JP2002097593A - Machining material with high corrosion resistance for electronic device/component, electronic device/ component using the same, and method for manufacturing machining material with high corrosion resistance - Google Patents

Machining material with high corrosion resistance for electronic device/component, electronic device/ component using the same, and method for manufacturing machining material with high corrosion resistance

Info

Publication number
JP2002097593A
JP2002097593A JP2000287856A JP2000287856A JP2002097593A JP 2002097593 A JP2002097593 A JP 2002097593A JP 2000287856 A JP2000287856 A JP 2000287856A JP 2000287856 A JP2000287856 A JP 2000287856A JP 2002097593 A JP2002097593 A JP 2002097593A
Authority
JP
Japan
Prior art keywords
plating
corrosion resistance
thickness
electronic device
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000287856A
Other languages
Japanese (ja)
Inventor
Keizo Tamai
啓三 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohan Kogyo Co Ltd
Original Assignee
Kohan Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohan Kogyo Co Ltd filed Critical Kohan Kogyo Co Ltd
Priority to JP2000287856A priority Critical patent/JP2002097593A/en
Publication of JP2002097593A publication Critical patent/JP2002097593A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a machining material with high corrosion resistance for an electron device/component, which has a combination of superior corrosion resistance and a machining property, to provide an electron device/component, and a method for manufacturing the machining material with the high corrosion resistance. SOLUTION: This method comprises employing a carbon steel or a low alloy steel of which the quantities of S and C are limited to a fixed range, Cr plating and Ni plating on its surface, and then heat treating it to form a Cr-Ni-Fe alloy layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は表面に高耐食性のC
r−Ni−Fe合金層が形成された炭素鋼もしくは低合
金鋼からなる切削加工材料、それを用いた電子機器部
品、および切削加工材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high corrosion resistant C
The present invention relates to a cutting material made of carbon steel or low alloy steel having an r-Ni-Fe alloy layer formed thereon, an electronic device component using the same, and a method of manufacturing a cutting material.

【0002】[0002]

【従来の技術】耐食性とともに高い寸法精度が要求され
る電子機器に用いる、例えばパソコンのハードディスク
ドライブのモータのスピンドルなどの精密部品は、Sを
添加して被削性を向上した快削ステンレス鋼を切削加工
して製造されている。
2. Description of the Related Art Precision parts such as spindles for motors of hard disk drives for personal computers, which are used in electronic devices that require high dimensional accuracy as well as corrosion resistance, are made of free-cutting stainless steel with improved machinability by adding S. It is manufactured by cutting.

【0003】電子機器の多くは、内部にAg、Cu、A
l等の金属が回路の構成材料として用いられている。こ
れらの金属は硫化水素のような硫化物のガスによって腐
食されると非導電性の腐食生成物が生成し、その結果電
流が流れなくなり機器が正しく動作しなくなる問題が生
じる。Sを添加した快削ステンレス鋼から製造されたパ
ソコンのハードディスクドライブのモータのスピンドル
などの電子機器部品においては、電子機器内部に発生す
る熱により加熱された場合、被削性を向上させるために
添加されているSに起因する硫化物のガスが発生して、
回路を構成する金属が腐食されて非導電性の腐食生成物
が生成し、回路の導電性が不良となる結果、機器の誤作
動を引き起こすと考えられる。
Many electronic devices have Ag, Cu, A inside.
Metals such as 1 are used as constituent materials of circuits. When these metals are corroded by a sulfide gas such as hydrogen sulfide, non-conductive corrosion products are formed, and as a result, there is a problem in that current does not flow and equipment does not operate properly. For electronic equipment parts such as spindles for motors of personal computer hard disk drives manufactured from S-added free-cutting stainless steel, when heated by the heat generated inside the electronic equipment, it is added to improve machinability. Sulfide gas resulting from S is generated,
It is considered that the metal constituting the circuit is corroded to generate non-conductive corrosion products, and the conductivity of the circuit becomes poor, resulting in malfunction of the device.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の欠点
を解消し、優れた耐食性と切削加工性を併せ持つ電子機
器部品に用いる高耐食性切削加工材料、それを用いた電
子機器部品、および高耐食性切削加工材料の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks, and provides a high corrosion-resistant cutting material used for electronic equipment parts having both excellent corrosion resistance and cutting workability, an electronic equipment part using the same, and a high corrosion-resistant cutting material. An object of the present invention is to provide a method for producing a corrosion-resistant cutting material.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の高耐食性切削加工材料は、Cを0.005
〜0.25%、Sを0.04%以下含有する炭素鋼の表
面に、厚さが1.2〜9μmのCr−Ni−Fe合金層
が形成され、かつ前記合金層中のCr濃度が20〜60
%であるか、またはCを0.005〜0.25%、Sを
0.04%以下を含有する低合金鋼の表面に、厚さが
1.2〜9μmのCr−Ni−Fe合金層が形成され、
かつ前記合金層中のCr濃度が20〜60%であり、さ
らにAg箔および純水とともに、それぞれが互いに非接
触の状態で密閉容器中に入れ、80℃で24時間放置し
た後に、Ag箔表面に変色が認められず、硫化物のガス
発生がないことを特徴とする。
In order to achieve the above object, the high corrosion resistant cutting material of the present invention has a C content of 0.005.
A Cr—Ni—Fe alloy layer having a thickness of 1.2 to 9 μm is formed on the surface of carbon steel containing up to 0.25% and 0.04% or less of S, and the Cr concentration in the alloy layer is 20-60
% Or a Cr-Ni-Fe alloy layer having a thickness of 1.2 to 9 μm on the surface of a low alloy steel containing 0.005 to 0.25% of C and 0.04% or less of S. Is formed,
In addition, the Cr concentration in the alloy layer is 20 to 60%, and further, together with the Ag foil and pure water, each is put in a closed container in a non-contact state with each other and left at 80 ° C. for 24 hours. No discoloration is observed and no sulfide gas is generated.

【0006】また、本発明の電子機器部品は、上記のい
ずれかの高耐食性切削加工材料切削加工表面を精密加工
した後、バフ研磨してなることを特徴とする。
Further, an electronic device part according to the present invention is characterized in that any one of the above-mentioned cutting surfaces of the highly corrosion-resistant cutting material is precision-processed and then buffed.

【0007】さらに、本発明の高耐食性切削加工材料の
製造方法は、Cを0.005〜0.25%、Sを0.0
4%以下含有する炭素鋼の表面に、厚さ0.2〜1.0
μmのCrめっき層を形成し、さらにそのCrめっき層
上に厚さ1〜8μmのNiめっき層を形成した後、非酸
化成雰囲気または還元性雰囲気中で、500〜600℃
の温度範囲で熱処理する、またはCを0.005〜0.
25%、Sを0.04%以下を含有する低合金鋼の表面
に、厚さ0.2〜1.0μmのCrめっき層を形成し、
さらにそのCrめっき層上に厚さ1〜8μmのNiめっ
き層を形成した後、非酸化成雰囲気または還元性雰囲気
中で、500〜600℃の温度範囲で熱処理することを
特徴とする。
Further, the method for producing a high corrosion resistant cutting material according to the present invention is characterized in that C is 0.005 to 0.25% and S is 0.0
A thickness of 0.2 to 1.0 on the surface of carbon steel containing 4% or less.
After forming a Cr plating layer having a thickness of 1 to 8 μm and further forming a Ni plating layer having a thickness of 1 to 8 μm on the Cr plating layer, in a non-oxidizing atmosphere or a reducing atmosphere, 500 to 600 ° C.
Heat treatment in a temperature range of 0.005 to 0.
Forming a Cr plating layer having a thickness of 0.2 to 1.0 μm on a surface of a low alloy steel containing 25% and S of 0.04% or less;
Further, after forming a Ni plating layer having a thickness of 1 to 8 μm on the Cr plating layer, heat treatment is performed in a temperature range of 500 to 600 ° C. in a non-oxidizing atmosphere or a reducing atmosphere.

【0008】[0008]

【発明の実施の形態】本発明は、耐食性には優れるが切
削加工性に乏しいステンレス鋼にSを添加して切削加工
性を向上させた快削ステンレス鋼に替わる、可熱された
状態でも硫化物ガスなどの腐食性気体を発生させるとが
なく、切削加工性に優れ、かつステンレス鋼と同等の優
れた耐食性を有する、電子機器部品に用いる高耐食性切
削加工材料を得ることを目的として鋭意研究した結果、
C量およびS量を一定範囲に限定した炭素鋼または低合
金鋼炭素鋼の表面にCrめっきおよびNiめっきを施
し、次いで熱処理をを施してCr−Ni−Fe合金層を
形成させることにより、目的とする高耐食性切削加工材
料を得られることが判明した。以下、本発明を詳細に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is intended to replace free-cutting stainless steel which is superior in corrosion resistance but has poor machinability by adding S to machinability. Dedicated research aimed at obtaining high corrosion-resistant cutting materials used in electronic equipment parts, which do not generate corrosive gas such as material gas, have excellent cutting workability, and have excellent corrosion resistance equivalent to stainless steel As a result,
The purpose is to form a Cr-Ni-Fe alloy layer by applying Cr plating and Ni plating to the surface of carbon steel or low alloy steel carbon steel in which the amount of C and S is limited to a certain range, and then performing a heat treatment. It has been found that a high corrosion resistant cutting material can be obtained. Hereinafter, the present invention will be described in detail.

【0009】まず、本発明の切削加工材料に用いる鋼材
としては、Cを0.005〜0.25%、Sを0.04
%以下含有する炭素鋼、またはCを0.005〜0.2
5%、Sを0.04%以下を含有する低合金鋼の焼鈍材
が用いられる。低合金鋼としては、上記の範囲のCおよ
びS以外にMn、Ni、Cr、Moの1種類以上を、M
n:2.0%以下、Ni:4.0%以下、Cr:2.0
%以下、Mo:0.6%以下で添加したものが用いられ
る。
First, as the steel material used for the cutting material of the present invention, C is 0.005 to 0.25% and S is 0.04%.
% Or less of carbon steel or 0.005 to 0.2% of C
An annealed material of a low alloy steel containing 5% and S of 0.04% or less is used. As the low-alloy steel, one or more of Mn, Ni, Cr, and Mo in addition to C and S in the above ranges may be used.
n: 2.0% or less, Ni: 4.0% or less, Cr: 2.0
% And Mo: 0.6% or less.

【0010】上記の炭素鋼および低合金鋼において、C
量が0.005%未満の場合は電子機器部品に成形加工
した際に所要の強度が得られず、一方、0.25%を超
えると、これらの鋼材を目的とする電子機器部品の最終
形状とほぼ同一の形状に切削加工した後、Crめっきお
よびNiめっきを施し、次いで熱処理を施す際にCrが
熱拡散によりCと結合し、Cr炭化物の形成量が増加
し、耐食性に効果のあるNiやFeとCとの固溶体や化
合物の量が減少して、耐食性が劣化する。
In the above carbon steel and low alloy steel, C
If the amount is less than 0.005%, the required strength cannot be obtained when molded into an electronic device part, while if it exceeds 0.25%, the final shape of the electronic device component intended for these steel materials is used. Cr and Ni plating are performed after being cut into almost the same shape as Cr, and then, when heat treatment is performed, Cr is combined with C by thermal diffusion, the amount of formed Cr carbide increases, and Ni, which has an effect on corrosion resistance, is formed. And the amount of the solid solution or compound of Fe and C is reduced, and the corrosion resistance is deteriorated.

【0011】また、S量が0.04%を超えると、電子
機器部品に成形して用いた際に、長時間使用することに
より電子機器部品が加熱され、硫化物のガスが発生して
電子機器内部のAg、Cu、Al等の金属で構成される
回路が腐食されるようになり、好ましくない。
On the other hand, if the S content exceeds 0.04%, when molded into electronic device parts and used, the electronic device parts will be heated by prolonged use, and sulfide gas will be generated, resulting in the generation of sulfide gas. A circuit formed of a metal such as Ag, Cu, or Al inside the device is undesirably corroded.

【0012】上記の範囲の含有量でCおよびSを含有す
る炭素鋼および低合金鋼の焼鈍材を目的とする電子機器
部品の最終形状とほぼ同一の形状に切削加工した後、そ
の表面に耐食性を付与するためにCrめっきおよびNi
めっきを施す。まず、上記の切削加工を施した部材に脱
脂処理および酸洗処理を施した後、バレルめっき法によ
り、サージェント浴などを用いて厚さ0.2〜1.0μ
mの厚さでCrめっきを施す。めっき厚さが0.2μm
未満であると、Crめっき層上にNiめっきを施し、次
いで熱処理を施してCr−Ni−Fe合金層を形成させ
ても十分な耐食性が得られず、一方、めっき厚さを1μ
mを超えて厚くしても耐食性向上の効果は飽和し、経済
的でなくなり好ましくない。より好ましいCrめっき厚
さは0.3〜0.6μmである。
[0012] After annealed carbon and low-alloy steel containing C and S in the above-mentioned range, the surface of the electronic component is cut into almost the same shape as the final shape of the electronic device component, and then the surface is subjected to corrosion resistance. Cr plating and Ni
Apply plating. First, after performing the degreasing treatment and the pickling treatment on the member subjected to the above cutting, the thickness is 0.2 to 1.0 μm by using a surge bath or the like by a barrel plating method.
Cr plating is applied to a thickness of m. Plating thickness 0.2μm
If the thickness is less than 1, sufficient corrosion resistance cannot be obtained even if Ni plating is performed on the Cr plating layer and then heat treatment is performed to form a Cr—Ni—Fe alloy layer, while the plating thickness is 1 μm.
If the thickness exceeds m, the effect of improving the corrosion resistance saturates and becomes economical, which is not preferable. A more preferred Cr plating thickness is 0.3 to 0.6 μm.

【0013】次いでCrめっきを施したさらにその上層
にCrめっきと同様にバレルめっき法を用いてNiめっ
きを施す。一般に用いられるワット浴などのpHが3〜
5のめっき浴を用いた場合、CrめっきからNiめっき
に移行する極く短時間でもCrめっき表面に除去し難い
強固なCr酸化皮膜が形成されるため、pH<3以下の
Niストライクめっき浴を用いてめっきする。しかし、
ストライクNiめっき浴はNiの析出効率が低いので、
この浴を用いてストライクめっきを短時間行った後、ワ
ット浴やスルファミン酸浴などのNiめっき浴を用いて
Niめっき層の大部分を付着させることが経済的であ
り、好ましい。Niめっきの厚さは1〜8μm、好まし
くは、2〜4μmである。後記するように、Niめっき
後に熱処理を施した場合、Niめっき量が多いほど、フ
ェライト系ステンレス鋼と同様の体心立方格子構造から
オーステナイト系ステンレス鋼と同様の面心立方格子構
造を示すようになり、耐食性が向上する。Niめっき厚
さが1μm未満の場合は、後記する熱処理を施した際に
下層のCrがNiめっきの表層まで拡散して変色するの
を抑制し得ない。また8μmを超えてより厚くしても耐
食性向上の効果は飽和し、製造コストが高くなり経済的
でなくなる。
Next, Ni plating is further performed on the Cr-plated upper layer using a barrel plating method in the same manner as Cr plating. PH of commonly used watt bath etc. is 3 ~
When a plating bath of No. 5 is used, a strong Cr oxide film is formed on the Cr plating surface which is difficult to remove even in a very short time when the process shifts from Cr plating to Ni plating. And plating. But,
Since the strike Ni plating bath has a low Ni deposition efficiency,
After short-time strike plating using this bath, it is economically preferable to deposit most of the Ni plating layer using a Ni plating bath such as a Watt bath or a sulfamic acid bath. The thickness of the Ni plating is 1 to 8 μm, preferably 2 to 4 μm. As will be described later, when heat treatment is performed after Ni plating, as the amount of Ni plating increases, a face-centered cubic lattice structure similar to that of austenitic stainless steel changes from a body-centered cubic lattice structure similar to ferritic stainless steel. And the corrosion resistance is improved. When the thickness of the Ni plating is less than 1 μm, it is impossible to prevent the lower Cr from diffusing to the surface layer of the Ni plating and discoloring when a heat treatment described later is performed. Further, even if the thickness exceeds 8 μm, the effect of improving corrosion resistance saturates, the production cost increases, and it is not economical.

