JP2015193074A - High frequency vibration incorporated plasma discharge grinding device and its method - Google Patents

High frequency vibration incorporated plasma discharge grinding device and its method Download PDF

Info

Publication number
JP2015193074A
JP2015193074A JP2015060888A JP2015060888A JP2015193074A JP 2015193074 A JP2015193074 A JP 2015193074A JP 2015060888 A JP2015060888 A JP 2015060888A JP 2015060888 A JP2015060888 A JP 2015060888A JP 2015193074 A JP2015193074 A JP 2015193074A
Authority
JP
Japan
Prior art keywords
grinding wheel
workpiece
grinding
abrasive grains
frequency vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015060888A
Other languages
Japanese (ja)
Other versions
JP6246152B2 (en
Inventor
亨 立花
Toru Tachibana
亨 立花
敏 小林
Satoshi Kobayashi
敏 小林
親 村越
Chika Murakoshi
親 村越
一徳 小池
Kazunori Koike
一徳 小池
常元 厨川
Tsunemoto Kuriyagawa
常元 厨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Machinery Co Ltd
Original Assignee
Micron Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Machinery Co Ltd filed Critical Micron Machinery Co Ltd
Priority to JP2015060888A priority Critical patent/JP6246152B2/en
Publication of JP2015193074A publication Critical patent/JP2015193074A/en
Application granted granted Critical
Publication of JP6246152B2 publication Critical patent/JP6246152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency vibration incorporated plasma discharge grinding device that is superior in surface roughness accuracy for a hard-to-cut material, enables grinding work suitable for shape machining, and improves grinding work accuracy and its efficiency while reforming a machining surface.SOLUTION: A plasma discharge grinding device includes a grinding wheel formed by bonding abrasive particles with electrically-conductive bonding materials, a grindstone spindle and vibration means for making high frequency vibration thereof, and a high frequency pulse power supply for generating plasma. An interval between a workpiece and a rotational grinding wheel is determined by a projection height of the abrasive particles, and the grinding wheel is made to have high frequency vibration to a workpiece surface in an axial direction. Thereby, microbubbles by the cavitation are generated in the water between electrodes where the workpiece comes into contact with the abrasive particles of the grinding wheel, and the relatively large air bubbles generated by the electrolysis of the water are transformed into the microbubbles. A high frequency pulse current is applied between the electrodes to generate plasma, and the workpiece is subjected to etching to generate a reforming layer improved in machinability, and thereby the abrasive particles of the grinding wheel grind.

Description

本発明は、研削砥石に高周波振動を伝搬して被加工物を研削する研削装置に係り、特に高周波振動とプラズマと研削加工を好適に援用することにより、被加工物の加工表面の改質を行って難削材を効率よく高精度に研削したり、被加工物の加工表面に対して低摩擦化、耐摩耗性向上等の用途に応じて改質させて機能性インターフェースを創成したりすることが可能となる高周波振動援用プラズマ放電研削装置及びその方法に関する。   The present invention relates to a grinding device that propagates high-frequency vibrations to a grinding wheel and grinds the workpiece, and in particular, the high-frequency vibration, plasma, and grinding are suitably used to improve the processing surface of the workpiece. To grind difficult-to-cut materials efficiently and with high accuracy, or to create functional interfaces by modifying the work surface of the workpiece according to applications such as low friction and improved wear resistance. The present invention relates to a high frequency vibration assisted plasma discharge grinding apparatus and a method thereof.

従来、研削砥石と被加工物の表面との間に電解液を介し電圧を印加して被加工物の表面を電解研削する電解研削装置は存在している(特許文献1参照)。
この電解研削装置は、研削砥石と被加工物の間に電解液を介し電圧を印加して電解研削するものであり、研削《砥粒の運動エネルギー》と、電解《被加工物への電気エネルギー》の2つの要素を組み合わせた加工技術である。
2. Description of the Related Art Conventionally, there is an electrolytic grinding apparatus that applies electrolytic voltage between a grinding wheel and a surface of a workpiece via an electrolytic solution to electrolytically grind the surface of the workpiece (see Patent Document 1).
This electrolytic grinding apparatus applies electrolytic voltage between a grinding wheel and a workpiece via an electrolytic solution to perform electrolytic grinding. The grinding (kinetic energy of abrasive grains) and the electrolytic (electric energy to the workpiece) It is a processing technology that combines the two elements of >>.

ただしこの電解研削装置は、電解反応を安定させるべく、電極間距離、すなわち砥石の母材である導電性結合材と被加工物の間隔を0.02mm以上とする必要があり、そのため砥粒サイズを0.04ミリメートル以上とすることから、このサイズの粒子径では、被加工物を鏡面仕上げするまでの研削加工精度が得られなかった。
そこで、砥粒サイズをより小さくし、0.02mm未満の電極間距離であっても、電解反応が誘引または促進されるように、砥石に高周波振動を伝搬させて研削することで、これまでの装置・方法では安定した電解反応が起こらなかった0.02mm未満の電極間距離であっても、高周波振動を砥石に伝搬させることによって電解反応が誘引または促進される高周波振動援用の電解研削装置を案出した。これにより加工精度が向上し被加工物を鏡面仕上げすることができるようになった(特許文献2参照)。
However, in this electrolytic grinding apparatus, in order to stabilize the electrolytic reaction, it is necessary to set the distance between the electrodes, that is, the distance between the conductive binder, which is the base material of the grindstone, and the work piece to 0.02 mm or more. Is 0.04 mm or more, and with this particle size, the grinding accuracy until the workpiece is mirror-finished cannot be obtained.
Therefore, by reducing the size of the abrasive grains and grinding them by propagating high-frequency vibrations to the grindstone so that the electrolytic reaction is induced or promoted even when the distance between the electrodes is less than 0.02 mm, A high-frequency vibration-assisted electrolytic grinding apparatus that induces or promotes an electrolytic reaction by propagating high-frequency vibration to a grindstone even when the distance between electrodes is less than 0.02 mm, where stable electrolytic reaction did not occur in the apparatus and method. Devised. As a result, the machining accuracy is improved and the workpiece can be mirror-finished (see Patent Document 2).

