JP2004323974A - HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD - Google Patents

HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2004323974A
JP2004323974A JP2004115748A JP2004115748A JP2004323974A JP 2004323974 A JP2004323974 A JP 2004323974A JP 2004115748 A JP2004115748 A JP 2004115748A JP 2004115748 A JP2004115748 A JP 2004115748A JP 2004323974 A JP2004323974 A JP 2004323974A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
mass
plating layer
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004115748A
Other languages
Japanese (ja)
Other versions
JP4412037B2 (en
Inventor
Chizuko Maeda
千寿子 前田
Yoichi Tobiyama
洋一 飛山
Chiaki Kato
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004115748A priority Critical patent/JP4412037B2/en
Publication of JP2004323974A publication Critical patent/JP2004323974A/en
Application granted granted Critical
Publication of JP4412037B2 publication Critical patent/JP4412037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot dip Zn-Al based alloy plated steel sheet combining the three of bending workability, plating adhesion on press forming and edge face rusting resistance though their reconcilement has heretofore been difficult. <P>SOLUTION: The plated layer has a componential composition comprising, by mass, 10 to 40% Al and Si: (0.0005 to 0.15)×[%Al] (wherein, [%Al] is the content (mass%) of Al), and the balance Zn with inevitable impurities. Further, the abundance ratio of a granular structure with a major axis of ≤3 μm in the plated layer is controlled to ≥85%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、建材や家電等の分野で広く利用されている溶融Zn−Al系合金めっき鋼板に関し、特にその加工性、密着性および耐端面さび性の向上を図ったものである。   The present invention relates to a hot-dip Zn-Al-based alloy-plated steel sheet widely used in the fields of building materials, home appliances, and the like, and particularly to improving its workability, adhesion, and end face rust resistance.

溶融Znめっき鋼板は、軽量で、防水性、断熱性、耐食性および施工性等に優れていることから、屋根、サイディング等の建材分野で大量に使用されている。特に最近では、建設リサイクル法が制定され、住宅の長寿命化のために、従来より高い耐食性をもつ製品が要求されるようになってきている。   Hot-dip galvanized steel sheets are lightweight and excellent in waterproofness, heat insulation, corrosion resistance, workability, and the like, and are therefore used in large quantities in the field of building materials such as roofs and sidings. In particular, recently, the Construction Recycling Law has been enacted, and products with higher corrosion resistance than before have been required to extend the life of houses.

溶融Znめっき鋼板より耐食性に優れる鋼板としては、めっき層にアルミニウムを含有させた溶融5%Al−Znめっき鋼板や、これよりさらにアルミニウムの比率を高くして耐食性を向上させた溶融55%Al−1.6%Si−Znめっき鋼板が知られており、特に後者の需要の伸びは著しい。   Examples of steel sheets having better corrosion resistance than hot-dip Zn-coated steel sheets include hot-dip 5% Al-Zn coated steel sheets with aluminum contained in the plating layer and hot-dip 55% Al- steel with higher aluminum content to improve corrosion resistance. A 1.6% Si-Zn plated steel sheet is known, and the demand for the latter is particularly remarkable.

しかしながら、上記した溶融55%Al−1.6%Si−Znめっき鋼板には、溶融Znめっき鋼板や溶融5%Al−Znめっき鋼板に比べると、曲げ加工性、プレス成形時のめっき密着性およびキズ部や切断端面での耐食性が劣るという欠点がある。
曲げ加工性が劣る最大の原因は、Al濃度が高いためにめっき層が硬くなること、さらに界面に硬くて脆い合金層が形成されるためであると言われている。
また、プレス成形時にめっき層が剥離する原因については、必ずしも定説はないが、発明者らが剥離部位を観察したところ、めっき層の剥離は鋼板と合金層、または合金層と上層めっきとの間で生じていることから、合金層の存在が関与しているものと考えられる。
さらに、端面での耐食性が劣る原因は、めっき層の延性が低いため、キズや切断により露出する鋼板端面に覆い被さるほどめっき層が変形しないことおよびZn含有量が溶融亜鉛めっき鋼板や溶融5%Al−Znめっき鋼板に比べて低いために、Znの犠性防食性能が十分に発揮されないためであることが知られている。
However, the above-mentioned hot-dip 55% Al-1.6% Si-Zn-coated steel sheet has better bending workability, plating adhesion during press forming, and flaws than hot-dip Zn-coated steel sheet and hot-dip 5% Al-Zn coated steel sheet. And the corrosion resistance at the cut end face is inferior.
It is said that the greatest cause of poor bending workability is that the plating layer becomes hard due to the high Al concentration, and that a hard and brittle alloy layer is formed at the interface.
The cause of the peeling of the plating layer during press forming is not necessarily established, but when the inventors observed the peeling site, the peeling of the plating layer was observed between the steel plate and the alloy layer or between the alloy layer and the upper plating. Therefore, it is considered that the existence of the alloy layer is involved.
Further, the corrosion resistance at the end face is inferior because the ductility of the coating layer is low, so that the coating layer is not deformed enough to cover the end face of the steel sheet exposed by scratching or cutting, and the Zn content is hot-dip galvanized steel sheet or hot-dip 5% It is known that the sacrificial corrosion prevention performance of Zn is not sufficiently exhibited because it is lower than that of the Al-Zn plated steel sheet.

上記した耐端面さび性を改善させるために、その後Zn−Al系合金めっき層にMgを含有させる試みがなされ、種々のZn−Al−Mg三元系合金めっき鋼板が提案されている(例えば、特許文献1および特許文献2)。
Mgの添加で耐端面さび性が改善される機構は、まだ十分に解明されているわけではないが、腐食の初期にMgがZnと共に溶出してZnの腐食を抑制する効果や、緻密な保護性さびとして知られている水酸化亜鉛や塩基性塩化亜鉛を安定化させる効果が現時点で有力視されている。
しかしながら、一方でMgは、ZnとMgZn2やMg2Zn11などの金属間化合物相を形成することにより、めっき層の加工性を著しく劣化させることも知られている。例えば、上記した特許文献1に開示されているAl含有量が3mass%以下と最も少ないZn−Al−Mg系合金めっき鋼板でも、曲げ加工性は55%Al−1.6%Si−Znめっき鋼板レベルでしかない。
In order to improve the end face rust resistance described above, attempts have been made to subsequently contain Mg in the Zn-Al-based alloy plating layer, and various Zn-Al-Mg ternary alloy-plated steel sheets have been proposed (for example, Patent Document 1 and Patent Document 2).
The mechanism by which the addition of Mg improves the rust resistance of the end face has not yet been fully elucidated.However, Mg elutes with Zn in the early stage of corrosion and suppresses the corrosion of Zn. At present, the effect of stabilizing zinc hydroxide and basic zinc chloride known as rust is considered to be promising.
However, it is also known that Mg significantly deteriorates the workability of the plating layer by forming Zn and an intermetallic compound phase such as MgZn 2 or Mg 2 Zn 11 . For example, even in the Zn-Al-Mg-based alloy plated steel sheet having the lowest Al content of 3 mass% or less disclosed in Patent Document 1, the bending workability is 55% Al-1.6% Si-Zn plated steel sheet level. There is only.

以上述べたとおり、従来、建材用に開発されてきたZn−Al系合金めっき鋼板およびZn−Al−Mg系合金めっき鋼板で、加工性(曲げ加工性)、プレス成形時のめっき密着性および耐端面さび性を同時に満足するものは未だ存在せず、その開発が要望されていた。   As described above, the workability (bending workability), the plating adhesion during press forming, and the resistance of the Zn-Al-based alloy-coated steel sheet and Zn-Al-Mg-based alloy-coated steel sheet that have been conventionally developed for building materials There has not yet been any product that simultaneously satisfies the rust resistance of the end face, and its development has been demanded.

特開昭56−96062 号公報JP-A-56-96062 特開2000−104154号公報JP 2000-104154 A

本発明は、上記の要請に有利に応えるもので、優れた加工性、めっき密着性および耐食性、とくに切断部端面の耐食性(耐端面さび性)を兼ね備える溶融Zn−Al系合金めっき鋼板を、その有利な製造方法と共に提案することを目的とする。   The present invention advantageously satisfies the above-mentioned requirements, and provides a hot-dip Zn-Al-based alloy-coated steel sheet having both excellent workability, plating adhesion and corrosion resistance, and particularly corrosion resistance at the cut end face (end face rust resistance). The aim is to propose with an advantageous manufacturing method.

さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、Zn−Al系合金めっき層の組織に工夫を加え、より微細、均一な組織にすること、およびSiまたはSiの酸化物をめっき層の表面に濃化させることにより、加工性とめっき密着性と耐端面さび性の三者を効果的に改善できることの知見を得た。
本発明は、上記の知見に立脚するものである。
By the way, the present inventors have conducted intensive studies to achieve the above object, and as a result, devised the structure of the Zn-Al-based alloy plating layer to make the structure finer and more uniform, and Si or Si. It has been found that by concentrating the oxide on the surface of the plating layer, the workability, plating adhesion, and edge rust resistance can be effectively improved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)表面にZn−Al系合金めっき層をそなえる溶融めっき鋼板であって、該めっき層が、Al:10〜40mass%およびSi:(0.0005〜0.15)×〔%Al〕(但し、〔%Al〕はAlの含有量(mass%))を含有し、残部はZnおよび不可避的不純物の組成になり、かつ該めっき層における長径:3μm 以下の粒状組織の存在比率が85%以上であることを特徴とする溶融Zn−Al系合金めっき鋼板。
That is, the gist configuration of the present invention is as follows.
(1) A hot-dip coated steel sheet having a Zn-Al-based alloy plating layer on the surface, the plating layer comprising: Al: 10 to 40 mass% and Si: (0.0005 to 0.15) × [% Al] (where [% Al] (Al content (mass%)), the balance is composed of Zn and unavoidable impurities, and the proportion of a long-diameter: 3 μm or less granular structure in the plating layer is 85% or more. A hot-dip Zn-Al alloy plated steel sheet characterized by the following.

(2)前記Zn−Al系合金めっき層の厚み方向における表面から1/100深さまでに存在するSiの濃度が、該めっき層の厚み方向における表面から 1/4〜2/4深さ領域に存在するSi濃度の1.0倍以上であることを特徴とする上記(1)に記載の溶融Zn−Al系合金めっき鋼板。 (2) The concentration of Si present from the surface in the thickness direction of the Zn-Al-based alloy plating layer to 1/100 depth from the surface in the thickness direction of the plating layer becomes 1/4 to 2/4 depth region from the surface in the thickness direction of the plating layer. The hot-dip Zn-Al-based alloy-plated steel sheet according to the above (1), wherein the concentration of the existing Si is 1.0 times or more.

(3)被めっき鋼板を、Al:10〜40mass%およびSi:(0.0005〜0.15)×〔%Al〕(但し、〔%Al〕はAlの含有量(mass%))を含有し、残部はZnおよび不可避的不純物の組成になる溶融めっき浴に浸漬してめっきし、280℃以上、430℃以下の温度域に10秒以上保持するか、または該温度域を15℃/s以下の速度で徐冷し、さらに280℃以下の温度域を30℃/s以上の速度で冷却することを特徴とする溶融Zn−Al系合金めっき鋼板の製造方法。 (3) The steel sheet to be plated contains Al: 10 to 40 mass% and Si: (0.0005 to 0.15) × [% Al] (where [% Al] is the Al content (mass%)), and the remainder is Plating by immersion in a hot-dip bath with a composition of Zn and unavoidable impurities, and maintained in a temperature range of 280 ° C or higher and 430 ° C or lower for 10 seconds or more, or at a rate of 15 ° C / s or lower. A method for producing a hot-dip Zn-Al-based alloy-coated steel sheet, comprising gradually cooling and further cooling at a rate of 30 ° C./s or more in a temperature range of 280 ° C. or less.

(4)被めっき鋼板を、Al:10〜40mass%およびSi:(0.0005〜0.15)×〔%Al〕(但し、〔%Al〕はAlの含有量(mass%))を含有し、残部はZnおよび不可避的不純物の組成になる溶融めっき浴に浸漬してめっきし、50℃以下まで冷却した後、再度280℃以上、430℃以下の温度域まで昇温し、該温度域に10秒以上保持したのち、30℃/s以上の速度で冷却することを特徴とする溶融Zn−Al系合金めっき鋼板の製造方法。 (4) The steel plate to be plated contains Al: 10 to 40 mass% and Si: (0.0005 to 0.15) x [% Al] (where [% Al] is the Al content (mass%)), and the balance is Dipping and plating in a hot-dip bath that becomes the composition of Zn and unavoidable impurities, and after cooling to 50 ° C or lower, the temperature is raised again to a temperature range of 280 ° C or higher and 430 ° C or lower, and the temperature range is 10 seconds or longer. A method for producing a hot-dip Zn-Al-based alloy-plated steel sheet, comprising cooling at a rate of 30 ° C./s or more after holding.

本発明によれば、従来、鼎立させることが難しいとされた曲げ加工性、プレス成形時のめっき密着性および耐端面さび性の三者を兼ね備える溶融Zn−Al系合金めっき鋼板を得ることができる。   According to the present invention, it is possible to obtain a hot-dip Zn-Al-based alloy-plated steel sheet that combines the three features of bending workability, which has conventionally been considered difficult to stand up, plating adhesion during press forming, and end surface rust resistance. .

以下、本発明を具体的に説明する。
まず、図1に、本発明の組成範囲を満足する、Al:22.0mass%、Si:0.53mass%を含有し、残部はZnおよび不可避的不純物(0.03mass%以下)からなるめっき浴でめっきした試料のめっき層断面の走査型電子顕微鏡(SEM)写真を示す。
同図に示されているとおり、めっき層の組織は、Znリッチ相(白色領域)、Zn−Al混晶1(濃いグレー領域)、Zn−Al混晶2(淡いグレー領域)、Zn−Al混晶3(ラメラー状領域)およびごくわずかなSi(黒色の微細粒子)から構成されている。
Zn−Al系二元平衡状態図(例えば、J.L.Murray:"Binary Alloy Phase Diagrams 1"、Second Edit, ASM International (1990), P.221)によれば、この組成のめっき浴は 277℃に存在する共析点の組成にほぼ一致する。
Hereinafter, the present invention will be described specifically.
First, FIG. 1 shows a plating bath containing Al: 22.0 mass% and Si: 0.53 mass%, the balance being Zn and unavoidable impurities (0.03 mass% or less), satisfying the composition range of the present invention. 4 shows a scanning electron microscope (SEM) photograph of a cross section of a plating layer of a sample.
As shown in the figure, the structure of the plating layer is as follows: Zn rich phase (white area), Zn-Al mixed crystal 1 (dark gray area), Zn-Al mixed crystal 2 (light gray area), Zn-Al It is composed of mixed crystal 3 (lamellar region) and very little Si (fine black particles).
According to the Zn-Al binary equilibrium phase diagram (for example, JLMurray: "Binary Alloy Phase Diagrams 1", Second Edit, ASM International (1990), p. 221), the plating bath of this composition exists at 277 ° C. It almost matches the composition of the eutectoid point.

次に、図1に示しためっき鋼板を、375 ℃で3分間保持し、約 100℃/sの速度で冷却したところ、めっき層は図2に示すような、極めて微細で均一な組織に変化した。この拡大写真において、数 100nmφサイズの黒い粒状領域と白い粒状領域をエネルギー分散型のX線分光分析(EDX)を行ったところ、前者からは主にAlが、後者からは主にZnが検出されたことから、375 ℃の保持によって共析変態が生じたものと推定される。
従って、この共析変態を利用すれば、めっき層を微細、均一にすることが可能であることが判明した。
Next, when the plated steel sheet shown in FIG. 1 was held at 375 ° C. for 3 minutes and cooled at a rate of about 100 ° C./s, the plated layer changed to an extremely fine and uniform structure as shown in FIG. did. In this enlarged photograph, energy distribution type X-ray spectroscopy (EDX) was performed on a black granular region and a white granular region having a size of several 100 nmφ, and Al was mainly detected from the former, and Zn was mainly detected from the latter. From this, it is estimated that eutectoid transformation occurred by holding at 375 ° C.
Therefore, it has been found that the use of this eutectoid transformation makes it possible to make the plating layer fine and uniform.

このめっき鋼板に対し、JIS Z 2248−1996に準拠して、2枚の試験片を挟み物とし180度曲げを行う2T曲げ試験を行った。試験後の曲げ外側のめっき層の断面写真を図3に示す。
同図に示したとおり、めっき層にクラックの発生は全く認められず、鋼板との密着性も良好であることが分かる。
This plated steel sheet was subjected to a 2T bending test in which two test pieces were sandwiched and bent at 180 degrees in accordance with JIS Z 2248-1996. FIG. 3 shows a cross-sectional photograph of the plating layer outside the bend after the test.
As shown in the figure, no crack was observed in the plating layer, indicating that the adhesion to the steel sheet was good.

次に、このめっき鋼板を、JIS Z 2248−1996に準拠して、密着曲げを行う0T曲げ試験を行った。この0T曲げ後の試料(幅:50mm、長さ:100 mm)を、図4に示す複合サイクル腐食試験(300サイクル)に供したが、曲げ加工部も含め赤錆発生面積は試験片の5%以下であり、極めて良好な耐食性を示した。また、切断端面にも赤錆はほとんど観察されず、耐端面さび性も良好であった。   Next, according to JIS Z 2248-1996, the plated steel sheet was subjected to a 0T bending test for performing close contact bending. The sample after the 0T bending (width: 50 mm, length: 100 mm) was subjected to the combined cycle corrosion test (300 cycles) shown in FIG. 4, and the area of red rust occurrence including the bent portion was 5% of the test piece. Below, it showed extremely good corrosion resistance. Also, little red rust was observed on the cut end face, and the end face rust resistance was also good.

