JPH0483820A - Production of mechanism element - Google Patents

Production of mechanism element

Info

Publication number
JPH0483820A
JPH0483820A JP20074190A JP20074190A JPH0483820A JP H0483820 A JPH0483820 A JP H0483820A JP 20074190 A JP20074190 A JP 20074190A JP 20074190 A JP20074190 A JP 20074190A JP H0483820 A JPH0483820 A JP H0483820A
Authority
JP
Japan
Prior art keywords
alloy
weight
film
aluminum oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20074190A
Other languages
Japanese (ja)
Inventor
Tadashi Hamada
糾 濱田
Shuji Yamada
修司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20074190A priority Critical patent/JPH0483820A/en
Publication of JPH0483820A publication Critical patent/JPH0483820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce a mechanism element excellent in mechanical properties, such as toughness and hardness, by forming an aluminum oxide film on the surface of an alloy by subjecting an aluminum-containing alloy formed into the prescribed element shape to heating in an oxidizing atmosphere. CONSTITUTION:An alloy having a composition consisting of, by weight, 20-40% Cr, 5-25% Ni, 3-8% Al, 0-0.5% Ti, 0.05-1.0% of one or >=2 elements among Zr, Y, Hf, Ce, La, Nd, and Gd, and the balance Fe is formed into the prescribed element shape. The alloy formed into the desired shape is heated in an oxidizing atmosphere up to 800-1300 deg.C. Since an aluminum oxide film 1 is deposited on the surface of the alloy 2 with a specific composition as if it takes root 3 in the alloy 2 as a substrate, extremely superior adhesive strength to the substrate can be provided. In the mechanism element obtained by the manufacturing method of this invention, the alumina film 1 having high adhesive strength and high hardness is formed on the high hardness alloy 2 and high wear resistance is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば、電動工具のチャック、回転軸、ギ
ヤ、カム等のような機構部品の製造方法に関し、高硬度
・強度で靭性のある母材で出来ており、表面が緻密でか
つ密着性に優れた均一な酸化アルミニウム(以下、適宜
「アルミナ」という)で覆われた高硬度・高耐摩耗性の
機構部品を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing mechanical parts such as chucks, rotating shafts, gears, cams, etc. of electric tools, and is concerned with a method of manufacturing mechanical parts such as chucks, rotating shafts, gears, cams, etc. of electric tools. The present invention relates to a method for manufacturing a highly hard and highly wear-resistant mechanical component made of a base material and covered with uniform aluminum oxide (hereinafter referred to as "alumina") with a dense and highly adhesive surface.

〔従来の技術〕[Conventional technology]

電動工具のチャック、回転軸、ギヤ、カム等のような機
構部品の場合、表面に酸化物や窒化物、炭化物などの高
硬度材をコーティングすることにより、耐摩耗性、耐食
性を向上させることが知られている。コーティングは、
イオンブレーティング法、スパッタリング法などの方法
でなされる。
In the case of mechanical parts such as chucks, rotating shafts, gears, cams, etc. of power tools, the wear resistance and corrosion resistance can be improved by coating the surfaces with high hardness materials such as oxides, nitrides, and carbides. Are known. The coating is
This is done by methods such as ion blating method and sputtering method.

また、機構部品全体をセラミック焼結体で形成すること
もなされている。
Furthermore, the entire mechanical component has also been formed of a ceramic sintered body.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述のイオンブレーティング法、スパッ
タリング法などの場合、被覆厚みを十分な厚みにするこ
とが困難である。また、複雑な形状の場合には全体に均
一にコーティングすることが難しいし、一方、平面性の
強い形状の場合には膜の密着性が良くないという問題が
ある。密着性を改善しようとするれば、表面粗化、アン
ダーコート層形成等の面倒な処理をしなければならない
後者のバルクのセラミック焼結体を使った機構部品の場
合、寸法精度が低い、靭性が十分でなく割れ易いといっ
た問題がある。
However, in the case of the above-mentioned ion blasting method, sputtering method, etc., it is difficult to make the coating thick enough. Further, in the case of a complicated shape, it is difficult to uniformly coat the entire surface, and on the other hand, in the case of a highly planar shape, there is a problem that the adhesion of the film is not good. In order to improve adhesion, troublesome treatments such as surface roughening and undercoat layer formation must be carried out.In the case of mechanical parts using bulk ceramic sintered bodies, dimensional accuracy is low and toughness is low. There is a problem that there is not enough water and it is easy to break.

この発明は、上記事情に鑑み、部品形状の如何にかかわ
らず密着性が良好なアルミナ皮膜で十分に覆われ、しか
も、靭性、硬度等の機械的性質に優れた機構部品を得る
ことのできる方法を提供することを課題とする。
In view of the above circumstances, this invention has been devised to provide a method for obtaining mechanical parts that are sufficiently covered with an alumina film with good adhesion, regardless of the shape of the part, and that have excellent mechanical properties such as toughness and hardness. The challenge is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、この発明の機構部品の製造方
法は、所望の部品形状に成形されたアルミニウム含有の
合金を、800℃以上、1200℃以下の温度で酸化雰
囲気中で加熱することにより、前記合金の表面に酸化ア
ルミニウムを析出させて酸化アルミニウム皮膜を形成す
るにあたり、前記合金として、Cr:20〜40重量%
、Ni:5〜25重量%、A!!:3〜8重量%、Ti
:0〜0.5重量%、Zr、Y、Hf、Ce、La、N
dおよびGdのうちのいずれか1種または2種以上:0
.05〜1.0重量%、Fe:残部からなるものを用い
るようにしている。
In order to solve the above problems, the method for manufacturing mechanical parts of the present invention involves heating an aluminum-containing alloy formed into a desired part shape in an oxidizing atmosphere at a temperature of 800°C or higher and 1200°C or lower. In depositing aluminum oxide on the surface of the alloy to form an aluminum oxide film, as the alloy, Cr: 20 to 40% by weight.
, Ni: 5-25% by weight, A! ! :3 to 8% by weight, Ti
:0 to 0.5% by weight, Zr, Y, Hf, Ce, La, N
Any one or more of d and Gd: 0
.. 05 to 1.0% by weight, Fe: balance.

上記組成の合金は所望の部品形状に成形されているわけ
であるが、成形は、格別の方法は必要な(普通に用いら
れている方法で行えばよい。例えば、真空溶解して得ら
れたインゴットを熱間鍛造した後、圧延・・切削する方
法で成形すればよい。
The alloy with the above composition is molded into the desired part shape, but the molding requires a special method (it can be done by a commonly used method. For example, an alloy obtained by vacuum melting) After hot forging the ingot, it can be shaped by rolling and cutting.

部品形状も特に制限はなく、例えば、電動工具のチャッ
ク、回転軸、ギヤー、カム等に応した様々な形状がとら
れる。
There is no particular restriction on the shape of the part, and various shapes can be taken depending on, for example, a chuck, a rotating shaft, a gear, a cam, etc. of a power tool.

所望の形状に成形された合金を酸化雰囲気中で加熱処理
する。酸化雰囲気としては、酸素(OX、0.だけでは
なく、他の元素と化合物を形成している場合も含む)を
含む気体、たとえば、大気が使用される。加熱温度は、
800°C以上(好ましくは1000℃以上)、120
0℃以下の範囲とする必要があり、たとえば、この範囲
内で目的とする酸化膜の厚みに応じて設定すればよい。
The alloy formed into the desired shape is heat treated in an oxidizing atmosphere. As the oxidizing atmosphere, a gas containing oxygen (including not only OX, but also compounds formed with other elements), such as air, is used. The heating temperature is
800°C or higher (preferably 1000°C or higher), 120
The temperature needs to be in a range of 0° C. or lower, and may be set within this range depending on the desired thickness of the oxide film, for example.

800℃未満だと、酸化アルミニウム皮膜(以下、適宜
アルミナ皮膜と言う)の生成速度が極端に遅く、11以
上の皮膜を得るのに長時間を要するという問題があり、
1200℃を越えると母材合金が軟化・変形、さらに脆
化するだけでなく、生成皮膜に亀裂や剥離が生じやすい
という問題がある。また、加熱時間は特に制限はないが
、0.5時間以上とするのが好ましく、この範囲内で目
的とする酸化膜の厚みに応じて設定すればよい。加熱時
間が0.5時間よりも短いと全体に均一な酸化アルミニ
ウム膜が形成されないことがある。
If it is below 800°C, there is a problem that the rate of formation of an aluminum oxide film (hereinafter referred to as an alumina film as appropriate) is extremely slow, and it takes a long time to obtain a film of 11 or more.
When the temperature exceeds 1200°C, there is a problem that not only the base alloy becomes softened, deformed, and further brittle, but also that the resulting film is likely to crack or peel. The heating time is not particularly limited, but is preferably 0.5 hours or more, and may be set within this range depending on the desired thickness of the oxide film. If the heating time is shorter than 0.5 hours, a uniform aluminum oxide film may not be formed over the entire surface.

加熱前は、第1図(a)にみるように、アルミ、す膜未
形成の合金2の表面に、前記加熱処理により、第1図(
′b)にみるように、アルミナ膜1が形成するこうして
得られたものは、前記特定組成の合金2の表面に酸化ア
ルミニウム膜1が形成されており、同酸化アルミニウム
膜1が下地である合金2にいわば根3・・・が生えたよ
うに析出しているため、下地との密着性が極めて優れて
いる。このような方法だと、複雑な形状であっても、細
部まで容易に全面皮膜形成が可能であり、また、合金2
に根3が生えたように形成されたアルミナ皮膜1の厚み
t (この厚みtは、第1図にみるように、いわゆる根
の部分を除いた最小の厚みである)についても熱処理温
度および/または熱処理時間を適宜調整することで、所
望の厚みにすることが可能である。さらに、このような
方法をイオンブレーティング法やスパッター法と比較す
ると、前述のとおり酸化物は合金の内部より合金に根の
生えたように析出しているため、密着性は遥かに優れて
いる。イオンブレーティング法やスパッター法の場合、
第2図にみるように、合金2′表面のアルミナ膜1′は
根がなく平板状である。また、セラミック焼結体で機構
部品全体を形成するときのような問題(たとえば、寸法
精度が低い、割れる)がないのである。合金2の基地中
には、微細かつ均一に分散析出したNiA1 (第1図
(bl中、4で示す)が存在しており、結晶粒の粗大化
が抑制される。このため、合金2は高温加熱処理による
基地の機械的性質の低下が殆ど生ぜず、高靭性なものと
なっている。しかも、下地である合金は、上記の組成を
有するため、高硬度である。これにより、この発明の製
造方法により得られた機構部品は、高硬度母材の上に高
密着・高硬度アルミナ皮膜が形成されており、高耐摩耗
性となっている。
Before heating, as shown in FIG. 1(a), the surface of alloy 2 with no aluminum film formed was coated with the heat treatment shown in FIG. 1(a).
'b), in the thus obtained product in which the alumina film 1 is formed, the aluminum oxide film 1 is formed on the surface of the alloy 2 having the specific composition, and the aluminum oxide film 1 is used as the base alloy. Since roots 3 are deposited on 2, so to speak, the adhesion to the substrate is extremely excellent. With this method, even if the shape is complex, it is possible to easily form a coating on the entire surface down to the smallest detail.
The thickness t of the alumina film 1 formed to look like roots 3 (as shown in Fig. 1, this thickness t is the minimum thickness excluding the so-called root part) also depends on the heat treatment temperature and/or Alternatively, it is possible to obtain a desired thickness by appropriately adjusting the heat treatment time. Furthermore, when comparing this method with the ion blasting method and sputtering method, the adhesion is far superior because, as mentioned above, the oxide is precipitated from within the alloy as if it were rooted in the alloy. . In the case of ion blating method or sputtering method,
As shown in FIG. 2, the alumina film 1' on the surface of the alloy 2' has no roots and is flat. Furthermore, there are no problems (for example, low dimensional accuracy or cracking) that occur when the entire mechanical component is formed from a ceramic sintered body. In the matrix of Alloy 2, finely and uniformly dispersed NiA1 (indicated by 4 in Fig. 1 (bl)) exists, which suppresses the coarsening of crystal grains.For this reason, Alloy 2 There is almost no deterioration in the mechanical properties of the matrix due to high-temperature heat treatment, resulting in high toughness.Furthermore, the base alloy has the above composition, so it has high hardness.Thus, this invention Mechanical parts obtained by the manufacturing method have a highly adhesive and highly hard alumina film formed on a highly hard base material, and have high wear resistance.

なお、形成する皮膜の厚みに特に制限はない。Note that there is no particular restriction on the thickness of the film to be formed.

この発明で用いる合金は、フェライト生成元素であるC
rおよびAlと、オーステナイト生成元素であるNiと
を多量に含有したFe基合金であり、合金が主としてフ
ェライト相で構成されるように各元素の量を選ばれてい
る。フェライト相の合金は、酸化加熱処理により、表面
に緻密で下地との密着性の良い厚いアルミナ皮膜を形成
しやすいが、オーステナイト相の合金はアルミナの膜が
均一に生じず、剥離するからである。合金をフェライト
相にする場合、Ni量を増加させると、(Cr +A 
jlり量も増加させる必要がある。なお、わずかのオー
ステナイト相が混合してもこの発明のフェライト合金の
性質を損なうことはない。
The alloy used in this invention is C, which is a ferrite-forming element.
It is a Fe-based alloy containing large amounts of r, Al, and Ni, an austenite-forming element, and the amounts of each element are selected so that the alloy is mainly composed of a ferrite phase. Ferrite phase alloys tend to form a thick alumina film on the surface that is dense and has good adhesion to the substrate through oxidation heat treatment, but austenite phase alloys do not form an alumina film uniformly and may peel off. . When making the alloy into a ferrite phase, increasing the amount of Ni results in (Cr + A
It is also necessary to increase the amount of drop. Note that even if a small amount of austenite phase is mixed, the properties of the ferrite alloy of the present invention are not impaired.

この発明の合金では、Crは、全体の20〜40重量%
を占める。Fe−Cr−Aj2系合金において、Crは
、合金表面に緻密で均一なアルミナ皮膜を形成させるた
めに必要であるが、この発明の合金では多量のNiを含
有するため、合金をフェライト相にするためには、Ni
が下限値でAj2が上限値の場合でも20重量%以上の
Crが必要である。Ni量が下限値、Al量が上限値付
近、Cr量が20重量%未病の合金ではアルミナ皮膜の
形成が不完全である。このため、Crの下限は20重量
%である。また、合金中のCr含有量が増加するにつれ
て脆化の傾向が強くなるので、Crの上限は40重量%
である。
In the alloy of this invention, Cr is 20 to 40% by weight of the total
occupies In the Fe-Cr-Aj2 alloy, Cr is necessary to form a dense and uniform alumina film on the alloy surface, but since the alloy of this invention contains a large amount of Ni, it makes the alloy a ferrite phase. For this purpose, Ni
Even when Aj2 is the lower limit and Aj2 is the upper limit, 20% by weight or more of Cr is required. In an alloy in which the Ni content is at the lower limit, the Al content is near the upper limit, and the Cr content is 20% by weight, the formation of the alumina film is incomplete. Therefore, the lower limit of Cr is 20% by weight. Furthermore, as the Cr content in the alloy increases, the tendency for embrittlement becomes stronger, so the upper limit for Cr is 40% by weight.
It is.

この発明で用いる合金では、Niは、全体の5〜25重
量%を占める。微細なNiAIを合金中に析出させるこ
とにより、機械的性質の向上をはかっているが、jlと
の共存下でN1A7!を析出させるためにNiは不可欠
の元素である。機械的性質の向上に十分効果的であるた
めには5重量%程度以上のNiを必要とするので、Ni
の下限は5重量%である。Ni量が増加すれば、N1A
j?の析出や機械的性質の同上に好都合であるが、この
発明の合金はフェライト相で構成されねばならないので
、オーステナイト生成元素のNi量の増加はCr、Al
量の増加を必要とする。しかし、Ni量が25重量%を
越えると、Cr量を増加させねばならず、そうすると脆
化しやすくなるので、N iの上限値は25重量%であ
る。
In the alloy used in this invention, Ni accounts for 5 to 25% by weight of the total. By precipitating fine NiAI into the alloy, the mechanical properties are improved, but in the coexistence with jl, N1A7! Ni is an essential element for precipitation. In order to be sufficiently effective in improving mechanical properties, approximately 5% by weight or more of Ni is required, so Ni
The lower limit of is 5% by weight. If the amount of Ni increases, N1A
j? However, since the alloy of this invention must be composed of a ferrite phase, an increase in the amount of Ni, which is an austenite-forming element, is advantageous for the precipitation of Cr, Al, and mechanical properties.
Requires an increase in quantity. However, if the amount of Ni exceeds 25% by weight, the amount of Cr must be increased, which tends to cause embrittlement, so the upper limit for Ni is 25% by weight.

この発明の合金では、Alは、全体の3〜8重量%を占
める。AIは合金中にNiAlを析出させ、さらに、高
温酸化処理により合金表面にアルミナ皮膜を形成させる
ためには不可欠な元素である。特に、緻密で均一な皮膜
を形成させるためには、3重量%以上のjlを含有する
ことが必要である。Al含有量の増加は、NiA#の析
出やアルミナ皮膜の形成に有利であるが、8重量%を越
えると合金の加工性が低下するので、Alの上限は8重
量%でおる。
In the alloy of this invention, Al occupies 3 to 8% by weight of the total. AI is an essential element for precipitating NiAl in the alloy and for forming an alumina film on the alloy surface by high-temperature oxidation treatment. In particular, in order to form a dense and uniform film, it is necessary to contain 3% by weight or more of jl. Increasing the Al content is advantageous for the precipitation of NiA# and the formation of an alumina film, but if it exceeds 8% by weight, the workability of the alloy decreases, so the upper limit for Al is 8% by weight.

この発明の合金では、Z r 1Y % Hf 、、C
e 1La、Ncl、Gd等のチタン族元素や希土類元
素はアルミナ皮膜内に混入して皮膜の脆さを改善すると
ともに、皮膜直下の合金内に内部酸化物粒子として分散
し、皮膜の密着性を著しく向上させる。これらの効果が
発揮されるには、Zr、Y、Hf、Ce、La、Ndお
よびGdのうちの1種または2種以上が少なくとも0.
05重量%必要である。他方、1.0重量%を越えて含
有すると、合金の加工性が急激に低下するので上限は1
.0重量%である。
In the alloy of this invention, Z r 1Y % Hf , , C
e 1Titanium group elements and rare earth elements such as La, Ncl, and Gd are mixed into the alumina film to improve the brittleness of the film, and are also dispersed as internal oxide particles in the alloy directly under the film, improving the adhesion of the film. significantly improve. In order for these effects to be exhibited, one or more of Zr, Y, Hf, Ce, La, Nd, and Gd must be at least 0.
05% by weight is required. On the other hand, if the content exceeds 1.0% by weight, the workability of the alloy will decrease rapidly, so the upper limit is 1.0% by weight.
.. It is 0% by weight.

Tiは合金中に0.5重量%程度含有されている場合、
適当な熱処理により微細な金属間化合物を形成し、合金
の強靭化に役立つ。この発明の合金は、Tiを含んでい
ないものであってもよいが、このような理由によりTi
を含んでいてもよい。
When Ti is contained in the alloy at about 0.5% by weight,
Appropriate heat treatment forms fine intermetallic compounds that help strengthen the alloy. Although the alloy of the present invention may not contain Ti, for these reasons, it may not contain Ti.
May contain.

ただし、Tiの含有量が0.5重量%を越えるとアルミ
ナ皮膜の密着性や緻密性を損なうおそれがあるので0.
5重量%以下が望ましい。
However, if the Ti content exceeds 0.5% by weight, the adhesion and denseness of the alumina film may be impaired.
The content is preferably 5% by weight or less.

この発明の合金は、以上の成分以外の残部をFeが占め
る。ただし、残部がすべてFeである場合のみに限定さ
れず、たとえば、残部がFe以外に不可避的に存在して
いる不純物も含んでいる場合も含める。なお、不純物の
中でも、Si、C1Nの3元素は、下記の理由により、
下記の範囲となるようにすることが好ましい。
In the alloy of this invention, the balance other than the above components is Fe. However, the present invention is not limited to the case where the remainder is entirely Fe, and includes, for example, the case where the remainder also contains unavoidably present impurities other than Fe. In addition, among the impurities, the three elements Si and C1N are
It is preferable to keep it within the following range.

Siは高温酸化処理中にSiO□となり、アルミナ皮膜
に混入して皮膜の緻密性を損なうおそれがあることから
、0.3重量%以下とすることが望ましい。0重量%で
あってもよい。
Since Si becomes SiO□ during high-temperature oxidation treatment and may mix into the alumina film and impair the denseness of the film, it is desirable that the content be 0.3% by weight or less. It may be 0% by weight.

Cは高温でCrと反応してCr炭化物を形成し、合金を
脆化させる。また、COがCO!ガスとなり、アルミナ
皮膜を破壊する。さらに、希土類元素と容易に反応し皮
膜の密着性向上に対する希土類元素の効果を低下させる
。これらのことから、Cは0.01重量%以下が望まし
い。0重量%であってもよい。
C reacts with Cr at high temperatures to form Cr carbides and embrittle the alloy. Also, CO is CO! It becomes a gas and destroys the alumina film. Furthermore, it easily reacts with rare earth elements and reduces the effect of rare earth elements on improving the adhesion of the film. For these reasons, C is desirably 0.01% by weight or less. It may be 0% by weight.

Nは合金の靭性を低下させ、また、高温加熱中にCrと
反応してCr系窒化物となり、合金の脆化の原因となり
うる。このため、0.015重量%以下が望ましい。0
重量%であってもよい。
N reduces the toughness of the alloy, and also reacts with Cr during high-temperature heating to form Cr-based nitrides, which can cause embrittlement of the alloy. Therefore, the content is preferably 0.015% by weight or less. 0
It may be expressed in percent by weight.

〔実 施 例〕〔Example〕

以下に、この発明の具体的な実施例および比較例を示す
が、この発明は下記実施例に限定されない。
Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples.

実施例1〜8および比較例1〜7 第1表の実施例1〜8、比較例1〜7、および、従来例
1の各欄に示す組成の合金を高周波誘導加熱式真空溶解
炉で熔製し、熱間で2mmの板状に圧延した。すなわち
、5 X 10−’Torr以上の高真空中で、電解鉄
、電解クロムおよびNiペレントをアルミするつぼに入
れて溶解し、熔融液中に、アルミニウム鉄合金、FeZ
r合金、FeTi合金、ならびに、Hfおよび希土類元
素小片を添加した。さらに、同じ真空中で炉内にある鉄
あるいは銅鋳型に鋳込んで合金のインゴットを得た。得
られたインゴットを1000〜1150°Cに加温し、
ハンマーで鍛造、さらに切削加工により電動工具用のチ
ャック形状にした。これを、大気中、1150℃、10
時間の熱処理により表面に厚み101のアルミナ皮膜を
析出させて、チャックを完成させた。
Examples 1 to 8 and Comparative Examples 1 to 7 Alloys having the compositions shown in the columns of Examples 1 to 8, Comparative Examples 1 to 7, and Conventional Example 1 in Table 1 were melted in a high-frequency induction heating vacuum melting furnace. It was then hot rolled into a 2 mm plate shape. That is, in a high vacuum of 5 X 10-'Torr or more, electrolytic iron, electrolytic chromium, and Ni pellets are placed in an aluminum crucible and melted, and in the melt, aluminum-iron alloy, FeZ
r alloy, FeTi alloy, and Hf and rare earth element pieces were added. The alloy was then cast into an iron or copper mold in a furnace in the same vacuum to obtain an alloy ingot. The obtained ingot was heated to 1000-1150°C,
It was forged with a hammer and then cut into a chuck shape for power tools. This was carried out in the atmosphere at 1150℃ for 10
An alumina film having a thickness of 101 mm was deposited on the surface by heat treatment for several hours, and the chuck was completed.

実施例および比較例について、機械的性質(硬度、引張
強さおよび伸び:いずれも常温で測定)測るとともに、
酸化皮膜の状態を、剥離なしく○)、部分的に剥離あり
 (△)、全面に剥離あり (×)で評価した。結果を
、第2表に示す。
For Examples and Comparative Examples, mechanical properties (hardness, tensile strength, and elongation: all measured at room temperature) were measured, and
The state of the oxide film was evaluated as ○ (no peeling), partial peeling (△), and peeling over the entire surface (x). The results are shown in Table 2.

実施例の場合、比較例に比べ、硬度、引張強さが優れて
おり、0,2%耐力も同等以上であり、母材でみて、機
械的性質に優れることが分かるし、優れた酸化皮膜が形
成できることが分かる。
In the case of the example, compared to the comparative example, the hardness and tensile strength are superior, and the 0.2% yield strength is also the same or higher, which indicates that the base material has excellent mechanical properties and has an excellent oxide film. can be formed.

実施例の場合は膜は酸化アルミニウム膜であったが、比
較例の場合はFes Crs NiおよびAlの混合酸
化物膜であった。
In the case of the example, the film was an aluminum oxide film, but in the case of the comparative example, it was a mixed oxide film of Fes Crs Ni and Al.

従来例1一 実施例1で得たチャック形状の合金(酸化アルミニウム
膜未形成)の表面に、下記条件のスパンター法により厚
み0.3 nのTiN膜を形成し電動工具用のチャック
を得た。
Conventional Example 1 - A TiN film with a thickness of 0.3 nm was formed on the surface of the chuck-shaped alloy (no aluminum oxide film formed) obtained in Example 1 by the spunter method under the following conditions to obtain a chuck for a power tool. .

スパッター法の条件 RFスパッター装置を用い、10 ””〜10−”T。Conditions for sputtering method Using RF sputtering equipment, 10"" to 10-"T.

rrの(Ar十Ng)ガス中で印加電圧2kV、電流2
00mAで3時間ずつ軸に垂直な2方向からスパンター
するようにした。
Applied voltage 2 kV, current 2 in rr (Ar + Ng) gas
Spunter was applied at 00 mA for 3 hours each from two directions perpendicular to the axis.

実施例1および従来例1のチャ・7りについて、膜の密
着性を垂直引張強度テスト(被覆面を垂直に方向に引っ
張り剥離するときの引張力を測る)で評価した。
For Char-7 of Example 1 and Conventional Example 1, the adhesion of the film was evaluated by a vertical tensile strength test (measuring the tensile force when pulling the coated surface in a vertical direction and peeling it off).

実施例の場合は約10kg/cnlであり、従来例の場
合は約4 kg/cotであった。また、実施例では細
部まで膜が均一に形成されているのに対し、従来例では
細部の膜は厚みが薄かった。
In the case of the example, it was about 10 kg/cnl, and in the case of the conventional example, it was about 4 kg/cot. Further, in the example, the film was formed uniformly down to the details, whereas in the conventional example, the film in the details was thin.

従来例2 ダイス鋼を用いた実施例1と同様の形状のチャックを得
た。
Conventional Example 2 A chuck having the same shape as in Example 1 using die steel was obtained.

実施例のチャックと従来例2のチャックを、回転してい
る#80エメリペーパー紙に20kgの一定荷重で押し
付け、500m摺動させた後の摩耗量を比較した。実施
例1〜8では約10g/n(、従来例2では約40 g
 / mであり、実施例の場合、優れた耐摩耗性を有し
ていることが分がる。
The chuck of Example and the chuck of Conventional Example 2 were pressed against rotating #80 emery paper with a constant load of 20 kg, and the amount of wear after sliding for 500 m was compared. About 10 g/n in Examples 1 to 8 (about 40 g/n in Conventional Example 2)
/ m, and it can be seen that the examples have excellent abrasion resistance.

このように、実施例の場合、母材合金が耐高温酸化性と
機械的強度を兼ね備えた合金であり、母材の機械的性質
を損なわずに、大気中で熱処理することにより密着性の
よいアルミナ皮膜で十分に覆うことができるのである。
In this way, in the case of the example, the base metal alloy is an alloy that has both high temperature oxidation resistance and mechanical strength, and it is possible to achieve good adhesion by heat treatment in the atmosphere without impairing the mechanical properties of the base metal. It can be sufficiently covered with an alumina film.

〔発明の効果〕〔Effect of the invention〕

この発明の機構部品の製造方法よれば、以上に述べたよ
うに、形状の如何にかかわらず密着性が良好なアルミナ
皮膜で十分に覆われ、靭性、硬度等の機械的性質に優れ
た機構部品を得ることができるのである。
According to the method for manufacturing mechanical parts of the present invention, as described above, the mechanical parts are sufficiently covered with an alumina film with good adhesion regardless of the shape, and have excellent mechanical properties such as toughness and hardness. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の機構部品の製造方法の一例におけ
るアルミナ皮膜形成前後の合金の様子をあられす断面図
、第2図は、従来の方法により皮膜を形成した合金の様
子をあられす断面図である第1図 (a) 1・・・酸化アルミニウム皮膜  2・・・合金代理人
 弁理士  松 本 武 彦 手続補正書(自発 平成2年11月? 特願平2−200741号 2、発明の名称 機構部品の製造方法 3、補正をする者 事件との関係   特許出願人 住   所    大阪府門真市大字門真1048番地
名 称(583)松下電工株式会社 4、代理人 な し 日 6、補正の対象 明細書 7、補正の内容 ■ 明細書の特許請求の範囲欄の全文を下記のとおりに
訂正する。 記 「1 所望の部品形状に成形されたアルミニウム含有の
合金を、800℃以上圓温度で酸化雰囲気中で加熱する
ことにより、前記合金の表面に酸化アルミニウムを析出
させて酸化アルミニウム皮膜を形成するようにする機構
部品の製造方法において、前記合金が、Cr:20〜4
0重量%、Ni:5〜25重量%、Aj!:3〜8重量
%、Ti:0〜0.5重量%、Zr、Y、Hf、(、e
、l=a、NdおよびGdのうちのいずれか1種または
2種以上? 0.05〜1.0重量%、Fe:残部から
なることを特徴とする機構部品の製造方法。」■ 明細
書第3頁第16〜17行に「800℃以上、1200℃
以下」とあるを、1800℃以上」と訂正する。 ■ 明細書第4頁第19行にr1200℃以下」とある
を、r1300℃程度以下(例えば1200℃以下)」
と訂正する。 ■ 明細書第5頁第5行にr1200℃」とあるを、r
1300℃」と訂正する。
Figure 1 is a cross-sectional view showing the appearance of an alloy before and after forming an alumina film in an example of the method for manufacturing mechanical parts of the present invention, and Figure 2 is a cross-sectional view showing the appearance of an alloy with a film formed by a conventional method. Figure 1 (a) 1... Aluminum oxide film 2... Alloy agent Patent attorney Takehiko Matsumoto Procedural amendment (voluntary November 1990? Patent application No. 2-200741 2, Invention Name of the manufacturing method for mechanical parts 3, Relationship with the case of the person making the amendment Patent applicant address 1048 Oaza Kadoma, Kadoma City, Osaka Name (583) Matsushita Electric Works Co., Ltd. 4, No attorney date 6, Subject of amendment Description 7, Contents of amendment ■ The entire text of the claims column of the description is corrected as follows. In the method for manufacturing a mechanical component, the alloy is heated in an atmosphere to precipitate aluminum oxide on the surface of the alloy to form an aluminum oxide film, wherein the alloy has Cr: 20 to 4.
0% by weight, Ni: 5-25% by weight, Aj! :3 to 8% by weight, Ti: 0 to 0.5% by weight, Zr, Y, Hf, (,e
, l=a, one or more of Nd and Gd? 0.05 to 1.0% by weight, Fe: balance. ” ■ Page 3 of the specification, lines 16-17, “800°C or higher, 1200°C
Correct the phrase ``below 1800℃'' to read ``below 1800℃''. ■ On page 4, line 19 of the specification, it says "r1200℃ or less".
I am corrected. ■ On page 5, line 5 of the specification, it says "r1200℃".
1300℃”.

Claims (1)

【特許請求の範囲】[Claims] 1 所望の部品形状に成形されたアルミニウム含有の合
金を、800℃以上、1200℃以下の温度で酸化雰囲
気中で加熱することにより、前記合金の表面に酸化アル
ミニウムを析出させて酸化アルミニウム皮膜を形成する
ようにする機構部品の製造方法において、前記合金が、
Cr:20〜40重量%、Ni:5〜25重量%、Al
:3〜8重量%、Ti:0〜0.5重量%、Zr、Y、
Hf、Ce、La、NdおよびGdのうちのいずれか1
種または2種以上:0.05〜1.0重量%、Fe:残
部からなることを特徴とする機構部品の製造方法。
1. By heating an aluminum-containing alloy formed into a desired part shape in an oxidizing atmosphere at a temperature of 800°C or higher and 1200°C or lower, aluminum oxide is precipitated on the surface of the alloy to form an aluminum oxide film. In the method for manufacturing a mechanical component, the alloy comprises:
Cr: 20-40% by weight, Ni: 5-25% by weight, Al
:3 to 8% by weight, Ti: 0 to 0.5% by weight, Zr, Y,
Any one of Hf, Ce, La, Nd and Gd
A method for producing a mechanical component, characterized in that the content is 0.05 to 1.0% by weight of one or more species, and the balance is Fe.
JP20074190A 1990-07-25 1990-07-25 Production of mechanism element Pending JPH0483820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20074190A JPH0483820A (en) 1990-07-25 1990-07-25 Production of mechanism element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20074190A JPH0483820A (en) 1990-07-25 1990-07-25 Production of mechanism element

Publications (1)

Publication Number Publication Date
JPH0483820A true JPH0483820A (en) 1992-03-17

Family

ID=16429400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20074190A Pending JPH0483820A (en) 1990-07-25 1990-07-25 Production of mechanism element

Country Status (1)

Country Link
JP (1) JPH0483820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193173B1 (en) * 1998-06-15 2001-02-27 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Burner with an improved injector and process for manufacturing this injector
US7005105B2 (en) * 2000-12-28 2006-02-28 Korea Electrotechnology Research Institute Fe-Cr-Al alloys for electric resistance wires
US8288495B2 (en) 2009-01-27 2012-10-16 Mitsui Chemicals, Inc. Propylene homopolymer for capacitors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193173B1 (en) * 1998-06-15 2001-02-27 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Burner with an improved injector and process for manufacturing this injector
US7005105B2 (en) * 2000-12-28 2006-02-28 Korea Electrotechnology Research Institute Fe-Cr-Al alloys for electric resistance wires
US8288495B2 (en) 2009-01-27 2012-10-16 Mitsui Chemicals, Inc. Propylene homopolymer for capacitors

Similar Documents

Publication Publication Date Title
TWI299364B (en) Fabrication of b/c/n/o doped sputtering targets
EP2208800B1 (en) Method of forming a wire from a powder and a metal strip
JPH06505535A (en) Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
JPH02290951A (en) Wear resistant composite roll and its production
CN111020339A (en) High-entropy alloy for ultrahigh-hardness gear coating and manufacturing method
CN114908285B (en) Low-cost hot rolled steel plate for high-temperature enameling and manufacturing method thereof
JP4481463B2 (en) High hardness corrosion resistant alloy member and manufacturing method thereof
JPH02301541A (en) Spring steel excellent in corrosion resistance and corrosion fatigue strength
JPH0483820A (en) Production of mechanism element
JP4284405B2 (en) Tapping screw and its manufacturing method
JP2637250B2 (en) Fe-Cr-Ni-Al ferrite alloy
JP4214664B2 (en) Sheet steel for press forming and manufacturing method thereof
CN1029524C (en) High-temp. wear-resisting NI3AL-base alloy
JP3870616B2 (en) Fe-Cr-Si alloy and method for producing the same
US3322580A (en) Hard facing metals and alloys
JP4411594B2 (en) Cold working mold
JP3005371B2 (en) Surface treatment method for ferritic stainless steel
CN106287053A (en) One withholds casing joint
WO2007105738A1 (en) Amorphous-metal composite material, process for producing the same, and article obtained by the same
CN117488161B (en) High-hardness high-entropy alloy coating and preparation method thereof
CN116005156B (en) Corrosion-resistant aluminum alloy plate and processing technology thereof
WO2023217022A1 (en) Ultralow-carbon cold-rolled high-strength steel applicable to electrostatic dry powder enamel, and manufacturing method therefor
JPH04308031A (en) Production of fe-cr-ni-al ferrite alloy with alumina coating film
JPH0841627A (en) Zn-mg alloy plated steel sheet excellent in spot weldability
KR20020041027A (en) A cold rolled steel sheet for direct-on enamel applications with excellent adherence