特開平3−251317号公報JP-A-3-251317 特開2014−14915号公報JP 2014-14915 A

上述した高周波振動を援用した電解研削装置は、これまでになく高精度の研削加工を可能にするものであった。ただし、小径内周面に対する従来の研削加工にあっては、表面粗さ精度を充足することは可能であっても、例えばチタン合金等の難削材の場合には加工抵抗が大きいことによる工具変形が生じて、素材の内周面の芯振れをなくす等の形状加工を行うことができず、また電解加工では電解作用の等方性があることにより加工方向の制御が困難で、加工前の被加工物の形状誤差を修正する能力が低いことから、同じく芯振れをなくす等の形状加工を行うことは不向きであった。
一方、放電加工にあっては、電解加工よりも正確な材料除去の方向制御が可能ではあるものの、加工表面が粗くなるとともに熱による変質層が生成されてしまうという問題があった。
The above-described electrolytic grinding apparatus using high-frequency vibration has enabled unprecedented high-precision grinding. However, in conventional grinding of small diameter inner peripheral surfaces, even if it is possible to satisfy the surface roughness accuracy, a tool due to a large machining resistance in the case of difficult-to-cut materials such as titanium alloys. Due to deformation, it is not possible to perform shape processing such as eliminating core runout on the inner peripheral surface of the material, and it is difficult to control the processing direction due to the isotropic nature of electrolytic action in electrolytic processing. Since the ability to correct the shape error of the workpiece is low, it is also unsuitable to perform shape processing such as eliminating core runout.
On the other hand, in the electric discharge machining, although the direction of material removal can be controlled more accurately than in the electrolytic machining, there is a problem that a deteriorated layer is generated due to heat as the machining surface becomes rough.

本発明は以上に述べた事情に鑑みて為されたものであって、その目的は、難削材の小径内周面についても加工精度の向上と効率化を図ることができ、そして研削した加工面を用途に応じて改質させて機能性インターフェースを創成することができる高周波振動援用プラズマ放電研削装置及びその方法を提供することである。   The present invention has been made in view of the circumstances described above, and its purpose is to improve the machining accuracy and increase the efficiency of the small-diameter inner peripheral surface of a difficult-to-cut material, and to perform grinding processing. The object is to provide a high-frequency vibration-assisted plasma discharge grinding apparatus and method capable of creating a functional interface by modifying the surface according to the application.

上記解決課題に鑑みて鋭意研究の結果、本発明者はこれまで研削加工が困難であった難削材の小径内周面に対しても、表面粗さ精度に優れかつ形状加工に好適な研削加工が可能となる高周波振動援用プラズマ放電研削装置及びその方法を案出するに至った。
本発明の特徴は、電圧を印加した電極、すなわち研削砥石と被加工物、を接近させると、導電率が低い純水であっても電気分解して水素と酸素の気泡が電極間に発生し、この気泡を軸方向に高周波振動を与えることによりマイクロバブルに変化させ、ここに高周波パルス電流を電極に流すことで電極間に均一なプラズマ相を作る(プラズマは気相で発生しやすくなるため)ことにより、マイクロバブルが圧壊してOHラジカルなどの活性酸素が発生し、これが加工表面を均一に改質して研削加工しやすくするというものである。
高周波振動の機能としては、電極間に発生する気泡をマイクロバブルに変化させる、加工屑を速やかに排出する、電極表面を洗浄して加工効率を一定に保つ、などがある。
すなわち本発明の高周波振動援用プラズマ放電研削装置は、非導電性の砥粒を導電性結合材により結合固化させてなる研削砥石と、該研削砥石を回転駆動する砥石スピンドルと、該砥石スピンドルを軸方向に20kHz以上で高周波振動させる加振手段と、上記研削砥石と被加工物との間に加工液を介してプラズマを発生させる高周波パルス電流を出力する高周波パルス電源と、を備え、被加工物と回転する研削砥石との間隔を上記砥粒の極小サイズとして研削砥石を被加工物表面に沿って軸方向に高周波振動させることにより被加工物と研削砥石の砥粒とが接触する状態で10μm以下の狭い電極間において水の電気分解により発生する気泡を微小なマイクロバブルに変化させるとともに、上記被加工物と研削砥石の砥粒とが接触した状態での電極間に上記高周波パルス電源からの高周波パルス電流を印加してプラズマを発生させて、該プラズマが被加工物をエッチングすることによりその局所的な加工表面に被削性を向上させた改質層を生成し、該改質層を上記研削砥石の砥粒が研削することを特徴とする。
このような構成とすることにより、チタン合金等の難削材においても研削加工を工具と被削材間の局所でのみ行うことができることから、加工後の形状精度を向上させることができる。
As a result of diligent research in view of the above-mentioned problems, the inventor has performed grinding that is excellent in surface roughness accuracy and suitable for shape processing even for small-diameter inner peripheral surfaces of difficult-to-cut materials that have been difficult to grind until now The inventors have devised a high-frequency vibration-assisted plasma discharge grinding apparatus and method capable of machining.
A feature of the present invention is that when a voltage applied electrode, that is, a grinding wheel and a workpiece are brought close to each other, even pure water with low conductivity is electrolyzed to generate hydrogen and oxygen bubbles between the electrodes. This bubble is transformed into microbubbles by applying high-frequency vibration in the axial direction, and a high-frequency pulse current is passed through the electrodes to create a uniform plasma phase between the electrodes (because plasma is easily generated in the gas phase) ), The microbubbles are crushed and active oxygen such as OH radicals are generated, which uniformly improves the processed surface and facilitates grinding.
Functions of the high-frequency vibration include changing bubbles generated between the electrodes into microbubbles, quickly discharging processing waste, and cleaning the electrode surface to keep the processing efficiency constant.
That is, the high-frequency vibration-assisted plasma discharge grinding apparatus of the present invention comprises a grinding wheel formed by bonding and solidifying non-conductive abrasive grains with a conductive binder, a grinding wheel spindle that rotationally drives the grinding wheel, and the grinding wheel spindle as a shaft. And a high-frequency pulse power source that outputs a high-frequency pulse current that generates plasma via a machining fluid between the grinding wheel and the workpiece, 10 μm in a state where the workpiece and the abrasive grains of the grinding wheel are in contact with each other by causing the grinding wheel to be high-frequency vibrated in the axial direction along the surface of the workpiece by setting the distance between the grinding wheel and the rotating grinding wheel to the minimum size. The bubbles generated by electrolysis of water between the following narrow electrodes are changed to minute microbubbles, and the workpiece and the abrasive grains of the grinding wheel are in contact with each other A plasma is generated by applying a high-frequency pulse current from the high-frequency pulse power source between the electrodes, and the plasma etches the workpiece, thereby improving the machinability on the local processing surface. A layer is generated, and the modified layer is ground by the abrasive grains of the grinding wheel.
With such a configuration, even in difficult-to-cut materials such as titanium alloys, grinding can be performed only locally between the tool and the work material, so that the shape accuracy after processing can be improved.