さらに、上記のめっき鋼板を、幅:20mm、長さ:300mmに切断し、荷重:200kg、ポンチ先端径:0.5mmR、引き抜き距離:60mm、引き抜き速度:3.33mm/sの条件でドロービード試験を行ったが、めっき層の剥離は観察されず、良好なめっき密着性を示した。 Furthermore, the above-mentioned plated steel sheet is cut into a width: 20 mm and a length: 300 mm, and a draw bead test is performed under the following conditions: load: 200 kg, punch tip diameter: 0.5 mmR, drawing distance: 60 mm, drawing speed: 3.33 mm / s. However, no peeling of the plating layer was observed, indicating good plating adhesion.

本発明のめっき鋼板が優れた曲げ加工性およびめっき密着性を示す理由は、1つには鋼板との界面に硬くて脆い合金層がほとんど存在しないこと、2つにはめっき層にクラックの起点や伝播経路がなく、しかも延性が著しく向上したためであると考えられる。また、優れた耐端面さび性を示す理由は、めっき層の延性向上により、切断部の端面をめっき層が覆う面積が従来のZn−Alめっき鋼板に比べて著しく増大したためと考えられる。   One of the reasons why the plated steel sheet of the present invention exhibits excellent bending workability and plating adhesion is that there is almost no hard and brittle alloy layer at the interface with the steel sheet, and two, the starting point of cracks in the plated layer. This is considered to be because there was no or propagation path and the ductility was significantly improved. The reason for the excellent end face rust resistance is considered to be that the area covered by the plating layer on the end face of the cut portion is significantly increased as compared with the conventional Zn-Al plated steel sheet due to the improvement in ductility of the plating layer.

さらに、図5に、このめっき鋼板のグロー放電発光分析装置(GDS)によるめっき層の厚み方向のSi,ZnおよびAlの分析結果を示す。
図5に示したように、このめっき鋼板では、めっき層の表面にSiが濃化している。これは、SiまたはSiの酸化物であると考えられるが、このSi濃化も優れた耐端面さび性を呈する一因であると考えられる。
Further, FIG. 5 shows the results of analysis of Si, Zn and Al in the thickness direction of the plating layer by a glow discharge optical emission spectrometer (GDS) of the plated steel sheet.
As shown in FIG. 5, in this plated steel sheet, Si is concentrated on the surface of the plated layer. This is considered to be Si or an oxide of Si, and this Si concentration is also considered to be one of the causes of exhibiting excellent end face rust resistance.

次に、本発明に従うめっき層の組成について述べる。
Al:10〜40mass%
Alは、第一に耐食性の向上、第二に共析変態の生成を目的として添加する重要な元素である。
共析変態によってめっき層を微細、均一化させるには、Al含有量は10〜40mass%の範囲に制御する必要がある。というのは、Al量が10mass%に満たないと、平面部だけでなく端面においても高耐食性が得られないだけでなく、微細な共析組織の中に長径:3μm 超の粗大なβ−Zn相やラメラー状のZn−Al共晶組織(図1のZn−Al混晶3に相当)が多量に析出し、一方40mass%を超えると、長径:3μm 超の粗大なα−Al相やラメラー状のZn−Al共晶組織(Zn−Al混晶3)が多量に析出するからである。より好適には20〜25mass%の範囲である。
Next, the composition of the plating layer according to the present invention will be described.
Al: 10-40 mass%
Al is an important element that is added for the purpose of improving corrosion resistance firstly and secondly for forming eutectoid transformation.
In order to make the plating layer fine and uniform by eutectoid transformation, the Al content needs to be controlled in the range of 10 to 40 mass%. This is because if the Al content is less than 10 mass%, not only is the high corrosion resistance not obtained not only on the flat surface but also on the end face, but also in the fine eutectoid structure, the coarse β-Zn with a major axis of more than 3 μm. A large amount of a phase or lamellar Zn-Al eutectic structure (corresponding to Zn-Al mixed crystal 3 in Fig. 1) precipitates, whereas if it exceeds 40 mass%, a coarse α-Al phase with a major axis longer than 3 µm or a lamellar This is because a large amount of Zn-Al eutectic structure (Zn-Al mixed crystal 3) is precipitated in a large amount. More preferably, it is in the range of 20 to 25 mass%.

Si:(0.0005〜0.15)×〔%Al〕(但し、〔%Al〕はAlの含有量(mass%))
Siは、第一にはAlと鋼板との合金化反応を抑制する目的で、第二には表面に濃化させることにより耐食性を改善する目的で添加する元素である。その添加量は、Al量の(0.0005〜0.15)倍とする必要がある。というのは、これより少ないと、鋼板とめっき層の界面に粗大なAl−Fe、Zn−Fe、Al−Fe−Si、Al−Fe−Zn、Al−Fe−Zn−Si系の金属間化合物が多量に生成し、曲げ加工性およびプレス成形時のめっき密着性が大幅に劣化するからである。一方、これより多いと、めっき層中にSiが粗大析出し易くなり、曲げ加工性が再び劣化するからである。より好ましくはAl量の(0.001〜0.1)倍である。
Si: (0.0005 to 0.15) x [% Al] (However, [% Al] is the content of Al (mass%))
Si is an element added for the first purpose of suppressing the alloying reaction between Al and a steel sheet, and secondly for the purpose of improving corrosion resistance by concentrating on the surface. The amount of addition must be (0.0005 to 0.15) times the amount of Al. This is because if it is less than this, coarse Al-Fe, Zn-Fe, Al-Fe-Si, Al-Fe-Zn, Al-Fe-Zn-Si intermetallic compounds are formed at the interface between the steel sheet and the plating layer. Is generated in a large amount, and the bending workability and the plating adhesion at the time of press molding are significantly deteriorated. On the other hand, if it is more than this, Si is likely to precipitate coarsely in the plating layer, and the bending workability is deteriorated again. More preferably, it is (0.001 to 0.1) times the amount of Al.

また、本発明では、めっき層の延性の改善を目的として、Mnを添加することができる。
Mn:0.01〜2.0 mass%
Mnは、めっき層の延性向上に有用な元素であるが、含有量が0.01mass%に満たないとその添加効果に乏しく、一方2.0mass%を超えると浴中のAl,Siと化合し、多量のドロスが 生成するばかりか、界面合金層の生成を促進し、曲げ加工性、プレス成形時のめっき密着性が劣化する。よって、Mnは必要に応じて、0.01〜2.0 mass%の範囲で、より好ましくは0.1〜1mass%の範囲で含有させることができる。
In the present invention, Mn can be added for the purpose of improving the ductility of the plating layer.
Mn: 0.01 to 2.0 mass%
Mn is an element useful for improving the ductility of the plating layer. However, if its content is less than 0.01 mass%, its addition effect is poor, while if it exceeds 2.0 mass%, it combines with Al and Si in the bath, In addition to the formation of dross, the formation of an interfacial alloy layer is promoted, and the bending workability and the plating adhesion during press forming deteriorate. Therefore, Mn can be contained as needed in the range of 0.01 to 2.0 mass%, more preferably in the range of 0.1 to 1 mass%.

さらに、本発明では、表面外観の改善と黒変防止を目的として、Mgおよび/またはCuを微量添加することができる。但し、めっき層の延性が劣化しないよう、添加量は単独添加または複合添加いずれの場合も 1.0mass%以下で含有させるものとする。   Further, in the present invention, a small amount of Mg and / or Cu can be added for the purpose of improving the surface appearance and preventing blackening. However, in order to prevent the ductility of the plating layer from deteriorating, the amount of addition should be 1.0 mass% or less in either case of single addition or composite addition.

上記したMn:0.01〜2.0 mass%を添加したものおよび/またはMgやCuを微量添加したものも、本発明と同様な作用効果を有する限り、本発明の均等範囲であり、本発明の範囲から除外するものではない。   The addition of Mn: 0.01 to 2.0 mass% and / or the addition of a small amount of Mg or Cu are also within the scope of the present invention as long as they have the same effect as the present invention. Not excluded.

次に、めっき層の組織について説明する。
めっき層の延性を向上させるためには、めっき層の各相が微細、かつ均一に分散していなければならない。
そこで、本発明では、めっき層における長径:3μm 以下の粒状組織の存在比率を85%以上とすることにした。ここで、粒状組織の存在比率とは、めっき層断面における面積率である。
Next, the structure of the plating layer will be described.
In order to improve the ductility of the plating layer, each phase of the plating layer must be finely and uniformly dispersed.
Therefore, in the present invention, the existence ratio of the granular structure having a major axis of 3 μm or less in the plating layer is set to 85% or more. Here, the existence ratio of the granular structure is an area ratio in a plating layer cross section.

また、プレス成形時のめっき密着性をさらに改善するためには、めっき層の素地鋼板との界面にAl−Fe、Zn−Fe、Al−Fe−Si、Al−Fe−Zn、Al−Fe−Zn−Si系の金属間化合物からなる合金層を持たないか、または生成したとしても合金層粒子の長径を0.3μm未満とすることが好ましい。これ以上に合金層の粒子が粗大化すると、合金層粒子が界面を覆い尽くして、プレス成形時にめっき層の剥離が生じ易くなるためである。   Further, in order to further improve the plating adhesion at the time of press forming, Al-Fe, Zn-Fe, Al-Fe-Si, Al-Fe-Zn, Al-Fe- It is preferable to have no alloy layer made of a Zn-Si based intermetallic compound, or to make the length of the alloy layer particles less than 0.3 μm even if it is formed. If the particles of the alloy layer become coarser than this, the particles of the alloy layer cover the interface, and the plating layer is likely to peel off during press forming.

さらに、めっき層の耐食性、とくに切断部の耐食性を改善するためには、まず第一にめっき層の延性を向上させることが重要であるが、Siを表面近傍に濃化させると、さらに端部耐食性が改善することが明らかになった。
この場合のめっき表面近傍とは、厚み方向における表面から1/100深さまでであり、この領域のSi濃度を、めっき層の厚み方向における表面から1/4〜2/4深さ領域に存在する濃度以上、すなわち1.0倍以上とすることが好ましい。より好適には1.5倍以上である。
Furthermore, in order to improve the corrosion resistance of the plating layer, especially the corrosion resistance of the cut portion, it is important to improve the ductility of the plating layer first. It was found that the corrosion resistance was improved.
The vicinity of the plating surface in this case is from the surface in the thickness direction to 1/100 depth, and the Si concentration in this region is present in a region 1/4 to 2/4 depth from the surface in the thickness direction of the plating layer. Preferably, the concentration is not less than 1.0, that is, not less than 1.0. More preferably, it is 1.5 times or more.

めっき層中のAl,Si濃度およびめっき層の組織を、上記のように限定した根拠となる実験および結果は、以下のとおりである。
Al量を2〜40mass%の範囲で、またSi量をAl量の(0〜0.2)倍の範囲で変化させたAl−Si−Zn浴に、板厚:1.2mmの低炭素冷延鋼板を2秒間浸漬し、片面めっき厚が20μmとなるようにめっき厚を調整し、室温まで15℃/sの速度で冷却しためっき鋼板、およびこのめっき鋼板をさらに200〜400 ℃間の一定温度に0〜300 秒保持し、空冷(保持温度〜100℃までの平均冷却速度:15℃/s)またはミスト冷却(保持温度〜100℃までの平均冷却速度:75℃/s)しためっき鋼板について、以下の方法により曲げ加工性、耐端面さび性、粒状組織の存在比率、表面近傍のSi濃度、プレス成形時のめっき密着性および鋼板とめっき層の界面における合金層の種類とサイズについて調査を行った。
Experiments and results which are the basis for limiting the Al and Si concentrations in the plating layer and the structure of the plating layer as described above are as follows.
A low-carbon cold-rolled steel sheet having a thickness of 1.2 mm is placed in an Al-Si-Zn bath in which the Al content is changed in the range of 2 to 40 mass% and the Si content is changed in the range of (0 to 0.2) times the Al content. The coated steel sheet was immersed for 2 seconds, the plating thickness was adjusted so that the plating thickness on one side became 20 μm, and the coated steel sheet was cooled to room temperature at a rate of 15 ° C./s. For plated steel sheets that have been held for ~ 300 seconds and air cooled (average cooling rate from holding temperature to 100 ° C: 15 ° C / s) or mist cooled (average cooling rate from holding temperature to 100 ° C: 75 ° C / s) We investigated bending workability, end face rust resistance, the existence ratio of granular structure, Si concentration near the surface, plating adhesion during press forming, and the type and size of the alloy layer at the interface between the steel sheet and the plating layer. .

・曲げ加工性
試料を幅:60mm、圧延方向の長さ:120 mmに3枚切断し、JIS Z 2248−1996に準拠した0T曲げ試験を行い、曲げ外側の部位を真上から100倍の実体顕微鏡で1試料について幅方向に10mm間隔で4視野、3つの試料(合計12視野)についてクラック発生状況を目視で観察し、次の5段階で評価し、平均値を求めた。
ランク5:クラックは全く認められない。
ランク4:鋼素地まで達しないヘアクラックが1〜10本/視野。
ランク3:鋼素地まで達しないヘアクラックが11本/視野以上(但し、鋼素地まで達する粗大クラックなし)。
ランク2:鋼素地まで達する粗大クラックが1〜5本/視野。
ランク1:鋼素地まで達する粗大クラックが6本/視野以上。
・ Bending workability The sample was cut into three pieces with a width of 60 mm and a length in the rolling direction of 120 mm, and subjected to a 0T bending test in accordance with JIS Z 2248-1996. Cracks were visually observed for three samples (total of 12 visual fields) in four fields at 10 mm intervals in the width direction of one sample with a microscope, and evaluated by the following five steps, and an average value was obtained.
Rank 5: No crack is observed.
Rank 4: 1 to 10 hair cracks / field of view that do not reach the steel base.
Rank 3: 11 hair cracks / field of view that did not reach the steel base (however, no coarse cracks reaching the steel base).
Rank 2: 1 to 5 coarse cracks reaching the steel substrate / view.
Rank 1: 6 or more coarse cracks reaching the steel base per field.

・耐端面さび性
幅方向の切断部が下バリとなるように幅:60mm、圧延方向の長さ:120mmのサイズの試料を4枚切断し、図4に示した複合サイクル腐食試験を300サイクル行い、1枚につき左右両側面部(2辺)、合計8辺の赤さび発生率(面積率)を次の5段階で評価し、平均値を求めた。
ランク5:赤さび発生率 5%未満
ランク4:赤さび発生率 5%以上、10%未満
ランク3:赤さび発生率 10%以上、20%未満
ランク2:赤さび発生率 20%以上、30%未満
ランク1:赤さび発生率 30%以上
・ End face rust resistance Four samples of 60 mm in width and 120 mm in length in the rolling direction are cut so that the cut portion in the width direction becomes a lower burr, and 300 cycles of the combined cycle corrosion test shown in FIG. 4 are performed. The red rust occurrence rate (area ratio) of a total of eight sides, that is, the right and left sides (two sides) per one sheet, was evaluated in the following five stages, and the average value was obtained.
Rank 5: Red rust occurrence rate less than 5% Rank 4: Red rust occurrence rate 5% or more, less than 10% Rank 3: Red rust occurrence rate 10% or more, less than 20% Rank 2: Red rust occurrence rate 20% or more, less than 30% Rank 1 : Red rust occurrence rate 30% or more

・粒状組織の存在比率(面積率)
試料を幅:10mm、圧延方向の長さ:15mmに3枚切断し、圧延方向の断面が観察面となるようにカーボン樹脂に埋め込み、バフ研磨により鏡面化し、SEM観察により長径:3μm以下の粒状組織の面積率を測定した。面積率の測定は、長径:3μm 超の単相、筋の長手方向が3μm 超のラメラー状Zn−Al混晶組織、Siおよび合金層をトレースし、画像解析装置によってこれらの面積率を計測し、100%から差し引くことによって求めた。
また、SEM撮影条件は、加速電圧:25kV、3000倍の反射電子像とし、各試料につき、ラ ンダムに30視野選定し、平均値を求めた。
・ Presence ratio (area ratio) of granular structure
The sample was cut into three pieces of 10 mm in width and 15 mm in length in the rolling direction, embedded in carbon resin so that the cross section in the rolling direction became the observation surface, mirror-polished by buffing, and granulated with a long diameter of 3 μm or less by SEM observation. The area ratio of the tissue was measured. The area ratio was measured by tracing a single phase having a major axis of more than 3 μm, a lamellar Zn—Al mixed crystal structure having a longitudinal direction of more than 3 μm, a Si and an alloy layer, and measuring these area ratios with an image analyzer. , Determined by subtracting from 100%.
The SEM imaging conditions were as follows: an acceleration voltage: 25 kV, a 3000-fold reflected electron image, and randomly selected 30 fields of view for each sample, and the average value was determined.

・表面近傍のSi濃度
試料を40mm×40mmに5枚切断し、グロー放電発光分析装置により、Fe換算スパッターレート:24nm/sの条件でめっき層の深さ方向のSi濃度プロファイルを測定した。このプロファイルにおいて、めっき層の表面から厚み方向1/100深さまでの積分強度を単位厚みに規格化した強度Isとめっき層の表面から厚み方向 1/4〜2/4深さ領域における積分強度を単位厚みに規格化した強度Iavの比:Is/Iavを求め、5ケ所の平均値を求めた。
-Si concentration near the surface Five samples were cut into 40 mm x 40 mm samples, and the Si concentration profile in the depth direction of the plating layer was measured by a glow discharge emission spectrometer under the conditions of a sputtering rate of Fe: 24 nm / s. In this profile, the integrated intensity in the thickness direction from the surface of the plating layer to the depth 1/4 to 2/4 from the surface of the plating layer to the depth 1/100 in the thickness direction is normalized to the unit thickness. The ratio of the strength Iav normalized to the unit thickness: Is / Iav was determined, and the average value at five locations was determined.

・プレス成形時のめっき密着性
試料を直径:100mmの円形に打ち抜き、ポンチ直径:50mm 、ダイスとポンチの肩R:10mm、しわ押さえ荷重:0.5トンとし、絞り比2.0で円筒絞り試験を行い、円筒に成形された試験片の外側の側面部を観察して、めっき層の密着性を3段階で評価した。
ランク3:めっき層の剥離は全く認められない。
ランク2:明瞭なめっき層の剥離は認められないが、めっき層のクラックに起因したばらつきが存在する。
ランク1:明瞭なめっき層の剥離が認められる。
・ Plating adhesion during press molding A sample was punched into a circle with a diameter of 100 mm, punch diameter: 50 mm, die and punch shoulder R: 10 mm, wrinkle pressing load: 0.5 ton, and a cylindrical drawing test was performed at a drawing ratio of 2.0. The outer side surface of the test piece formed into a cylinder was observed, and the adhesion of the plating layer was evaluated on a three-point scale.
Rank 3: No peeling of the plating layer was observed.
Rank 2: No clear peeling of the plating layer is observed, but there is variation due to cracks in the plating layer.
Rank 1: Clear peeling of the plating layer is observed.

・合金層の有無と最大長径
試料を、1mass%サリチル酸−4mass%マレイン酸−2mass%ヨウ化カリウム−メタノール溶液中で、飽和カロメル電極に対して0mVの定電圧電解を行ってめっき層を除去した後、X線回折パターンを測定してめっき層の素地鋼板との界面における合金層の有無を判定した。この試料に合金層が存在している場合は、その領域をSEM観察(3000倍の反射電子像観察)して30視野の最大の長径を測定した。
The presence / absence of the alloy layer and the maximum major axis The sample was subjected to constant voltage electrolysis of 0 mV with respect to the saturated calomel electrode in a 1 mass% salicylic acid-4 mass% maleic acid-2 mass% potassium iodide-methanol solution to remove the plating layer. Thereafter, the presence of an alloy layer at the interface between the plating layer and the base steel sheet was determined by measuring the X-ray diffraction pattern. When the alloy layer was present in this sample, the region was observed by SEM (observation of a backscattered electron image of 3000 times) to measure the maximum major axis in 30 visual fields.

かくして得られた溶融Zn−Al系合金めっき鋼板における長径:3μm 以下の粒状組織の面積率と曲げ加工性および耐端面さび性との関係について調べた結果を図6,7に、また表面近傍のSi濃度と耐端面さび性との関係について調べた結果を図8に、さらに合金層の有無および合金層の最大長径とプレス成形時のめっき密着性との関係について調べた結果を図9に、それぞれ示す。   FIGS. 6 and 7 show the relationship between the area ratio of the granular structure having a major diameter of 3 μm or less, the bending workability, and the end face rust resistance in the hot-dip Zn—Al-based alloy-coated steel sheet thus obtained. FIG. 8 shows the results of a study on the relationship between Si concentration and end surface rust resistance, and FIG. 9 shows the results of a study on the relationship between the presence or absence of an alloy layer and the maximum major axis of the alloy layer and the plating adhesion during press forming. Shown respectively.

図6および7に示したとおり、曲げ加工性および耐端面さび性のいずれについても、長径:3μm 以下の粒状組織の面積率が85%以上になると、評点が4以上と良好であることが分かる。
また、耐端面さび性については、図8に示したように、Is/Iavが1.0倍以上のときに評点が平均で4.5以上と格段に向上することが分かる。
さらに、図9に示したとおり、プレス成形時のめっき密着性については、鋼板とめっき層の界面に長径が0.3μm以上の合金層粒子が存在しない場合に良好であることが分かる。
As shown in FIGS. 6 and 7, both the bending workability and the end face rust resistance are as good as 4 or more when the area ratio of the granular structure having a long diameter of 3 μm or less is 85% or more. .
In addition, as shown in FIG. 8, when the ratio of Is / Iav is 1.0 or more, the rating is remarkably improved to 4.5 or more on average.
Further, as shown in FIG. 9, it can be seen that the plating adhesion at the time of press forming is good when there is no alloy layer particle having a major axis of 0.3 μm or more at the interface between the steel sheet and the plating layer.

上述したとおり、本発明は、切断部を含む耐食性を従来のMgの多量添加ではなく、めっき層の組織改善とSiの表面濃化によって改善したので、Mg添加の場合に従来懸念されたような加工性の劣化を招くことはない。   As described above, in the present invention, the corrosion resistance including the cut portion was improved not by the conventional addition of a large amount of Mg but by the improvement of the structure of the plating layer and the surface concentration of Si. There is no deterioration of workability.

次に、上記しためっき層組織とするための製造方法について説明する。
本発明における被めっき鋼板としては、通常の方法で製造した鋼板、例えば低炭素アルミキルド鋼板や極低炭素鋼板等がいずれも好適に使用できる。本発明では、これらの鋼板を溶融Zn−Al系合金めっき浴に浸漬する、いわゆる熱漬めっきを行い、該鋼板をめっき浴から引き上げてガスワイピング等で付着量を調整したのち、冷却し、溶融Zn−Al系合金めっき層を形成する。
Next, a manufacturing method for obtaining the above-described plating layer structure will be described.
As the steel sheet to be plated in the present invention, any steel sheet manufactured by a usual method, for example, a low carbon aluminum killed steel sheet, an ultra low carbon steel sheet, or the like can be suitably used. In the present invention, these steel sheets are immersed in a hot-dip Zn-Al-based alloy plating bath, so-called hot dip plating, the steel sheets are pulled up from the plating bath, the amount of adhesion is adjusted by gas wiping or the like, then cooled, and the molten steel is cooled. A Zn-Al based alloy plating layer is formed.

ここで、本発明では、溶融Zn−Al系合金めっき浴の浴組成を、Alを10〜40mass%、SiをAl量の(0.0005〜0.15)倍で含有し、残部はZnおよび不可避的不純物の組成になるように調整しなければならない。ここで、不可避的不純物とは、Feをはじめとして、Pb,Sn,Cd等であり、これらは合計量で0.05mass%を超えないように抑制しなければならない。
また、めっき浴温は、液相線温度以上、(液相線温度+100 ℃)以下とする。なお、低温になるほど付着量制御が難しくなり、一方高温になるほど鋼板とめっき層の界面に合金層が生成し易くなるので、好適範囲は液相線より30℃以上、70℃以下の範囲である。
Here, in the present invention, the bath composition of the hot-dip Zn—Al-based alloy plating bath contains Al at 10 to 40 mass% and Si at (0.0005 to 0.15) times the Al amount, and the balance is Zn and unavoidable impurities. The composition must be adjusted. Here, the unavoidable impurities are Fe, Pb, Sn, Cd, and the like, and these must be suppressed so that the total amount does not exceed 0.05 mass%.
Further, the plating bath temperature is set to be equal to or higher than the liquidus temperature and equal to or lower than (liquidus temperature + 100 ° C.). The lower the temperature, the more difficult it is to control the amount of deposition, while the higher the temperature, the more easily an alloy layer is formed at the interface between the steel sheet and the plating layer. Therefore, the preferred range is 30 ° C or higher and 70 ° C or lower from the liquidus line. .

めっき浴から引き上げ後、430 ℃までの冷却速度は特に規制されることはないが、単相組織を粗大化させない方がよいので、15℃/s以上程度とすることが好ましい。
引き続く 430℃から 280℃までの間は、この温度域に10秒以上保持するか、あるいはこの温度域を15℃/s以下の速度で冷却しなければならない。
この温度域に滞留させる理由は、単相およびZn−Al共晶組織を溶解するためである。従って、保持時間が10秒未満、あるいは冷却速度が15℃/sより速いと、これらの組織が未溶解で残ってしまい、微細、均一なめっき組織とすることができない。なお、保持時間の上限は特に限定しないが、10分間も保持すれば完全に溶解するので、それ以上の保持はエネルギー効率的に好ましくない。最も好適な範囲は、保持時間は30〜150 秒程度、また冷却速度は1〜5℃/s程度である。
After being pulled out of the plating bath, the cooling rate up to 430 ° C. is not particularly limited, but is preferably about 15 ° C./s or more because it is better not to coarsen the single-phase structure.
During the following 430 ° C to 280 ° C, this temperature range must be maintained for at least 10 seconds, or this temperature range must be cooled at a rate of 15 ° C / s or less.
The reason for staying in this temperature range is to dissolve the single phase and the Zn-Al eutectic structure. Therefore, if the holding time is less than 10 seconds or the cooling rate is higher than 15 ° C./s, these structures remain undissolved, and a fine and uniform plating structure cannot be obtained. The upper limit of the holding time is not particularly limited. However, if the holding time is 10 minutes, the solution is completely dissolved. Most preferably, the holding time is about 30 to 150 seconds, and the cooling rate is about 1 to 5 ° C./s.

引き続く 280℃からの冷却は、30℃/s以上の速度で行わなければならない。
この理由は、冷却過程で共析変態により、めっき層を微細なα−Al相とβ−Zn相が混在した粒状組織にするためである。従って、冷却速度がこれより遅いと、粒子が粗大化し、微細、均一な粒状組織とすることができない。
Subsequent cooling from 280 ° C must be performed at a rate of 30 ° C / s or more.
The reason for this is that the plating layer has a granular structure in which fine α-Al phase and β-Zn phase are mixed by eutectoid transformation in the cooling process. Therefore, if the cooling rate is lower than this, the particles become coarse, and a fine and uniform granular structure cannot be obtained.

また、本発明では、めっき浴から引き上げ、ガスワイピング等で目付量を調整後、一旦50℃以下まで冷却したのち、再度 280℃以上、430 ℃以下の温度域まで昇温し、該温度域に10秒以上保持し、しかる後30℃/s以上の速度で冷却しても、同様の効果を得ることができる。
再熱処理方法としては、コイルに巻き取った状態で、Box 炉で加熱保持後、50℃以下の多量のガスを吹き付けて空冷することもできるが、連続炉等で該温度域に達するまで徐々に昇温し、所定の時間保持後、ガス冷却またはミストスプレー等で冷却する方法がより好ましい。
Further, in the present invention, after raising from the plating bath, adjusting the basis weight by gas wiping or the like, once cooling to 50 ° C or lower, the temperature is raised again to a temperature range of 280 ° C or higher and 430 ° C or lower, The same effect can be obtained by holding for 10 seconds or more and then cooling at a rate of 30 ° C./s or more.
As a reheat treatment method, after being wound in a coil and heated and held in a Box furnace, a large amount of gas of 50 ° C or less can be blown and air-cooled. A more preferable method is to raise the temperature, hold for a predetermined time, and then cool with gas cooling or mist spray.

なお、冷却過程からコイル巻き取りまでの間に、形状矯正を目的としたテンションレベラーやめっき表面の平滑化を目的としたスキンパス圧延を必要に応じて行うことができる。また、めっき層の組織微細化処理の後に、化成処理と一層または二層のカラー塗装を行うこともできる。   In addition, between the cooling process and coil winding, a tension leveler for shape correction and skin pass rolling for smoothing the plating surface can be performed as necessary. Further, after the structure refinement treatment of the plating layer, a chemical conversion treatment and one or two layers of color coating can be performed.

実施例1
C:0.044 mass%、Si:0.01mass%、Mn:0.18mass%、S:0.007 mass%およびAl:0.020 mass%を含有し、残部はFeおよび不可避的不純物の組成になる、板厚:1.0 mmの低炭素アルミキルド冷延鋼板を被めっき鋼板とし、連続式溶融めっき設備によって溶融Zn−Al合金めっきを施した。溶融めっき浴は、99.9mass%Znインゴット、99.99mass%Al粒およ び3mass%Si−Alおよび13mass%Si−Al合金インゴットを用いて、表1の組成となるように成分調整した。
めっき処理は、浸漬時間を約2秒、目標付着厚を25μm (片面)とし、放射温度計でめっき後のヒートパターンを測定した。めっき浴温度、 430〜280 ℃間の平均冷却速度および 280〜50℃間の平均冷却速度を表1に示す。なお、表1中にはめっき浴組成を示すが、めっき層はめっき浴組成と同じ組成であることが確認されている。
Example 1
C: 0.044 mass%, Si: 0.01 mass%, Mn: 0.18 mass%, S: 0.007 mass% and Al: 0.020 mass%, the balance being a composition of Fe and unavoidable impurities, sheet thickness: 1.0 mm The low-carbon aluminum-killed cold-rolled steel sheet was used as a steel sheet to be plated, and was subjected to hot-dip Zn-Al alloy plating by a continuous hot-dip plating apparatus. The composition of the hot-dip plating bath was adjusted using 99.9 mass% Zn ingot, 99.99 mass% Al particles, and 3 mass% Si-Al and 13 mass% Si-Al alloy ingots so as to have the composition shown in Table 1.
In the plating treatment, the immersion time was about 2 seconds, the target adhesion thickness was 25 μm (one side), and the heat pattern after plating was measured with a radiation thermometer. Table 1 shows the plating bath temperature, the average cooling rate between 430 and 280 ° C, and the average cooling rate between 280 and 50 ° C. Table 1 shows the plating bath composition, and it has been confirmed that the plating layer has the same composition as the plating bath composition.

かくして得られた溶融Zn−Al系合金めっき鋼板から、前述したように試験片を採取し、長径:3μm 以下の粒状組織の存在比率(面積率)、鋼板とめっき層の界面におけるAl−Fe、Zn−Fe、Al−Fe−Si、Al−Fe−Zn、Al−Fe−Zn−Si系の金属間化合物からなる合金層の有無の判定と最大長径、Siの表層1/100深さまでの濃化量(Is/Iav)を測定すると共に、曲げ加工性、耐端面さび性およびプレス成形時のめっき密着性について調査した。
得られた結果を表1に併記する。
なお、粒状組織の存在比率、合金層の有無と最大長径、Siの表層1/100 深さまでの濃化量(Is/Iav)、曲げ加工性、耐端面さび性およびプレス成形時のめっき密着性の評価方法は、前述したところと同じである。
From the hot-dip Zn-Al-based alloy-plated steel sheet thus obtained, a test piece was sampled as described above, and the major axis: the abundance ratio (area ratio) of a granular structure of 3 μm or less, Al-Fe at the interface between the steel sheet and the plating layer, Judgment of presence / absence of alloy layer consisting of Zn-Fe, Al-Fe-Si, Al-Fe-Zn, Al-Fe-Zn-Si based intermetallic compound, maximum major axis, concentration of Si up to 1/100 depth The amount (Is / Iav) was measured, and bending workability, end face rust resistance, and plating adhesion during press molding were investigated.
The results obtained are also shown in Table 1.
The existence ratio of the grain structure, the presence or absence and the maximum major axis of the alloy layer, the concentration of Si up to the depth of 1/100 of the surface layer (Is / Iav), bending workability, end face rust resistance, and plating adhesion during press forming Is the same as described above.

Figure 2004323974
Figure 2004323974

同表から明らかなように、本発明に従い、めっき層組織を、長径:3μm 以下の粒状組織の存在比率が85%以上の微細、均一組織としたものはいずれも、優れた曲げ加工性、耐端面さび性およびプレス成形時のめっき密着性が併せて得られている。また、特にSiの表面濃化(Is/Iav)を1.0以上とした場合には、一層優れた耐端面さび性を得ることができた。さらに、鋼板とめっき層の界面に合金層が存在しないか、存在しても長径が0.3μm以下であった場合には、プレス成形時のめっき密着性が特に優れていた。   As is clear from the table, according to the present invention, any of the plated layer structures having a fine and uniform structure in which the proportion of a granular structure having a major axis of 3 μm or less is 85% or more has excellent bending workability and resistance to bending. The end face rust and the plating adhesion at the time of press molding are obtained together. In particular, when the surface concentration of Si (Is / Iav) was set to 1.0 or more, more excellent end face rust resistance could be obtained. Furthermore, when the alloy layer was not present at the interface between the steel sheet and the plated layer, or even when the alloy layer had a major axis of 0.3 μm or less, the plating adhesion during press forming was particularly excellent.

実施例2
C:0.0012mass%、Si:0.02mass%、Mn:0.05mass%、S:0.005 mass%およびAl:0.021 mass%を含み、残部はFeおよび不可避的不純物の組成になる、板厚:0.6 mmの極低炭素アルミキルド冷却鋼板を、幅:60mm、長さ:200 mmの試験片に切断し、脱脂、酸洗、洗浄後、溶融めっきシミュレータによって溶融Zn−Al合金めっきを施した。溶融めっき浴は、99.9mass%Znインゴット、 99.99mass%Al粒および3mass%Si−Alおよび13mass%Si−Al合金インゴットを用いて、表2の組成となるように成分調整した。
めっき処理は、浸漬時間を約2秒、目標付着量を25μm (片面)とした。その他のめっき条件を表2に示す。なお、表2中にはめっき浴組成を示すが、めっき層はめっき浴組成と同じ組成であることが確認されている。
Example 2
C: 0.0012 mass%, Si: 0.02 mass%, Mn: 0.05 mass%, S: 0.005 mass% and Al: 0.021 mass%, the balance being a composition of Fe and unavoidable impurities. The ultra-low carbon aluminum-killed cooled steel sheet was cut into a test piece having a width of 60 mm and a length of 200 mm, degreased, pickled, washed, and then subjected to hot-dip Zn-Al alloy plating by a hot-dip plating simulator. The composition of the hot-dip plating bath was adjusted using 99.9 mass% Zn ingot, 99.99 mass% Al particles, and 3 mass% Si-Al and 13 mass% Si-Al alloy ingots to obtain the composition shown in Table 2.
In the plating treatment, the immersion time was about 2 seconds, and the target adhesion amount was 25 μm (one side). Table 2 shows other plating conditions. Table 2 shows the plating bath composition, and it has been confirmed that the plating layer has the same composition as the plating bath composition.

また、作製した溶融めっき鋼板の一部(No.1, 3, 4, 8, 10〜12)は、さらにオーブンで種々の温度に再加熱したのち、水または90℃の湯中焼入れ処理、空冷処理、放冷処理を行った。各方法の冷却開始から50℃までの平均冷却速度は、水中焼入れの場合:200 ℃/s以上、湯中焼入れの場合:約100 ℃/s、空冷の場合:23℃/s、放冷の場合:12℃/sであった。各処理条件を表2に併記する。なお、再加熱した場合における、めっき直後の平均冷却速度は( )付きで示す。
かくして得られた溶融Zn−Al系合金めっき鋼板の長径:3μm 以下の粒状組織の存在比率(面積率)、鋼板とめっき層の界面における合金層の有無の判定と最大長径を測定すると共に、Siの表層1/100深さまでの濃化量(Is/Iav)、曲げ加工性、耐端面さび性およびプレス成形時のめっき密着性について調査した。
得られた結果を表3に示す。
Some of the prepared hot-dip coated steel sheets (Nos. 1, 3, 4, 8, and 10 to 12) were further reheated to various temperatures in an oven, then quenched in water or 90 ° C hot water, and air-cooled. Processing and cooling treatment were performed. The average cooling rate from the start of cooling in each method to 50 ° C is 200 ° C / s or more for underwater quenching, about 100 ° C / s for quenching in hot water, 23 ° C / s for air cooling, and Case: 12 ° C./s. Table 2 also shows each processing condition. The average cooling rate immediately after plating when reheating is shown in parentheses.
The major axis of the hot-dip Zn-Al-based alloy-coated steel sheet thus obtained: the existence ratio (area ratio) of a granular structure of 3 μm or less, the determination of the presence or absence of an alloy layer at the interface between the steel sheet and the plating layer, and the measurement of the maximum major axis. Of the surface layer to a depth of 1/100 (Is / Iav), bending workability, end face rust resistance and plating adhesion during press forming were investigated.
Table 3 shows the obtained results.

Figure 2004323974
Figure 2004323974

Figure 2004323974
Figure 2004323974

表3から明らかなように、本発明に従い、めっき層組織を、長径:3μm 以下の粒状組織の存在比率が85%以上の微細、均一組織としたものはいずれも、優れた曲げ加工性、耐端面さび性およびプレス成形時のめっき密着性が併せて得られている。また、特にSiの表面濃化(Is/Iav)を1.0以上とした場合には、一層優れた耐端面さび性を得ることができた。さらに、鋼板とめっき層の界面にAl−Fe、Zn−Fe、Al−Fe−Si、Al−Fe−Zn、Al−Fe−Zn−Si系の金属間化合物からなる合金層が存在しないか、存在しても長径が0.3μm 以下であった場合には、プレス成形時のめっき密着性が特に優れていた。   As is clear from Table 3, according to the present invention, any of the plating layer structures having a fine and uniform structure in which the proportion of a granular structure having a major axis of 3 μm or less is 85% or more has excellent bending workability and resistance to bending. The end face rust and the plating adhesion at the time of press molding are obtained together. In particular, when the surface concentration of Si (Is / Iav) was set to 1.0 or more, more excellent end face rust resistance could be obtained. Furthermore, at the interface between the steel sheet and the plating layer, there is no Al-Fe, Zn-Fe, Al-Fe-Si, Al-Fe-Zn, Al-Fe-Zn-Si alloy layer made of an intermetallic compound, When the major axis was 0.3 μm or less, the plating adhesion during press molding was particularly excellent.

従来法に従ってめっきされた溶融Zn−Al系合金めっき層断面のSEM写真である。5 is an SEM photograph of a cross section of a hot-dip Zn—Al-based alloy plating layer plated according to a conventional method. 本発明法に従ってめっきされた溶融Zn−Al系合金めっき層断面のSEM写真である。4 is an SEM photograph of a cross section of a hot-dip Zn—Al-based alloy plating layer plated according to the method of the present invention. 本発明のめっき鋼板に対して0T曲げ試験を行った後のめっき層の断面写真である。It is a cross-sectional photograph of the plating layer after performing 0T bending test with respect to the plating steel plate of this invention. 複合サイクル腐食試験における1サイクル当たりの処理条件を示した図である。It is the figure which showed the processing condition per 1 cycle in a combined cycle corrosion test. 本発明のめっき鋼板のめっき層の厚み方向におけるSi強度の変化を示したGDS測定結果である。4 is a GDS measurement result showing a change in Si strength in a thickness direction of a plating layer of a plated steel sheet of the present invention. 粒状組織の面積率と曲げ加工性との関係を示した図である。FIG. 3 is a diagram showing a relationship between an area ratio of a granular structure and bending workability. 粒状組織の面積率と耐端面さび性との関係を示した図である。It is the figure which showed the relationship between the area ratio of granular structure and end surface rust resistance. Siの表面濃化(Is/Iav)と耐端面さび性との関係を示した図である。FIG. 4 is a diagram showing a relationship between Si surface concentration (Is / Iav) and end face rust resistance. 合金層の最大長径とプレス成形時のめっき密着性との関係を示した図である。FIG. 3 is a diagram showing a relationship between the maximum major diameter of the alloy layer and plating adhesion during press forming.

Claims (4)

表面にZn−Al系合金めっき層をそなえる溶融めっき鋼板であって、該めっき層が、Al:10〜40mass%およびSi:(0.0005〜0.15)×〔%Al〕(但し、〔%Al〕はAlの含有量(mass%))を含有し、残部はZnおよび不可避的不純物の組成になり、かつ該めっき層における長径:3μm 以下の粒状組織の存在比率が85%以上であることを特徴とする溶融Zn−Al系合金めっき鋼板。   A hot-dip coated steel sheet having a Zn-Al-based alloy plating layer on the surface, the plating layer comprising: Al: 10 to 40 mass% and Si: (0.0005 to 0.15) x [% Al] (where [% Al] is Al content (mass%)), the balance being Zn and unavoidable impurities, and the plating layer having a major axis of 3 μm or less having a granular structure of 85% or more. Hot-dip Zn-Al alloy plated steel sheet. 前記Zn−Al系合金めっき層の厚み方向における表面から1/100深さまでに存在するSiの濃度が、該めっき層の厚み方向における表面から1/4〜2/4深さ領域に存在するSi濃度の1.0倍以上であることを特徴とする請求項1に記載の溶融Zn−Al系合金めっき鋼板。   The concentration of Si present at a depth of 1/100 from the surface in the thickness direction of the Zn-Al-based alloy plating layer is 1/4 to 2/4 of the depth from the surface in the thickness direction of the plating layer. The hot-dip Zn-Al-based alloy-plated steel sheet according to claim 1, wherein the concentration is 1.0 or more times the concentration. 被めっき鋼板を、Al:10〜40mass%およびSi:(0.0005〜0.15)×〔%Al〕(但し、〔%Al〕はAlの含有量(mass%))を含有し、残部はZnおよび不可避的不純物の組成になる溶融めっき浴に浸漬してめっきし、280℃以上、430℃以下の温度域に10秒以上保持するか、または該温度域を15℃/s以下の速度で徐冷し、さらに280℃以下の温度域を30℃/s以上の速度で冷却することを特徴とする溶融Zn−Al系合金めっき鋼板の製造方法。   The steel plate to be plated contains Al: 10 to 40 mass% and Si: (0.0005 to 0.15) x [% Al] (where [% Al] is the Al content (mass%)), and the balance is Zn and inevitable Plating by immersion in a hot-dip bath with the composition of the target impurities, and holding at a temperature range of 280 ° C or higher and 430 ° C or lower for 10 seconds or more, or gradually cooling the temperature range at a rate of 15 ° C / s or lower. A method for producing a hot-dip Zn-Al-based alloy-plated steel sheet, further comprising cooling a temperature range of 280 ° C or lower at a rate of 30 ° C / s or higher. 被めっき鋼板を、Al:10〜40mass%およびSi:(0.0005〜0.15)×〔%Al〕(但し、〔%Al〕はAlの含有量(mass%))を含有し、残部はZnおよび不可避的不純物の組成になる溶融めっき浴に浸漬してめっきし、50℃以下まで冷却した後、再度280℃以上、430℃以下の温度域まで昇温し、該温度域に10秒以上保持したのち、30℃/s以上の速度で冷却することを特徴とする溶融Zn−Al系合金めっき鋼板の製造方法。
The steel plate to be plated contains Al: 10 to 40 mass% and Si: (0.0005 to 0.15) x [% Al] (where [% Al] is the Al content (mass%)), and the balance is Zn and inevitable After being immersed in a hot-dip plating bath that becomes the composition of the target impurities and plating, and cooled to 50 ° C or lower, the temperature is raised again to a temperature range of 280 ° C or higher and 430 ° C or lower, and maintained at the temperature range for 10 seconds or longer. A method for producing a hot-dip Zn—Al-based alloy-coated steel sheet, comprising cooling at a rate of 30 ° C./s or more.
JP2004115748A 2003-04-11 2004-04-09 Manufacturing method of hot-dip Zn-Al alloy plated steel sheet Expired - Fee Related JP4412037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115748A JP4412037B2 (en) 2003-04-11 2004-04-09 Manufacturing method of hot-dip Zn-Al alloy plated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003108000 2003-04-11
JP2004115748A JP4412037B2 (en) 2003-04-11 2004-04-09 Manufacturing method of hot-dip Zn-Al alloy plated steel sheet

Publications (2)

Publication Number Publication Date
JP2004323974A true JP2004323974A (en) 2004-11-18
JP4412037B2 JP4412037B2 (en) 2010-02-10

Family

ID=33513081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115748A Expired - Fee Related JP4412037B2 (en) 2003-04-11 2004-04-09 Manufacturing method of hot-dip Zn-Al alloy plated steel sheet

Country Status (1)

Country Link
JP (1) JP4412037B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348332A (en) * 2005-06-14 2006-12-28 Nisshin Steel Co Ltd METHOD FOR PRODUCING HOT DIP Zn-Al-Mg-BASED PLATED STEEL SHEET HAVING EXCELLENT BENDING WORKABILITY
JP2009114512A (en) * 2007-11-07 2009-05-28 Jfe Galvanizing & Coating Co Ltd Resin-coated steel sheet and its manufacturing method
WO2009096351A1 (en) * 2008-01-28 2009-08-06 Sumitomo Metal Industries, Ltd. Galvannealed heat-treated steel material and process for producing the same
JP2011144429A (en) * 2010-01-15 2011-07-28 Nippon Steel Corp Highly corrosion-resistant hot-dip galvanized steel sheet
JP2012528244A (en) * 2009-05-28 2012-11-12 ブルースコープ・スティール・リミテッド Metal coated steel strip
JP2013007071A (en) * 2011-06-22 2013-01-10 Yodogawa Steel Works Ltd Al-Zn ALLOY-PLATED STEEL PLATE, AND METHOD AND DEVICE FOR MANUFACTURING THE SAME
JP2015214748A (en) * 2014-04-23 2015-12-03 Jfeスチール株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP2015214749A (en) * 2014-04-23 2015-12-03 Jfeスチール株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP2015214747A (en) * 2014-04-23 2015-12-03 Jfeスチール株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP2016153539A (en) * 2016-06-01 2016-08-25 Jfe鋼板株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL AND PRODUCTION METHOD THEREOF
WO2017073579A1 (en) * 2015-10-26 2017-05-04 新日鐵住金株式会社 Plated steel sheet
JP6350780B1 (en) * 2017-12-28 2018-07-04 新日鐵住金株式会社 Hot-dip Zn-plated steel sheet with excellent corrosion resistance after painting
JP2019501296A (en) * 2015-12-24 2019-01-17 ポスコPosco Plating steel material excellent in friction resistance and white rust resistance and manufacturing method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348332A (en) * 2005-06-14 2006-12-28 Nisshin Steel Co Ltd METHOD FOR PRODUCING HOT DIP Zn-Al-Mg-BASED PLATED STEEL SHEET HAVING EXCELLENT BENDING WORKABILITY
JP4542468B2 (en) * 2005-06-14 2010-09-15 日新製鋼株式会社 Manufacturing method of hot-dip Zn-Al-Mg plated steel sheet with excellent bending workability
JP2009114512A (en) * 2007-11-07 2009-05-28 Jfe Galvanizing & Coating Co Ltd Resin-coated steel sheet and its manufacturing method
WO2009096351A1 (en) * 2008-01-28 2009-08-06 Sumitomo Metal Industries, Ltd. Galvannealed heat-treated steel material and process for producing the same
EA017216B1 (en) * 2008-01-28 2012-10-30 Сумитомо Метал Индастриз, Лтд. Galvannealed heat-treated steel material and process for producing the same
US9045817B2 (en) 2008-01-28 2015-06-02 Nippon Steel & Sumitomo Metal Corporation Heat treated galvannealed steel material and a method for its manufacture
JP5757061B2 (en) * 2008-01-28 2015-07-29 新日鐵住金株式会社 Alloyed hot-dip galvanized heat-treated steel and method for producing the same
JP2012528244A (en) * 2009-05-28 2012-11-12 ブルースコープ・スティール・リミテッド Metal coated steel strip
US10731241B2 (en) 2009-05-28 2020-08-04 Bluescope Steel Limited Metal-coated steel strip
KR101794102B1 (en) * 2009-05-28 2017-11-06 블루스코프 스틸 리미티드 Metal-coated steel strip
JP2011144429A (en) * 2010-01-15 2011-07-28 Nippon Steel Corp Highly corrosion-resistant hot-dip galvanized steel sheet
JP2013007071A (en) * 2011-06-22 2013-01-10 Yodogawa Steel Works Ltd Al-Zn ALLOY-PLATED STEEL PLATE, AND METHOD AND DEVICE FOR MANUFACTURING THE SAME
JP2015214747A (en) * 2014-04-23 2015-12-03 Jfeスチール株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP2015214749A (en) * 2014-04-23 2015-12-03 Jfeスチール株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP2015214748A (en) * 2014-04-23 2015-12-03 Jfeスチール株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
WO2017073579A1 (en) * 2015-10-26 2017-05-04 新日鐵住金株式会社 Plated steel sheet
JP6160793B1 (en) * 2015-10-26 2017-07-12 新日鐵住金株式会社 Plated steel sheet
KR20180040157A (en) 2015-10-26 2018-04-19 신닛테츠스미킨 카부시키카이샤 Coated steel plate
US10655203B2 (en) 2015-10-26 2020-05-19 Nippon Steel Corporation Plated steel sheet
JP2019501296A (en) * 2015-12-24 2019-01-17 ポスコPosco Plating steel material excellent in friction resistance and white rust resistance and manufacturing method thereof
US10907243B2 (en) 2015-12-24 2021-02-02 Posco Plated steel material having excellent friction resistance and white rust resistance and method for preparing same
JP2016153539A (en) * 2016-06-01 2016-08-25 Jfe鋼板株式会社 MOLTEN Al-Zn-BASED PLATED SHEET STEEL AND PRODUCTION METHOD THEREOF
JP6350780B1 (en) * 2017-12-28 2018-07-04 新日鐵住金株式会社 Hot-dip Zn-plated steel sheet with excellent corrosion resistance after painting
WO2019130534A1 (en) * 2017-12-28 2019-07-04 日本製鉄株式会社 MOLTEN Zn-BASED PLATED STEEL SHEET HAVING SUPERIOR CORROSION RESISTANCE AFTER BEING COATED
US11371129B2 (en) 2017-12-28 2022-06-28 Nippon Steel Corporation Molten Zn-based plated steel sheet having superior corrosion resistance after being coated

Also Published As

Publication number Publication date
JP4412037B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
CN110234780B (en) Plated steel material
KR101707984B1 (en) HOT-DIP Al-Zn COATED STEEL SHEET
CN111989420B (en) Plated steel material
JP4457667B2 (en) Surface-treated steel sheet
JP4464720B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2012070694A1 (en) Al-Zn-BASED HOT-DIP PLATED STEEL SHEET AND MANUFACTURING METHOD THEREOF
JP6350780B1 (en) Hot-dip Zn-plated steel sheet with excellent corrosion resistance after painting
JP2004315960A (en) Galvannealed steel sheet, and manufacturing method therefor
JP2020509205A (en) Hot-dip aluminum-plated steel excellent in corrosion resistance and workability and method for producing the same
JP4412037B2 (en) Manufacturing method of hot-dip Zn-Al alloy plated steel sheet
JP2013541645A (en) Hot-dip galvanized steel sheet excellent in plating property, plating adhesion and spot weldability, and its production method
JP2011153349A (en) Hot-dip galvannealed steel sheet having excellent appearance characteristic, and method for manufacturing the same
CN116324004B (en) Plated steel material
JP7031787B2 (en) Plated steel
JP2008255391A (en) HOT-DIP Al-BASE-PLATED SHEET STEEL SUPERIOR IN CORROSION RESISTANCE AFTER HAVING BEEN WORKED, AND MANUFACTURING METHOD THEREFOR
JP4461866B2 (en) Hot-dip Zn-Al alloy-plated steel sheet excellent in corrosion resistance and bending workability and manufacturing method thereof
CN116685706B (en) Plated steel material
JP2005133151A (en) HOT DIP Al-Zn-Mg BASED PLATED STEEL SHEET, AND ITS PRODUCTION METHOD
TW201930617A (en) Molten Zn-based plated steel sheet having superior corrosion resistance after being coated having a plating layer containing 10 to 40 mass% of Al, 0.05 to 4 mass% of Si and 0.5 to 4 mass% of Mg
JP2011001611A (en) Steel sheet excellent in delayed fracture resistance, and method for producing the same
JP2019026864A (en) High strength cold rolled steel sheet excellent in corrosion resistance after coating and delayed fracture resistance, and manufacturing method therefor
US20230095166A1 (en) Hot pressed member and method of producing same, and coated steel sheet for hot press forming
KR20110018701A (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
JP2002180228A (en) HOT DIP Al-Zn BASED ALLOY PLATED STEEL AND ITS PRODUCTION METHOD
JPH10130804A (en) Galvannealed steel sheet having excellent low-temperature chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4412037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees