JP2002100524A - METHOD OF MANUFACTURING HOT-PLASTIC WORKING ND-Fe-B MAGNET - Google Patents

METHOD OF MANUFACTURING HOT-PLASTIC WORKING ND-Fe-B MAGNET

Info

Publication number
JP2002100524A
JP2002100524A JP2000286043A JP2000286043A JP2002100524A JP 2002100524 A JP2002100524 A JP 2002100524A JP 2000286043 A JP2000286043 A JP 2000286043A JP 2000286043 A JP2000286043 A JP 2000286043A JP 2002100524 A JP2002100524 A JP 2002100524A
Authority
JP
Japan
Prior art keywords
powder
magnet
weight
hot
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000286043A
Other languages
Japanese (ja)
Inventor
Hiyoshi Yamada
日吉 山田
Norio Yoshikawa
紀夫 吉川
Hideki Toda
英樹 戸田
Shuichi Arai
修一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000286043A priority Critical patent/JP2002100524A/en
Publication of JP2002100524A publication Critical patent/JP2002100524A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a large amount of discard mateial such as spent disposal material is generated in a step of manufacturing a hot-plastic working Nd-Fe-B magnet, thus reducing a product yield rate and increasing a manufacturing cost. SOLUTION: Disposal material of a hot-plastic worked Nd-Fe-B magnet is once ground to obtain its powder, the powder is mixed with virgin raw powder obtained by grinding an ultra-quench thin band to obtain a mixture raw powder for a magnet, the mixture powder is subjected to hot-plastic working to obtain an Nd-Fe-B magnet. At this time, the powder of the disposal material is mixed in 40 weight % or less with the weight of powder after being mixed as a reference. Oxygen and carbon amounts in the disposal material powder are restricted to 0.5 weight % or less and to 0.2 weight % or less respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は熱間塑性加工Nd
-Fe-B系磁石の製造方法に関する。
The present invention relates to hot plastic working Nd
The present invention relates to a method for producing a Fe-B magnet.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】熱間塑
性加工Nd-Fe-B系磁石素材は、従来、超急冷したN
d-Fe-B系薄帯の粉末を冷間プレス成形,熱間プレス
成形,熱間塑性加工の3回のプレス加工を経て製造して
いる。ここで冷間プレス成形は粉末を先ず形にするため
の工程であって、この冷間プレス成形において粉末を一
旦円柱とかリング状等の形状に成形する。熱間プレス成
形は、この冷間プレス成形で得た成形品の密度を高める
処理工程であり、また熱間塑性加工は磁気的な異方性を
付与するための処理工程である。
2. Description of the Related Art Conventionally, hot plastically processed Nd-Fe-B based magnet materials have conventionally been used for ultra-quenched Nd-Fe-B magnet materials.
The powder of the d-Fe-B-based ribbon is manufactured through three press workings of cold press forming, hot press forming, and hot plastic working. Here, the cold press forming is a step for first forming the powder, and in this cold press forming, the powder is once formed into a shape such as a column or a ring. Hot press forming is a processing step for increasing the density of the molded product obtained by the cold press forming, and hot plastic working is a processing step for imparting magnetic anisotropy.

【0003】熱間塑性加工により磁気的な異方性を付与
した成形品は、その後機械加工,防錆処理(エポキシ電
着やNiメッキ等)が施された上、検査工程で不良品が
取り除かれ、良品に対し着磁処理が施されて磁石製品と
なる。
[0003] A molded product to which magnetic anisotropy is imparted by hot plastic working is thereafter subjected to machining, rust prevention treatment (epoxy electrodeposition, Ni plating, or the like), and a defective product is removed in an inspection process. Then, the non-defective product is subjected to a magnetizing treatment to obtain a magnet product.

【0004】従来、この熱間塑性加工Nd-Fe-B系磁
石の製造工程で多量の廃却用材が発生していた。具体的
には、先ず熱間塑性加工後の成形品を機械加工する工程
で切断端材(廃却用材)が発生する。
Heretofore, a large amount of discarded material has been generated in the manufacturing process of this hot-worked Nd-Fe-B magnet. Specifically, first, in the step of machining a molded product after hot plastic working, cut off material (material for disposal) is generated.

【0005】例えば熱間塑性加工で後述の図2に示すよ
うなリング状成形品を成形したとすると、図中20で示
す開口側端部は製品18部分に対して磁気特性が低いこ
とから、また底部22は製品18部分とは磁気異方性の
方向が異なることから、それぞれ切断して除去される。
このとき切除された開口側端部20,底部22が端材と
して発生する。
[0005] For example, if a ring-shaped molded product as shown in FIG. 2 described later is formed by hot plastic working, the opening side end shown in FIG. Further, since the bottom portion 22 has a different direction of magnetic anisotropy from that of the product 18, the bottom portion 22 is cut and removed.
At this time, the cut-out opening side end 20 and the bottom 22 are generated as end materials.

【0006】これら端材は製品を1つ作るごとに必然的
に発生するもので、その量は多量に上る。その他にプレ
ス及び検査工程において、素材欠陥不良(割れ,欠け
等),寸法不良等による不良品が発生し、これもまた廃
却用材となる。
[0006] These scraps are inevitably generated every time one product is produced, and the amount thereof is large. In addition, in the pressing and inspection processes, defective products due to defective materials (cracks, chips, etc.), defective dimensions, and the like are generated, which also become waste materials.

【0007】従来この廃却用材の発生量は40%にも上
っており、その中には高価なNdが多量に含まれてい
る。従ってこれをそのまま廃却処分するのは勿体ないと
ともに、産業廃棄物を生み出すことにもなる。
Conventionally, the amount of this waste material generated has reached 40%, and it contains a large amount of expensive Nd. Therefore, it is of course not only to dispose of this as it is, but also to produce industrial waste.

【0008】上記のようにNdは高価な金属であり、こ
れを回収する方法として他の金属と一緒に溶解し合金を
製造する方法、或いは化学的にNdだけを抽出する方法
等が考えられる。しかしながら前者の方法では成分の調
整が困難であり、また後者の方法では廃却用材中に含ま
れるNd量は30%とFeに比べて少なく、実質的な残
部Feについてはコスト上の制約のために廃却処分せざ
るを得ず、従って後者の方法を実施しても全体としてみ
れば却ってコスト的に高いものとなってしまう。
As described above, Nd is an expensive metal, and as a method of recovering the same, a method of melting the same with other metals to produce an alloy, or a method of chemically extracting only Nd is considered. However, in the former method, it is difficult to adjust the components. In the latter method, the amount of Nd contained in the waste material is 30%, which is smaller than Fe, and the substantial balance of Fe is limited by cost. Therefore, even if the latter method is implemented, the cost will be rather high as a whole.

【0009】[0009]

【課題を解決するための手段】本発明の熱間塑性加工N
d-Fe-B系磁石の製造方法はこのような課題を解決す
るために案出されたものである。而して請求項1のもの
は、一旦熱間塑性加工したNd-Fe-B系磁石の廃却用
材を粉砕し、これにより得た粉末を、超急冷薄帯を粉砕
して得たバージン原料粉末に混合して磁石用混合原料粉
末となし、熱間塑性加工を経てNd-Fe-B系磁石を得
ることを特徴とする。
Means for Solving the Problems The hot plastic working N of the present invention
A method for producing a d-Fe-B-based magnet has been devised to solve such a problem. A virgin raw material obtained by pulverizing a material for disposing of Nd-Fe-B-based magnets once hot-plastically worked and then pulverizing the resulting powder into a super-quenched ribbon It is characterized in that it is mixed with powder to form a mixed raw material powder for a magnet, and is subjected to hot plastic working to obtain an Nd-Fe-B-based magnet.

【0010】請求項2のものは、請求項1において、前
記廃却用材の粉末を、混合後の粉末重量を基準として4
0重量%以下の量で混合することを特徴とする。
According to a second aspect of the present invention, in the first aspect, the waste material powder is mixed with the powder based on the weight of the powder after mixing.
It is characterized by being mixed in an amount of 0% by weight or less.

【0011】請求項3のものは、請求項1,2の何れか
において、前記廃却用材の粉末の酸素量が0.5重量%
以下且つ炭素量が0.2重量%以下であることを特徴と
する。
According to a third aspect of the present invention, in the method of any one of the first and second aspects, the amount of oxygen in the waste material powder is 0.5% by weight.
And the carbon content is 0.2% by weight or less.

【0012】[0012]

【作用及び発明の効果】上記のように本発明は、Nd-
Fe-B系磁石の廃却用材を粉砕処理し、これにより得
た粉末をバージン原料粉末に混合して混合原料粉末とな
し、熱間塑性加工を経てNd-Fe-B系磁石を製造する
もので、このようにすることで、従来廃却処分せざるを
得なかった端材等を有効に活用することができ、ひいて
はNd-Fe-B系磁石の製造コストを低減することがで
きるとともに、産業廃棄物の低減に寄与することができ
る。
Operation and Effect of the Invention As described above, the present invention provides Nd-
A material for producing Nd-Fe-B magnets by pulverizing a material for disposing of Fe-B magnets, mixing the resulting powder with virgin raw powder to form a mixed raw powder, and performing hot plastic working. By doing so, it is possible to effectively utilize the scraps and the like that had to be disposed of conventionally, thereby reducing the manufacturing cost of the Nd-Fe-B magnet, and It can contribute to the reduction of industrial waste.

【0013】ところで、端材等を粉砕した粉末は粒子形
態や化学組成がバージン原料粉末のそれとは当然ながら
異なったものとなる。特に端材等の粉砕粉末は酸素含有
量,炭素含有量がバージン原料粉末よりも多くなる。
By the way, the powder obtained by grinding the offcuts and the like naturally has a different particle form and chemical composition from those of the virgin raw material powder. In particular, the crushed powder such as offcuts has a higher oxygen content and carbon content than the virgin raw material powder.

【0014】ここで端材等の粉末の場合に酸素含有量が
高くなるのは、2回の熱間加工処理を行う過程で、更に
はその後粉砕処理する過程で酸素を吸収することによる
ものであり、また炭素含有量が多くなるのは、プレス加
工に際して塗布したカーボンがその後粉砕して粉末を得
る過程で十分に除去されずに粉末中に残ってしまうこと
による。従って端材等の粉末とバージン原料粉末とを混
合したものを用いて磁石製造したとき、一般的には成形
特性や磁石特性が低下する。
Here, the reason why the oxygen content is increased in the case of powder such as offcuts is that oxygen is absorbed in the process of performing hot working twice and further in the process of grinding. In addition, the reason why the carbon content is increased is that carbon applied during press working is not sufficiently removed in the process of pulverizing to obtain a powder and remains in the powder. Therefore, when a magnet is manufactured using a mixture of powder such as offcuts and virgin raw material powder, molding properties and magnet properties generally deteriorate.

【0015】しかしながら特定の性質、具体的には残留
磁気特性及び熱間塑性加工する際の素材と金型との耐焼
付き性が、端材等の粉末を僅かに添加することによって
却って高まることが本発明者の研究により判明してい
る。
However, the specific properties, specifically, the residual magnetic properties and the seizure resistance between the material and the mold during hot plastic working may be rather increased by adding a small amount of powder such as scrap material. It has been found by the study of the present inventor.

【0016】上記のように端材等の粉末を混合すると一
般に成形特性や磁石特性が低下することから、本発明に
おいてはその添加量を混合粉末の粉末重量を基準として
40重量%以下となすことが望ましい(請求項2)。こ
のように添加量を40重量%以下に規制することによっ
て、成形特性や磁石特性の低下を一定以下に抑制するこ
とができる。尚、端材の粉末の添加量は端材等を有効活
用する上で10重量%以上とすることが望ましい。
[0016] As described above, when powders such as scraps are mixed, molding properties and magnet properties are generally deteriorated. Therefore, in the present invention, the amount of addition is limited to 40% by weight or less based on the powder weight of the mixed powder. Is desirable (claim 2). By restricting the amount of addition to 40% by weight or less as described above, it is possible to suppress the reduction in molding characteristics and magnet characteristics to a certain level or less. In addition, the amount of the powder of the offcuts is desirably 10% by weight or more in order to effectively use the offcuts and the like.

【0017】本発明ではまた、端材等廃却用材の粉末の
酸素量を0.5重量%以下、且つ炭素量を0.2重量%
以下に規制することが望ましい(請求項3)。このよう
に酸素量及び炭素量を規制することによって、より良好
な結果が得られることが確認されている。
In the present invention, the amount of oxygen in the powder of waste material such as offcuts is 0.5% by weight or less and the carbon amount is 0.2% by weight.
It is desirable to regulate as follows (claim 3). It has been confirmed that better results can be obtained by regulating the amounts of oxygen and carbon in this way.

【0018】[0018]

【実施例】次に本発明の実施例を以下に詳述する。 Nd:26.5重量%,Dy:4.0重量%,Fe:残部,Co:6
重量%,Ga:0.6重量%,B:0.9重量%から成る組成の
超急冷薄帯の粉末を冷間プレス成形した。
Next, embodiments of the present invention will be described in detail. Nd: 26.5% by weight, Dy: 4.0% by weight, Fe: balance, Co: 6
An ultra-quenched ribbon powder having a composition of 0.6% by weight, Ga: 0.6% by weight and B: 0.9% by weight was cold-pressed.

【0019】その冷間プレス成形体にカーボン潤滑剤を
塗布した後、800℃で熱間プレス成形を行った。その
後室温まで熱間プレス成形体を冷却した後、再度カーボ
ン潤滑剤の塗布を行い、800℃で熱間押出加工(塑性
加工)を行い、磁石素材を作製した。
After applying a carbon lubricant to the cold press-formed body, hot press forming was performed at 800 ° C. Then, after cooling the hot press-formed body to room temperature, a carbon lubricant was applied again, and hot extrusion (plastic working) was performed at 800 ° C. to produce a magnet material.

【0020】ここで熱間押出加工は図1に示すようにし
て行った。即ち、金型10内部で金型12と14とによ
り熱間プレス成形体を押出成形した。図2はこれにより
得られた磁石素材16の形状を具体的に表している。
Here, the hot extrusion was performed as shown in FIG. That is, a hot press molded body was extruded by the dies 12 and 14 inside the dies 10. FIG. 2 specifically shows the shape of the magnet material 16 thus obtained.

【0021】次に得られた磁石素材16を機械加工し、
磁気特性の低い開口側端部20及び磁気異方性の方向が
異なる底部22を切り捨て、φ30mm×φ25mm×
30mmのリング状の製品18を得た。次に切除した端
材を各種条件で粉砕及びカーボン除去を行い、表1に示
す端材粉末を得た。
Next, the obtained magnet material 16 is machined,
The opening side end 20 having low magnetic properties and the bottom 22 having a different direction of magnetic anisotropy are cut off, and φ30 mm × φ25 mm ×
A 30 mm ring-shaped product 18 was obtained. Next, the cut off material was pulverized and carbon-removed under various conditions to obtain the offcut material powder shown in Table 1.

【0022】表1では、粉末の粒径とともに粉末に含有
されている酸素量と炭素量とを併せて示してある。尚、
バージン原料粉末の場合酸素量は約0.06%程度,炭
素量は約0.02%程度である。即ち端材を粉砕して得
た粉末の場合酸素量,炭素量ともにバージン材に比べて
高くなっている。
In Table 1, the amount of oxygen and the amount of carbon contained in the powder are shown together with the particle size of the powder. still,
In the case of virgin raw material powder, the oxygen content is about 0.06% and the carbon content is about 0.02%. That is, in the case of powder obtained by pulverizing offcuts, both the amount of oxygen and the amount of carbon are higher than that of virgin material.

【0023】[0023]

【表1】 [Table 1]

【0024】これら表1に示すA,B,C,Dの粉末
を、超急冷薄帯を粉砕して得たバージン原料粉末に各種
添加量で添加して混合し、その混合粉末を磁石用混合原
料粉末として上記と同様のプロセスでプレス成形及び押
出加工を行い、その際の押出特性と磁気特性を評価し
た。結果が図3に示してある。
The powders of A, B, C and D shown in Table 1 are added to the virgin raw material powder obtained by pulverizing the ultra-quenched ribbon in various amounts and mixed, and the mixed powder is mixed for a magnet. Press molding and extrusion were performed on the raw material powder in the same process as above, and the extrusion characteristics and magnetic characteristics at that time were evaluated. The results are shown in FIG.

【0025】図3(イ)は横軸に粉末の混合量を、縦軸
に所定形状に押出成形するための所要時間を取って各混
合粉末の成形性を示したものであるが、同図(イ)に示
しているように酸素量,炭素量ともに含有量の多い粉末
Aについては、15%より多く混合すると所定の形状に
押し出すことが難しく、また炭素量は少ないものの酸素
量の多い粉末Bについては20%より多く混合すると所
定の形状に押し出すことが難しくなるものの、酸素量が
0.5%よりも少なく、また炭素量が0.2%よりも少
ない粉末C,Dについては40%以下の混合量の下で良
好に押出成形できることが分る。
FIG. 3 (a) shows the mixing amount of the powder on the horizontal axis, and the time required for extrusion molding into a predetermined shape on the vertical axis, showing the moldability of each mixed powder. As shown in (a), for powder A having a high content of both oxygen and carbon, it is difficult to extrude it into a predetermined shape if mixed in more than 15%, and powder having a low carbon content but a high oxygen content If B is mixed in more than 20%, it becomes difficult to extrude it into a predetermined shape. However, powders C and D having an oxygen content of less than 0.5% and a carbon content of less than 0.2% are 40%. It can be seen that extrusion molding can be favorably performed under the following mixing amounts.

【0026】図3(ロ),(ハ),(ニ)はそれぞれ横
軸に混合量を、縦軸にBr(残留磁束密度),iHc
(保持力),(BH)max(最大磁気エネルギー)を取
ってそれぞれ示したもので、これらの図から明らかなよ
うに酸素量,炭素量の両方若しくは一方の含有量の高い
粉末A,Bについては、混合量の増加とともに磁気特性
の低下が見られるものの、酸素量,炭素量の少ない粉末
C,Dについては40%の混合量以内で良好な磁気特性
を保持していることが認められる。即ち端材の粉末を添
加した場合においても、所要の特性を満たす熱間塑性加
工Nd-Fe-B系磁石を製造できることが分る。
3 (b), 3 (c) and 3 (d) each show the mixing amount on the horizontal axis and Br (residual magnetic flux density) and iHc on the vertical axis.
(Coercive force) and (BH) max (maximum magnetic energy) are shown, respectively. As is clear from these figures, powders A and B having a high oxygen content and / or high carbon content are clearly shown. It can be seen that although the magnetic properties decrease as the mixing amount increases, the powders C and D having small amounts of oxygen and carbon retain good magnetic properties within a mixing amount of 40%. That is, it can be seen that even when the powder of the offcuts is added, a hot plastically processed Nd-Fe-B-based magnet satisfying the required characteristics can be manufactured.

【0027】図3の結果では、端材の粉末を混合すると
一般的に磁気特性が低下傾向を示しているが、図3
(ロ)に示しているように酸素量,炭素量の少ない粉末
C,Dについては、添加混合量が比較的少量であると
き、具体的には10%程度であるとき、Brが却って高
くなっている。その理由については現時点で明確には分
っていない。但しこの結果は再現性のある結果である。
According to the results shown in FIG. 3, when the powder of the scrap material is mixed, the magnetic characteristics generally tend to decrease.
As shown in (b), for powders C and D having a small amount of oxygen and carbon, when the amount of addition and mixing is relatively small, specifically, about 10%, Br is rather high. ing. The reason is not clear at this time. However, this result is a reproducible result.

【0028】その他端材の粉末を混合することで、押出
成形の際の焼付きが抑制されることが本発明者の研究に
より確認されている。図4はこれを具体的に表したもの
である。この図4の結果は、粉末Dを20%バージン原
料粉末に加え、その混合粉末を用いて図1に示す方法で
押出成形したときの累積ショット数と焼付量との関係を
表している。
It has been confirmed by the present inventor's research that the mixing of the powder of other offcuts suppresses seizure during extrusion molding. FIG. 4 shows this concretely. The results in FIG. 4 show the relationship between the cumulative number of shots and the burn-in amount when the powder D was added to the 20% virgin raw material powder and the mixture was extruded by the method shown in FIG.

【0029】図1に示す方法でプレス加工(押出加工)
を行ったとき、図5に示すように金型14の表面に焼付
き24が発生する。この焼付きの量はプレスの回数(シ
ョット数)が増えれば累積して増大する。このような焼
付きが生ずると、押出成形した製品の内径が段々大きく
なって行く。
Pressing (extrusion) by the method shown in FIG.
Is performed, seizure 24 occurs on the surface of the mold 14 as shown in FIG. The amount of seizure increases cumulatively as the number of presses (the number of shots) increases. When such seizure occurs, the inner diameter of the extruded product gradually increases.

【0030】図4の縦軸の焼付量はこの累積の焼付量を
表したもので、同図に示しているように端材の粉末を混
合していないものについては、累積ショット数が多くな
るのに伴って焼付量が多くなっているが、端材の粉末を
20%混合したものについては累積ショット数が増大し
ても焼付量はそれ程増大していない。即ち端材の粉末を
混合することで却って生産性が良好となる。
The baking amount on the vertical axis in FIG. 4 represents this cumulative baking amount. As shown in FIG. 4, the cumulative number of shots increases for those without mixing the powder of the offcuts. As a result, the amount of seizure increases, but the amount of seizure does not increase so much even if the number of shots is increased in the case of mixing 20% of the powder of the offcuts. That is, by mixing the powder of the offcuts, the productivity is rather improved.

【0031】尚、端材の粉末を混合することによってこ
のように耐焼付性が良好となる理由については明確には
分っていない。但し推察として、端材の粉末に含まれて
いる炭素が押出成形の際に潤滑剤ないし離型剤としての
働きをなし、これによって耐焼付性が良好となることが
考えられる。
The reason why the seizure resistance is improved by mixing the powder of the offcuts is not clearly understood. However, it is presumed that carbon contained in the powder of the offcuts functions as a lubricant or a release agent during extrusion molding, thereby improving seizure resistance.

【0032】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において種々変更を加えた態様で実施可能である。
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the gist of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における熱間塑性加工の工程
を示す図である。
FIG. 1 is a view showing a process of hot plastic working in one embodiment of the present invention.

【図2】図1の熱間塑性加工により得られた磁石素材を
示す図である。
FIG. 2 is a view showing a magnet material obtained by hot plastic working of FIG. 1;

【図3】本発明の実施例において得られた端材粉末の混
合量と押出特性及び磁気特性の関係を表す図である。
FIG. 3 is a diagram showing the relationship between the mixing amount of the offcuts powder obtained in an example of the present invention and the extrusion characteristics and magnetic characteristics.

【図4】端材粉末を混合した場合の焼付き量を端材粉末
を混合していないものとの比較において示した図であ
る。
FIG. 4 is a view showing the amount of seizure in the case where the offcut powder is mixed, in comparison with the case where no offcut powder is mixed.

【図5】熱間塑性加工で生じる焼付きを説明する説明図
である。
FIG. 5 is an explanatory diagram illustrating seizure caused by hot plastic working.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/08 H01F 1/08 A // C22C 38/00 303 C22C 38/00 303D Fターム(参考) 4K001 AA10 AA39 BA22 CA01 CA18 CA22 4K018 AA27 BA18 BB08 EA31 KA45 5E040 AA04 AA19 BD01 CA01 HB07 HB15 NN01 5E062 CC02 CD04 CE01 CE03 CE04 CE05 CG01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/08 H01F 1/08 A // C22C 38/00 303 C22C 38/00 303D F-term (Reference) 4K001 AA10 AA39 BA22 CA01 CA18 CA22 4K018 AA27 BA18 BB08 EA31 KA45 5E040 AA04 AA19 BD01 CA01 HB07 HB15 NN01 5E062 CC02 CD04 CE01 CE03 CE04 CE05 CG01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一旦熱間塑性加工したNd-Fe-B系磁
石の廃却用材を粉砕し、これにより得た粉末を、超急冷
薄帯を粉砕して得たバージン原料粉末に混合して磁石用
混合原料粉末となし、熱間塑性加工を経てNd-Fe-B
系磁石を得ることを特徴とする熱間塑性加工Nd-Fe-
B系磁石の製造方法。
A crushed material for disposing of Nd-Fe-B-based magnet once subjected to hot plastic working, and the resulting powder is mixed with virgin raw material powder obtained by crushing a super-quenched ribbon. Nd-Fe-B after hot plastic working with mixed raw material powder for magnet
Hot working Nd-Fe-
A method for producing a B-based magnet.
【請求項2】 請求項1において、前記廃却用材の粉末
を、混合後の粉末重量を基準として40重量%以下の量
で混合することを特徴とする熱間塑性加工Nd-Fe-B
系磁石の製造方法。
2. The hot plastic working Nd-Fe-B according to claim 1, wherein the waste material powder is mixed in an amount of 40% by weight or less based on the weight of the mixed powder.
Method of manufacturing system magnet.
【請求項3】 請求項1,2の何れかにおいて、前記廃
却用材の粉末の酸素量が0.5重量%以下且つ炭素量が
0.2重量%以下であることを特徴とする熱間塑性加工
Nd-Fe-B系磁石の製造方法。
3. The hot working method according to claim 1, wherein the amount of oxygen in the powder of the waste material is 0.5% by weight or less and the carbon amount is 0.2% by weight or less. A method for producing a plastically processed Nd-Fe-B magnet.
JP2000286043A 2000-09-20 2000-09-20 METHOD OF MANUFACTURING HOT-PLASTIC WORKING ND-Fe-B MAGNET Pending JP2002100524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286043A JP2002100524A (en) 2000-09-20 2000-09-20 METHOD OF MANUFACTURING HOT-PLASTIC WORKING ND-Fe-B MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286043A JP2002100524A (en) 2000-09-20 2000-09-20 METHOD OF MANUFACTURING HOT-PLASTIC WORKING ND-Fe-B MAGNET

Publications (1)

Publication Number Publication Date
JP2002100524A true JP2002100524A (en) 2002-04-05

Family

ID=18770017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286043A Pending JP2002100524A (en) 2000-09-20 2000-09-20 METHOD OF MANUFACTURING HOT-PLASTIC WORKING ND-Fe-B MAGNET

Country Status (1)

Country Link
JP (1) JP2002100524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346261A (en) * 2018-11-14 2019-02-15 山西宇欣磁业有限公司 A kind of the ferro-aluminum mine magnetic material and its smelting process of high cerium content

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638438A (en) * 1979-09-06 1981-04-13 Sumitomo Special Metals Co Ltd Reclaiming scrap of rare earth magnets
JPH09129465A (en) * 1995-10-30 1997-05-16 Daido Steel Co Ltd Manufacture of nd-fe-b magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638438A (en) * 1979-09-06 1981-04-13 Sumitomo Special Metals Co Ltd Reclaiming scrap of rare earth magnets
JPH09129465A (en) * 1995-10-30 1997-05-16 Daido Steel Co Ltd Manufacture of nd-fe-b magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346261A (en) * 2018-11-14 2019-02-15 山西宇欣磁业有限公司 A kind of the ferro-aluminum mine magnetic material and its smelting process of high cerium content
CN109346261B (en) * 2018-11-14 2020-08-14 山西宇欣磁业有限公司 Ferro-aluminum magnetic material with high cerium content and smelting method thereof

Similar Documents

Publication Publication Date Title
KR101632853B1 (en) Rare-earth-magnet production method
JP5392435B2 (en) Rare earth magnet manufacturing method
JP2015220335A (en) Rare earth magnet, and method for manufacturing rare earth magnet
CN104064301A (en) NdFeB magnet and preparation method thereof
WO1999060580A1 (en) FEEDSTOCK POWDER FOR R-Fe-B MAGNET AND PROCESS FOR PRODUCING R-Fe-B MAGNET
CN1649046A (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
CN105849829B (en) The method for manufacturing rare-earth magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPH11329810A (en) Magnetic alloy and anisotropic magnet using alloy thereof
JP2002100524A (en) METHOD OF MANUFACTURING HOT-PLASTIC WORKING ND-Fe-B MAGNET
US6423369B1 (en) Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
JP2003049234A (en) Method for producing sintered compact for rare earth magnet
Croat Compression bonded NdFeB permanent magnets
US5433795A (en) Fabrication of permanent magnets without loss in magnetic properties
JP2002217052A (en) Method of regenerating rare earth magnet
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JPS60138056A (en) Material for sintered magnet
KR101661602B1 (en) Method for manufacturing soft magnetic yoke
JPH04134804A (en) Manufacture of rare earth permanent magnet
JP2005294557A (en) Method of manufacturing rare-earth sintered magnet
JP2597843B2 (en) Rare earth magnet and its manufacturing method
JP4543713B2 (en) Method for producing R-TM-B permanent magnet using sludge
JP2002100523A (en) METHOD OF MANUFACTURING HOT-PLASTIC WORKING Nd-Fe-B MAGNET
JPH03290906A (en) Warm-worked magnet and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727