また、研削砥石は軸中心に加工液を通じて研削域に加工液を供給することを特徴とする。
これにより、小径で止まり穴の被加工物の内周面であっても研削域に好適に加工液を供給することができる。
Further, the grinding wheel is characterized in that the machining fluid is supplied to the grinding zone through the machining fluid at the center of the shaft.
Thereby, even if it is the inner peripheral surface of the to-be-processed object of a small diameter and a blind hole, a processing liquid can be supplied suitably to a grinding region.

そして、本発明の高周波振動援用プラズマ放電研削方法は、非導電性の砥粒を導電性結合材により結合固化させてなる研削砥石と、該研削砥石を回転駆動する砥石スピンドルと、該砥石スピンドルを軸方向に20kHz以上で高周波振動させる加振手段と、上記研削砥石と被加工物との間に加工液を介してプラズマを発生させる高周波パルス電流を出力する高周波パルス電源と、を備えた高周波振動援用プラズマ放電研削装置において、被加工物と回転する研削砥石との間隔を上記砥粒の極小サイズとして研削砥石を被加工物表面に沿って軸方向に高周波振動させることにより被加工物と研削砥石の砥粒とが接触する状態で10μm以下の狭い電極間において水の電気分解により発生する気泡を微小なマイクロバブルに変化させるとともに、上記被加工物と研削砥石の砥粒とが接触した状態での電極間に上記高周波パルス電源からの高周波パルス電流を印加してプラズマを発生させて、該プラズマが被加工物をエッチングすることによりその局所的な加工表面に被削性を向上させた改質層を生成させ、該改質層を上記研削砥石の砥粒が研削することを特徴とする。   The high-frequency vibration-assisted plasma discharge grinding method of the present invention includes a grinding wheel formed by bonding and solidifying non-conductive abrasive grains with a conductive binder, a grinding wheel spindle that rotationally drives the grinding wheel, and the grinding wheel spindle. High-frequency vibration comprising vibration means for high-frequency vibration at 20 kHz or more in the axial direction, and a high-frequency pulse power source that outputs a high-frequency pulse current that generates plasma through the machining fluid between the grinding wheel and the workpiece. In an assisting plasma discharge grinding apparatus, the workpiece and the grinding wheel are vibrated at a high frequency in the axial direction along the workpiece surface by setting the distance between the workpiece and the rotating grinding wheel to a minimum size of the abrasive grains. While changing the bubbles generated by the electrolysis of water between the narrow electrodes of 10 μm or less in the state of contact with the abrasive grains, to micro-bubbles, A plasma is generated by applying a high-frequency pulse current from the high-frequency pulse power source between the electrodes in a state where the workpiece and the abrasive grains of the grinding wheel are in contact, and the plasma etches the workpiece. A modified layer with improved machinability is generated on the local processed surface, and the modified layer is ground by the abrasive grains of the grinding wheel.

本発明の高周波振動援用プラズマ放電研削装置を示す説明図である。It is explanatory drawing which shows the high frequency vibration assistance plasma discharge grinding apparatus of this invention. 本発明の高周波振動援用プラズマ放電研削装置を示す要部説明図である。It is principal part explanatory drawing which shows the high frequency vibration assistance plasma discharge grinding apparatus of this invention. 本発明の高周波振動援用プラズマ放電研削装置における砥石と被加工物の電極間での加工を示す説明図である。It is explanatory drawing which shows the process between the grindstone and the electrode of a to-be-processed object in the high frequency vibration assistance plasma discharge grinding apparatus of this invention. 本発明の高周波振動援用プラズマ放電研削装置における砥石と被加工物の電極間での加工を示す説明図である。It is explanatory drawing which shows the process between the grindstone and the electrode of a to-be-processed object in the high frequency vibration assistance plasma discharge grinding apparatus of this invention. 本発明の高周波振動援用プラズマ放電研削装置における砥石と被加工物の電極間での加工を示す説明図である。It is explanatory drawing which shows the process between the grindstone and the electrode of a to-be-processed object in the high frequency vibration assistance plasma discharge grinding apparatus of this invention.

以下、添付図面を参照しながら、本発明に係る高周波振動援用プラズマ放電研削装置を実施するための形態を詳細に説明する。図1〜図5は、本発明の実施の形態を例示する図であり、これらの図において、同一の符号を付した部分は同一物を表わし、基本的な構成及び動作は同様であるものとする。
<構成>
本発明の高周波振動援用プラズマ放電研削装置1は、図1に示すように、研削砥石2を回転駆動する砥石スピンドル3と、該砥石スピンドル3の軸方向に高周波振動を加えるための高周波振動用高周波パルス電源4と、研削砥石2と被加工物との間にプラズマ放電を生じさせるためのプラズマ放電用高周波パルス電源5と、研削域に研削加工用及びプラズマ放電用の加工液6を提供する加工液供給手段7と、を備えている。
砥石スピンドル3は、研削砥石2とともに軸中心に細孔を設け、そこに加工液供給手段7からの加工液6を通じて研削域に供給する。研削砥石2を通液型とすることにより、小径で止まり穴の被加工物の内周面であっても加工液を好適に供給しながら研削加工することができる。そして、高周波振動用高周波パルス電源4を稼動させることにより、砥石スピンドル3は20kHz以上の周波数で軸方向、すなわち図1のZ軸方向に高周波振動しながら、Z軸方向に往復動(揺動)しつつ、被加工物Wの内周面を研削する。
被加工物Wを載置固定するYテーブル8はY軸方向に移動可能で、このYテーブル8を載置するXテーブル9はX軸方向に移動可能である。そして、Xテーブル9、Yテーブル8及び各パルス電源を含む高周波振動援用プラズマ放電研削装置1による研削加工を制御するための制御手段(図示せず)を別途備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for implementing a high-frequency vibration-assisted plasma discharge grinding apparatus according to the present invention will be described in detail with reference to the accompanying drawings. 1 to 5 are diagrams illustrating embodiments of the present invention. In these drawings, the same reference numerals denote the same components, and the basic configuration and operation are the same. To do.
<Configuration>
As shown in FIG. 1, a high-frequency vibration-assisted plasma discharge grinding apparatus 1 of the present invention includes a grinding wheel spindle 3 that rotationally drives a grinding wheel 2, and a high-frequency vibration high frequency for applying high-frequency vibration in the axial direction of the grinding wheel spindle 3. Processing that provides a pulse power supply 4, a plasma discharge high-frequency pulse power supply 5 for generating plasma discharge between the grinding wheel 2 and the workpiece, and a grinding fluid and plasma discharge machining fluid 6 in the grinding region. Liquid supply means 7.
The grinding wheel spindle 3 is provided with a fine hole at the center of the shaft together with the grinding wheel 2, and supplies it to the grinding zone through the machining liquid 6 from the machining liquid supply means 7. By using the grinding wheel 2 as a liquid passing type, grinding can be performed while suitably supplying the processing liquid even on the inner peripheral surface of the workpiece having a small diameter and a blind hole. Then, by operating the high-frequency pulse power supply 4 for high-frequency vibration, the grindstone spindle 3 reciprocates (oscillates) in the Z-axis direction with high-frequency vibration in the axial direction, that is, the Z-axis direction in FIG. However, the inner peripheral surface of the workpiece W is ground.
The Y table 8 on which the workpiece W is placed and fixed is movable in the Y axis direction, and the X table 9 on which the Y table 8 is placed is movable in the X axis direction. And the control means (not shown) for controlling the grinding process by the high frequency vibration assistance plasma discharge grinding apparatus 1 including the X table 9, the Y table 8 and each pulse power source is separately provided.

図2は、図1とは別の加工例であり、チャッキングされた被加工物Wの内周面Waを研削砥石2が研削している状態をイメージ的に表している。研削砥石2は、ダイヤモンド砥粒などの非導電性の砥粒を導電性結合材により結合固化している。研削砥石2表面から突出した砥粒が、被加工物Wを研削する状態において、砥粒の導電性結合材からの突出高さが、研削砥石2と被加工物Wの電極間距離となる。本実施例の場合は、高精度の研削を行うために、砥粒の突出高さを20μm未満、できれば10μm未満とすることが好ましい。   FIG. 2 is a processing example different from that in FIG. 1, and schematically shows a state where the grinding wheel 2 is grinding the inner peripheral surface Wa of the chucked workpiece W. The grinding wheel 2 is formed by bonding and solidifying non-conductive abrasive grains such as diamond abrasive grains with a conductive binder. In a state where the abrasive grains protruding from the surface of the grinding wheel 2 grind the workpiece W, the protruding height of the abrasive grains from the conductive binder is the distance between the electrodes of the grinding wheel 2 and the workpiece W. In the case of the present embodiment, in order to perform high-precision grinding, it is preferable that the protrusion height of the abrasive grains is less than 20 μm, preferably less than 10 μm.