【0014】上記のようにして、切削加工部材にCrめ
っきとNiめっきを形成させた後、熱処理を施す。Ni
めっき層およびめっきピンホール部の酸化を防止するた
め、熱処理は一般的にN2ガス、Arガスなどの非酸化
性雰囲気中、または真空、H2ガス、H2−N2混合ガス
などの還元雰囲気中で実施する。上記の切削加工部材の
大きさ、CrめっきおよびNiめっきの厚さ、および熱
処理条件によって、Cr、Ni、Feが相互拡散して鋼
板表面に生成するCr−Ni−Fe合金層の組成や厚さ
が定まる。下層のCrが上層のNiめっき層を超えて2
層めっき層の表面まで拡散すると、Cr酸化物を形成
し、変色するので好ましくない。そのため、下層めっき
層のCrの拡散を最小限に抑制する必要がある。またC
rが合金化せずに残存すると、使用時に大きな力が作用
すると硬質のCrめっき層にクラックが生じ、耐食性や
めっき密着性が劣化するので、めっきした全Crを拡散
させる必要がある。またCrがめっき下地である鋼材に
深く拡散し過ぎると、Cr−Ni−Fe合金層を構成す
るCr濃度が低くなりすぎ、耐食性向上の効果が失われ
る。以上の観点から、Cr−Ni−Fe合金層において
は、Crの濃度は20〜60%であることが好ましい。
合金層中のCr濃度については、Cr−Ni−Fe合金
層を形成させた切削加工部材から小片を切り出し、これ
を陰極として対極(陽極)との間に高電圧を印加し、極
間に発生するグロー放電により合金層表面をスパッタリ
ングすることにより発生する構成原子を発光分析する、
グロー放電発光分光分析装置(以下GDSと言う)を用
い、各元素のピーク面積を測定し、その総和に対するC
rのピーク面積の割合を算出して求めることができる。
After forming the Cr plating and the Ni plating on the cutting member as described above, a heat treatment is performed. Ni
In order to prevent the oxidation of the plating layer and the plating pinhole portion, the heat treatment is generally performed in a non-oxidizing atmosphere such as N 2 gas or Ar gas, or reduction of vacuum, H 2 gas, H 2 -N 2 mixed gas or the like. Perform in an atmosphere. The composition and thickness of the Cr-Ni-Fe alloy layer formed on the steel sheet surface by interdiffusion of Cr, Ni, and Fe depending on the size of the above-mentioned cutting member, the thickness of Cr plating and Ni plating, and the heat treatment conditions. Is determined. Lower Cr exceeds upper Ni plating layer 2
If it diffuses to the surface of the layer plating layer, it forms Cr oxide and discolors, which is not preferable. Therefore, it is necessary to minimize the diffusion of Cr in the lower plating layer. Also C
If r remains without being alloyed, when a large force acts during use, cracks occur in the hard Cr plating layer, deteriorating the corrosion resistance and the plating adhesion, so that it is necessary to diffuse all the plated Cr. Further, if Cr diffuses too deeply into the steel material as the plating base, the Cr concentration of the Cr—Ni—Fe alloy layer becomes too low, and the effect of improving corrosion resistance is lost. From the above viewpoints, the Cr concentration in the Cr-Ni-Fe alloy layer is preferably 20 to 60%.
Regarding the Cr concentration in the alloy layer, a small piece was cut out from the machined member on which the Cr-Ni-Fe alloy layer was formed, and a high voltage was applied between the small piece and the counter electrode (anode) using the cut piece as a cathode to generate a gap between the electrodes Luminescence analysis of constituent atoms generated by sputtering the alloy layer surface by glow discharge,
The peak area of each element was measured using a glow discharge optical emission spectrometer (hereinafter referred to as GDS), and C
It can be determined by calculating the ratio of the peak area of r.

【0015】Feは温度の低いα領域の方が温度の高い
γ領域の方より拡散係数が大きく、また、γ領域に加熱
後冷却すると相変態を伴う。鋼の場合は変形が生じ安
く、また拡散が粒界で速く進行することもあるので、熱
処理はγ領域でなく、α領域で実施することが好まし
い。好ましくは500〜600℃の温度範囲で熱処理す
る。熱処理温度が500℃未満の場合は、拡散係数が大
きいα領域といえども、拡散速度が遅くなるために拡散
に長時間を要し、生産性に劣る。一方、600℃を超え
ると、変形が生じたり、鋼自体の組織が粗大粒となり、
機械的性質が劣化する。処理時間は切削加工部材の大き
さ、形成させるCr−Ni−Fe合金層の厚さにもよる
が7〜10時間であることが好ましい。
[0015] Fe has a larger diffusion coefficient in the α region where the temperature is lower than in the γ region where the temperature is higher. In addition, when Fe is cooled after being heated to the γ region, it undergoes phase transformation. In the case of steel, the heat treatment is preferably performed not in the γ region but in the α region because deformation occurs cheaply and the diffusion may proceed rapidly at the grain boundaries. Preferably, the heat treatment is performed in a temperature range of 500 to 600 ° C. When the heat treatment temperature is lower than 500 ° C., even in the α region where the diffusion coefficient is large, the diffusion speed is slow, so that a long time is required for the diffusion and the productivity is poor. On the other hand, when the temperature exceeds 600 ° C., deformation occurs or the structure of the steel itself becomes coarse grains,
The mechanical properties deteriorate. The processing time is preferably 7 to 10 hours, although it depends on the size of the cutting member and the thickness of the Cr-Ni-Fe alloy layer to be formed.

【0016】上記のようにして形成されるCr−Ni−
Fe合金層の全厚さは1.2〜9μmであることが好ま
しい。合金層の厚さが1.2μm未満の場合は耐食性に
乏しく、一方9μmを超えても耐食性向上の効果は飽和
し経済的でなくなり、好ましくない。Cr−Ni−Fe
合金層の厚さはGDSを用い、合金層を一定条件でアル
ゴンスパッタしてエッチングし、母材の鋼(Fe)が露
出するまでの時間を測定し、既知の厚さの合金層を同一
条件でアルゴンスパッタした際にFeが露出するまでに
要した時間と比較換算することにより、求めることがで
きる。
The Cr—Ni— formed as described above
The total thickness of the Fe alloy layer is preferably 1.2 to 9 μm. When the thickness of the alloy layer is less than 1.2 μm, the corrosion resistance is poor. On the other hand, when the thickness exceeds 9 μm, the effect of improving the corrosion resistance is saturated and is not economical. Cr-Ni-Fe
The thickness of the alloy layer was determined by using GDS, etching the alloy layer by argon sputtering under certain conditions, measuring the time until the base material steel (Fe) was exposed, and using a known thickness of the alloy layer under the same conditions. Can be obtained by performing a comparison conversion with the time required until Fe is exposed when argon sputtering is performed.

【0017】上記のようにして、表面にCr−Ni−F
e合金層を形成させた後、切削加工部材の表面にさらに
精密加工、および/またはバフ研磨を施し、目的とする
電子機器部品の最終形状に仕上げる。このようにして、
本発明の電子機器部品が得られる。
As described above, the surface is made of Cr-Ni-F
After the formation of the e-alloy layer, the surface of the machined member is further subjected to precision processing and / or buffing to finish the final shape of the target electronic device component. In this way,
The electronic device component of the present invention is obtained.

【0018】[0018]

【実施例】以下、実施例を示し、本発明をさらに詳細に
説明する。 (実施例1)表1に示す12種類の炭素鋼および低合金
鋼を溶製した鋼塊を10mmの厚さに熱間圧延し焼鈍
し、次いで30mm×30mmの大きさに切り出し、切
削加工用部材とした。
The present invention will be described in more detail with reference to the following examples. (Example 1) A steel ingot prepared from 12 types of carbon steel and low alloy steel shown in Table 1 was hot-rolled to a thickness of 10 mm, annealed, cut out into a size of 30 mm x 30 mm, and used for cutting. It was a member.

【0019】[0019]

【表1】 [Table 1]

【0020】次いで、表1に示した12種類の切削加工
用部材にアルカリ脱脂、酸洗を施した後、サージェント
浴を用い、下記の条件でバレルめっき法によりCrを表
2に示すめっき厚さでめっきした。次いで水洗し、下記
の条件でNiストライクめっき浴およびワット浴を用
い、バレルめっき法によりNiをストライクめっきし次
いでNiめっきし、表2に示すめっき厚さとし、試料と
した。それぞれのめっき量は蛍光X線法を用いて測定し
た。 [サージェント浴組成] 無水クロム酸 250g/l 硫酸 25g/l 珪フッ化ナトリウム 3g/l [電解条件] 浴温 50℃ 電流密度 40A/dm2 [Niストライクめっき浴組成] 硫酸ニッケル 240g/l 塩化ニッケル 45g/l 硼酸 30g/l 硫酸 10g/l [電解条件] pH <1 浴温 50℃ 電流密度 5A/dm2 [Niめっき浴組成] 硫酸ニッケル 240g/l 塩化ニッケル 45g/l 硼酸 30g/l [電解条件] pH 3.5〜4.5 浴温 50℃ 電流密度 5A/dm2
Next, after 12 kinds of cutting members shown in Table 1 were subjected to alkali degreasing and pickling, Cr was plated by barrel plating under the following conditions using a surge bath under the following conditions. Plated. Next, the sample was washed with water, strike-plated Ni by barrel plating using a Ni strike plating bath and a Watt bath under the following conditions, and then Ni-plated to have a plating thickness shown in Table 2 to obtain a sample. Each plating amount was measured using a fluorescent X-ray method. [Sergent bath composition] Chromic anhydride 250 g / l Sulfuric acid 25 g / l Sodium silicate 3 g / l [Electrolysis conditions] Bath temperature 50 ° C Current density 40 A / dm 2 [Ni strike plating bath composition] Nickel sulfate 240 g / l Nickel chloride 45 g / l boric acid 30 g / l sulfuric acid 10 g / l [electrolysis conditions] pH <1 bath temperature 50 ° C. current density 5 A / dm 2 [Ni plating bath composition] nickel sulfate 240 g / l nickel chloride 45 g / l boric acid 30 g / l [electrolysis Conditions] pH 3.5-4.5 Bath temperature 50 ° C. Current density 5 A / dm 2

【0021】[0021]

【表2】 [Table 2]

【0022】次いで、表2に示す試料を表3に示す条件
で熱処理し、表3に示す厚さのCr−Ni−Fe合金層
を形成させた。合金層の厚さはGDS(島津製作所製:
島津グロー放電発光分析装置:GDLS−5017)を
用い、合金層をアルゴンスパッタでエッチングして求め
た。得られた合金層のCr濃度については、同一のGD
Sを用い、各元素のピーク面積を測定して求めた。結果
を表3に示す。
Next, the samples shown in Table 2 were heat-treated under the conditions shown in Table 3 to form Cr-Ni-Fe alloy layers having the thicknesses shown in Table 3. The thickness of the alloy layer is GDS (manufactured by Shimadzu Corporation:
The alloy layer was etched by argon sputtering using a Shimadzu glow discharge emission spectrometer: GDLS-5017). Regarding the Cr concentration of the obtained alloy layer, the same GD
Using S, the peak area of each element was measured and determined. Table 3 shows the results.

【0023】[0023]

【表3】 [Table 3]

【0024】(特性評価)表2および表3に示した試料
番号1〜20、および比較材として快削ステンレス鋼
(SUS430F:S含有量0.17%)について、強
度、合金層の結晶構造、拡散による表面変色度合、耐食
性、切削加工性、硫化物ガス発生性を下記のように評価
した。 [強度]JIS Z 2201に基づく5号試験片を作成し
て、引張強度を測定し、下記の基準で強度を評価した。 ○:150N/mm2以上、 ×:150N/mm2
満 [合金層結晶構造]Cu−Kα線を線源とし、X線回折に
より求めた。 [表面変色度合]試料表面を肉眼観察し、下記の基準で変
色度合を評価した。 ○:良好、 △:若干変色、 ×:変色 [耐食性]試料表面をバフ研磨した後、JIS Z 237
1に基づく塩水噴霧試験を行い、72時間後に赤錆が発
生した面積率を測定し、下記の基準で評価した。
◎:0〜0.1%、 ○:0.1〜0.5%、
△:0.5〜2.5%、×:2.5%以上 [切削加工性]鋼番号A〜Lと同一組成の直径20mmの
丸棒と、同一径の快削ステンレス鋼(SUS430F)
の丸棒を、超硬工具(JIS企画:K−10)製バイト
を取り付けた旋盤を用い、下記の条件で切削加工し、バ
イトのブランク摩耗量が1mmになるまでの時間を求
め、下記の基準で切削加工性を評価した。 <加工条件> 切削速度 : 200mm/分 バイト送り速度 : 0.15mm/rev 切込み深さ : 1.0mm 切削油 : 無し ◎:100分以上、 ○:50〜100分、 △:
10〜50分、×:10分以下 [硫化物ガス発生性]試料を、厚さ:20μmで30mm
×30mmの大きさのAg箔および0.5mlの純水と
ともに250cm3 の内容積の容器中に密閉し、80
℃で24時間放置した後の、Ag箔表面を肉眼観察し、
黒化の程度を下記の記号で分類し、硫化物ガス発生性を
評価した。黒化の程度が小さいものほど良好な硫化物ガ
ス発生性を表す。 ◎:黒化は全く認められない、 ○:微かに黒ずんだ
色調が認められる、△:黒ずんだ色調が認められる、
×:黒化が認められる 特性評価結果を表4に示す。
(Characteristic evaluation) For samples Nos. 1 to 20 shown in Tables 2 and 3, and a free-cutting stainless steel (SUS430F: S content 0.17%) as a comparative material, the strength, the crystal structure of the alloy layer, The degree of surface discoloration due to diffusion, corrosion resistance, cutting workability, and sulfide gas generation were evaluated as follows. [Strength] A No. 5 test piece based on JIS Z 2201 was prepared, tensile strength was measured, and strength was evaluated according to the following criteria. :: 150 N / mm 2 or more, ×: less than 150 N / mm 2 [Crystal structure of alloy layer] It was determined by X-ray diffraction using Cu-Kα ray as a radiation source. [Surface Discoloration Degree] The sample surface was visually observed, and the discoloration degree was evaluated based on the following criteria. :: good, △: slightly discolored, ×: discolored [Corrosion resistance] JIS Z 237 after buffing the sample surface
A salt spray test based on No. 1 was performed, and an area ratio at which red rust was generated after 72 hours was measured and evaluated according to the following criteria.
◎: 0 to 0.1%, :: 0.1 to 0.5%,
Δ: 0.5 to 2.5%, ×: 2.5% or more [Machinability] A round bar having the same composition as steel numbers A to L and having a diameter of 20 mm, and a free-cutting stainless steel having the same diameter (SUS430F)
Is cut using a lathe equipped with a cutting tool made of carbide tool (JIS K-10) under the following conditions, and the time until the blank wear amount of the cutting tool becomes 1 mm is obtained. The cutting workability was evaluated based on the standard. <Processing conditions> Cutting speed: 200 mm / min Biting feed speed: 0.15 mm / rev Cutting depth: 1.0 mm Cutting oil: None ◎: 100 minutes or more, ○: 50 to 100 minutes, △:
10 to 50 minutes, ×: 10 minutes or less [Sulfide gas generation] A sample was prepared with a thickness of 20 μm and a thickness of 30 mm.
Sealed in a container having an internal volume of 250 cm 3 together with Ag foil having a size of × 30 mm and 0.5 ml of pure water;
After standing at 24 ° C. for 24 hours, the surface of the Ag foil was visually observed,
The degree of blackening was classified by the following symbols, and the sulfide gas generation was evaluated. A smaller degree of blackening indicates better sulfide gas generation. ◎: no blackening was observed at all; o: slightly darkened color was observed; Δ: darkened color was observed;
×: Blackening is observed. Table 4 shows the results of the property evaluation.

【0025】[0025]

【表4】 [Table 4]

【0026】表4に示すように、本発明の高耐食性切削
加工材料は、バルクがC量およびS量が少ない炭素鋼ま
たは低合金鋼であるので、加熱しても硫化物のガスが発
生せず、切削加工時に工具の摩耗が少ない優れた切削加
工性を有している。また表面にオーステナイト系ステン
レス鋼と同等の結晶構造の合金層が形成されているの
で、ステンレス鋼と同等の優れた耐食性を有している。
As shown in Table 4, since the high corrosion resistant cutting material of the present invention is made of carbon steel or low alloy steel whose bulk is small in C content and S content, sulfide gas is generated even when heated. And excellent cutting workability with less wear of the tool during cutting. Further, since an alloy layer having a crystal structure equivalent to that of austenitic stainless steel is formed on the surface, it has excellent corrosion resistance equivalent to that of stainless steel.

【0027】(実施例2)次いで、試料番号6、12、
および16の切削加工材料を精密加工し次いでバフ研磨
し、図1に示す断面形状のスピンドルに仕上げ、ハード
ディスクドライブ装置に組み込み、温度:70℃、相対
湿度:90%の恒温高湿槽中に置き、20000RPM
で40日間連続的に回転させた後、電気回路の露出部分
に腐食は認められなかった。
Example 2 Next, Sample Nos. 6, 12,
And 16 were precision-machined and then buffed, finished into a spindle having the cross-sectional shape shown in FIG. 1, assembled into a hard disk drive, and placed in a constant temperature and high humidity chamber at a temperature of 70 ° C. and a relative humidity of 90%. , 20,000 RPM
No corrosion was observed on the exposed portion of the electric circuit after continuously rotating for 40 days.

【0028】[0028]

【発明の効果】本発明の高耐食性切削加工材料は、Cを
0.005〜0.25%、Sを0.04%以下含有する
炭素鋼、または低合金鋼の表面に、厚さが1.2〜9μ
mのCr−Ni−Fe合金層が形成され、かつ前記合金
層中のCr濃度が20〜60%であり、この切削加工材
料をAg箔および純水とともに、それぞれが互いに非接
触の状態で密閉容器中に入れ、80℃で24時間放置し
た後に、Ag箔表面に変色が認められず、硫化物のガス
発生がないことを特徴とする高耐食性切削加工材料であ
り、加熱しても硫化物のガスが発生せず、切削加工時に
工具の摩耗が少ない優れた切削加工性を有している。ま
た表面にオーステナイト系ステンレス鋼と同等の結晶構
造の合金層が形成されているので、ステンレス鋼と同等
の優れた耐食性を示す。
The cutting material with high corrosion resistance according to the present invention has a thickness of 1% on the surface of carbon steel or low alloy steel containing 0.005 to 0.25% of C and 0.04% or less of S. .2-9μ
m-Cr-Ni-Fe alloy layer is formed, and the Cr concentration in the alloy layer is 20 to 60%, and this cutting material is sealed together with Ag foil and pure water in a non-contact state with each other. After being placed in a container and allowed to stand at 80 ° C. for 24 hours, it is a highly corrosion-resistant cutting material characterized by no discoloration of the Ag foil surface and no generation of sulfide gas. No gas is generated, and excellent cutting workability with little tool wear during cutting. Further, since an alloy layer having a crystal structure equivalent to that of austenitic stainless steel is formed on the surface, it exhibits excellent corrosion resistance equivalent to that of stainless steel.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月30日(2000.10.
30)
[Submission date] October 30, 2000 (2000.10.
30)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電子機器部品(スピンドル)の断面
FIG. 1 is a cross-sectional view of an electronic device component (spindle) of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cを0.005〜0.25重量%(以
下、単に%という)、Sを0.04%以下含有する炭素
鋼の表面に、厚さが1.2〜9μmのCr−Ni−Fe
合金層が形成され、かつ前記合金層中のCr濃度が20
〜60%である、高耐食性切削加工材料。
1. A carbon steel containing 0.005 to 0.25% by weight of C (hereinafter simply referred to as%) and 0.04% or less of S is formed on a surface of a carbon steel having a thickness of 1.2 to 9 μm. Ni-Fe
An alloy layer is formed, and the Cr concentration in the alloy layer is 20
High corrosion resistant cutting material of up to 60%.
【請求項2】 Cを0.005〜0.25%、Sを0.
04%以下含有する低合金鋼の表面に、厚さが1.2〜
9μmのCr−Ni−Fe合金層が形成され、かつ前記
合金層中のCr濃度が20〜60%である、高耐食性切
削加工材料。
2. C is 0.005 to 0.25%, and S is 0.1 to 0.2%.
The thickness of the low alloy steel containing less than
A highly corrosion-resistant cutting material in which a 9 μm Cr—Ni—Fe alloy layer is formed and the Cr concentration in the alloy layer is 20 to 60%.
【請求項3】 Ag箔および純水とともに、それぞれが
互いに非接触の状態で密閉容器中に入れ、80℃で24
時間放置した後に、Ag箔表面に変色が認められず、硫
化物のガス発生がないことを特徴とする、請求項1また
は2に記載の高耐食性切削加工材料。
3. An Ag foil and pure water are placed in a closed container in a non-contact state with each other, and the mixture is placed at 80 ° C. for 24 hours.
The highly corrosion-resistant cutting material according to claim 1 or 2, wherein no discoloration is observed on the surface of the Ag foil after leaving for a time, and no sulfide gas is generated.
【請求項4】 請求項1〜3のいずれかに記載の高耐食
性切削加工材料を精密加工した後、切削加工表面をバフ
研磨してなる、電子機器部品。
4. An electronic device component obtained by precision-cutting a highly corrosion-resistant cutting material according to claim 1 and buffing the cut surface.
【請求項5】 Cを0.005〜0.25%、Sを0.
04%以下含有する炭素鋼の表面に、厚さ0.2〜1.
0μmのCrめっき層を形成し、さらにそのCrめっき
層上に厚さ1〜8μmのNiめっき層を形成した後、非
酸化成雰囲気または還元性雰囲気中で、500〜600
℃の温度範囲で熱処理することを特徴とする、高耐食性
切削加工材料の製造方法。
5. C is 0.005 to 0.25%, and S is 0.1 to 0.2%.
On the surface of carbon steel containing not more than 0.4%, a thickness of 0.2 to 1.
After forming a Cr plating layer of 0 μm and further forming a Ni plating layer having a thickness of 1 to 8 μm on the Cr plating layer, 500 to 600 μm in a non-oxidizing atmosphere or a reducing atmosphere.
A method for producing a highly corrosion-resistant cutting material, comprising heat-treating in a temperature range of ° C.
【請求項6】 Cを0.005〜0.25%、Sを0.
04%以下含有する低合金鋼の表面に、厚さ0.2〜
1.0μmのCrめっき層を形成し、さらにそのCrめ
っき層上に厚さ1〜8μmのNiめっき層を形成した
後、非酸化成雰囲気または還元性雰囲気中で、500〜
600℃の温度範囲で熱処理することを特徴とする、高
耐食性切削加工材料の製造方法。
6. The content of C is 0.005 to 0.25% and the content of S is 0.1 to 0.2%.
0.4% or less on the surface of low alloy steel containing
After forming a 1.0 μm Cr plating layer, and further forming a 1-8 μm thick Ni plating layer on the Cr plating layer, 500-500 μm in a non-oxidizing atmosphere or a reducing atmosphere.
A method for producing a highly corrosion-resistant cutting material, comprising heat-treating in a temperature range of 600 ° C.
JP2000287856A 2000-09-22 2000-09-22 Machining material with high corrosion resistance for electronic device/component, electronic device/ component using the same, and method for manufacturing machining material with high corrosion resistance Pending JP2002097593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287856A JP2002097593A (en) 2000-09-22 2000-09-22 Machining material with high corrosion resistance for electronic device/component, electronic device/ component using the same, and method for manufacturing machining material with high corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000287856A JP2002097593A (en) 2000-09-22 2000-09-22 Machining material with high corrosion resistance for electronic device/component, electronic device/ component using the same, and method for manufacturing machining material with high corrosion resistance

Publications (1)

Publication Number Publication Date
JP2002097593A true JP2002097593A (en) 2002-04-02

Family

ID=18771536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287856A Pending JP2002097593A (en) 2000-09-22 2000-09-22 Machining material with high corrosion resistance for electronic device/component, electronic device/ component using the same, and method for manufacturing machining material with high corrosion resistance

Country Status (1)

Country Link
JP (1) JP2002097593A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510637A (en) * 2008-01-30 2011-04-07 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Aquaculture nets with metal strip coated steel wire
CN108026654A (en) * 2015-09-09 2018-05-11 萨夫罗克有限公司 Coating based on chromium, is used to prepare the method for the coating based on chromium and the object of coating
CN114829678A (en) * 2019-12-20 2022-07-29 日本制铁株式会社 Ni-plated steel sheet and method for producing Ni-plated steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510637A (en) * 2008-01-30 2011-04-07 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Aquaculture nets with metal strip coated steel wire
CN108026654A (en) * 2015-09-09 2018-05-11 萨夫罗克有限公司 Coating based on chromium, is used to prepare the method for the coating based on chromium and the object of coating
CN108026654B (en) * 2015-09-09 2020-11-27 萨夫罗克有限公司 Chromium-based coating, method for producing a chromium-based coating and coated object
CN114829678A (en) * 2019-12-20 2022-07-29 日本制铁株式会社 Ni-plated steel sheet and method for producing Ni-plated steel sheet

Similar Documents

Publication Publication Date Title
JP3045612B2 (en) High corrosion resistant nickel-plated steel strip and its manufacturing method
CN111699567B (en) Surface-treated steel sheet for battery container and method for producing surface-treated steel sheet for battery container
EP3561138B1 (en) Zinc alloy plated steel material having excellent weldability
JP6394847B1 (en) Surface-treated steel sheet
EP3712293A1 (en) Coating for hot stamping-formed steel and production method therefor
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
JPWO2020009212A1 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
CN105925775B (en) A kind of production method of the corrosion resistance decoration composite deposite steel band of thickness≤0.1mm
JP2006336061A (en) Soft magnetic member
JP2004323974A (en) HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD
JP2002097593A (en) Machining material with high corrosion resistance for electronic device/component, electronic device/ component using the same, and method for manufacturing machining material with high corrosion resistance
JPH02301541A (en) Spring steel excellent in corrosion resistance and corrosion fatigue strength
JPH07310166A (en) Chrom-nickel diffusion treated steel sheet excellent in workability and corrosion resistance and its production
JPS61166987A (en) Fin material for radiator
JP3523415B2 (en) Iron-based alloy member having Fe-Al diffusion layer and method of manufacturing the same
JP4009424B2 (en) Cover for machining
JP3309234B2 (en) Cu-base alloy-plated stainless steel sheet excellent in corrosion resistance and workability and method for producing the same
WO2023135982A1 (en) Plated steel sheet
JPH03243789A (en) Cu-coated cr-containing steel sheet excellent in corrosion resistance, solderability and adhesion
JP4199413B2 (en) Fe-Cr-Ni alloy for electron gun electrode excellent in corrosion resistance and its strip
JPH01165791A (en) Surface treated steel sheet excellent in rust resistance and corrosion resistance and production thereof
JPS62151547A (en) Ferritic stainless steel having superior suitability to plating and soldering
JPH0483820A (en) Production of mechanism element
JPH07278711A (en) Aluminum alloy coated sheet excellent in weldability and chemical convertibility
JPH03287784A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability