JP6433344B2 - High frequency vibration assisted plasma discharge grinding apparatus and method - Google Patents
High frequency vibration assisted plasma discharge grinding apparatus and method Download PDFInfo
- Publication number
- JP6433344B2 JP6433344B2 JP2015045957A JP2015045957A JP6433344B2 JP 6433344 B2 JP6433344 B2 JP 6433344B2 JP 2015045957 A JP2015045957 A JP 2015045957A JP 2015045957 A JP2015045957 A JP 2015045957A JP 6433344 B2 JP6433344 B2 JP 6433344B2
- Authority
- JP
- Japan
- Prior art keywords
- electric discharge
- workpiece
- electrode
- machining electrode
- frequency vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 18
- 238000003754 machining Methods 0.000 claims description 166
- 239000012530 fluid Substances 0.000 claims description 38
- 239000006061 abrasive grain Substances 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 8
- 230000010355 oscillation Effects 0.000 claims description 4
- 230000002459 sustained effect Effects 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 description 19
- 238000009760 electrical discharge machining Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
本発明は、研削砥石に高周波振動を伝搬して工作物を研削する高周波振動援用研削装置に係り、特に高周波振動とプラズマ放電と研削加工を好適に組み合わせることにより、プラズマ放電による難削材の加工表面を快削化させて低加工圧での研削を可能とし、また加工液を小径なパイプ電極内を良好に通水させて好適なプラズマ放電や研削加工を可能とする高周波振動援用プラズマ放電研削装置及びその方法に関する。 The present invention relates to a high-frequency vibration assisted grinding apparatus that propagates high-frequency vibrations to a grinding wheel to grind a workpiece, and in particular, processing of difficult-to-cut materials by plasma discharge by suitably combining high-frequency vibrations, plasma discharge, and grinding. High-frequency vibration assisted plasma discharge grinding that enables free cutting of the surface to enable grinding at low processing pressures, and that allows the machining fluid to flow through the small-diameter pipe electrode to enable suitable plasma discharge and grinding. The present invention relates to an apparatus and a method thereof.
従来、研削砥石と工作物の表面との間に電解液を介し電圧を印加して工作物の表面を電解研削する電解研削装置は存在している(特許文献1参照)。
この電解研削装置は、研削砥石と工作物の間に電解液を介し電圧を印加して電解研削するものであり、研削《砥粒の運動エネルギー》と、電解《工作物への電気エネルギー》の2つの要素を組み合わせた加工技術である。
2. Description of the Related Art Conventionally, there has been an electrolytic grinding apparatus for applying an electric voltage between a grinding wheel and a surface of a workpiece via an electrolytic solution to electrolytically grind the surface of the workpiece (see Patent Document 1).
This electrolytic grinding apparatus applies electrolytic voltage between the grinding wheel and the workpiece via an electrolytic solution to perform electrolytic grinding. The grinding <abrasive kinetic energy> and electrolysis <electrical energy to the workpiece> This is a processing technology that combines two elements.
しかしながら、上述した従来の電解研削装置は、工作物の孔径が十分に大きいものであって、本願発明が目的とする内径に対して奥行きの大きい、すなわちアスペクト比の高い加工孔や、小径な工作物の加工孔の内周面を、高精度・高能率で研削加工及び放電加工する技術に適用することはできなかった。
また、従来の研削等の機械加工にあっては、図8に示すように、チタン合金等の難削材からなる工作物W、特に肉薄の工作物Wの内周面を機械加工するに際して、砥石51の加工圧が高いことから肉薄の加工面を変形させてしまい、高精度の加工が困難であった。またこの際、小径な工作物Wの止まり穴(盲穴)に加工液供給手段から加工液52を注入する手段としては、穴の外から加工液を注いでも僅かな隙間から穴内部に入らないことから、貫通孔53を有する通液型(クーランススルータイプ)の砥石51を用いて、砥石51の先端から加工液52を注入していた。この場合に、通液型砥石51の先端から送出される加工液52は、止まり穴の底部Wbには達するものの、加工面である内壁面Waには到達しづらかった。
However, the above-mentioned conventional electrolytic grinding apparatus has a sufficiently large hole diameter of the workpiece, and has a large depth relative to the intended inner diameter of the present invention, that is, a machining hole having a high aspect ratio or a small diameter work piece. It could not be applied to a technique for grinding and electric discharge machining of the inner peripheral surface of a processing hole of an object with high accuracy and high efficiency.
Further, in conventional machining such as grinding, as shown in FIG. 8, when machining the inner peripheral surface of a workpiece W made of a difficult-to-cut material such as a titanium alloy, particularly a thin workpiece W, Since the processing pressure of the grindstone 51 is high, the thin processing surface is deformed, and high-precision processing is difficult. At this time, as a means for injecting the machining fluid 52 from the machining fluid supply means into the blind hole (blind hole) of the small-diameter workpiece W, even if the machining fluid is poured from the outside of the hole, it does not enter the inside of the hole through a slight gap. For this reason, the machining fluid 52 is injected from the tip of the grindstone 51 using a liquid-passing (coolance through type) grindstone 51 having a through hole 53. In this case, the machining liquid 52 delivered from the tip of the liquid-passing type grindstone 51 reaches the bottom Wb of the blind hole but hardly reaches the inner wall surface Wa that is the machining surface.
また、加工面に加工液を送出する細いパイプ状の通液型砥石、もしくは放電加工に用いる細いパイプ電極にあっては、パイプを挿通して先端の加工点まで加工液を供給する際に、パイプの内径が小さくなるにつれて、加工液の粘性やパイプ内の気泡の影響により、加工液の送出に高圧力を要することとなり、ときには1MPa(約10気圧)を超えるような高圧ポンプが必要となる場合があった。このような高圧ポンプを用いることは、装置のコスト高に加え、高圧を加えることにより故障しやすくなって装置の信頼性や寿命に多大な問題を生じるものであった。
さらに、アスペクト比の高い加工孔や、小径な工作物の加工孔の内周面を、プラズマ放電を利用して加工する際に、放電電極の加工点と工作物が短絡すると、放電が消滅して加工できなくなることから、短絡したことを電気的に検知すると、電極の加工点を工作物から後退させて短絡を回避し、また一方電極の加工点が工作物から後退しすぎたり放電加工されることにより工作物表面が後退したりすると、放電電極の加工点と工作物の間隔が拡がりすぎて放電が止まってしまうことから、放電電極の加工点を工作物に近づけるように、放電間隔を維持するためにサーボ制御が行われていた。
この短絡・切断を繰り返しながら放電間隔を維持させようとするサーボ制御を用いた放電加工は、間欠的に加工することから時間を要して加工効率が悪いばかりか、電極が前進・後退を細かく繰り返しながら加工の進行に伴って前進送りするという多重の動きをすることにより、高精度な放電加工が望めなかった。
In addition, in the case of a thin pipe-shaped grinding wheel that sends the machining fluid to the machining surface, or a thin pipe electrode used for electric discharge machining, when supplying the machining fluid to the tip machining point through the pipe, As the inner diameter of the pipe becomes smaller, high pressure is required to deliver the machining fluid due to the viscosity of the machining fluid and bubbles in the pipe, and sometimes a high-pressure pump exceeding 1 MPa (about 10 atmospheres) is required. There was a case. The use of such a high-pressure pump is not only high in cost of the apparatus, but also easily breaks down when high pressure is applied, resulting in a great problem in reliability and life of the apparatus.