そして、高周波振動用高周波パルス電源4は、研削砥石2を備えた砥石スピンドル3を軸方向に20kHz以上、できれば40kHz以上の周波数で、かつ振幅が数μm〜十数μmで高周波振動させる。
プラズマ放電用高周波パルス電源5は、予め設定したプラズマ放電用電圧として、研削砥石2(正確には導電性結合材)と被加工物Wとの間に、砥粒の突出高さを電極間距離に設定して、1マイクロ秒以下(サブマイクロ秒)レベルのパルス幅の高周波パルス電流を印加する。
The high frequency pulse power supply 4 for high frequency vibration vibrates the grinding wheel spindle 3 provided with the grinding wheel 2 in the axial direction at a frequency of 20 kHz or more, preferably 40 kHz or more, and an amplitude of several μm to several tens of μm.
The plasma discharge high-frequency pulse power supply 5 determines the protrusion height of the abrasive grains between the grinding wheel 2 (more precisely, the conductive binder) and the workpiece W as a preset plasma discharge voltage. And a high-frequency pulse current having a pulse width of 1 microsecond or less (sub-microsecond) level is applied.

<難削材の快削化加工の方法>
このような構成からなる本発明の高周波振動援用プラズマ放電研削方法について、以下に詳述する。
まず、図3は加工前の研削域の状態を示しており、砥粒を結合し突出させた導電性を有する結合材、すなわち電極砥石10と、被加工物Wとの間、すなわち砥粒の突出高さの電極間には、主に水からなる加工液6が供給されている。
<Method of free-cutting difficult-to-cut materials>
The high frequency vibration assisted plasma discharge grinding method of the present invention having such a configuration will be described in detail below.
First, FIG. 3 shows a state of a grinding zone before processing, and a conductive binding material obtained by bonding and protruding abrasive grains, that is, an electrode grindstone 10 and a workpiece W, that is, abrasive grains. A machining fluid 6 mainly composed of water is supplied between the protruding height electrodes.

次に図4は、高周波振動用高周波パルス電源4を稼動することにより電極砥石10が図の左右方向に20kHz以上の高周波振動している状態を示している。
この状態で、加工液供給手段7から砥石スピンドル3及び研削砥石2を通じて供給される電極砥石9と被加工物Wとの間の加工液6は、導電率が低い純水を用いても電気分解して数百μmの気泡が発生する。
この気泡は、狭小な電極間における高周波振動によって壊されて数μm又はそれ以下の均一な微小な気泡であるマイクロバブル11へと変化していき、これにより電極間を加工液6の水(液相)と、マイクロバブル11の空気(気相)とが均一に密に混じり合った液相・気相混合状態とする。そして高周波パルス電流を流すことでプラズマ相が発生しやすくなる。
またマイクロバブル11は、圧壊時のエネルギーにより、高酸化力を有するOHラジカル等の活性酸素を生成するため、加工表面の改質に効果を発揮する。
Next, FIG. 4 shows a state in which the electrode grindstone 10 vibrates at a high frequency of 20 kHz or more in the left-right direction of the figure by operating the high-frequency pulse power supply 4 for high-frequency vibration.
In this state, the machining fluid 6 between the workpiece grindstone 9 and the workpiece W supplied from the machining fluid supply means 7 through the grinding wheel spindle 3 and the grinding stone 2 is electrolyzed even if pure water having low conductivity is used. As a result, bubbles of several hundred μm are generated.
The bubbles are broken by high-frequency vibration between narrow electrodes and changed to microbubbles 11 which are uniform microbubbles of several μm or less. Phase) and the air (gas phase) of the microbubbles 11 are uniformly and densely mixed to form a liquid phase / gas phase mixed state. And it becomes easy to generate a plasma phase by flowing a high frequency pulse current.
Moreover, since the microbubble 11 produces | generates active oxygens, such as OH radical which has high oxidizing power, with the energy at the time of crushing, it exhibits an effect in modification | reformation of a process surface.

そして電極砥石9が高周波振動している図4の状態に加えて、プラズマ放電用高周波パルス電源5を稼動することにより、図5に示すように、均一に液相・気相が満ちた極小な電極間の、電極砥石9と被加工物Wとが接触する個所に、微細放電による均一なプラズマ12を発生させる環境を形成するものである。
上記プラズマ放電用高周波パルス電源5により電極間に電圧を印加すると、電極間には水の電気分解により不均一な大きさの気泡が発生するが、これも狭小な電極間における高周波振動によって壊されてマイクロバブル11へと変化していく。
このプラズマ放電用高周波パルス電源5が電極砥石9と被加工物Wとの間に印加する電圧は、電極砥石10と被加工物Wとの間で短絡することがなく、かつ過大な火花放電、アーク放電をしないように高周波パルスを設定する。そして、高周波振動により電極砥石10と被加工物Wとの間の加工液6が霧化し、そしてキャビテーションによるマイクロバブル11が発生している状態で、この電極間に電極砥石10側を負極、被加工物W側を正極にして高周波パルス電圧を印加することにより、図2及び図5に示す均一なプラズマ12を電極砥石10と被加工物Wとが接触する個所に局所的に発生させる。
In addition to the state of FIG. 4 in which the electrode grindstone 9 vibrates at a high frequency, the plasma discharge high-frequency pulse power source 5 is operated, and as shown in FIG. An environment in which uniform plasma 12 is generated by fine discharge is formed between the electrodes where the electrode grindstone 9 and the workpiece W are in contact with each other.
When a voltage is applied between the electrodes by the plasma discharge high-frequency pulse power supply 5, bubbles of non-uniform size are generated between the electrodes due to the electrolysis of water, which is also broken by the high-frequency vibration between the narrow electrodes. To microbubbles 11.
The voltage applied by the plasma discharge high-frequency pulse power source 5 between the electrode grindstone 9 and the workpiece W is not short-circuited between the electrode grindstone 10 and the workpiece W, and an excessive spark discharge. A high frequency pulse is set so as not to cause arc discharge. Then, in a state where the machining fluid 6 between the electrode grindstone 10 and the workpiece W is atomized by high-frequency vibration and microbubbles 11 are generated by cavitation, the electrode grindstone 10 side is placed between the electrodes, the negative electrode, By applying a high frequency pulse voltage with the workpiece W side as a positive electrode, the uniform plasma 12 shown in FIGS. 2 and 5 is locally generated at a location where the electrode grindstone 10 and the workpiece W are in contact with each other.

このプラズマ12は、そこに位置する加工液6の水を電離し、これにより高酸化力を有するOHラジカル等の活性酸素をさらに生成するとともに、活性酸素は、研削砥石が接触する被加工物Wの表面を局所的にエッチングすることにより被削性を向上させた改質層13を生成する。そして、この改質層13を研削砥石が低加工圧にて、工具変形を伴うことなく好適に研削することができる。
このプラズマ12の発生部位、及びキャビテーションによるマイクロバブル11の発生部位が局所的であることと、そしてOHラジカル等の活性酸素が短寿命であることから、生成される改質層13は被加工物Wの内周面Waに広く及ぶことがなく、電極砥石10の接触個所のみに限定されるため電解加工のように加工面以外をエッチングすることがない。
そして、改質層13を研削砥石が研削して除去することにより発生する加工屑14は、電極間に細かく散らばるものの、これらは高周波振動により研削域外へと排出されていくものである。また電極の表面も常に洗浄され活性化した状態を保つ。
This plasma 12 ionizes the water of the machining fluid 6 located there, thereby further generating active oxygen such as OH radicals having a high oxidizing power, and the active oxygen is in contact with the workpiece W with which the grinding wheel contacts. The modified layer 13 with improved machinability is generated by locally etching the surface of the film. Then, the modified layer 13 can be suitably ground with a grinding wheel at a low processing pressure and without accompanying tool deformation.
Since the generation site of the plasma 12 and the generation site of the microbubbles 11 due to cavitation are local, and the active oxygen such as OH radicals has a short life, the generated modified layer 13 is a workpiece. Since it does not extend over the inner peripheral surface Wa of W and is limited only to the contact portion of the electrode grindstone 10, it does not etch other than the processed surface unlike the electrolytic processing.
And although the processing waste 14 which generate | occur | produces when a grinding wheel grinds and removes the modified layer 13 is scattered finely between electrodes, these are discharged | emitted out of a grinding region by high frequency vibration. Also, the surface of the electrode is always cleaned and kept activated.

本発明は、高周波振動とプラズマ放電を援用して電極間において被加工物を局所的に改質させ、研削加工を行うものであり、材料の除去やその切り屑の排除、そして砥石の目詰まりの防止という物理的効果とともに、プラズマの発生時や、高周波振動により発生するキャビテーションによる気泡の圧壊時に発生する活性酸素等を援用するものである。
高周波振動により発生したキャビテーションは、断熱圧縮過程でエネルギーが集中し、その気泡の圧壊時に五千〜数万度、千数百気圧の高温・高圧の局所場を形成する。そして、水や水溶液に高周波を照射したときに発生するキャビテーションの圧壊による高温反応場において、水分子は分解し、OHラジカル等が生成する。生成したOHラジカルは、短時間で消滅するものの、高い酸化作用を有することから、被加工物の表面を改質する作用を発揮するものである。
The present invention uses a high-frequency vibration and plasma discharge to locally modify a workpiece between electrodes to perform grinding, remove material, remove chips, and clog a grindstone. In addition to the physical effect of preventing the above, active oxygen generated at the time of the generation of plasma or the collapse of bubbles due to cavitation generated by high-frequency vibration is used.
Cavitation generated by high-frequency vibrations concentrates energy during the adiabatic compression process, and forms a high-temperature and high-pressure local field of 5,000 to several tens of thousands of degrees and thousands of atmospheric pressures when the bubbles are crushed. In a high-temperature reaction field caused by cavitation crushing that occurs when high-frequency water or aqueous solution is irradiated, water molecules are decomposed to generate OH radicals and the like. The generated OH radical disappears in a short time, but has a high oxidizing action, and therefore exhibits an action of modifying the surface of the workpiece.

本発明の高周波振動援用プラズマ放電研削装置及びその方法は、金属等の各種素材を精密に研削加工する加工産業において利用することができるものである。   The high frequency vibration-assisted plasma discharge grinding apparatus and method of the present invention can be used in the processing industry for precisely grinding various materials such as metals.

1…高周波振動援用プラズマ放電研削装置
2…研削砥石
3…砥石スピンドル
4…高周波振動用高周波パルス電源
5…プラズマ放電用高周波パルス電源
6…加工液
7…加工液供給手段
8…Yテーブル
9…Xテーブル
10…電極砥石
11…マイクロバブル
12…プラズマ
13…改質層
14…加工屑
W…被加工物
DESCRIPTION OF SYMBOLS 1 ... High frequency vibration assisted plasma discharge grinding apparatus 2 ... Grinding wheel 3 ... Grinding wheel spindle 4 ... High frequency pulse power source for high frequency vibration 5 ... High frequency pulse power source for plasma discharge 6 ... Working fluid 7 ... Working fluid supply means 8 ... Y table 9 ... X Table 10 ... Electrode grinding wheel 11 ... Micro bubble 12 ... Plasma 13 ... Modified layer 14 ... Processing waste W ... Workpiece

Claims (4)

非導電性の砥粒を導電性結合材により結合固化させてなる研削砥石と、
該研削砥石を回転駆動する砥石スピンドルと、
該砥石スピンドルを軸方向に20kHz以上で高周波振動させる加振手段と、
上記研削砥石と被加工物との間に加工液を介してプラズマを発生させる高周波パルス電流を出力する高周波パルス電源と、を備え、
被加工物と回転する研削砥石との間隔を上記砥粒の極小サイズとして研削砥石を被加工物表面に沿って軸方向に高周波振動させることにより被加工物と研削砥石の砥粒とが接触する状態で10μm以下の狭い電極間において水の電気分解により発生する気泡を微小なマイクロバブルに変化させるとともに、
上記被加工物と研削砥石の砥粒とが接触した状態での電極間に上記高周波パルス電源からの高周波パルス電流を印加してプラズマを発生させて、該プラズマが被加工物をエッチングすることによりその局所的な加工表面に被削性を向上させた改質層を生成し、
該改質層を上記研削砥石の砥粒が研削することを特徴とする高周波振動援用プラズマ放電研削装置。
A grinding wheel formed by bonding and solidifying non-conductive abrasive grains with a conductive binder;
A grinding wheel spindle that rotationally drives the grinding wheel;
Vibration means for vibrating the grinding wheel spindle at a high frequency of 20 kHz or more in the axial direction;
A high-frequency pulse power source that outputs a high-frequency pulse current that generates plasma via a machining fluid between the grinding wheel and the workpiece,
The distance between the workpiece and the rotating grinding wheel is set to the minimum size of the abrasive grains, and the grinding wheel is vibrated in the axial direction along the surface of the workpiece so that the workpiece and the abrasive grains of the grinding wheel come into contact with each other. In the state, the bubbles generated by electrolysis of water between narrow electrodes of 10 μm or less are changed to minute microbubbles,
A plasma is generated by applying a high-frequency pulse current from the high-frequency pulse power source between the electrodes in a state where the workpiece and the abrasive grains of the grinding wheel are in contact, and the plasma etches the workpiece. Generate a modified layer with improved machinability on the local processing surface,
A high-frequency vibration-assisted plasma discharge grinding apparatus, wherein the modified layer grinds the abrasive grains of the grinding wheel.
研削砥石は軸中心に加工液を通じて研削域に加工液を供給することを特徴とする請求項1記載の高周波振動援用プラズマ放電研削装置。   2. The high frequency vibration assisted plasma discharge grinding apparatus according to claim 1, wherein the grinding wheel supplies the machining fluid to the grinding zone through the machining fluid at the center of the shaft. 非導電性の砥粒を導電性結合材により結合固化させてなる研削砥石と、
該研削砥石を回転駆動する砥石スピンドルと、
該砥石スピンドルを軸方向に高周波振動させる加振手段と、
上記研削砥石と被加工物との間に加工液を介してプラズマを発生させる高周波パルス電流を出力する高周波パルス電源と、を備えた高周波振動援用プラズマ放電研削装置において、
被加工物と回転する研削砥石との間隔を上記砥粒の極小サイズとして研削砥石を被加工物表面に沿って軸方向に20kHz以上で高周波振動させることにより被加工物と研削砥石の砥粒とが接触する状態で10μm以下の狭い電極間において水の電気分解により発生する気泡を微小なマイクロバブルに変化させるとともに、
上記被加工物と研削砥石の砥粒とが接触した状態での電極間に上記高周波パルス電源からの高周波パルス電流を印加してプラズマを発生させて、該プラズマが被加工物をエッチングすることによりその局所的な加工表面に被削性を向上させた改質層を生成し、
該改質層を上記研削砥石の砥粒が研削することを特徴とする高周波振動援用プラズマ放電研削方法。
A grinding wheel formed by bonding and solidifying non-conductive abrasive grains with a conductive binder;
A grinding wheel spindle that rotationally drives the grinding wheel;
Vibration means for high-frequency vibration of the grinding wheel spindle in the axial direction;
A high-frequency vibration-assisted plasma discharge grinding apparatus comprising: a high-frequency pulse power source that outputs a high-frequency pulse current that generates plasma between a grinding wheel and a workpiece via a machining fluid;
The interval between the workpiece and the rotating grinding wheel is set to the minimum size of the abrasive grains, and the grinding wheel is vibrated at a high frequency of 20 kHz or more along the workpiece surface in the axial direction. While changing the bubbles generated by the electrolysis of water between narrow electrodes of 10 μm or less in a state of contact with each other into micro-bubbles,
A plasma is generated by applying a high-frequency pulse current from the high-frequency pulse power source between the electrodes in a state where the workpiece and the abrasive grains of the grinding wheel are in contact, and the plasma etches the workpiece. Generate a modified layer with improved machinability on the local processing surface,
A high frequency vibration assisted plasma discharge grinding method, wherein the modified layer is ground by the abrasive grains of the grinding wheel.
研削砥石は軸中心に加工液を通じて研削域に加工液を供給することを特徴とする請求項3記載の高周波振動援用プラズマ放電研削方法。   4. The high frequency vibration assisted plasma discharge grinding method according to claim 3, wherein the grinding wheel supplies the machining fluid to the grinding zone through the machining fluid at the center of the shaft.
JP2015060888A 2014-03-25 2015-03-24 High frequency vibration assisted plasma discharge grinding apparatus and method Active JP6246152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060888A JP6246152B2 (en) 2014-03-25 2015-03-24 High frequency vibration assisted plasma discharge grinding apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014061488 2014-03-25
JP2014061488 2014-03-25
JP2015060888A JP6246152B2 (en) 2014-03-25 2015-03-24 High frequency vibration assisted plasma discharge grinding apparatus and method

Publications (2)

Publication Number Publication Date
JP2015193074A true JP2015193074A (en) 2015-11-05
JP6246152B2 JP6246152B2 (en) 2017-12-13

Family

ID=54432616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060888A Active JP6246152B2 (en) 2014-03-25 2015-03-24 High frequency vibration assisted plasma discharge grinding apparatus and method

Country Status (1)

Country Link
JP (1) JP6246152B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458427A (en) * 2015-12-25 2016-04-06 华南理工大学 Ultrasonic-vibration-assisted discharging and grinding device and method
CN106903384A (en) * 2017-04-14 2017-06-30 南京航空航天大学 Multicarity baffle-type is electrolysed milling Compound Machining tool cathode and method
CN109759659A (en) * 2019-01-30 2019-05-17 上海交通大学 A kind of efficient roughening system of processing and method of contour surface
CN110153515A (en) * 2019-05-22 2019-08-23 南京航空航天大学 Electric spark-electrolysis the complex machining device and processing method sprayed in micro- abrasive material
CN113635144A (en) * 2021-08-17 2021-11-12 上海交通大学 Dry type modified grinding method and system for hard and brittle material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120062A (en) * 1986-11-07 1988-05-24 Eisuke Yokoyama Inner surface grinding machine
JPH07227761A (en) * 1994-02-18 1995-08-29 Mitsubishi Electric Corp Electrolytic dressing device for grinding wheel
JP2002103207A (en) * 2000-09-27 2002-04-09 Hitachi Ltd Dry chemical mechanical polishing method
JP2011176243A (en) * 2010-02-25 2011-09-08 Osaka Univ Precise processing method and device of hard-to-process material
JP2014014915A (en) * 2012-07-11 2014-01-30 Micron Seimitsu Kk High frequency vibration slide-proof electrolytic grinding method and device thereof
JP2016165764A (en) * 2015-03-09 2016-09-15 ミクロン精密株式会社 High frequency vibration-assisted plasma discharge grinding device and method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120062A (en) * 1986-11-07 1988-05-24 Eisuke Yokoyama Inner surface grinding machine
JPH07227761A (en) * 1994-02-18 1995-08-29 Mitsubishi Electric Corp Electrolytic dressing device for grinding wheel
JP2002103207A (en) * 2000-09-27 2002-04-09 Hitachi Ltd Dry chemical mechanical polishing method
JP2011176243A (en) * 2010-02-25 2011-09-08 Osaka Univ Precise processing method and device of hard-to-process material
JP2014014915A (en) * 2012-07-11 2014-01-30 Micron Seimitsu Kk High frequency vibration slide-proof electrolytic grinding method and device thereof
JP2016165764A (en) * 2015-03-09 2016-09-15 ミクロン精密株式会社 High frequency vibration-assisted plasma discharge grinding device and method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458427A (en) * 2015-12-25 2016-04-06 华南理工大学 Ultrasonic-vibration-assisted discharging and grinding device and method
CN106903384A (en) * 2017-04-14 2017-06-30 南京航空航天大学 Multicarity baffle-type is electrolysed milling Compound Machining tool cathode and method
CN109759659A (en) * 2019-01-30 2019-05-17 上海交通大学 A kind of efficient roughening system of processing and method of contour surface
CN110153515A (en) * 2019-05-22 2019-08-23 南京航空航天大学 Electric spark-electrolysis the complex machining device and processing method sprayed in micro- abrasive material
CN110153515B (en) * 2019-05-22 2021-01-19 南京航空航天大学 Electric spark-electrolysis combined machining device and method for micro-abrasive internal spraying
CN113635144A (en) * 2021-08-17 2021-11-12 上海交通大学 Dry type modified grinding method and system for hard and brittle material

Also Published As

Publication number Publication date
JP6246152B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6246152B2 (en) High frequency vibration assisted plasma discharge grinding apparatus and method
JP6433344B2 (en) High frequency vibration assisted plasma discharge grinding apparatus and method
JP5935089B2 (en) High frequency vibration assisted electrolytic grinding method and apparatus
Singh et al. Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods
Bhattacharyya et al. Influence of tool vibration on machining performance in electrochemical micro-machining of copper
TWI668075B (en) Work polishing apparatus
TW436367B (en) Micro-discharge truing device and fine machining method using the device
JPH01234145A (en) Ultrasonic machining method
Saxena et al. Overview of hybrid machining processes
JP2875513B2 (en) Semiconductor material processing method and apparatus
Chak et al. Machining of SiC by ECDM process using different electrode configurations under the effect of pulsed DC
JP2007331088A (en) Machining device using micro bubble
JP3463796B2 (en) Plasma discharge truing apparatus and micromachining method using the same
JP5827031B2 (en) High frequency vibration / electrolytic hybrid internal grinding machine and grinding method thereof
Chak Electro chemical discharge machining: process capabilities
Sourav et al. A review on micro-drilling by electrochemical discharge machining
JP6372068B2 (en) Reconditioning device for fine tools and processing device with reconditioning function
Sadeghamalnik et al. Development of design and manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM
Yu et al. Productivity of EDM process assisted by ultrasonic waves
Grover et al. Experimental investigation for micro-machining of borosilicate glass using ultrasonic assisted rotary electrochemical discharge machining (UA-RECDM) process
Chak Spark-assisted electrochemical drilling of ceramics
Das et al. Advanced machining processes
RU2392097C1 (en) Device for electrochemical treatment of profiled surfaces of metal parts
KR100561771B1 (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
Kumar et al. 4 Comprehensive Study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171114

R150 Certificate of patent or registration of utility model

Ref document number: 6246152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250