measuring device 121 such as a strain gauge, a spring, or a piezoelectric element.

【0018】乾式化学機械研磨装置には、石英窓122
が設置され、プラズマ発光をとりだすことができる。分
光器からなる終点検出装置123により、研磨の終点を
判定し、研磨工程を終了することができる。また、膜厚
測定装置124により、研磨工具が障害とならない地点
の表面層の膜厚を計測し、終点判定の一助とすることが
できる。
The dry chemical mechanical polishing apparatus has a quartz window 122.
Is installed, and plasma emission can be obtained. The end point of the polishing can be determined by the end point detecting device 123 composed of a spectroscope, and the polishing step can be completed. In addition, the film thickness measuring device 124 measures the film thickness of the surface layer at a point where the polishing tool does not become an obstacle, which can assist in determining the end point.

【0019】次に、半導体素子の上層に形成した凹凸の
ある酸化膜を本発明の研摩方法で平坦化する場合の一例
を次に示す。用いるガスはシクロ−C48(以下、c−
48と記す)、CHF3、C58等の酸化膜エッチン
グで用いられるガスである。c−C48の場合、好適に
は1〜300ml/minの流量で供給し、Arガスで
希釈しても構わない。装置内の圧力は1Pa〜約100
000Paの範囲内で制御することが好ましい。もちろ
ん場合によっては、ガス供給速度を排気速度より高め
て、1気圧より高めてもよい。プラズマの密度は供給す
る電磁波のパワーと正の相関がある。好適には100〜
1000Wのパワーを投入すると、研摩に適した厚さの
化学吸着層を形成できる。このプラズマ雰囲気下で研摩
パッドを押付け、回転研摩を行う。研摩パッドは、硬質
発泡ポリウレタン、二酸化珪素、酸化セリウム、酸化ア
ルミナ等の砥粒を混ぜたポリウレタン、テフロン(登録
商標)或いは表面に酸化膜(SiO2膜)が形成された
研摩パッド等が用いられる。研摩パッドの弾性率は適宜
研摩プロセスに合わせて選択できる。かける荷重及び研
摩パッドの回転速度は、求める研摩速度や均一性が得ら
れる範囲で適宜調整する。
Next, an example in which an uneven oxide film formed on an upper layer of a semiconductor element is planarized by the polishing method of the present invention will be described below. Gas cyclo -C 4 F 8 (hereinafter to be used, c-
C 4 F 8 ), CHF 3 , C 5 F 8, etc. are gases used in oxide film etching. For c-C 4 F 8, preferably supplied at a flow rate of 1~300ml / min, it may be diluted with Ar gas. The pressure inside the device is 1 Pa to about 100
It is preferable to control within the range of 000 Pa. Of course, in some cases, the gas supply speed may be higher than the exhaust speed and higher than 1 atm. The density of the plasma has a positive correlation with the power of the supplied electromagnetic wave. Preferably 100 to
When a power of 1000 W is applied, a chemically adsorbed layer having a thickness suitable for polishing can be formed. A polishing pad is pressed in this plasma atmosphere to perform rotary polishing. As the polishing pad, hard foamed polyurethane, polyurethane mixed with abrasive grains such as silicon dioxide, cerium oxide, and alumina oxide, Teflon (registered trademark), or a polishing pad having an oxide film (SiO 2 film) formed on the surface is used. . The elastic modulus of the polishing pad can be appropriately selected according to the polishing process. The applied load and the rotation speed of the polishing pad are appropriately adjusted within a range where the desired polishing speed and uniformity can be obtained.

【0020】実施の一例としては、荷重0.5kg/c
2、回転速度1000回転/分の組合せがある。一般
に荷重が小さい場合には、回転速度を高くし、荷重が大
きい場合には回転速度を小さくする方向で同等の研摩速
度が得られる。ただし、荷重が高すぎる場合には、被研
摩ウェハ表面にマイクロスクラッチが生じやすくなる。
被研摩試料が直径200mmや300mmの大口径ウェ
ハの場合には、ウェハ周辺部の研摩均一性が低下する可
能性があるが、研摩工具の支持台を適宜前後左右に動か
し、研摩パッドが接触する時間を調節して研摩均一性を
向上させることができる。すなわち、凸部が高い部位は
より多く研摩できるように掃引する。
As an example of implementation, a load of 0.5 kg / c
m 2 , and a rotation speed of 1000 rotations / minute. Generally, when the load is small, the rotation speed is increased, and when the load is large, the same polishing speed is obtained in the direction of decreasing the rotation speed. However, if the load is too high, micro-scratch tends to occur on the surface of the polished wafer.
When the sample to be polished is a large-diameter wafer having a diameter of 200 mm or 300 mm, the polishing uniformity at the periphery of the wafer may be reduced. The time can be adjusted to improve the polishing uniformity. That is, a portion having a high convex portion is swept so that more polishing can be performed.

【0021】以上の研摩方法により、厚さ1μmの酸化
膜を加工した場合、パターン幅が5mm〜0.5μmの
すべてのパターンに対して、加工速度0.3±0.01
1μm/分という良好な研摩加工特性が得られた。な
お、研摩終了時に表面に僅かにフルオロカーボン系のデ
ポ膜が残る場合があるが、これは原料ガスを酸素に替え
てプラズマを生成し、アッシングすることで除去可能で
ある。
When an oxide film having a thickness of 1 μm is processed by the above-described polishing method, the processing speed is 0.3 ± 0.01 for all the patterns having a pattern width of 5 mm to 0.5 μm.
Good polishing characteristics of 1 μm / min were obtained. When the polishing is completed, a fluorocarbon-based deposition film may slightly remain on the surface in some cases, but this can be removed by replacing the source gas with oxygen, generating plasma, and performing ashing.

【0022】また、チャンバ内壁等の構成部分が汚染さ
れることがある。その場合は、酸素又は酸素を含有する
ガスプラズマにより、クリーニングを行うことができ
る。
Further, components such as the inner wall of the chamber may be contaminated. In that case, cleaning can be performed by oxygen or gas plasma containing oxygen.

【0023】図15は、上記の研磨処理を行うフローチ
ャートである。被研磨試料をロードロック室に置き、バ
ッファー室を経由して搬送し、試料台上に固定する。試
料台を回転させ、ガスを導入し、プラズマを発生させ
る。回転した研磨パットを移動させながら被研磨試料に
押し当てる。加重均一性、面内均一性、回転速度をモニ
ターする。研磨の終点を、例えば、後述する発光信号強
度で測定し、研磨の終点と判定したときに、研磨パット
を被研磨試料から離し、プラズマを消し、ガス供給を止
め、試料台の回転を止める。被研磨試料を試料台より、
バッファー室を経由してロードロック室に搬送し、ロー
ドロック室より取り出す。
FIG. 15 is a flowchart for performing the above-mentioned polishing process. A sample to be polished is placed in a load lock chamber, transported via a buffer chamber, and fixed on a sample stage. The sample stage is rotated, gas is introduced, and plasma is generated. The rotating polishing pad is pressed against the sample to be polished while moving. Monitor weight uniformity, in-plane uniformity, and rotation speed. The polishing end point is measured by, for example, the emission signal intensity described later, and when it is determined to be the polishing end point, the polishing pad is separated from the sample to be polished, the plasma is turned off, the gas supply is stopped, and the rotation of the sample stage is stopped. The sample to be polished is
It is transported to the load lock chamber via the buffer chamber, and is taken out of the load lock chamber.

【0024】次に、本発明の別な実施の形態について図
2を用いて説明する。この実施の形態は研磨工具内部で
プラズマを発生させ、被研磨表面に活性種を供給する構
成である。乾式化学機械研磨装置201は、真空排気装
置202によって減圧とし、圧力計測器203によって
モニタし制御できる。被研磨試料204は、回転駆動装
置205によって回転する試料台206上に試料固定器
207を用いて固定されている。次に、研磨工具部は、
支持台駆動機構208で可動な支持台209に搭載され
ている。研磨工具には、ガス供給ライン210が接続
し、流量制御機構211によってプラズマの原料となる
ガスを適宜供給できる。研磨工具には、回転、振動等の
駆動力を発生する研磨駆動機構212により動作する、
研磨パッド213がホルダー214に保持されている。
研磨工具の被研磨試料への押し付け圧は、歪ゲージ、バ
ネ、圧電素子等のいずれかの押し付け圧計測器215で
モニタし、制御される。プラズマ216は、RF電源2
17からの電力をケーブル218で伝達して生成する。
この装置を用いた場合、プラズマは研磨工具のホルダー
内で生成するため、研磨パッドには、複数の孔220が
空いており、活性化学種はこの孔を通過して被研磨試料
表面に供給される。なお、このプラズマをウェハ上の一
部に生成する方式では、ホルダ内部でプラズマを生成す
る方式ばかりでなく、研磨パッドの周囲に放電機構を持
たせ、研磨工具の周囲でプラズマを生成してもよい。ま
た、膜厚測定装置219により、研磨工具が障害となら
ない地点の表面層の膜厚を計測し、終点判定の一助とす
ることができる。なお、本発明装置に四重極質量分析装
置を搭載し、気相中のラジカルの質量分析を行い終点検
出を行ってもよい。
Next, another embodiment of the present invention will be described with reference to FIG. In this embodiment, plasma is generated inside a polishing tool to supply active species to a surface to be polished. The dry chemical mechanical polishing apparatus 201 can be reduced in pressure by the evacuation device 202 and monitored and controlled by the pressure measuring device 203. The sample 204 to be polished is fixed on a sample table 206 rotated by a rotation driving device 205 using a sample fixing device 207. Next, the polishing tool part
It is mounted on a support 209 movable by a support drive mechanism 208. A gas supply line 210 is connected to the polishing tool, and a gas as a raw material of plasma can be appropriately supplied by a flow rate control mechanism 211. The polishing tool is operated by a polishing drive mechanism 212 that generates a driving force such as rotation and vibration.
The polishing pad 213 is held by the holder 214.
The pressing pressure of the polishing tool against the sample to be polished is monitored and controlled by a pressing pressure measuring device 215 such as a strain gauge, a spring, or a piezoelectric element. The plasma 216 is supplied from the RF power source 2
17 is transmitted and generated by a cable 218.
When this apparatus is used, since plasma is generated in the holder of the polishing tool, a plurality of holes 220 are formed in the polishing pad, and active species are supplied to the surface of the sample to be polished through these holes. You. In the method of generating the plasma on a part of the wafer, not only the method of generating the plasma inside the holder, but also a method of generating a plasma around the polishing tool by providing a discharge mechanism around the polishing pad. Good. In addition, the film thickness measuring device 219 measures the film thickness of the surface layer at a point where the polishing tool does not become an obstacle, which can assist in determining the end point. It should be noted that a quadrupole mass spectrometer may be mounted on the apparatus of the present invention, and mass spectrometry of radicals in a gas phase may be performed to detect an end point.

【0025】本発明の別な実施の形態を用いて、酸化膜
層に溝とViaホールをエッチング工程で形成し、Cu
を埋め込んだ後の表面平坦化について述べる。この場
合、酸化膜と同時にCuも研摩しなければならないた
め、反応性ガスとしては、フルオロカーボン系のガスと
ともにCl2やHBrを添加する必要がある。もちろん
Arガスで希釈してもよい。ガス流量の一例としては、
c−C48が10ml/分、Cl2が5ml/分であっ
た。好適には1〜300ml/minの流量で供給し、
Arガスで希釈しても構わない。装置内の圧力は0.1
Pa〜約100000Paの範囲内で制御することが好
ましい。もちろん場合によっては、ガス供給速度を排気
速度より高めて、1気圧より高めてもよい。プラズマ形
成用の電源は比較的小型でよく、10W〜500W程度
のパワーを投入するのみでも研摩は可能である。研摩パ
ッドには、直径1mm程度の穴が数百個開いており、プ
ラズマ中で生成した中性種が通過する。研摩パッドは、
硬質発泡ポリウレタン、二酸化珪素、酸化セリウム、酸
化アルミナ等の砥粒を混ぜたポリウレタン、或いは表面
に酸化膜が形成された研摩パッド等が用いられる。研摩
パッドの弾性率は適宜研摩プロセスに合わせて選択でき
る。かける荷重及び研摩パッドの回転速度は、求める研
摩速度や均一性が得られる範囲で適宜調整する。
According to another embodiment of the present invention, a groove and a via hole are formed in an oxide film layer by an etching process,
Surface flattening after embedding is described. In this case, since Cu must be polished simultaneously with the oxide film, it is necessary to add Cl 2 or HBr as a reactive gas together with a fluorocarbon-based gas. Of course, it may be diluted with Ar gas. As an example of the gas flow rate,
c-C 4 F 8 is 10 ml / min, Cl 2 was 5 ml / min. It is preferably supplied at a flow rate of 1 to 300 ml / min,
It may be diluted with Ar gas. The pressure inside the device is 0.1
It is preferable to control within the range of Pa to about 100,000 Pa. Of course, in some cases, the gas supply speed may be higher than the exhaust speed and higher than 1 atm. The power source for plasma formation is relatively small, and polishing can be performed only by applying a power of about 10 W to 500 W. The polishing pad has several hundred holes with a diameter of about 1 mm, through which neutral species generated in the plasma pass. The polishing pad is
Hard foamed polyurethane, polyurethane mixed with abrasive grains such as silicon dioxide, cerium oxide and alumina oxide, or a polishing pad having an oxide film formed on the surface is used. The elastic modulus of the polishing pad can be appropriately selected according to the polishing process. The applied load and the rotation speed of the polishing pad are appropriately adjusted within a range where the desired polishing speed and uniformity can be obtained.

【0026】実施の一例としては、荷重0.5kg/c
2、回転速度1000回転/分の組合せがある。均一
性を高めるために、研摩工具の掃引は研摩速度が遅い部
分により時間をかけて研摩できるように掃引する。以上
の研摩方法により、厚さ1μmのCu配線を施した酸化
膜を加工した場合、パターン幅が5mm〜0.5μmの
すべてのパターンに対して、加工速度0.2±0.01
μm/分という良好な研摩加工特性が得られた。
As an example of implementation, a load of 0.5 kg / c
m 2 , and a rotation speed of 1000 rotations / minute. To increase uniformity, the polishing tool sweeps over slower portions of the polishing rate to allow more time for polishing. When an oxide film having a 1 μm-thick Cu wiring is processed by the above polishing method, the processing speed is 0.2 ± 0.01 for all patterns having a pattern width of 5 mm to 0.5 μm.
Good polishing characteristics of μm / min were obtained.

【0027】また、本研磨方法は、銅、アルミ等の金属
配線を研磨する際にも有効である。プラズマ中で主にハ
ロゲンを含む活性種を生成し、被研磨表面に供給する。
この化学種は金属表面と反応し、表面摩擦係数を大きく
し、なおかつ容易に下地の金属からはがれやすくする。
これによって、容易に金属表面を研磨することが可能と
なる。はがされた金属化合物はプラズマ中で解離し、真
空排気される。ただし、研磨終了時には、プラズマを消
した後、研磨を続け、表面変質層を研磨しきってから終
了する。
This polishing method is also effective when polishing metal wiring such as copper and aluminum. Active species mainly containing halogen are generated in plasma and supplied to the surface to be polished.
This chemical species reacts with the metal surface to increase the coefficient of surface friction, and also makes it easy to peel off from the underlying metal.
This makes it possible to easily polish the metal surface. The peeled metal compound is dissociated in the plasma and evacuated. However, at the end of the polishing, the plasma is turned off, the polishing is continued, and the process is terminated after the surface altered layer is completely polished.

【0028】ここで、研摩の方法のいくつかの例を示
す。図3(a)に示したように、回転駆動部301の動
力を伝達軸302を介して試料台303を回転させ、被
研摩試料304を研摩する場合、これまでの実施の形態
同様に、駆動軸305の先のホルダー306に固定した
研摩パッド307で研摩を行う。この方法は、被加工試
料面に対して水平に回転研摩を行う方法である。次に、
別な研摩の方法として、図3(b)に示したように、回
転駆動部301の動力を伝達軸302を介して試料台3
03を回転させ、被研摩試料304を研摩する場合、駆
動軸308の先端についている研摩パッド309を図中
の矢印で示した方向に回転させて研摩を行う。次に、別
な研摩の方法として、図3(c)に示したように、回転
駆動部301の動力を伝達軸302を介して試料台30
3を回転させ、被研摩試料304を研摩する場合、水平
方向への振動軸310の先に設置した研摩パッド311
で研摩を行う。いずれの方式でも、研摩工具は被加工面
上を制御、掃引することができ面内で均一な研摩が可能
である。また、研摩工具と被研磨試料の位置関係は上下
逆でもよく、また、研摩パッドの方が被研摩試料より面
積が大きくてもよいが、研磨中に被研磨試料の少なくと
も一部がプラズマ雰囲気に曝される状態に置かれること
が重要である。
Here, some examples of the polishing method will be described. As shown in FIG. 3A, when the power of the rotary drive unit 301 is rotated through the transmission shaft 302 to rotate the sample table 303 to polish the sample 304 to be polished, the driving is performed in the same manner as in the previous embodiments. Polishing is performed with the polishing pad 307 fixed to the holder 306 at the end of the shaft 305. In this method, rotary polishing is performed horizontally on a sample surface to be processed. next,
As another polishing method, as shown in FIG. 3B, the power of the rotary driving unit 301 is transmitted through the transmission shaft 302 to the sample stage 3.
When the polishing target 304 is polished by rotating the polishing pad 304, the polishing is performed by rotating the polishing pad 309 attached to the tip of the drive shaft 308 in the direction indicated by the arrow in the figure. Next, as another polishing method, as shown in FIG. 3C, the power of the rotation drive unit 301 is applied via the transmission shaft 302 to the sample stage 30.
When the sample 3 is rotated to polish the sample 304 to be polished, the polishing pad 311 placed in front of the vibration axis 310 in the horizontal direction is used.
Polish with. In any of the methods, the polishing tool can control and sweep the surface to be processed, and can perform uniform polishing within the surface. Further, the positional relationship between the polishing tool and the sample to be polished may be upside down, and the area of the polishing pad may be larger than that of the sample to be polished. It is important to be exposed.

【0029】本発明と米国特許6057245に記載の
従来例の主たるちがいは、試料と研磨パッドの位置関係
にある。上記従来例では、ラジカルは主として研磨パッ
ドに吸着し、反応のメカニズムは従来例に記載されてい
るように、試料の化学結合を摩擦により弱めておいて、
そこにラジカルが研摩パッドから供給されて反応が進行
する。それに対し、本発明ではラジカルが吸着した試料
表面を研磨によって発生する熱によって除去しようとい
うものである。また、本第2の実施の形態に示したよう
な、局部的にプラズマを生成する概念は、上記従来例に
は見られない。
A major difference between the present invention and the conventional example described in US Pat. No. 6,057,245 is the positional relationship between the sample and the polishing pad. In the above conventional example, radicals are mainly adsorbed to the polishing pad, and the reaction mechanism weakens the chemical bond of the sample by friction as described in the conventional example,
The radicals are supplied from the polishing pad and the reaction proceeds. On the other hand, in the present invention, the sample surface on which radicals are adsorbed is removed by heat generated by polishing. Further, the concept of locally generating plasma as shown in the second embodiment is not found in the above-described conventional example.

【0030】ここで、本発明の研磨のメカニズム及び原
理を説明する。図5(a)、(b)はホルダー周辺部の
模式図である。回転軸の先端のホルダーには、研磨に用
いられる研磨パッドが装着されている。プラズマから供
給された化学種がウェハ表面に吸着し、ラジカルの吸着
層を形成している。ある荷重がかかり、高速で回転する
研磨パッドは、ウェハ表面の凸部と接触している。この
接触した表面凸部が選択的に研磨されることにより平坦
化する。研磨生成物は、表面からプラズマへ入射するこ
とにより解離が進み、他の分子とともに真空排気され
る。凹凸のある酸化膜表面を例にとり、凸部選択研磨の
原理を説明する。用いるガスは酸化膜と化学反応して揮
発する反応生成物を発生させる化学種をプラズマ中で生
成することが望ましい。本説明では、c−C48等のフ
ルオロカーボン系ガスを用いる。このガスはプラズマ中
で容易に解離し、Cxyラジカルを生成する。これらの
ラジカルは付着係数が比較的大きく、曝された酸化膜表
面に吸着する。図6に示す、電子の結合エネルギーに対
するX線光電子の信号強度を表す線601が示すよう
に、表面上にはCF、CF2、CF3等に帰属される複数
のピークが観測され、実際にCF系の吸着層が形成して
いることが分かる。アスペクト比の大きい深孔のような
凹部でない限り表面の凹凸部で吸着能に大差はなく、ほ
ぼ表面の凹凸部で等厚の表面吸着層が形成される。
Here, the mechanism and principle of polishing according to the present invention will be described. FIGS. 5A and 5B are schematic diagrams of the periphery of the holder. A polishing pad used for polishing is mounted on the holder at the tip of the rotating shaft. Chemical species supplied from the plasma are adsorbed on the wafer surface to form a radical adsorption layer. The polishing pad, which is under a certain load and rotates at a high speed, is in contact with the projections on the wafer surface. The contact surface protrusion is selectively polished to be flattened. The polishing product is dissociated by entering the plasma from the surface, and is evacuated together with other molecules. The principle of convex portion selective polishing will be described using an oxide film surface having irregularities as an example. It is desirable that the gas used generates a chemical species in the plasma that generates a reaction product that volatilizes by chemically reacting with the oxide film. In this description, use of fluorocarbon-based gas such as c-C 4 F 8. This gas is easily dissociated in the plasma, producing C x F y radicals. These radicals have a relatively large adhesion coefficient and adsorb to the exposed oxide film surface. As shown in FIG. 6 by a line 601 representing the signal intensity of X-ray photoelectrons with respect to the binding energy of electrons, a plurality of peaks belonging to CF, CF 2 , CF 3, etc. are observed on the surface, and actually, It can be seen that a CF-based adsorption layer is formed. As long as it is not a concave portion such as a deep hole having a large aspect ratio, there is no large difference in the adsorbing ability at the uneven portion on the surface, and a surface adsorbing layer having an equal thickness is formed almost at the uneven portion on the surface.

【0031】このような表面への反応性ラジカルの吸着
のみで、表面との化学反応が自発的に進むわけではな
い。次に、プラズマを消し、表面にCF系吸着層を形成
させたウェハの温度を除々に上昇させ、どの温度以上で
化学反応が起こるかを検討した。図7には質量分析装置
を用いて計測した、反応生成物由来のSiF3イオンの
信号強度を表す線701とCOイオンの信号強度を表す
線702のウェハ温度依存性を示す。どちらのイオンも
400℃付近の温度で強く観測される。この温度に達す
ると、そこで吸着層がすべて反応してしまうため、それ
以上いくら温度を上げても反応生成物は検出されない。
よって、ウェハ表面温度が400℃を超えて加熱されれ
ば化学反応が進行することがわかる。一例として、吸着
化学種の一つとしてCF2、反応生成物としてCF4とC
Oを仮定すると化学反応式は次のように書ける。
The chemical reaction with the surface does not spontaneously proceed only by the adsorption of the reactive radical on the surface. Next, the plasma was turned off, the temperature of the wafer having the CF-based adsorption layer formed on the surface was gradually increased, and the temperature above which the chemical reaction occurred was examined. FIG. 7 shows the wafer temperature dependence of a line 701 representing the signal intensity of the SiF 3 ion derived from the reaction product and a line 702 representing the signal intensity of the CO ion, measured using a mass spectrometer. Both ions are strongly observed at temperatures around 400 ° C. When this temperature is reached, all the adsorbed layers react there, and no reaction product is detected no matter how much the temperature is raised.
Therefore, it can be seen that the chemical reaction proceeds when the wafer surface temperature is heated above 400 ° C. As an example, CF 2 is one of the adsorbed species, and CF 4 and C are reaction products.
Assuming O, the chemical reaction equation can be written as:

【0032】[0032]

【化1】 Embedded image

【0033】プラズマを維持し定常的にラジカルを供給
したままウェハ全体を加熱して上記化学反応を起こす
と、確かに表面のSiO2を化学反応により除去し続け
ることができるが、凹凸選択性がないために、表面の酸
化膜全体が薄くなるのみで、平坦化は達成されない。
If the above-described chemical reaction is caused by heating the entire wafer while maintaining the plasma and constantly supplying radicals, the SiO 2 on the surface can be surely removed by the chemical reaction. Therefore, only the entire oxide film on the surface is thinned, and flattening is not achieved.

【0034】そこで、表面凸部選択性を出すために、表
面凸部のみが400℃以上になる工夫が必要である。そ
こで、本発明の研磨パッドとの接触部が400℃以上に
なるかを原理検討する。図8は、押付け圧Pと接触面の
速度Vとの積と接触面の摩擦係数μの場合の温度上昇
(T−T0)との関係を示した図である。押し付け圧力
と研磨速度の積と接触面温度との相関を示す線801が
示すように、ほぼ比例関係にあることが分かる。摩擦係
数μが0.5の場合、PV積の値が1000程度で、5
00℃程度の温度上昇があることが分かる。すなわち、
原理的に表面凸部の温度は十分400℃以上に達するこ
とが分かる。
Therefore, in order to obtain surface convexity selectivity, it is necessary to devise a method in which only the surface convexities are heated to 400 ° C. or higher. Therefore, the principle is examined to determine whether the temperature of the contact portion with the polishing pad of the present invention is 400 ° C. or higher. FIG. 8 is a diagram showing the relationship between the product of the pressing pressure P and the speed V of the contact surface and the temperature rise (T-T0) in the case of the friction coefficient μ of the contact surface. As shown by a line 801 showing the correlation between the product of the pressing pressure and the polishing rate and the contact surface temperature, it can be seen that there is a substantially proportional relationship. When the friction coefficient μ is 0.5, the value of the PV product is about 1000 and 5
It can be seen that there is a temperature rise of about 00 ° C. That is,
In principle, it can be seen that the temperature of the surface convex portion sufficiently reaches 400 ° C. or higher.

【0035】以上の考察及び説明により本発明の原理が
示されたが、実際には、ウェハの材質やパターンによっ
て熱伝導が異なる等により、ウェハ表面の温度は変化す
る。もし温度制御がうまくいかないようであれば、ヒー
タ等の温調機構により、補助的にウェハ全体の温度を調
節してアシストすることが可能である。温調機構は、被
加工ウェハ側或いは回転パッド側にあっても構わない。
この場合注意することは、この温度調節によって、熱反
応のみで表面凹部の除去反応までも進まないようにする
ことである。
Although the principle of the present invention has been shown by the above considerations and explanations, actually, the temperature of the wafer surface changes due to the difference in heat conduction depending on the material and pattern of the wafer. If the temperature control does not work well, it is possible to assist by adjusting the temperature of the entire wafer by a temperature control mechanism such as a heater. The temperature control mechanism may be provided on the processed wafer side or the rotating pad side.
In this case, it should be noted that the temperature adjustment prevents the reaction of removing the surface concave portion only by the thermal reaction.

【0036】ここで、再び図5(a)、(b)に戻って
説明を続ける。図5(a)は、図1に示した第1の実施
の形態のホルダーとその周辺部の模式図である。被研磨
試料と研磨パッドは、ほぼ密着しているため、プラズマ
ガスは研磨パッド周辺部にしか到達しない。しかし、両
者の相対的位置が移動するため、研磨パッドの下にも効
率よくプラズマガスが供給される。一方、図5(b)
は、図2に示した第2の実施の形態のホルダーとその周
辺部の模式図である。ホルダーには1mm程度の孔が設
けられている。研磨パッドには、1mm〜数mmの無数
の孔がある。図ではホルダーの孔1個に研磨パッドの孔
の1個があるように見えるが、これは模式的示したもの
で、実際は、研磨パッドの孔の大きさにもよるが、ホル
ダーの孔の1個に対して、研磨パッドの孔が1個〜数個
配置されている。このような構成により、プラズマガス
が被研磨試料の表面に向かって噴出する。なお、ホルダ
ーの底面の孔のない部分の下の研磨パッドにも孔はある
が、プラズマガスが通過することはないので、図示して
いない。
Here, the description will be continued by returning to FIGS. 5A and 5B again. FIG. 5A is a schematic view of the holder according to the first embodiment shown in FIG. 1 and its peripheral portion. Since the sample to be polished and the polishing pad are almost in close contact, the plasma gas reaches only the periphery of the polishing pad. However, since the relative positions of the two move, the plasma gas is efficiently supplied under the polishing pad. On the other hand, FIG.
FIG. 4 is a schematic view of the holder and its peripheral portion according to the second embodiment shown in FIG. 2. The holder has a hole of about 1 mm. The polishing pad has countless holes of 1 mm to several mm. In the figure, it seems that one hole of the holder has one hole of the polishing pad, but this is a schematic illustration, and in fact, depending on the size of the hole of the polishing pad, one hole of the holder can be obtained. One to several holes of the polishing pad are arranged for each. With such a configuration, the plasma gas is ejected toward the surface of the sample to be polished. Although there is a hole in the polishing pad below the holeless portion on the bottom surface of the holder, it is not shown because the plasma gas does not pass therethrough.

【0037】図5(b)に示したホルダー部分の断面図
を図12及び図13に示す。図12に示すように、数タ
ーンのコイルを巻き、そこにRFを印加して導入したガ
スをプラズマ化する。また、ホルダー内面はアルミニウ
ム表面を陽極酸化したもので、あり、プラズマに対する
耐腐食性がある。なお、図13に示したホルダーでは、
プラズマの発生位置が異なり、リモートプラズマとして
プラズマを遠隔位置で発生させる。ただし、あまり距離
が遠いと生成したラジカルが消滅するので、装置の大き
さ等から、適した方式を選択する。
FIGS. 12 and 13 are sectional views of the holder portion shown in FIG. 5B. As shown in FIG. 12, a coil of several turns is wound, and RF is applied thereto to convert the introduced gas into plasma. The inner surface of the holder is obtained by anodizing the aluminum surface, and has corrosion resistance to plasma. In the holder shown in FIG.
Plasma generation positions are different, and plasma is generated at a remote position as remote plasma. However, if the distance is too long, the generated radicals disappear, so an appropriate method is selected from the size of the apparatus and the like.

【0038】本発明のさらに別な実施の形態として、大
気圧研磨の乾式化学機械研磨装置を図14を用いて説明
する。圧力の高い方がラジカル反応種量が増えて研磨速
度が増大する。コイルに13.56MHzのRFを印加
し、プラズマを発生させる。この方式では大気圧異常の
圧力でもプラズマを安定に発生できる。
As still another embodiment of the present invention, a dry chemical mechanical polishing apparatus for atmospheric pressure polishing will be described with reference to FIG. Higher pressures increase the amount of radical reactive species and increase the polishing rate. 13.56 MHz RF is applied to the coil to generate plasma. In this method, plasma can be stably generated even under abnormal atmospheric pressure.

【0039】次に、終点検出の一例を図9を用いて説明
する。簡単のため、被研磨試料はSi基板上にSiO2
膜を成長したものを用いる。SiO2の残膜厚を表す線
901が示すように、研磨が進むとともに残膜厚は減少
していく。一方、SiFの発光信号強度を表す線902
が示すように、研磨が始まると同時にSiFの発光強度
は急激に増加する。そして、定常的に研磨が行われてい
る間、ほぼ一定の強度を維持し、下地のSiが露出して
くるとSiFの発光強度は急激に減少し、完全にSiO
2が研磨除去されると、バックグランドレベルに落ち着
く。このように、プラズマ中の反応生成物の発光をモニ
タすることにより容易に終点を判定することができる。
もちろん、実際のSiO2残膜厚を干渉法を用いた膜厚
計により計測しながら、終点を判定してもよい。
Next, an example of end point detection will be described with reference to FIG. For simplicity, the sample to be polished was SiO 2 on a Si substrate.
Use a grown film. As indicated by a line 901 indicating the remaining film thickness of SiO 2, the remaining film thickness decreases as polishing proceeds. On the other hand, a line 902 representing the emission signal intensity of SiF
As shown by the graph, the emission intensity of SiF sharply increases at the same time as the polishing starts. Then, while the polishing is being performed steadily, almost constant intensity is maintained, and when the underlying Si is exposed, the emission intensity of the SiF rapidly decreases, and the SiOF is completely removed.
When 2 is polished away, it settles to the background level. Thus, the end point can be easily determined by monitoring the emission of the reaction product in the plasma.
Of course, the end point may be determined while the actual remaining SiO 2 film thickness is measured by a film thickness meter using an interference method.

【0040】半導体製造工程は多数のプロセス処理から
なるが、本発明が適用される工程の一例である配線工程
について図10を用いて説明する。
Although the semiconductor manufacturing process includes a number of process processes, a wiring process as an example of a process to which the present invention is applied will be described with reference to FIG.

【0041】図10(a)は1層目の配線が形成されて
いるウェハの断面図を表す。トランジスタ部が形成され
ているウェハ基板1001の表面には絶縁膜1002が
形成されており、その上にAlやCu等の配線層100
3がある。絶縁膜中のコンタクトホールのために、配線
層の接合部は多少へこんでいる(へこみ1004)。図
10(b)に示す2層目の配線工程では、1層目の上に
絶縁膜1005、金属層1006を形成し、さらに、金
属層に配線パターンを形成するための露光用フォトレジ
スト層1007を配置する。次に、図10(c)に示す
ようにステッパ1008で回路パターンを上記フォトレ
ジスト上に露光転写する。この場合、フォトレジスト層
の表面が凹凸になっていると、フォトレジスト表面の凹
部と凸部1009では同時に焦点が合わず、解像不良が
発生する。
FIG. 10A is a sectional view of a wafer on which a first-layer wiring is formed. An insulating film 1002 is formed on a surface of a wafer substrate 1001 on which a transistor portion is formed, and a wiring layer 100 such as Al or Cu is formed thereon.
There are three. Due to the contact hole in the insulating film, the junction of the wiring layer is slightly dented (dent 1004). In the wiring step of the second layer shown in FIG. 10B, an insulating film 1005 and a metal layer 1006 are formed on the first layer, and further, an exposure photoresist layer 1007 for forming a wiring pattern on the metal layer. Place. Next, as shown in FIG. 10C, the circuit pattern is exposed and transferred onto the photoresist by a stepper 1008. In this case, if the surface of the photoresist layer is uneven, the concave portion and the convex portion 1009 on the photoresist surface are not simultaneously focused, and poor resolution occurs.

【0042】この不具合を解消するために、次に述べる
ような平坦化処理を行う。図10(a)の処理工程の次
に、図10(d)に示すように、絶縁膜1005を形成
後、図中1010のレベルまで平坦となるように本発明
の方法により研磨加工を行い、図10(e)の状態を得
る。その後、金属層とフォトレジスト層を形成し、図1
0(f)のようにステッパで露光する。この状態では、
フォトレジスト表面が平坦なために解像不良の問題は生
じない。
To solve this problem, the following flattening process is performed. After the processing step of FIG. 10A, as shown in FIG. 10D, after forming the insulating film 1005, polishing is performed by the method of the present invention so that the insulating film 1005 becomes flat to the level of 1010 in the figure. The state shown in FIG. Thereafter, a metal layer and a photoresist layer are formed, and FIG.
Exposure is performed by a stepper as shown in FIG. In this state,
Since the photoresist surface is flat, the problem of poor resolution does not occur.

【0043】ここで、本発明の乾式化学機械研磨方法を
採用することにより、絶縁膜形成工程、金属配線層形成
工程、パターンエッチング工程、洗浄工程、研磨工程の
すべてを乾式で行うことが可能となる。すなわち、乾式
一貫プロセスの構築が可能となる。図11を用いて乾式
一貫プロセスの概念を説明する。マルチプロセス装置1
101には、プラズマエッチング室1102、プラズマ
CVD室1103、ドライ洗浄室1104、本発明の乾
式化学機械研磨装置1105がクラスター化されてい
る。被加工ウェハは、ウェハ投入部1106から投入さ
れ、搬送部1107を通して各プロセス室に搬送でき
る。これにより、プラズマCVDによる絶縁膜の形成、
プラズマエッチングによるコンタクトホールの形成、ド
ライ洗浄によるウェハ表面洗浄、プラズマCVD或いは
スパッタによる金属層の形成、乾式化学機械研磨方法に
よる表面平坦化、再び、洗浄、絶縁膜付け等のプロセス
をすべて真空層内で行うことが可能となる。全工程終了
後、ウェハ搬出部1108から加工済みの被加工ウェハ
を取り出すことができる。
Here, by employing the dry chemical mechanical polishing method of the present invention, all of the insulating film forming step, the metal wiring layer forming step, the pattern etching step, the cleaning step, and the polishing step can be performed in a dry manner. Become. That is, it is possible to establish a dry integrated process. The concept of the dry integrated process will be described with reference to FIG. Multi-process device 1
In 101, a plasma etching chamber 1102, a plasma CVD chamber 1103, a dry cleaning chamber 1104, and a dry chemical mechanical polishing apparatus 1105 of the present invention are clustered. The wafer to be processed is loaded from the wafer loading section 1106, and can be transported to each process chamber through the transport section 1107. Thereby, formation of an insulating film by plasma CVD,
Process of contact hole formation by plasma etching, wafer surface cleaning by dry cleaning, formation of metal layer by plasma CVD or sputtering, surface flattening by dry chemical mechanical polishing method, again cleaning, insulating film formation, etc. It is possible to do with. After the completion of all the steps, the processed wafer to be processed can be taken out from the wafer carrying-out section 1108.

【0044】この真空一貫プロセスの構築により、ウェ
ハへの汚染が減ると同時に各工程間の移動に要する時間
的ロスが減少しスループットが劇的に向上する。また、
研磨工程で、薬液を全く使わないため、残留化学物質に
よる金属層の腐食も極めて低減でき、基本的にドライエ
ッチングと同程度の汚染ですむ。また、トータルコスト
的にも研磨部の消耗品等が加算されるのみで、ドライエ
ッチングよりも若干コストは高くなると予想されるが、
従来のケミカルメカニカルポリッシングと比べると、一
桁コストを低減することも十分可能である。
By constructing the vacuum integrated process, the contamination on the wafer is reduced, and at the same time, the time loss required for the transfer between the steps is reduced, and the throughput is dramatically improved. Also,
Since no chemical solution is used in the polishing process, corrosion of the metal layer due to residual chemicals can be extremely reduced, and basically the same level of contamination as dry etching is required. Also, in terms of total cost, only the consumables of the polishing section etc. are added, and it is expected that the cost will be slightly higher than dry etching,
Compared with the conventional chemical mechanical polishing, it is possible to reduce the cost by one digit.

【0045】本発明は、半導体素子をはじめ、液晶表示
素子、マイクロマシン、磁気ディスク基板、光ディスク
基板或いは光学素子の製造に適用することができる。
The present invention can be applied to the manufacture of semiconductor devices, liquid crystal display devices, micromachines, magnetic disk substrates, optical disk substrates, or optical devices.

【0046】[0046]

【発明の効果】本発明により、研磨工程を乾式化し、効
率よく研磨することができる。また、湿式化学機械研磨
法に比べ、平坦化に要するコストを大幅に低減すること
が可能となる。
According to the present invention, the polishing step can be made dry and polishing can be performed efficiently. Further, compared to the wet chemical mechanical polishing method, the cost required for flattening can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の乾式化学機械研磨装置の模式図。FIG. 1 is a schematic view of a dry chemical mechanical polishing apparatus according to the present invention.

【図2】本発明の別構成の乾式化学機械研磨装置の模式
図。
FIG. 2 is a schematic view of a dry chemical mechanical polishing apparatus having another configuration according to the present invention.

【図3】本発明の別構成の乾式化学機械研磨装置の模式
図。
FIG. 3 is a schematic view of a dry chemical mechanical polishing apparatus having another configuration according to the present invention.

【図4】従来の化学機械研磨装置の構成図。FIG. 4 is a configuration diagram of a conventional chemical mechanical polishing apparatus.

【図5】本発明の乾式化学機械研磨のホルダー部分の模
式図。
FIG. 5 is a schematic view of a holder for dry chemical mechanical polishing according to the present invention.

【図6】CF系ガスプラズマに曝された表面のX線光電
子分光スペクトルの模式図。
FIG. 6 is a schematic diagram of an X-ray photoelectron spectroscopy spectrum of a surface exposed to CF-based gas plasma.

【図7】CF系ラジカルが付着した表面からの脱離反応
生成物を検出した、昇温脱離スペクトルの模式図。
FIG. 7 is a schematic diagram of a heated desorption spectrum in which a desorption reaction product from a surface to which a CF radical is attached is detected.

【図8】研磨表面での回転速度と押付け圧力の積と昇温
との相関を示す図。
FIG. 8 is a diagram showing a correlation between a product of a rotation speed and a pressing pressure on a polishing surface and a temperature rise.

【図9】プラズマ発光計測による終点検出の説明図。FIG. 9 is an explanatory diagram of end point detection by plasma emission measurement.

【図10】ウェハ表面の平坦化工程の説明図。FIG. 10 is an explanatory diagram of a wafer surface flattening step.

【図11】本発明の乾式化学機械研磨装置を他のプロセ
ス装置とクラスタ化した概念図。
FIG. 11 is a conceptual diagram in which the dry chemical mechanical polishing apparatus of the present invention is clustered with other process apparatuses.

【図12】本発明の乾式化学機械研磨のホルダー部分の
断面図。
FIG. 12 is a cross-sectional view of a holder part for dry chemical mechanical polishing according to the present invention.

【図13】本発明の乾式化学機械研磨のホルダー部分の
断面図。
FIG. 13 is a cross-sectional view of a holder for dry chemical mechanical polishing according to the present invention.

【図14】本発明のさらに別構成の乾式化学機械研磨装
置の模式図。
FIG. 14 is a schematic view of a dry chemical mechanical polishing apparatus having still another configuration of the present invention.

【図15】本発明の乾式化学機械研磨装置の処理のフロ
ーチャート。
FIG. 15 is a flowchart of the process of the dry chemical mechanical polishing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

101…乾式化学機械研磨装置、102…マイクロ波発
生装置、103…導波管、104…誘電体、105…磁
石、106…プラズマ、107…被研磨試料、108…
バルブ、109…ガス供給路、110…真空排気装置、
111…圧力測定器、112…駆動機構、113…伝達
機構、114…試料台、115…試料固定器、116…
支持台駆動機構、117…支持台、118…研磨駆動機
構、119…研磨パッド、120…ホルダー、121…
押し付け圧計測器、122…石英窓、123…終点検出
装置、124…膜厚計測装置、201…乾式化学機械研
磨装置、202…真空排気装置、203…圧力計測器、
204…被研磨試料、205…回転駆動装置、206…
試料台、207…試料固定器、208…支持台駆動機
構、209…支持台、210…ガス供給ライン、211
…流量制御機構、212…研磨駆動機構、213…研磨
パッド、214…ホルダー214、215…押し付け圧
計測器、216…プラズマ、217…RF電源、218
…ケーブル、219…膜厚測定装置、301…回転駆動
部、302…伝達軸、303…試料台、304…被研摩
試料、305…駆動軸、306…ホルダー、307…研
摩パッド、308…駆動軸、309…研摩パッド、31
0…振動軸、311…研摩パッド、401…モータ、4
02…出力軸、403…回転工具、404…研磨パッ
ド、405…回転軸、406…回転ホルダー、407…
半導体ウェーハ、408…研磨液、409…供給ノズ
ル、601…X線光電子の信号強度を表す線、701…
SiF3イオンの信号強度を表す線、702…COイオ
ンの信号強度を表す線、801…押し付け圧力と研磨速
度の籍と接触面温度との相関を示す線、901…被研磨
層の残膜厚を表す線、902…SiFの発光信号強度を
表す線、1001…ウェハ基板、1002…絶縁膜、1
003…配線層、1004…へこみ、1005…絶縁
膜、1006…金属層、1007…フォトレジスト層、
1008…ステッパ、1009…フォトレジスト上の凹
凸部、1010…平坦化するレベル、1101…マルチ
プロセス装置、1102…プラズマエッチング室、11
03…プラズマCVD室、1104…ドライ洗浄室、1
105…乾式化学機械研磨室、1106…ウェハ投入
部、1107…ウェハ搬送部、1108…ウェハ搬出
部。
101: dry chemical mechanical polishing apparatus, 102: microwave generator, 103: waveguide, 104: dielectric, 105: magnet, 106: plasma, 107: sample to be polished, 108:
Valve, 109: gas supply path, 110: vacuum exhaust device,
111: pressure measuring device, 112: driving mechanism, 113: transmission mechanism, 114: sample stage, 115: sample fixing device, 116:
Support base drive mechanism 117 Support base 118 Polishing drive mechanism 119 Polishing pad 120 Holder 121
Pressing pressure measuring device, 122: quartz window, 123: end point detecting device, 124: film thickness measuring device, 201: dry chemical mechanical polishing device, 202: evacuation device, 203: pressure measuring device,
204: sample to be polished, 205: rotary drive device, 206:
Sample table, 207: sample fixing device, 208: support driving mechanism, 209: support, 210: gas supply line, 211
... Flow control mechanism, 212 ... Polishing drive mechanism, 213 ... Polishing pad, 214 ... Holder 214, 215 ... Pressing pressure measuring instrument, 216 ... Plasma, 217 ... RF power supply, 218
... Cable, 219 ... Thickness measuring device, 301 ... Rotation drive unit, 302 ... Transmission shaft, 303 ... Sample stand, 304 ... Sample to be polished, 305 ... Drive shaft, 306 ... Holder, 307 ... Polishing pad, 308 ... Drive shaft , 309 ... polishing pad, 31
0: vibration axis, 311: polishing pad, 401: motor, 4
02 ... output shaft, 403 ... rotating tool, 404 ... polishing pad, 405 ... rotating shaft, 406 ... rotating holder, 407 ...
Semiconductor wafer, 408 ... polishing liquid, 409 ... supply nozzle, 601 ... line representing signal intensity of X-ray photoelectrons, 701 ...
A line representing the signal intensity of SiF3 ion, 702 a line representing the signal intensity of the CO ion, 801 a line representing the correlation between the pressing pressure, the polishing rate and the contact surface temperature, 901 the remaining film thickness of the layer to be polished. Line 902, line representing the intensity of the light emission signal of SiF, 1001, wafer substrate, 1002, insulating film, 1
003: wiring layer, 1004: dent, 1005: insulating film, 1006: metal layer, 1007: photoresist layer,
1008: Stepper, 1009: Uneven portion on the photoresist, 1010: Level for flattening, 1101: Multi-process apparatus, 1102: Plasma etching chamber, 11
03: Plasma CVD chamber, 1104: Dry cleaning chamber, 1
105: dry chemical mechanical polishing room; 1106: wafer loading unit; 1107: wafer transport unit; 1108: wafer unloading unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田地 新一 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 3C058 AA07 AA11 AA16 AB04 AC01 DA12 DA17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Taji 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 3C058 AA07 AA11 AA16 AB04 AC01 DA12 DA17

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】プラズマ源からプラズマを供給しながら、
試料台に保持された被研磨試料表面を研磨工具と接触さ
せ、上記被研磨試料と上記研磨工具の相対的な位置を移
動させて研磨し、上記被研磨試料表面を平坦化する乾式
化学機械研磨方法において、上記研磨のときに、上記被
研磨試料表面の少なくとも一部が、上記プラズマ雰囲気
に曝される状態におかれることを特徴とする乾式化学機
械研磨方法。
1. While supplying plasma from a plasma source,
Dry chemical mechanical polishing for bringing the surface of the sample to be polished held in the sample stage into contact with a polishing tool, moving the relative position of the sample to be polished and the polishing tool to polish, and flattening the surface of the sample to be polished A dry chemical mechanical polishing method, wherein at least a part of the surface of the sample to be polished is exposed to the plasma atmosphere during the polishing.
【請求項2】上記研磨を行う雰囲気の圧力は、0.1P
a〜100000Paの範囲であることを特徴とする請
求項1記載の乾式化学機械研磨方法。
2. The pressure of the atmosphere in which the polishing is performed is 0.1 P
The dry chemical mechanical polishing method according to claim 1, wherein a is in the range of a to 100,000 Pa.
【請求項3】上記研磨を行う雰囲気が減圧下であること
を特徴とする請求項1記載の乾式化学機械研磨方法。
3. The dry chemical mechanical polishing method according to claim 1, wherein the atmosphere in which said polishing is performed is under reduced pressure.
【請求項4】上記プラズマの供給は、上記被研磨試料表
面全体に、ダウンフローの拡散領域で供給されることを
特徴とする請求項1から3のいずれか一に記載の乾式化
学機械研磨方法。
4. The dry chemical mechanical polishing method according to claim 1, wherein the plasma is supplied to the entire surface of the sample to be polished in a downflow diffusion region. .
【請求項5】上記プラズマは、上記プラズマ源から局所
的に発生させ、上記研磨工具に設けられた孔から上記被
研磨試料表面上に供給されることを特徴とする請求項1
から3のいずれか一に記載の乾式化学機械研磨方法。
5. The polishing apparatus according to claim 1, wherein said plasma is locally generated from said plasma source, and is supplied onto a surface of said sample to be polished through a hole provided in said polishing tool.
4. The dry chemical mechanical polishing method according to any one of items 1 to 3.
【請求項6】上記被研磨試料と上記研磨工具の接触部分
の温度を上げるために、上記被研磨試料及び上記研磨工
具の少なくとも一方を加熱することを特徴とする請求項
1から5のいずれか一に記載の乾式化学機械研磨方法。
6. The polishing tool according to claim 1, wherein at least one of the sample to be polished and the polishing tool is heated to increase a temperature of a contact portion between the sample to be polished and the polishing tool. The dry chemical mechanical polishing method according to claim 1.
【請求項7】上記研磨を行う雰囲気中の反応生成物が、
上記プラズマ中で発生する光を検出し、上記研磨の終点
を検出することを特徴とする請求項1から6のいずれか
一に記載の乾式化学機械研磨方法。
7. A reaction product in an atmosphere for performing said polishing,
7. The dry chemical mechanical polishing method according to claim 1, wherein light generated in the plasma is detected to detect an end point of the polishing.
【請求項8】試料台に保持された被研磨試料表面の少な
くとも一部をプラズマ雰囲気に曝して該被研磨試料表面
にラジカルを吸着させ、上記被研磨試料表面に研磨手段
を接触させ、上記被研磨試料と上記研磨手段の相対的な
位置を移動させて、摩擦により上記被研磨試料表面の凸
部を加熱して、該凸部を研磨し、上記被研磨試料表面を
平坦化することを特徴とする乾式化学機械研磨方法。
8. A surface of a sample to be polished held on a sample stage is exposed to a plasma atmosphere to adsorb radicals on the surface of the sample to be polished, and a polishing means is brought into contact with the surface of the sample to be polished. By moving the relative position of the polishing sample and the polishing means, heating the convex portion of the surface of the sample to be polished by friction, polishing the convex portion, and flattening the surface of the sample to be polished. Dry chemical mechanical polishing method.
JP2000299105A 2000-09-27 2000-09-27 Dry chemical mechanical polishing method Pending JP2002103207A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000299105A JP2002103207A (en) 2000-09-27 2000-09-27 Dry chemical mechanical polishing method
TW090113135A TW508285B (en) 2000-09-27 2001-05-31 Dry chemical-mechanical polishing method
US09/875,025 US6579154B2 (en) 2000-09-27 2001-06-07 Dry chemical-mechanical polishing method
KR1020010033802A KR20020025005A (en) 2000-09-27 2001-06-15 Dry type chemical-mechanical polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299105A JP2002103207A (en) 2000-09-27 2000-09-27 Dry chemical mechanical polishing method

Publications (1)

Publication Number Publication Date
JP2002103207A true JP2002103207A (en) 2002-04-09

Family

ID=18780962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299105A Pending JP2002103207A (en) 2000-09-27 2000-09-27 Dry chemical mechanical polishing method

Country Status (4)

Country Link
US (1) US6579154B2 (en)
JP (1) JP2002103207A (en)
KR (1) KR20020025005A (en)
TW (1) TW508285B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225859A (en) * 2001-11-30 2003-08-12 Toshiro Doi Polishing device and polishing method
JP2011176243A (en) * 2010-02-25 2011-09-08 Osaka Univ Precise processing method and device of hard-to-process material
JP2015159257A (en) * 2014-02-25 2015-09-03 国立大学法人大阪大学 Processing method, processing device, and product produced thereby
JP2015179830A (en) * 2014-02-25 2015-10-08 国立大学法人九州大学 Processing method, combined processing device according to the same, and product subjected to processing thereby
JP2015193074A (en) * 2014-03-25 2015-11-05 ミクロン精密株式会社 High frequency vibration incorporated plasma discharge grinding device and its method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770565B2 (en) * 2002-01-08 2004-08-03 Applied Materials Inc. System for planarizing metal conductive layers
JP4191096B2 (en) * 2003-07-18 2008-12-03 Tdk株式会社 Method for processing workpiece including magnetic material and method for manufacturing magnetic recording medium
KR100744099B1 (en) * 2006-04-12 2007-08-01 조선대학교산학협력단 A nozzle for slurry supplying of chemical-mechanical polisher
US7947604B2 (en) * 2008-01-25 2011-05-24 Chartered Semiconductor Manufacturing, Ltd. Method for corrosion prevention during planarization
US9786524B2 (en) * 2014-04-15 2017-10-10 Taiwan Semiconductor Manufacturing Company, Ltd. Developing unit with multi-switch exhaust control for defect reduction
US20200381262A1 (en) * 2017-03-24 2020-12-03 Axus Technology, Llc Atmospheric plasma in wafer processing system optimization
CN111341700A (en) * 2020-03-10 2020-06-26 北京烁科精微电子装备有限公司 Shared cleaning module, polishing equipment and integrated circuit manufacturing system
CN116810619B (en) * 2023-08-09 2024-04-02 哈尔滨工业大学 Chemical mechanical polishing device based on microwave assistance and polishing CaF by using same 2 Method for wafer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716494A (en) * 1992-06-22 1998-02-10 Matsushita Electric Industrial Co., Ltd. Dry etching method, chemical vapor deposition method, and apparatus for processing semiconductor substrate
JP3362432B2 (en) * 1992-10-31 2003-01-07 ソニー株式会社 Plasma processing method and plasma processing apparatus
US5945008A (en) * 1994-09-29 1999-08-31 Sony Corporation Method and apparatus for plasma control
JP3877082B2 (en) * 1995-08-10 2007-02-07 東京エレクトロン株式会社 Polishing apparatus and polishing method
JP3510036B2 (en) 1996-02-22 2004-03-22 株式会社ルネサステクノロジ Method for manufacturing semiconductor device
US5871658A (en) * 1997-01-13 1999-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Optical emisson spectroscopy (OES) method for monitoring and controlling plasma etch process when forming patterned layers
US6106683A (en) * 1997-06-23 2000-08-22 Toyo Technologies Inc. Grazing angle plasma polisher (GAPP)
US6323132B1 (en) * 1998-01-13 2001-11-27 Applied Materials, Inc. Etching methods for anisotropic platinum profile
JP2000186000A (en) * 1998-12-22 2000-07-04 Speedfam-Ipec Co Ltd Working of silicon wafer and apparatus therefor
US6057245A (en) * 1999-01-19 2000-05-02 Vlsi Technology, Inc. Gas phase planarization process for semiconductor wafers
US6288357B1 (en) * 2000-02-10 2001-09-11 Speedfam-Ipec Corporation Ion milling planarization of semiconductor workpieces

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225859A (en) * 2001-11-30 2003-08-12 Toshiro Doi Polishing device and polishing method
KR100924404B1 (en) * 2001-11-30 2009-10-29 후지코시 기카이 고교 가부시키가이샤 Abrasive machine and method of abrading work piece
JP4510362B2 (en) * 2001-11-30 2010-07-21 俊郎 土肥 CMP apparatus and CMP method
JP2011176243A (en) * 2010-02-25 2011-09-08 Osaka Univ Precise processing method and device of hard-to-process material
JP2015159257A (en) * 2014-02-25 2015-09-03 国立大学法人大阪大学 Processing method, processing device, and product produced thereby
JP2015179830A (en) * 2014-02-25 2015-10-08 国立大学法人九州大学 Processing method, combined processing device according to the same, and product subjected to processing thereby
JP2015193074A (en) * 2014-03-25 2015-11-05 ミクロン精密株式会社 High frequency vibration incorporated plasma discharge grinding device and its method

Also Published As

Publication number Publication date
TW508285B (en) 2002-11-01
US6579154B2 (en) 2003-06-17
US20020037684A1 (en) 2002-03-28
KR20020025005A (en) 2002-04-03

Similar Documents

Publication Publication Date Title
US6117778A (en) Semiconductor wafer edge bead removal method and tool
US8563332B2 (en) Wafer reclamation method and wafer reclamation apparatus
TWI440124B (en) A placing device, a plasma processing device, and a plasma processing method
JP2002103207A (en) Dry chemical mechanical polishing method
US20050191858A1 (en) Substrate processing method and apparatus
JP2006179887A (en) Edge removal of silicon-on-insulator conveyance wafer
US7208325B2 (en) Refreshing wafers having low-k dielectric materials
US7514277B2 (en) Etching method and apparatus
JPH0955362A (en) Manufacture of integrated circuit for reduction of scratch
US6121147A (en) Apparatus and method of detecting a polishing endpoint layer of a semiconductor wafer which includes a metallic reporting substance
US6267076B1 (en) Gas phase planarization process for semiconductor wafers
US20060113036A1 (en) Computer integrated manufacturing control system for oxide chemical mechanical polishing
JP2005277396A (en) Substrate processing method and apparatus
US10226852B2 (en) Surface planarization system and method
JP2000058521A (en) Plasma grinding device
JP4299638B2 (en) Substrate processing apparatus and substrate processing method
JP2002329690A (en) Semiconductor wafer manufacturing method
JP2004259819A (en) Device and method for treating surface of specimen
JP2007103604A (en) Etching method and processor
US7008301B1 (en) Polishing uniformity via pad conditioning
JP3573197B2 (en) Chemical mechanical polishing station with completion point observation device
JP2008177512A (en) Apparatus for removing unnecessary object from peripheral edge of substrate, semiconductor manufacturing apparatus and method for removing unnecessary object from peripheral edge of substrate
JP2006237627A (en) Plasma processing method