Furthermore, when machining the inner peripheral surface of a machining hole with a high aspect ratio or a small-diameter workpiece using plasma discharge, the discharge will disappear if the machining point of the discharge electrode and the workpiece are short-circuited. When the short circuit is electrically detected, the machining point of the electrode is retracted from the workpiece to avoid the short circuit, while the machining point of the electrode is excessively retracted from the workpiece or is subjected to electrical discharge machining. If the workpiece surface retreats, the gap between the discharge electrode machining point and the workpiece will be too wide and the discharge will stop, so the discharge interval should be set so that the discharge electrode machining point is close to the workpiece. Servo control was performed to maintain.
Electric discharge machining using servo control that keeps the discharge interval while repeating this short-circuiting / cutting takes time because of the intermittent machining, and the electrode is not good in machining efficiency, but the electrode is finely moved forward and backward. High-precision electrical discharge machining could not be expected due to the multiple movements of feeding forward as machining progressed repeatedly.
本発明は以上に述べた事情に鑑みて為されたものであって、その目的は、難削材の肉薄の工作物の内周面を加工する際に、肉薄の加工面が変形することない低い砥石加工圧を可能とし、かつ小径な通液型のパイプ電極の先端の加工点まで加工液を送出しながら加工を行うのに際し、高圧ポンプを必要とせずにパイプ電極に加工液を送出することができ、さらに、パイプ電極先端の加工点と工作物の放電間隔を、サーボ制御を用いることなく好適に維持して高精度の加工を行うことができる高周波振動援用プラズマ放電研削装置及びその方法を提供することである。 The present invention has been made in view of the circumstances described above, and the object thereof is to prevent deformation of a thin processed surface when processing the inner peripheral surface of a thin workpiece of difficult-to-cut material. Enables low grinding wheel processing pressure and sends the processing fluid to the pipe electrode without the need for a high-pressure pump when processing while sending the processing fluid to the processing point at the tip of the small-diameter liquid-type pipe electrode. In addition, a high-frequency vibration-assisted plasma discharge grinding apparatus and method capable of performing high-precision machining by suitably maintaining the machining point at the tip of the pipe electrode and the discharge interval of the workpiece without using servo control Is to provide.
上記解決課題に鑑みて鋭意研究の結果、本発明者はこれまで研削加工が困難であった難削材の肉薄の小径内周面に対しても、表面粗さ精度に優れかつ形状加工に好適な研削加工が可能となるように高周波振動を援用したプラズマ放電研削装置及びその方法を案出するに至った。
すなわち本発明の高周波振動援用プラズマ放電研削装置は、非導電性の砥粒を導電性結合材により結合固化させた研削砥石の内部に加工液を通じる中心穴を有する放電加工電極と、該放電加工電極を回転駆動するスピンドルと、該スピンドルを軸方向に高周波振動させる加振手段と、該加振手段を駆動する高周波振動用高周波パルス電源と、上記放電加工電極の中心穴を通じて加工液を供給する加工液供給手段と、上記放電加工電極と工作物との間にプラズマ放電を発生させるための高周波パルス電流を印加するプラズマ放電用高周波パルス電源と、を備え、上記放電加工電極を工作物表面に沿って軸方向に振動周波数が20kHz以上でかつ振幅が数μm〜十数μmの高周波振動させることにより上記放電加工電極の中心穴に加工液を通じさせ、かつ工作物と回転する放電加工電極との間隔を上記砥粒の突出高さの10μm以下として工作物と放電加工電極の砥粒とが接触する状態で電極間が電気的に短絡させることなくプラズマ放電を持続させることを特徴とする。
このような構成とすることにより、小径な通液型のパイプ電極の先端の加工点まで加工液を送出しながら加工を行うのに際し、高圧ポンプを必要とせずにパイプ電極に加工液を送出することができ、さらに、パイプ電極先端の加工点と工作物の放電間隔を、サーボ制御を用いることなく好適に維持して高精度の加工を行うことができ、効率よく高精度の加工を行うことができ、またチタン合金等の難削材においても研削加工を局所的に行うことができることから、加工後の形状精度を向上させることができる。
As a result of diligent research in view of the above problems, the present inventor has excellent surface roughness accuracy and is suitable for shape processing even for thin, small-diameter inner peripheral surfaces of difficult-to-cut materials that have been difficult to grind until now. The inventors have devised a plasma discharge grinding apparatus and method using high frequency vibration so as to enable smooth grinding.
That is, the high-frequency vibration-assisted plasma discharge grinding apparatus of the present invention includes an electric discharge machining electrode having a center hole through which a machining fluid is passed inside a grinding wheel in which non-conductive abrasive grains are bonded and solidified by a conductive binder, and the electric discharge machining. A spindle for rotationally driving the electrode, a vibration means for high-frequency vibration of the spindle in the axial direction, a high-frequency pulse power source for high-frequency vibration for driving the vibration means, and a machining liquid is supplied through the center hole of the electric discharge machining electrode A machining fluid supply means; and a high-frequency pulse power supply for plasma discharge that applies a high-frequency pulse current for generating a plasma discharge between the electric discharge machining electrode and the workpiece, the electric discharge machining electrode on the surface of the workpiece Along the axial direction, the machining liquid is passed through the center hole of the electric discharge machining electrode by causing high-frequency vibration having an oscillation frequency of 20 kHz or more and an amplitude of several μm to several tens of μm. And the distance between the workpiece and the rotating electric discharge machining electrode is 10 μm or less of the protruding height of the abrasive grains, and the electrodes are electrically short-circuited in a state where the workpiece and the abrasive grains of the electric discharge machining electrode are in contact with each other. It is characterized in that the plasma discharge is sustained.
With such a configuration, when processing is performed while sending the processing liquid to the processing point at the tip of a small-diameter liquid-type pipe electrode, the processing liquid is sent to the pipe electrode without the need for a high-pressure pump. In addition, the machining point at the tip of the pipe electrode and the discharge interval of the workpiece can be suitably maintained without using servo control, so that high-precision machining can be performed, and high-precision machining can be performed efficiently. In addition, since grinding can be performed locally even on difficult-to-cut materials such as titanium alloys, shape accuracy after processing can be improved.
また、プラズマ放電用高周波パルス電源の周波数は高周波振動用高周波パルス電源の周波数よりも高くすることを特徴とする。
これにより、工作物と放電加工電極の砥粒とが接触する状態で電極間を短絡させることなく、パイプ電極先端の加工点と工作物の放電間隔を維持したままプラズマ放電を持続させて高精度の加工を行うことができる。
Further, the frequency of the high frequency pulse power source for plasma discharge is higher than the frequency of the high frequency pulse power source for high frequency vibration.
As a result, the plasma discharge is maintained with high accuracy while maintaining the machining point at the tip of the pipe electrode and the discharge interval of the workpiece without short-circuiting between the electrodes in a state where the workpiece and the abrasive grains of the EDM electrode are in contact with each other. Can be processed.
また、放電加工電極は、中心軸を直交する縦断面で、放電加工電極の中心穴から外周に向けて貫通する放射状のスリットを形成することを特徴とする。
これにより、加工液がスリットから工作物の加工面に向けて直接供給され、加工効率に優れる。
Further, the electric discharge machining electrode is characterized by forming a radial slit penetrating from the central hole of the electric discharge machining electrode toward the outer periphery in a longitudinal section perpendicular to the central axis.
Thereby, the machining fluid is directly supplied from the slit toward the machining surface of the workpiece, and the machining efficiency is excellent.
そして、本発明の高周波振動援用プラズマ放電研削方法は、非導電性の砥粒を導電性結合材により結合固化させた研削砥石の内部に加工液を通じるパイプ状の放電加工電極と、該放電加工電極を回転駆動するスピンドルと、該スピンドルを軸方向に高周波振動させる加振手段と、該加振手段を駆動する高周波振動用高周波パルス電源と、上記放電加工電極と工作物との間にプラズマ放電を発生させるための高周波パルス電流を印加するプラズマ放電用高周波パルス電源と、を備えた高周波振動援用プラズマ放電研削装置において、上記放電加工電極を工作物表面に沿って軸方向に振動周波数が20kHz以上でかつ振幅が数μm〜十数μmの高周波振動させることにより上記放電加工電極の中心穴に加工液を通じさせ、かつ工作物と回転する放電加工電極との間隔を上記砥粒の突出高さの10μm以下として工作物と放電加工電極の砥粒とが接触する状態で電極間が電気的に短絡させることなくプラズマ放電を持続させて、該プラズマが工作物をエッチングすることによりその局所的な加工表面に軟化層を生成し、該軟化層を上記放電加工電極の砥粒が研削することを特徴とする。 The high-frequency vibration-assisted plasma discharge grinding method of the present invention includes a pipe-shaped electric discharge machining electrode for passing a machining liquid into a grinding wheel obtained by bonding and solidifying non-conductive abrasive grains with a conductive binder, and the electric discharge machining. A spindle for rotationally driving the electrode, a vibrating means for high-frequency vibration of the spindle in the axial direction, a high-frequency pulse power source for high-frequency vibration for driving the vibrating means, and a plasma discharge between the electric discharge machining electrode and the workpiece In a high frequency vibration assisted plasma discharge grinding apparatus comprising a high frequency pulse power source for plasma discharge for applying a high frequency pulse current for generating a vibration frequency of the electric discharge machining electrode in the axial direction along the workpiece surface is 20 kHz or more In addition, the high frequency vibration having an amplitude of several μm to several tens of μm allows the machining liquid to pass through the center hole of the electric discharge machining electrode and rotates with the workpiece. Maintaining plasma discharge without electrically shorting between the electrodes in a state where the workpiece and the abrasive grains of the electrical discharge machining electrode are in contact with the gap between the electromachining electrodes and the protruding height of the abrasive grains of 10 μm or less, The plasma etches the workpiece to generate a softened layer on the local processed surface, and the softened layer is ground by the abrasive grains of the electric discharge machining electrode.
以下、添付図面を参照しながら、本発明に係る高周波振動援用プラズマ放電研削装置を実施するための形態を詳細に説明する。図1〜図7は、本発明の実施の形態を例示する図であり、これらの図において、同一の符号を付した部分は同一物を表わし、基本的な構成及び動作は同様であるものとする。
<構成>
本発明の高周波振動援用プラズマ放電研削装置1は、図1に示すように、砥粒を備えた研削砥石である放電加工電極2と、これを回転駆動するスピンドル3と、該スピンドル3の軸方向に高周波振動を加える適宜な加振手段を駆動するための高周波振動用高周波パルス電源4と、放電加工電極2と工作物との間にプラズマ放電を生じさせるためのプラズマ放電用高周波パルス電源5と、加工面に研削加工用及びプラズマ放電用の加工液6を提供する加工液供給手段7と、を備えている。
スピンドル3は、放電加工電極2とともにその軸中心に細孔を設け、そこに適宜な加工液供給手段7からの加工液6を通じて加工域に供給する。放電加工電極2を通液型の構造とすることにより、小径で止まり穴(盲穴)の工作物Wの内周面であっても加工液を好適に供給しながら研削加工することができる。そして、高周波振動用高周波パルス電源4を稼動させることにより、スピンドル3は20kHz以上の周波数で軸方向、すなわち図1のZ軸方向に高周波振動しながら、Z軸方向に往復動(揺動)しつつ、工作物Wの内周面を研削する。そして、加工の進行に伴って工作物(テーブル)を前進送りする。
工作物Wを載置固定するYテーブル8はY軸方向に移動可能で、このYテーブル8を載置するXテーブル9はX軸方向に移動可能である。そして、Xテーブル9、Yテーブル8及び各パルス電源を含む高周波振動援用プラズマ放電研削装置1による研削加工を制御するための制御手段(図示せず)を別途備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for implementing a high-frequency vibration-assisted plasma discharge grinding apparatus according to the present invention will be described in detail with reference to the accompanying drawings. 1 to 7 are diagrams illustrating embodiments of the present invention. In these drawings, the same reference numerals denote the same components, and the basic configuration and operation are the same. To do.
<Configuration>
As shown in FIG. 1, a high-frequency vibration-assisted plasma discharge grinding apparatus 1 according to the present invention includes an electric discharge machining electrode 2 that is a grinding wheel provided with abrasive grains, a spindle 3 that rotationally drives the electrode, and an axial direction of the spindle 3. A high-frequency pulse power source 4 for high-frequency vibration for driving appropriate vibration means for applying high-frequency vibration to the electrode, and a high-frequency pulse power source 5 for plasma discharge for generating plasma discharge between the electric discharge machining electrode 2 and the workpiece, And a machining fluid supply means 7 for providing a machining fluid 6 for grinding and plasma discharge on the machining surface.
The spindle 3 is provided with a fine hole at the axial center together with the electric discharge machining electrode 2 and supplies it to the machining area through the machining liquid 6 from an appropriate machining liquid supply means 7. By making the electric discharge machining electrode 2 have a liquid-passing structure, even the inner peripheral surface of the workpiece W having a small diameter and a blind hole (blind hole) can be ground while suitably supplying the machining fluid. Then, by operating the high-frequency pulse power supply 4 for high-frequency vibration, the spindle 3 reciprocates (oscillates) in the Z-axis direction with high-frequency vibration in the axial direction, that is, the Z-axis direction in FIG. Meanwhile, the inner peripheral surface of the workpiece W is ground. Then, the workpiece (table) is fed forward as the machining progresses.
The Y table 8 on which the workpiece W is placed and fixed is movable in the Y axis direction, and the X table 9 on which the Y table 8 is placed is movable in the X axis direction. And the control means (not shown) for controlling the grinding process by the high frequency vibration assistance plasma discharge grinding apparatus 1 including the X table 9, the Y table 8 and each pulse power source is separately provided.
図2は、図1とは別の加工例であり、チャッキングされた工作物Wの内周面Waを放電加工電極2が研削している状態をイメージ的に表している。放電加工電極2は、ダイヤモンド砥粒などの非導電性の砥粒を導電性結合材により結合固化している。放電加工電極2表面から突出した砥粒が工作物Wを研削する状態において、砥粒の導電性結合材からの突出高さが、放電加工電極2と工作物Wの電極間距離となる。本実施例の場合は、高精度の研削を行うために、砥粒の突出高さを20μm未満、できれば10μm未満とすることが好ましい。
図中6は、加工液供給手段7からスピンドル3と放電加工電極2の細孔を通じて供給される加工液である。また10は、放電加工電極2が工作物Wの内周面を加工している加工域であり、この個所に後述するプラズマ放電を生じさせている。
FIG. 2 is a machining example different from that in FIG. 1, and schematically shows a state where the electric discharge machining electrode 2 is grinding the inner peripheral surface Wa of the chucked workpiece W. The electric discharge machining electrode 2 is formed by bonding and solidifying non-conductive abrasive grains such as diamond abrasive grains with a conductive binder. In a state where the abrasive grains protruding from the surface of the electric discharge machining electrode 2 grind the workpiece W, the protruding height of the abrasive grains from the conductive binder is the distance between the electric discharge machining electrode 2 and the workpiece W. In the case of the present embodiment, in order to perform high-precision grinding, it is preferable that the protrusion height of the abrasive grains is less than 20 μm, preferably less than 10 μm.
In the figure, reference numeral 6 denotes a machining fluid supplied from the machining fluid supply means 7 through the spindle 3 and the pores of the electric discharge machining electrode 2. Reference numeral 10 denotes a machining area in which the electric discharge machining electrode 2 is machining the inner peripheral surface of the workpiece W, and a plasma discharge described later is generated at this location.
そして、高周波振動用高周波パルス電源4は、加振手段を駆動することにより放電加工電極2を備えたスピンドル3を軸方向に20kHz以上、できれば40kHz以上の周波数で、かつ振幅が数μm〜十数μmで高周波振動させる。
プラズマ放電用高周波パルス電源5は、予め設定したプラズマ放電用電圧として、研削砥石2(正確には上記導電性結合材)と工作物Wとの間に、砥粒の突出高さを電極間距離に設定して、1マイクロ秒以下(サブマイクロ秒)レベルのパルス幅の高周波パルス電流を印加する。
The high-frequency pulse power supply 4 for high-frequency vibration drives the excitation means to drive the spindle 3 provided with the electric discharge machining electrode 2 in the axial direction at a frequency of 20 kHz or more, preferably 40 kHz or more, and an amplitude of several μm to several tens. High-frequency vibration at μm.
The plasma discharge high-frequency pulse power supply 5 sets the protrusion height of the abrasive grains between the grinding wheel 2 (more precisely, the conductive binder) and the workpiece W as a preset plasma discharge voltage. And a high frequency pulse current having a pulse width of 1 microsecond or less (submicrosecond) level is applied.
図3は、スピンドル3とこれに取り付けられる研削砥石である放電加工電極2を表し、スピンドル3先端に設けた雌ねじ3aに、放電加工電極2に突設された雄ねじ2aを螺合させて着脱可能な状態で一体化する構造としている。
そして、放電加工電極2には、中心軸を直交する縦断面で、放電加工電極2を挿通する細孔2bから外周に向けて貫通する放射状の十文字形状のスリット11が形成され、加工液供給手段7からの加工液6が、スピンドル3の細孔3bを通り、放電加工電極2のスリット11から吐出され、工作物Wの内周面Waに供給される。
この放電加工電極2の中心軸の細孔2bは、貫通孔ではなく止まり穴とし、加工液供給手段7からの加工液6は、上記スリット11から加工面である工作物Wの内周面全周に供給される。
FIG. 3 shows the spindle 3 and the electric discharge machining electrode 2 which is a grinding wheel attached to the spindle 3. The male screw 2 a protruding from the electric discharge machining electrode 2 can be screwed into the female screw 3 a provided at the tip of the spindle 3 to be detachable. The structure is integrated in a stable state.
The electric discharge machining electrode 2 is formed with a radial cross-shaped slit 11 penetrating from the fine hole 2b passing through the electric discharge machining electrode 2 toward the outer periphery in a longitudinal section perpendicular to the central axis, and a machining liquid supply means 7 is discharged from the slit 11 of the electric discharge machining electrode 2 through the pore 3b of the spindle 3 and supplied to the inner peripheral surface Wa of the workpiece W.
The fine hole 2b of the central axis of the electric discharge machining electrode 2 is not a through hole but a blind hole, and the machining liquid 6 from the machining liquid supply means 7 passes through the entire inner peripheral surface of the workpiece W which is the machining surface from the slit 11. Supplied around the lap.
図4は、加工液供給手段7から高圧ポンプではない通常のポンプの圧力にて供給される加工液を、細孔を有するパイプ電極の先端から吐出させる状態を示す写真であり、図4(A)は高周波振動させない状態で、加工液がパイプ電極の先端に水滴となって付着して間欠的に落下する状態を表し(写真中の水滴に反射しているリング状の光は、撮影用の光源の映り込みである)、図4(B)はパイプ電極を軸方向に20kHz以上で、かつ振幅が数μm〜十数μmで高周波振動させることにより、加工液がパイプ電極の先端から連続して噴出する状態を示している。
この試験条件は、小径のパイプ電極が、外径0.38mm、内径0.19mm、長さ10mmの銅製で、供給する加工液は水である。
この試験の比較でわかるように、パイプ電極の細孔を通じて、加工液供給手段から高圧ポンプではない通常の圧力で加工液を供給する際に、パイプの内径が小さいと加工液の粘性やパイプ内の気泡の影響により、加工液が送出されなくなるのに対し、パイプ電極を軸方向に振動周波数が20kHz以上で、かつ振幅が数μm〜十数μmで高周波振動させることにより、加工液の粘性を低下させる作用と、大きな気泡を小径なマイクロバブルに変化させる作用が生じ、これにより加工液が送出されるものである。
FIG. 4 is a photograph showing a state in which the machining fluid supplied from the machining fluid supply means 7 at the pressure of a normal pump that is not a high-pressure pump is discharged from the tip of a pipe electrode having pores. ) Represents a state in which the machining fluid adheres to the tip of the pipe electrode as water droplets and falls intermittently without being vibrated at a high frequency (the ring-shaped light reflected on the water droplets in the photograph is used for shooting). FIG. 4 (B) shows that the pipe electrode is 20 kHz or more in the axial direction and the amplitude is several μm to several tens of μm, so that the machining fluid is continuous from the tip of the pipe electrode. It shows a state of erupting.
In this test condition, a small-diameter pipe electrode is made of copper having an outer diameter of 0.38 mm, an inner diameter of 0.19 mm, and a length of 10 mm, and the processing liquid to be supplied is water.
As can be seen from the comparison of this test, when the machining fluid is supplied from the machining fluid supply means at a normal pressure other than the high pressure pump through the pores of the pipe electrode, if the pipe inner diameter is small, the viscosity of the machining fluid and the inside of the pipe While the machining fluid is not sent out due to the influence of bubbles, the pipe electrode is vibrated at a high frequency with an oscillation frequency of 20 kHz or more and an amplitude of several μm to several tens of μm in the axial direction. An action of lowering and an action of changing large bubbles into small-diameter microbubbles are generated, whereby the machining liquid is delivered.
図5は、プラズマ放電電極と工作物との間に放電電圧を印加し、プラズマ放電電極と工作物を接触させた状態を示し、図5(A)はプラズマ放電電極と工作物とが短絡して放電が生じていないのに対し、図5(B)はプラズマ放電電極を軸方向に20kHz以上で、かつ振幅が数μm〜十数μmで高周波振動させることにより、図5(A)と同じ条件下であってもプラズマ放電が発生し続ける状態を表している。
図5(B)中、12はプラズマ放電電極と工作物の間で発生しているプラズマ放電である。
FIG. 5 shows a state in which a discharge voltage is applied between the plasma discharge electrode and the workpiece and the plasma discharge electrode and the workpiece are brought into contact with each other. FIG. 5A shows a short circuit between the plasma discharge electrode and the workpiece. 5B is the same as FIG. 5A by vibrating the plasma discharge electrode in the axial direction at 20 kHz or higher and with an amplitude of several μm to several tens of μm. This represents a state in which plasma discharge continues to occur even under conditions.
In FIG. 5B, reference numeral 12 denotes plasma discharge generated between the plasma discharge electrode and the workpiece.
<難削材の快削化加工の方法>
このような構成からなる本発明の高周波振動援用プラズマ放電研削方法について、以下に詳述する。
図6(A)は、プラズマ放電加工前の高周波振動用高周波パルス電源4及びプラズマ放電用高周波パルス電源5がオフの状態の加工域の状態を示しており、砥粒13を結合し突出させた導電性を有する結合材、すなわち放電加工電極14と、工作物Wとの間、すなわち砥粒13の突出高さの電極間には、主に水からなる加工液6が供給されている。
<Method of free-cutting difficult-to-cut materials>
The high frequency vibration assisted plasma discharge grinding method of the present invention having such a configuration will be described in detail below.
FIG. 6 (A) shows the state of the machining area in which the high-frequency pulse power source 4 for high-frequency vibration and the high-frequency pulse power source 5 for plasma discharge are off before plasma discharge machining. The abrasive grains 13 are joined and protruded. A machining liquid 6 mainly composed of water is supplied between the conductive binder, that is, the electric discharge machining electrode 14 and the workpiece W, that is, between the protruding heights of the abrasive grains 13.
次に図6(B)は、図6(A)の状態から高周波振動用高周波パルス電源4を稼動して放電加工電極14が、図の左右方向に20kHz以上の高周波振動している状態を示している。
この状態で、加工液供給手段7から供給される加工液6は、通常の圧力のポンプを使用した場合であっても、放電加工電極14を高周波振動することによりスピンドル3及び放電加工電極2の細孔を挿通して放電加工電極14と工作物Wとの間に供給され、そしてこの加工液6は、導電率が低い純水を用いた場合であっても、電気分解して直径数百μm程度の気泡が発生する。そして、気相は液相に比べて放電による火花が発生しやすいため、加工面が不均一になりやすい。
この気泡は、狭小な電極間における高周波振動によって壊されて直径数μm又はそれ以下の均一な微小な気泡であるマイクロバブル15へと変化していき、これにより電極間を加工液6の水(液相)と、マイクロバブル15の空気(気相)とが均一に密に混じり合った液相・気相混合状態とする。
またマイクロバブル15は、圧壊時のエネルギーにより、高酸化力を有するOHラジカル等の活性酸素を生成するため、加工表面の快削化に効果を発揮する。
Next, FIG. 6 (B) shows a state where the high frequency pulse power supply 4 for high frequency vibration is operated from the state of FIG. 6 (A) and the electric discharge machining electrode 14 is vibrating at a high frequency of 20 kHz or more in the horizontal direction of the figure. ing.
In this state, the machining fluid 6 supplied from the machining fluid supply means 7 can be used for the spindle 3 and the electrical discharge machining electrode 2 by vibrating the electrical discharge machining electrode 14 at a high frequency even when a normal pressure pump is used. The machining fluid 6 is supplied between the electric discharge machining electrode 14 and the workpiece W through the pores, and this machining fluid 6 is electrolyzed and has a diameter of several hundreds even when pure water having low conductivity is used. Bubbles of about μm are generated. And since the gas phase is more likely to generate sparks due to electric discharge than the liquid phase, the processed surface tends to be non-uniform.
The bubbles are broken by high-frequency vibration between narrow electrodes and changed to microbubbles 15 which are uniform microbubbles having a diameter of several μm or less. The liquid phase and the air (gas phase) of the microbubbles 15 are uniformly and densely mixed to form a liquid phase / gas phase mixed state.
In addition, the microbubbles 15 generate active oxygen such as OH radicals having a high oxidizing power by the energy at the time of crushing, and thus are effective for free machining of the processed surface.
そして、放電加工電極14が高周波振動している図6(B)の状態に加えて、プラズマ放電用高周波パルス電源5を稼動することにより、図6(C)に示すように、均一に液相・気相が満ちた極小な電極間の、放電加工電極14と工作物Wとが接触する個所に、火花放電させることなく均一なプラズマ16を連続的に発生させる環境を形成するものである。 Then, in addition to the state shown in FIG. 6B in which the electric discharge machining electrode 14 vibrates at a high frequency, the plasma discharge high-frequency pulse power source 5 is operated, so that a uniform liquid phase is obtained as shown in FIG. 6C. An environment in which uniform plasma 16 is continuously generated without spark discharge is formed at a place where the electric discharge machining electrode 14 and the workpiece W are in contact between the extremely small electrodes filled with the gas phase.
上記プラズマ放電用高周波パルス電源5により電極間に電圧を印加すると、電極間には水の電気分解により不均一な大きさの気泡が発生するが、これも狭小な電極間における高周波振動によって壊されてマイクロバブル15へと変化していく。
このプラズマ放電用高周波パルス電源5が放電加工電極14と工作物Wとの間に印加する電圧は、放電加工電極14と工作物Wとの間で短絡することがなく、かつ火花放電、アーク放電しないように高周波パルスを設定する。そして、高周波振動により放電加工電極14と工作物Wとの間の加工液6が霧化し、そしてキャビテーションによるマイクロバブル15が発生し、密に混じり合った液相・気相混合状態で、この電極間に放電加工電極14側を負極、工作物W側を正極にして高周波パルス電圧を印加することにより、図2及び図5に示す均一なプラズマ16を放電加工電極14と工作物Wとが接触する個所に局所的に発生させる。この砥粒の突出高さである10μm未満の狭小な電極間を高周波振動させることにより、電極間が短絡して放電が消滅する事態が生じなくなり、電極間のプラズマ放電を持続させることができるものである。
このように、本実施例によれば電極間が短絡して放電が消滅することが生じないことから、従来のサーボ制御のように、短絡・切断を繰り返して放電間隔を維持させながら、加工の進行に伴って前進送りするという制御を行うことなく、一定の速度で前進送りするだけで加工が完了するものである。
When a voltage is applied between the electrodes by the plasma discharge high-frequency pulse power supply 5, bubbles of non-uniform size are generated between the electrodes due to the electrolysis of water, which is also broken by the high-frequency vibration between the narrow electrodes. To microbubbles 15.
The voltage applied by the plasma discharge high-frequency pulse power supply 5 between the electric discharge machining electrode 14 and the workpiece W is not short-circuited between the electric discharge machining electrode 14 and the workpiece W, and spark discharge and arc discharge are performed. Set the high frequency pulse so that it does not. Then, the machining fluid 6 between the electric discharge machining electrode 14 and the workpiece W is atomized by high-frequency vibration, and microbubbles 15 are generated by cavitation, and this electrode is in a mixed liquid phase / gas phase mixed state. By applying a high frequency pulse voltage with the electric discharge machining electrode 14 side as the negative electrode and the workpiece W side as the positive electrode, the uniform electric plasma 16 shown in FIGS. 2 and 5 is brought into contact with the electric discharge machining electrode 14 and the workpiece W. Generate locally at the place where you want to. By virtue of high-frequency vibration between narrow electrodes of less than 10 μm, which is the protruding height of the abrasive grains, there is no longer a situation where the electrodes are short-circuited and the discharge disappears, and plasma discharge between the electrodes can be sustained. It is.
As described above, according to the present embodiment, the electrodes do not short-circuit and the discharge does not disappear, so as in the conventional servo control, while maintaining the discharge interval by repeating the short-circuit and cutting, the processing can be performed. Machining is completed simply by moving forward at a constant speed without performing forward feed control as it progresses.
このプラズマ16は、そこに位置する加工液6の水を電離し、これにより高酸化力を有するOHラジカル等の活性酸素をさらに生成するとともに、活性酸素は、放電加工電極14が接触する工作物Wの表面を局所的にエッチングすることにより軟質化させて軟化層17を生成する。そして、この軟化層17を放電加工電極14が低加工圧にて、工具変形を伴うことなく好適に研削することができる。
このプラズマ16の発生部位、及びキャビテーションによるマイクロバブル15の発生部位が局所的であることと、そしてOHラジカル等の活性酸素が短寿命であることから、生成される軟化層17は工作物Wの内周面Waに広く及ぶことがなく、放電加工電極14の接触個所のみに限定されるため電解加工のように加工面以外をエッチングすることがない。
そして、軟化層17を放電加工電極14が研削して除去することにより発生する加工屑18は、電極間に細かく散らばるものの、これらは高周波振動により加工域外へと排出されていくものである。また電極の表面も常に洗浄され活性化した状態を保つ。
This plasma 16 ionizes the water of the machining fluid 6 located there, thereby further generating active oxygen such as OH radicals having a high oxidizing power, and the active oxygen is a work piece with which the electric discharge machining electrode 14 contacts. The softened layer 17 is generated by softening the surface of W by locally etching. Then, the softened layer 17 can be suitably ground by the electric discharge machining electrode 14 at a low machining pressure without accompanying tool deformation.
Since the generation site of the plasma 16 and the generation site of the microbubble 15 due to cavitation are local, and the active oxygen such as OH radicals has a short life, the generated softened layer 17 is formed of the workpiece W. Since it does not extend over the inner peripheral surface Wa and is limited only to the contact portion of the electric discharge machining electrode 14, it does not etch other than the machining surface as in the electrolytic machining.
And although the process waste 18 which generate | occur | produces when the softening layer 17 is ground and removed by the electric discharge machining electrode 14 is finely scattered between electrodes, these are discharged | emitted out of a process area by high frequency vibration. Also, the surface of the electrode is always cleaned and kept activated.
図7は、チタン合金等の難削材からなる肉薄の工作物について、従来行われていた、図7(A)機械加工、図7(B)電解加工、及び図7(C)放電加工と、図7(D)本発明の高周波振動援用プラズマ放電研削装置による加工との相違を示している。
図7(A)の機械加工にあっては、下穴が偏心している工作物の内周面を研削砥石が研削する際に、砥石加工圧が高いことから工作物を変形させてしまい、内周面の偏心は取り切れず、かえって偏心が拡大するおそれがあった。
図7(B)の電解加工にあっては、内周面の全周に渡って電解作用が働くことにより、偏心した下穴に倣って内周面が加工されてしまうことから、内周面の偏心を取り除くことができなかった。
図7(C)の放電加工にあっては、仕上げ前の表面粗さの大きい(粗い)下穴に放電加工のみを施しても、表面粗さは小さく(滑らかに)ならず、高精度に内周面に加工することができなかった。
これらに対し、図7(D)では、高周波振動とプラズマ放電を援用して放電加工電極の砥石加工圧を小さくすることにより、工作物が変形することがなく、かつプラズマ放電を工作物の内周面の局所的に発生させて快削化して加工することから、偏心した下穴に倣うこともなく、外周と同心で表面粗さの小さい高精度の内周面に加工できることを表している。
FIG. 7 is a view of a thin workpiece made of a difficult-to-cut material such as a titanium alloy, and FIG. 7 (A) machining, FIG. 7 (B) electrolytic machining, and FIG. 7 (C) electric discharge machining. FIG. 7D shows a difference from the processing by the high frequency vibration assisted plasma discharge grinding apparatus of the present invention.
In the machining shown in FIG. 7A, when the grinding wheel grinds the inner peripheral surface of the workpiece whose pilot hole is eccentric, the workpiece is deformed because the grinding wheel processing pressure is high. There was a risk that the eccentricity of the peripheral surface could not be removed and the eccentricity could be increased.
In the electrolytic processing of FIG. 7B, the inner peripheral surface is processed following the eccentric prepared hole due to the electrolytic action acting over the entire inner peripheral surface. The eccentricity of could not be removed.
In the electric discharge machining shown in FIG. 7C, even if only the electric discharge machining is performed on a rough hole having a large surface roughness before finishing, the surface roughness does not become small (smooth) but highly accurate. The inner peripheral surface could not be processed.
On the other hand, in FIG. 7D, the workpiece is not deformed by reducing the grindstone processing pressure of the electric discharge machining electrode with the aid of the high frequency vibration and the plasma discharge, and the plasma discharge is applied to the inside of the workpiece. Since the peripheral surface is locally generated and processed by free-cutting, it represents that it can be processed into a highly accurate inner peripheral surface that is concentric with the outer periphery and has a small surface roughness without following the eccentric prepared hole. .
本発明は、高周波振動とプラズマ放電を援用して放電加工電極と工作物との間において局所的な研削加工を行うものであり、材料の除去やその切り屑の排除、そして砥石の目詰まりの防止という物理的効果とともに、超音波振動によるプラズマ放電の持続や、超音波振動による放電加工電極の細孔を挿通する加工液の供給を低圧力で可能とする効果を奏するものである。 The present invention performs local grinding between an electric discharge machining electrode and a workpiece with the aid of high-frequency vibration and plasma discharge, and removes material, eliminates chips, and clogs the grindstone. In addition to the physical effect of prevention, the plasma discharge is sustained by ultrasonic vibration, and the effect of enabling the supply of the machining fluid that passes through the pores of the electric discharge machining electrode by ultrasonic vibration is achieved at low pressure.
本発明の高周波振動援用プラズマ放電研削装置及びその方法は、金属等の各種素材を精密にかつ効率的に研削加工する加工産業において利用することができるものである。 The high frequency vibration-assisted plasma discharge grinding apparatus and method of the present invention can be used in the processing industry for grinding various materials such as metals precisely and efficiently.
1…高周波振動援用プラズマ放電研削装置
2…放電加工電極
2b…細孔
3…スピンドル
3b…細孔
4…高周波振動用高周波パルス電源
5…プラズマ放電用高周波パルス電源
6…加工液
7…加工液供給手段
8…Yテーブル
9…Xテーブル
10…加工域
11…スリット
12…プラズマ放電
13…砥粒
14…放電加工電極
15…マイクロバブル
16…プラズマ
17…軟化層
18…加工屑
W…工作物
DESCRIPTION OF SYMBOLS 1 ... High frequency vibration assistance plasma discharge grinding apparatus 2 ... Electrical discharge machining electrode 2b ... Fine hole 3 ... Spindle 3b ... Fine hole 4 ... High frequency pulse power source for high frequency vibration 5 ... High frequency pulse power source for plasma discharge 6 ... Working fluid 7 ... Working fluid supply Means 8 ... Y table 9 ... X table 10 ... working area 11 ... slit 12 ... plasma discharge 13 ... abrasive grain 14 ... electric discharge machining electrode 15 ... micro bubble 16 ... plasma 17 ... softening layer 18 ... work scrap W ... workpiece
Claims (4)
該放電加工電極を回転駆動するスピンドルと、
該スピンドルを軸方向に高周波振動させる加振手段と、
該加振手段を駆動する高周波振動用高周波パルス電源と、
上記放電加工電極の中心穴を通じて加工液を供給する加工液供給手段と、
上記放電加工電極と工作物との間にプラズマ放電を発生させるための高周波パルス電流を印加するプラズマ放電用高周波パルス電源と、を備え、
上記放電加工電極を工作物表面に沿って軸方向に振動周波数が20kHz以上でかつ振幅が数μm〜十数μmの高周波振動させることにより上記放電加工電極の中心穴に加工液を通じさせ、かつ工作物と回転する放電加工電極との間隔を上記砥粒の突出高さの10μm以下として工作物と放電加工電極の砥粒とが接触する状態で電極間が電気的に短絡させることなくプラズマ放電を持続させることを特徴とする高周波振動援用プラズマ放電研削装置。 An electric discharge machining electrode having a central hole through which a machining liquid is passed inside a grinding wheel obtained by bonding and solidifying non-conductive abrasive grains with a conductive binder;
A spindle for rotationally driving the electric discharge machining electrode;
Vibration means for high-frequency vibration of the spindle in the axial direction;
A high-frequency pulse power supply for high-frequency vibration for driving the excitation means;
Machining fluid supply means for supplying machining fluid through the center hole of the electric discharge machining electrode;
A high-frequency pulse power source for plasma discharge that applies a high-frequency pulse current for generating a plasma discharge between the electric discharge machining electrode and the workpiece,
The electric discharge machining electrode is vibrated in the axial direction along the surface of the workpiece with a high frequency vibration having an oscillation frequency of 20 kHz or more and an amplitude of several μm to several tens of μm. The distance between the workpiece and the rotating electric discharge machining electrode is set to 10 μm or less of the protrusion height of the abrasive grains, and plasma discharge is performed without causing an electrical short circuit between the workpiece and the abrasive grains in contact with the abrasive grains of the electric discharge machining electrode. A high-frequency vibration-assisted plasma discharge grinding apparatus characterized by being sustained.
該放電加工電極を回転駆動するスピンドルと、
該スピンドルを軸方向に高周波振動させる加振手段と、
該加振手段を駆動する高周波振動用高周波パルス電源と、
上記放電加工電極と工作物との間にプラズマ放電を発生させるための高周波パルス電流を印加するプラズマ放電用高周波パルス電源と、を備えた高周波振動援用プラズマ放電研削装置において、
上記放電加工電極を工作物表面に沿って軸方向に振動周波数が20kHz以上でかつ振幅が数μm〜十数μmの高周波振動させることにより上記放電加工電極の中心穴に加工液を通じさせ、かつ工作物と回転する放電加工電極との間隔を上記砥粒の突出高さの10μm以下として工作物と放電加工電極の砥粒とが接触する状態で電極間が電気的に短絡させることなくプラズマ放電を持続させて、該プラズマが工作物をエッチングすることによりその局所的な加工表面に軟化層を生成し、該軟化層を上記放電加工電極の砥粒が研削することを特徴とする高周波振動援用プラズマ放電研削方法。 A pipe-shaped electric discharge machining electrode for passing a machining liquid into a grinding wheel obtained by bonding and solidifying non-conductive abrasive grains with a conductive binder;
A spindle for rotationally driving the electric discharge machining electrode;
Vibration means for high-frequency vibration of the spindle in the axial direction;
A high-frequency pulse power supply for high-frequency vibration for driving the excitation means;
In a high frequency vibration assisted plasma discharge grinding apparatus comprising: a high frequency pulse power source for plasma discharge that applies a high frequency pulse current for generating a plasma discharge between the electric discharge machining electrode and a workpiece;
The electric discharge machining electrode is vibrated in the axial direction along the surface of the workpiece with a high frequency vibration having an oscillation frequency of 20 kHz or more and an amplitude of several μm to several tens of μm. The distance between the workpiece and the rotating electric discharge machining electrode is set to 10 μm or less of the protrusion height of the abrasive grains, and plasma discharge is performed without causing an electrical short circuit between the workpiece and the abrasive grains in contact with the abrasive grains of the electric discharge machining electrode. The plasma is assisted by high frequency vibration, wherein the plasma etches the workpiece to form a softened layer on the local machining surface, and the softened layer is ground by the abrasive grains of the electric discharge machining electrode. Electric discharge grinding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015045957A JP6433344B2 (en) | 2015-03-09 | 2015-03-09 | High frequency vibration assisted plasma discharge grinding apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015045957A JP6433344B2 (en) | 2015-03-09 | 2015-03-09 | High frequency vibration assisted plasma discharge grinding apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016165764A JP2016165764A (en) | 2016-09-15 |
JP6433344B2 true JP6433344B2 (en) | 2018-12-05 |
Family
ID=56897239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015045957A Active JP6433344B2 (en) | 2015-03-09 | 2015-03-09 | High frequency vibration assisted plasma discharge grinding apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6433344B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6246152B2 (en) * | 2014-03-25 | 2017-12-13 | ミクロン精密株式会社 | High frequency vibration assisted plasma discharge grinding apparatus and method |
CN109128400A (en) * | 2017-06-16 | 2019-01-04 | 科锐精密工业(深圳)有限公司 | A kind of high frequency fine motion Electrodes fixture |
CN108406018A (en) * | 2018-01-18 | 2018-08-17 | 南京航空航天大学 | Take into account the electrolysis milling machining tool cathode and electrolysis milling method of efficiency and precision |
CN108453328A (en) * | 2018-04-04 | 2018-08-28 | 精英模具(珠海)有限公司 | A kind of plastic mould matches mold device and its technique |
CN109571159B (en) * | 2019-01-02 | 2021-04-02 | 南京航空航天大学 | Free abrasive material micro-ultrasonic machining device and feed adjusting method |
CN109623056A (en) * | 2019-02-27 | 2019-04-16 | 中原工学院 | A kind of machining operations platform |
CN110076407B (en) * | 2019-06-04 | 2020-07-14 | 扬州大学 | Ultrasonic modulation variable voltage efficient electrolytic composite processing method |
CN113798610A (en) * | 2020-06-14 | 2021-12-17 | 南京航空航天大学 | Atomizing ablation and electrolysis combined processing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54112095A (en) * | 1978-02-21 | 1979-09-01 | Inoue Japax Res Inc | Electrolytic grinding device |
JPS5669033A (en) * | 1979-11-06 | 1981-06-10 | Inoue Japax Res Inc | Discharge working method and processing liquid feeder therefor |
JPH0349827A (en) * | 1989-07-17 | 1991-03-04 | Inoue Japax Res Inc | Combined grinding method for plasma discharging |
CN100408241C (en) * | 2005-12-21 | 2008-08-06 | 湖南大学 | Electric spark-mechanical compound shaping method of metal bindnig agent extra hard abradant sand wheel |
JP5614677B2 (en) * | 2010-02-25 | 2014-10-29 | 国立大学法人大阪大学 | Precision processing method and apparatus for difficult-to-process materials |
JP5935089B2 (en) * | 2012-07-11 | 2016-06-15 | ミクロン精密株式会社 | High frequency vibration assisted electrolytic grinding method and apparatus |
-
2015
- 2015-03-09 JP JP2015045957A patent/JP6433344B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016165764A (en) | 2016-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6433344B2 (en) | High frequency vibration assisted plasma discharge grinding apparatus and method | |
Han et al. | Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte | |
Singh et al. | Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods | |
JP6246152B2 (en) | High frequency vibration assisted plasma discharge grinding apparatus and method | |
US9707637B2 (en) | Electrical discharge machining | |
US6835299B1 (en) | Electrochemical machining method and apparatus | |
Schubert et al. | Enhancing micro-EDM using ultrasonic vibration and approaches for machining of nonconducting ceramics | |
JP5935089B2 (en) | High frequency vibration assisted electrolytic grinding method and apparatus | |
Wu et al. | Vibration-assisted micro-ECM combined with polishing to machine 3D microcavities by using an electrolyte with suspended B4C particles | |
CN110116245B (en) | Hydrogen embrittlement auxiliary ultrasonic processing equipment and method | |
Saxena et al. | Electrochemical based hybrid machining | |
JP3463796B2 (en) | Plasma discharge truing apparatus and micromachining method using the same | |
Song et al. | Water spray electrical discharge drilling of WC-Co to prevent electrolytic corrosion | |
CN112809108B (en) | Ion/molecule oscillation discharge machining device and machining method | |
JP5827031B2 (en) | High frequency vibration / electrolytic hybrid internal grinding machine and grinding method thereof | |
JP6372068B2 (en) | Reconditioning device for fine tools and processing device with reconditioning function | |
Paul et al. | Micro machining in ECDM process with tool modification | |
JP3421661B2 (en) | Electric discharge machining apparatus and electric discharge machining method | |
JP2000024837A (en) | Electric discharge machining method | |
Singh et al. | Comparison of machining performance of hole-sinking micro-EDM without and with ultrasonic vibration on titanium alloy | |
Kibria et al. | Introduction to Micro-Electro Machining and Fabrication | |
WO2020110980A1 (en) | Electric processing method and electric processing apparatus | |
JPS6363329B2 (en) | ||
Kien et al. | Experimental study and process optimization for vibration-assisted dry micro-WEDM | |
Mahardika et al. | Advanced Machining Processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20161020 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20161028 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6433344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |