JP2019026864A - High strength cold rolled steel sheet excellent in corrosion resistance after coating and delayed fracture resistance, and manufacturing method therefor - Google Patents

High strength cold rolled steel sheet excellent in corrosion resistance after coating and delayed fracture resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2019026864A
JP2019026864A JP2017143786A JP2017143786A JP2019026864A JP 2019026864 A JP2019026864 A JP 2019026864A JP 2017143786 A JP2017143786 A JP 2017143786A JP 2017143786 A JP2017143786 A JP 2017143786A JP 2019026864 A JP2019026864 A JP 2019026864A
Authority
JP
Japan
Prior art keywords
steel sheet
mass
less
pickling
delayed fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017143786A
Other languages
Japanese (ja)
Other versions
JP6699633B2 (en
Inventor
弘之 増岡
Hiroyuki Masuoka
弘之 増岡
古谷 真一
Shinichi Furuya
真一 古谷
隼人 竹山
Hayato TAKEYAMA
隼人 竹山
松崎 晃
Akira Matsuzaki
晃 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017143786A priority Critical patent/JP6699633B2/en
Priority to PCT/JP2018/023302 priority patent/WO2019021695A1/en
Priority to CN201880049690.6A priority patent/CN110945160A/en
Publication of JP2019026864A publication Critical patent/JP2019026864A/en
Application granted granted Critical
Publication of JP6699633B2 publication Critical patent/JP6699633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a high strength cold rolled steel sheet to which Cu is added for improving delayed fracture resistance, good in chemical conversion treatment property in a low temperature type chemical conversion treatment and having excellent corrosion resistance after coating and delayed fracture resistance.SOLUTION: There is provided a high strength cold rolled steel sheet containing at least one kind of Si, Mn and Al, and Cu:0.05 to 0.25 mass%, in which a steel structure consists of a recrystalline structure, no oxide layer containing at least one kind of Al, Si and Mn exists on a steel sheet surface, and cross section coverage factor by a deposition metal Cu existing on the steel sheet surface is 30% or less. Since acid cleaning liquid film on the steel sheet surface is reacted with the steel sheet and Cu eluted from the steel sheet is deposited on the steel sheet surface, and the deposited metal Cu reduces the chemical conversion treatment property, the chemical conversion treatment property can be improved by suppressing cross section coverage factor by the deposited metal Cu to low.SELECTED DRAWING: None

Description

本発明は、自動車構造部材や補強部材などに用いられる高強度冷延鋼板及びその製造方法に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet used for automobile structural members and reinforcing members, and a method for manufacturing the same.

自動車分野で使用される冷延鋼板は、防錆性の観点から塗装用下地処理を施した上で塗装が施されることが多く、優れた塗装後耐食性が得られるようにするために、冷延鋼板は良好な化成処理性を有することが求められる。また、近年、燃費向上の観点から、車体軽量化を目的として鋼板の薄肉化が進んでおり、これに伴って冷延鋼板には高強度化が求められている。しかしながら、高強度化により耐遅れ破壊特性が低下するという問題があり、鉄鋼メーカ各社では、合金元素の添加や様々な熱履歴を付与することで、高強度化に加えて塗装後耐食性と耐遅れ破壊特性の両立を目指している。   Cold-rolled steel sheets used in the automotive field are often coated after applying a ground treatment for coating from the viewpoint of rust prevention, and in order to obtain excellent post-coating corrosion resistance, The rolled steel sheet is required to have good chemical conversion properties. In recent years, from the viewpoint of improving fuel efficiency, the thickness of steel sheets has been reduced for the purpose of reducing the weight of the vehicle body, and accordingly, the strength of cold-rolled steel sheets has been demanded. However, there is a problem that delayed fracture resistance decreases due to increased strength, and steel manufacturers have added alloying elements and added various thermal histories to increase corrosion resistance and delay resistance after coating. It aims to achieve both fracture characteristics.

また、最近では、化成処理時に発生するスラッジ量やエネルギーコストの削減を目的として、化成処理液の低温化が進んでいる。この化成処理液の低温化によって鋼板と化成処理液の反応性が低下するため、化成処理性を改善することが求められている。このような課題に対して、化成処理液の組成面で鋼板との反応性を高めるために、フリーフッ素濃度を高めに制御し、鋼板との反応性を改善する取り組みなどが行われている。   In recent years, the temperature of the chemical conversion liquid has been lowered for the purpose of reducing the amount of sludge generated during chemical conversion and the energy cost. Since the reactivity between the steel sheet and the chemical conversion treatment liquid decreases due to the low temperature of the chemical conversion treatment liquid, it is required to improve the chemical conversion treatment ability. In order to increase the reactivity with the steel sheet in terms of the composition of the chemical conversion solution, efforts to improve the reactivity with the steel sheet by controlling the free fluorine concentration to be higher are being performed.

一方、化成処理性の改善を図るための鋼板側での取り組みとして、例えば、以下のようなものがある。
(1)調質圧延を施し、鋼中に転位を導入することにより、化成処理性の改善を図る技術(特許文献1)
(2)鋼中にBを添加し、調質圧延を行うことにより、連続焼鈍材での化成処理性の改善を図る技術(特許文献2)
(3)連続焼鈍材において、鋼板を酸洗後、Feよりも貴な金属(例えばNi等)を表面に薄く付着させて化成結晶の成長サイトを設けることにより、鋼種に関わりなく化成処理性の改善を図る技術(特許文献3、4)
(4)連続焼鈍材において、連続焼鈍時に形成する化成処理性を阻害する酸化物を酸洗により除去することで化成処理性の改善を図る技術(特許文献5)
On the other hand, as an approach on the steel sheet side for improving the chemical conversion property, for example, there are the following.
(1) Technology to improve chemical conversion properties by applying temper rolling and introducing dislocations in steel (Patent Document 1)
(2) Technology for improving chemical conversion processability in continuous annealing materials by adding B to steel and performing temper rolling (Patent Document 2)
(3) In a continuously annealed material, after pickling the steel sheet, a noble metal (for example, Ni) is attached to the surface thinly to provide a conversion crystal growth site, so that the chemical conversion processability can be achieved regardless of the steel type. Technology for improvement (Patent Documents 3 and 4)
(4) Technology for improving chemical conversion treatment by removing oxides that hinder chemical conversion treatment formed during continuous annealing by pickling in continuous annealing materials (Patent Document 5)

また、高強度鋼板の耐遅れ破壊特性に関しては、Cuの添加が耐遅れ破壊特性の改善に有効であることが知られており、例えば、鋼板表面から0.48μmの深さまでの領域におけるCu濃度をCu0.10%以上とすることで、冷延鋼板の耐遅れ破壊特性の改善を図る技術(特許文献6)などが提案されている。   Further, regarding delayed fracture resistance of high-strength steel sheets, it is known that addition of Cu is effective in improving delayed fracture resistance. For example, Cu concentration in a region from the steel sheet surface to a depth of 0.48 μm. A technique for improving the delayed fracture resistance of cold-rolled steel sheets (Patent Document 6) and the like has been proposed by setting Cu to 0.10% or more.

特開昭62−116723号公報JP 62-116723 A 特公平2−29729号公報Japanese Patent Publication No. 2-29729 特公昭58−37391号公報Japanese Patent Publication No. 58-37391 特公平1−58276号公報Japanese Patent Publication No. 1-58276 特開2012−132093号公報JP 2012-132093 A 特開2011−246764号公報JP 2011-246664 A

冷延鋼板を再結晶させ、所望の組織と強度、加工性を付与するために行われる連続焼鈍工程では、鉄よりも易酸化性の金属元素(Al、Si、Mn)を含む酸化物が鋼板表面に生成する。この易酸化性金属を含む酸化物は、電着塗装の下地処理としてなされる化成処理(一般にリン酸亜鉛処理)における鋼板表面のエッチング性を阻害し、健全な化成処理皮膜の形成に悪影響を及ぼすため、これを除去するために、連続焼鈍された鋼板に対して酸洗が行われる。   In a continuous annealing process performed to recrystallize a cold-rolled steel sheet and impart desired structure, strength, and workability, an oxide containing metal elements (Al, Si, Mn) that are more easily oxidizable than iron is steel sheet. Generate on the surface. The oxide containing an easily oxidizable metal inhibits the etching property of the steel sheet surface during chemical conversion treatment (generally zinc phosphate treatment) performed as a base treatment for electrodeposition coating, and adversely affects the formation of a healthy chemical conversion coating. Therefore, in order to remove this, pickling is performed on the continuously annealed steel sheet.

一方、最近では、化成処理時に発生するスラッジ量やエネルギーコストの削減を目的として、化成処理液の低温化が進み、従来と比較して、化成処理液の鋼板に対する反応性が著しく低い条件で化成処理がなされるようになってきている。従来のように43℃程度で行われる化成処理と比べ、35℃程度に低温化された化成処理では、化成処理性が板の表面性状に非常に大きく左右され、鋼板表面に酸洗で除去されずに残存した金属酸化物(酸洗残渣)や他の生成物質が存在していると化成処理性が著しく低下し、塗装後耐食性を劣化させることが判明した。特に、本発明者らによる検討の結果では、耐遅れ破壊特性の改善のためにCuを添加した高強度冷延鋼板の場合、上述した特許文献1〜5の技術を用いても、低温型化成処理での化成処理性を改善することは難しいことが判った。   On the other hand, recently, for the purpose of reducing the amount of sludge generated during chemical conversion and the energy cost, the temperature of chemical conversion liquid has been lowered, and the chemical conversion liquid has a significantly lower reactivity with respect to the steel plate than in the past. Processing is coming to be done. Compared to the conventional chemical conversion treatment performed at about 43 ° C., the chemical conversion treatment at a low temperature of about 35 ° C. greatly depends on the surface properties of the plate and is removed by pickling on the surface of the steel plate. It has been found that the presence of remaining metal oxide (pickling residue) and other product substances significantly lowers the chemical conversion property and degrades the corrosion resistance after coating. In particular, as a result of the study by the present inventors, in the case of a high-strength cold-rolled steel sheet to which Cu is added for improving delayed fracture resistance, the low-temperature-type chemical conversion is performed even if the techniques of Patent Documents 1 to 5 described above are used. It has been found that it is difficult to improve the chemical conversion processability in the treatment.

したがって本発明の目的は、以上のような従来技術の課題を解決し、耐遅れ破壊特性の改善のためにCuを添加した高強度冷延鋼板であって、低温型化成処理での化成処理性が良好であり、優れた塗装後耐食性と耐遅れ破壊特性が得られる高強度冷延鋼板とその製造方法を提供することにある。   Accordingly, an object of the present invention is a high-strength cold-rolled steel sheet to which Cu has been added for the purpose of solving the above-described problems of the prior art and improving delayed fracture resistance, Is to provide a high-strength cold-rolled steel sheet that can provide excellent post-coating corrosion resistance and delayed fracture resistance, and a method for producing the same.

本発明者らは、Cuを添加した高強度冷延鋼板に関する上記課題を解決すべく、連続焼鈍−酸洗後の鋼板表面について詳細な解析を行い、その結果、酸洗後の鋼板表面に残存する酸化物(酸洗残渣)と、酸洗後から水洗されるまでの間に酸洗液膜と鋼板との反応により鋼板表面に析出した金属Cuの存在が化成処理性を大きく劣化させる要因であること、したがって、化成処理性(特に低温型化成処理での化成処理性)を改善するには、そのような酸洗残渣と析出金属Cuを低減することが極めて重要であることを見出した。   In order to solve the above-mentioned problems related to the high-strength cold-rolled steel sheet to which Cu is added, the inventors have performed a detailed analysis on the steel sheet surface after continuous annealing and pickling, and as a result, remain on the steel sheet surface after pickling. The presence of metal Cu deposited on the surface of the steel sheet due to the reaction between the pickled oxide film (pickling residue) and the pickling liquid film and the steel sheet between pickling and washing with water is a factor that greatly deteriorates the chemical conversion processability. Therefore, the present inventors have found that it is extremely important to reduce such pickling residue and precipitated metal Cu in order to improve the chemical conversion property (especially chemical conversion property in the low temperature type chemical conversion treatment).

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]Si、Mn、Alのうちの少なくとも1種とCu:0.05〜0.25質量%を含有する引張り強度が1180Mpa以上の鋼板であって、鋼組織が再結晶組織からなり、鋼板表面にAl、Si、Mnのうちの少なくとも1種を含む酸化物層が存在せず(但し、酸化物層が存在しないとは、任意に選ばれた鋼板表面の5箇所をグロー放電発光分光分析で深さ方向に分析したときに、Al、Si、Mn、Oのピークが現れない場合をいう。)、鋼板表面に存在する析出金属Cuによる鋼板表面の被覆率(但し、鋼板断面で測定される鋼板表面の被覆率)が30%以下であることを特徴とする塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] A steel plate containing at least one of Si, Mn, and Al and Cu: 0.05 to 0.25% by mass and having a tensile strength of 1180 Mpa or more, the steel structure being a recrystallized structure, There is no oxide layer containing at least one of Al, Si, and Mn on the surface (provided that the oxide layer does not exist, glow discharge emission spectroscopic analysis of 5 locations on the steel sheet surface selected arbitrarily) When the analysis is conducted in the depth direction, the peak of Al, Si, Mn, and O does not appear.) The coverage of the steel sheet surface by the precipitated metal Cu existing on the steel sheet surface (however, measured at the cross section of the steel sheet) A high-strength cold-rolled steel sheet excellent in post-coating corrosion resistance and delayed fracture resistance, characterized by having a steel sheet surface coverage of 30% or less.

[2]上記[1]の高強度冷延鋼板において、C:0.08〜0.30質量%、Si:0.1〜2.0質量%、Mn:0.1〜2.5質量%、P:0.020質量%以下、S:0.005質量%以下、Sol.Al:0.01〜0.05質量%、Cu:0.05〜0.25質量%を含有し、残部が鉄及び不可避不純物からなる成分組成を有することを特徴とする塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板。
[3]上記[2]の高強度冷延鋼板において、さらに、Ni:0.05質量%以下、Ti:0.1質量%以下、Nb:0.1質量%以下、B:5〜30質量ppmの中から選ばれる1種以上を含有することを特徴とする塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板。
[2] In the high-strength cold-rolled steel sheet of [1], C: 0.08 to 0.30 mass%, Si: 0.1 to 2.0 mass%, Mn: 0.1 to 2.5 mass% P: 0.020 mass% or less, S: 0.005 mass% or less, Sol. Al: 0.01-0.05 mass%, Cu: 0.05-0.25 mass%, with the balance being A high-strength cold-rolled steel sheet excellent in post-coating corrosion resistance and delayed fracture resistance, characterized by having a composition comprising iron and inevitable impurities.
[3] In the high-strength cold-rolled steel sheet of [2], Ni: 0.05% by mass or less, Ti: 0.1% by mass or less, Nb: 0.1% by mass or less, B: 5-30% A high-strength cold-rolled steel sheet excellent in post-coating corrosion resistance and delayed fracture resistance, characterized by containing at least one selected from ppm.

[4]上記[1]〜[3]のいずれかに記載の成分組成を有する冷延鋼板を連続焼鈍した後、下記(1)又は(2)の酸洗液で酸洗することを特徴とする塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板の製造方法。
(1)酸成分が硝酸と塩酸からなり、硝酸濃度が50g/L超110g/L以下、塩酸濃度(g/L)と硝酸濃度(g/L)の比R1[塩酸/硝酸]が0.1〜0.3、Fe3+イオン濃度が3〜30g/Lである酸洗液
(2)酸成分が硝酸と弗酸からなり、硝酸濃度が50g/L超110g/L以下、
弗酸濃度(g/L)と硝酸濃度(g/L)の比R2[弗酸/硝酸]が0.1〜0.3、Fe3+イオン濃度が3〜30g/Lである酸洗液
[5]上記[4]の製造方法において、酸洗液温度20〜70℃、酸洗時間3〜30秒の条件で酸洗を行うことを特徴とする塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板の製造方法。
[4] The present invention is characterized in that after the cold-rolled steel sheet having the component composition according to any one of [1] to [3] is continuously annealed, it is pickled with a pickling solution of the following (1) or (2). A method for producing high-strength cold-rolled steel sheets with excellent post-coating corrosion resistance and delayed fracture resistance.
(1) The acid component is composed of nitric acid and hydrochloric acid, the nitric acid concentration is more than 50 g / L and 110 g / L or less, and the ratio R1 [hydrochloric acid / nitric acid] of hydrochloric acid concentration (g / L) to nitric acid concentration (g / L) is 0. 1 to 0.3, pickling solution having Fe 3+ ion concentration of 3 to 30 g / L (2) The acid component is composed of nitric acid and hydrofluoric acid, and the nitric acid concentration is over 50 g / L and 110 g / L or less,
Pickling solution having a ratio R2 of hydrofluoric acid concentration (g / L) to nitric acid concentration (g / L) [hydrofluoric acid / nitric acid] of 0.1 to 0.3 and Fe 3+ ion concentration of 3 to 30 g / L [ 5] In the production method of [4] above, the pickling is performed under conditions of a pickling solution temperature of 20 to 70 ° C. and a pickling time of 3 to 30 seconds, which is excellent in post-coating corrosion resistance and delayed fracture resistance. Manufacturing method of high-strength cold-rolled steel sheet.

本発明の高強度冷延鋼板は、優れた耐遅れ破壊特性を有するとともに、低温型化成処理においても良好な化成処理性が得られるため、塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食環境下においても優れた塗装後耐食性を有する。また、本発明の製法方法によれば、そのような優れた特性を有する高強度冷延鋼板を安定的に製造することができる。   The high-strength cold-rolled steel sheet according to the present invention has excellent delayed fracture resistance and good chemical conversion properties even in a low-temperature chemical conversion treatment, so that it is severe such as a salt warm water immersion test and a combined cycle corrosion test. Excellent post-coating corrosion resistance even in corrosive environments. Moreover, according to the manufacturing method of this invention, the high intensity | strength cold-rolled steel plate which has such an outstanding characteristic can be manufactured stably.

鋼板表面に析出した金属Cuの断面被覆率を求める際に撮像される、鋼板の表層断面の加速電圧1kV、倍率20000倍での二次電子像の一例(図1(A))と、同一視野における加速電圧15kVでの元素マッピング像(図1(B))を示す図面The same field of view as an example of a secondary electron image (FIG. 1 (A)) at an acceleration voltage of 1 kV and a magnification of 20000 times of the surface layer cross section of the steel sheet, which is imaged when obtaining the cross-sectional coverage of the metal Cu deposited on the steel sheet surface Showing an element mapping image (FIG. 1B) at an acceleration voltage of 15 kV in FIG. 実施例で用いた遅れ破壊評価用試験片を模式的に示す図面Drawing which shows typically the test piece for delayed fracture evaluation used in the Example 実施例において行った複合サイクル腐食試験の工程を示す説明図Explanatory drawing which shows the process of the combined cycle corrosion test performed in the Example

本発明の鋼板は、Si、Mn、Alのうちの少なくとも1種とCu:0.05〜0.25質量%を含有する引張り強度が1180Mpa以上の高強度冷延鋼板である。この高強度鋼板は、冷間圧延後、連続焼鈍−酸洗を経て製造されるものであり、したがって、鋼組織は再結晶組織からなる。
一般に高強度冷延鋼板は、所定の強度を得るために適量のSi、Mnを含有するとともに、脱酸元素であるAlを含有する。高強度冷延鋼板は遅れ破壊という現象が生じやすく、この現象は強度の増大とともに激しくなり、特に引張り強度1180MPa以上の高強度鋼板で顕著となる。本発明の鋼板は、耐遅れ破壊特性を向上させるためCuを0.05〜0.25質量%含有する。Cuを鋼板に添加することで、鋼板が腐食(アノード反応)しにくくなり、結果として水素発生(カソード反応)が抑制されると考えられる。水素発生が抑制されることから、侵入する水素が減少して遅れ破壊の抑制効果が発現するものと考えられる。ここで、Cu量が0.05質量%未満では、耐遅れ破壊特性の改善が不十分である。一方、Cuを過剰に含有させると、酸洗直後に金属Cu(後述するようにこの金属Cuは化成処理性を阻害する)が鋼板表面に生成しやすくなるので、Cu量は0.25質量%以下とする。
The steel sheet of the present invention is a high-strength cold-rolled steel sheet having a tensile strength of 1180 Mpa or more, containing at least one of Si, Mn, and Al and Cu: 0.05 to 0.25% by mass. This high-strength steel sheet is manufactured through cold annealing followed by continuous annealing-pickling, and thus the steel structure consists of a recrystallized structure.
Generally, a high-strength cold-rolled steel sheet contains appropriate amounts of Si and Mn in order to obtain a predetermined strength, and also contains Al as a deoxidizing element. High-strength cold-rolled steel sheets are prone to delayed fracture, and this phenomenon becomes more severe as the strength increases, and is particularly noticeable for high-strength steel sheets having a tensile strength of 1180 MPa or more. The steel plate of the present invention contains 0.05 to 0.25% by mass of Cu in order to improve delayed fracture resistance. By adding Cu to the steel sheet, it is considered that the steel sheet is less likely to corrode (anode reaction), and as a result, hydrogen generation (cathode reaction) is suppressed. Since hydrogen generation is suppressed, it is considered that the invading hydrogen is reduced and the effect of suppressing delayed fracture appears. Here, when the amount of Cu is less than 0.05% by mass, the delayed fracture resistance is not sufficiently improved. On the other hand, when Cu is excessively contained, metal Cu (as will be described later, this metal Cu hinders chemical conversion properties) is likely to be formed on the steel sheet surface immediately after pickling, so the amount of Cu is 0.25% by mass. The following.

高強度冷延鋼板の製造では、冷間圧延後に連続焼鈍が行われ、引き続き、鋼板表面に生成した易酸化性元素(Al、Si、Mnのうちの少なくとも1種)を含む酸化物層の除去を目的とした酸洗が行われるが、本発明者らによる研究の結果、上記のように耐遅れ破壊特性の改善のために適量のCuを含有する高強度冷延鋼板について、良好な化成処理性(特に低温型化成処理での化成処理性)が得られるようにするには、酸洗後の鋼板の表面性状を以下のようにする必要があることが判った。   In the production of high-strength cold-rolled steel sheets, continuous annealing is performed after cold rolling, and subsequently the removal of oxide layers containing easily oxidizable elements (at least one of Al, Si, Mn) generated on the steel sheet surface. As a result of research by the present inventors, as a result of the study by the present inventors, good chemical conversion treatment is performed on a high-strength cold-rolled steel sheet containing an appropriate amount of Cu to improve delayed fracture resistance as described above. It has been found that the surface properties of the steel sheet after pickling must be as follows in order to obtain the properties (especially the chemical conversion properties in the low-temperature chemical conversion treatment).

まず、酸洗により鋼板表面の酸化物層(Al、Si、Mnのうちの少なくとも1種を含む酸化物層。以下同様)がほぼ完全に除去され、鋼板表面に酸化物層が実質的に存在しなくなることが必要である。ここで、鋼板表面に酸化物層が実質的に存在しないとは、任意に選ばれた鋼板表面の5箇所をグロー放電発光分光分析(GDS)で深さ方向に分析したときに、Al、Si、Mn、Oのピークが現れない場合をいう。すなわち、このようなレベルまで、酸洗により鋼板表面の酸化物層が除去される必要がある。   First, an oxide layer (an oxide layer containing at least one of Al, Si, and Mn; hereinafter the same) is almost completely removed by pickling, and the oxide layer is substantially present on the steel plate surface. It is necessary to stop doing it. Here, the fact that the oxide layer is substantially absent on the surface of the steel sheet means that when five locations on the surface of the steel sheet selected arbitrarily are analyzed in the depth direction by glow discharge emission spectroscopy (GDS), Al, Si , Mn and O peaks do not appear. That is, the oxide layer on the steel sheet surface needs to be removed by pickling to such a level.

さらに、酸洗後から水洗までの間に、鋼板表面上の酸洗液膜が鋼板と反応し続け、鋼板から溶出したCuが鋼板表面に析出し、この析出した金属Cuが、その後の化成処理工程(特に低温型化成処理工程)において化成結晶形成反応を阻害すること、すなわち化成処理性を低下させることが判った。これは、鋼板表面に析出した金属Cuにより、化成処理における鉄の溶解反応が阻害され、化成結晶の成長が抑制されるためであると考えられ、良好な化成処理性を得るためには、鋼板表面での析出金属Cuの被覆率を抑える必要があることが判った。具体的には、鋼板表面に存在する析出金属Cuによる鋼板表面の被覆率(但し、鋼板断面で測定される鋼板表面の被覆率。以下、説明の便宜上「断面被覆率」という。)を30%以下にする必要があり、これにより良好な化成処理性が得られることが判った。このため本発明では、鋼板表面に存在する析出金属Cuによる鋼板表面の断面被覆率を30%以下とする。   Furthermore, the pickling liquid film on the steel plate surface continues to react with the steel plate between the pickling and the water washing, Cu eluted from the steel plate is deposited on the steel plate surface, and this deposited metal Cu is then subjected to chemical conversion treatment. It has been found that the chemical conversion crystal formation reaction is inhibited in the process (particularly the low-temperature chemical conversion treatment step), that is, the chemical conversion treatment property is lowered. This is considered to be because the dissolution reaction of iron in the chemical conversion treatment is inhibited by the metal Cu deposited on the steel sheet surface, and the growth of chemical conversion crystals is suppressed. It has been found that it is necessary to suppress the coverage of the deposited metal Cu on the surface. Specifically, the coverage ratio of the steel sheet surface by the precipitated metal Cu existing on the steel sheet surface (however, the coverage ratio of the steel sheet surface measured by the cross section of the steel sheet; hereinafter referred to as “cross section coverage ratio” for convenience of explanation) is 30%. It was necessary to make the following, and it was found that a good chemical conversion treatment property was obtained. For this reason, in this invention, the cross-sectional coverage of the steel plate surface by the precipitation metal Cu which exists in the steel plate surface shall be 30% or less.

ここで、鋼板表面の析出金属Cuの断面被覆率とは、以下のようにして求められる値である。すなわち、鋼板の表層断面について、極表層情報を検出できる極低加速電圧の走査型電子顕微鏡(ULV−SEM)を用い、加速電圧1kV、作動距離3.0mm、倍率20000倍程度で5視野を観察し、同一視野における加速電圧15kVでの元素マッッピング像を得る。図1(A)にULV−SEMによる二次電子像の一例を示し、図1(B)に同一視野における元素マッッピング像を示す。そして、得られた元素マッピング像において、鋼板表層に金属Cuが存在する領域(図1(B)において白矢印で示される領域)の幅A1、A2・・・をそれぞれ算出し、その和を求める。5視野において求めた和が5視野全体に占める割合を金属Cuの断面被覆率として定義する。
析出金属Cuによる鋼板表面の断面被覆率を30%以下にする方法としては、後述するように特定の条件で酸洗する方法がある。
Here, the cross-sectional coverage of the deposited metal Cu on the steel sheet surface is a value determined as follows. That is, using a scanning electron microscope (ULV-SEM) with an extremely low acceleration voltage capable of detecting information on the surface of the surface layer of a steel sheet, 5 fields of view were observed at an acceleration voltage of 1 kV, a working distance of 3.0 mm, and a magnification of about 20000 times. Then, an element mapping image with an acceleration voltage of 15 kV in the same visual field is obtained. FIG. 1A shows an example of a secondary electron image by ULV-SEM, and FIG. 1B shows an element mapping image in the same visual field. Then, in the obtained element mapping image, the widths A1, A2,... Of regions where the metal Cu is present on the steel sheet surface layer (regions indicated by white arrows in FIG. 1B) are calculated, and the sum is obtained. . The ratio of the sum obtained in the five visual fields to the entire five visual fields is defined as the cross-sectional coverage of the metal Cu.
As a method of setting the cross-sectional coverage of the steel sheet surface with the precipitated metal Cu to 30% or less, there is a method of pickling under specific conditions as described later.

次に、本発明の高強度冷延鋼板の好ましい成分組成について説明する。
本発明の鋼板は、C:0.08〜0.30質量%、Si:0.1〜2.0質量%、Mn:0.1〜2.5質量%、P:0.020質量%以下、S:0.005質量%以下、Al:0.01〜0.05質量%、Cu:0.05〜0.25質量%を含有し、残部が鉄及び不可避不純物からなる成分組成を有することが好ましく、さらに必要に応じて、Ni:0.05質量%以下、Ti:0.1質量%以下、Nb:0.1質量%以下、B:5〜30質量ppmの中から選ばれる1種以上を含有することができる。これら各元素の含有量の限定理由は、以下の通りである。
Next, the preferable component composition of the high-strength cold-rolled steel sheet of the present invention will be described.
The steel plate of the present invention is C: 0.08 to 0.30 mass%, Si: 0.1 to 2.0 mass%, Mn: 0.1 to 2.5 mass%, P: 0.020 mass% or less. S: 0.005% by mass or less, Al: 0.01-0.05% by mass, Cu: 0.05-0.25% by mass, with the balance being composed of iron and inevitable impurities Further, if necessary, Ni: 0.05% by mass or less, Ti: 0.1% by mass or less, Nb: 0.1% by mass or less, B: 1 type selected from 5 to 30 ppm by mass The above can be contained. The reasons for limiting the contents of these elements are as follows.

・C:0.08〜0.30質量%
Cは、鋼板の強度を確保するために必要な元素であり、C量が0.08質量%未満では強度を確保することが難しくなるおそれがあるので、C量は0.08質量%以上とすることが好ましい。一方、C量が過剰になると溶接性が劣化するため、C量は0.30質量%以下とすることが好ましい。
・Si:0.1〜2.0質量%
Siは、固溶強化元素であり、Si量が0.1質量%未満では鋼板の硬質化が不十分となるおそれがあるので、Si量は0.1質量%以上とすることが好ましい。一方、Siを過剰に含有させると靱性が劣化し、また、焼鈍時に形成するSi系酸化物量が増加し、酸洗設備が長大になって設備コストの増大を招く。そのため、Si量は2.0質量%以下とすることが好ましい。
C: 0.08-0.30 mass%
C is an element necessary for ensuring the strength of the steel sheet, and if the C content is less than 0.08 mass%, it may be difficult to ensure the strength, so the C content is 0.08 mass% or more. It is preferable to do. On the other hand, since the weldability deteriorates when the amount of C is excessive, the amount of C is preferably 0.30% by mass or less.
・ Si: 0.1-2.0 mass%
Si is a solid solution strengthening element, and if the Si amount is less than 0.1% by mass, the steel sheet may be insufficiently hardened. Therefore, the Si amount is preferably 0.1% by mass or more. On the other hand, when Si is excessively contained, the toughness is deteriorated, the amount of Si-based oxide formed during annealing is increased, the pickling equipment is lengthened, and the equipment cost is increased. Therefore, the Si amount is preferably 2.0% by mass or less.

・Mn:0.1〜2.5質量%
Mnは、鋼板の強度を確保する元素であり、Mn量が0.1質量%未満では鋼板の強度が不十分となるおそれがあるので、Mn量は0.1質量%以上とすることが好ましい。一方、Mnを過剰に含有させると偏析の発生が多くなって加工性が低下し、かつ溶接性も劣化するので、Mn量は2.5質量%以下とすることが好ましい。
・P:0.020質量%以下、S:0.005質量%以下
P、Sは、加工性を考慮した場合、含有量はなるべく低い方が好ましく、このためP量は0.020質量%以下とすることが好ましい。また、Sを過剰に含有させると介在物(MnS)が増加し、加工性に悪影響を及ぼすので、S量は0.005質量%以下とすることが好ましい。
Mn: 0.1 to 2.5% by mass
Mn is an element that ensures the strength of the steel sheet, and if the Mn content is less than 0.1% by mass, the strength of the steel sheet may be insufficient. Therefore, the Mn content is preferably 0.1% by mass or more. . On the other hand, when Mn is excessively contained, segregation is increased, workability is lowered, and weldability is also deteriorated. Therefore, the amount of Mn is preferably 2.5% by mass or less.
-P: 0.020% by mass or less, S: 0.005% by mass or less P and S are preferably as low as possible in view of workability. Therefore, the P content is 0.020% by mass or less. It is preferable that Moreover, since inclusion (MnS) will increase when S is contained excessively and it will have a bad influence on workability, it is preferable that S amount shall be 0.005 mass% or less.

・Sol.Al:0.01〜0.05質量%
Alは、脱酸のために添加される元素であり、Sol.Al量が0.01質量%未満ではシリケート介在物が残り、鋼の加工性が劣化するおそれがあるため、Sol.Al量は0.01質量%以上とすることが好ましい。一方、Sol.Al量が多すぎると表面疵の増加を招くため、Sol.Al量は0.05質量%以下とすることが好ましい。
・Cu:0.05〜0.25質量%
Cu量は上述した通りである。すなわち、Cu量が0.05質量%未満では耐遅れ破壊特性の改善が不十分であり、一方、Cu量が0.25質量%を超えると、酸洗直後に金属Cuが鋼板表面に析出しやすくなるので、Cu量は0.05〜0.25質量%とする。
-Sol.Al: 0.01-0.05 mass%
Al is an element added for deoxidation. If the amount of Sol.Al is less than 0.01% by mass, silicate inclusions remain and the workability of the steel may deteriorate. It is preferable to set it as 0.01 mass% or more. On the other hand, if the amount of Sol.Al is too large, an increase in surface defects is caused. Therefore, the amount of Sol.Al is preferably 0.05% by mass or less.
Cu: 0.05 to 0.25% by mass
The amount of Cu is as described above. That is, if the amount of Cu is less than 0.05% by mass, the delayed fracture resistance is not sufficiently improved. On the other hand, if the amount of Cu exceeds 0.25% by mass, metal Cu is deposited on the surface of the steel sheet immediately after pickling. Since it becomes easy, the amount of Cu shall be 0.05-0.25 mass%.

・Ni:0.05質量%以下
Niは、固溶強化元素であるが、Niを過剰に含有させても鋼板の機械的性質の向上効果が飽和し、却ってコスト増を招くため、Ni量は0.05質量%以下とすることが好ましい。
・Ti:0.1質量%以下、Nb:0.1質量%以下
Ti及びNbは、鋼組織を細粒化する元素であり、靱性を損なうことなく強度を向上させるのに非常に有用な元素である。しかし、Ti、Nbを過剰に含有させても鋼板の機械的性質の向上効果が飽和し、却ってコスト増を招くため、Ti量及びNb量はそれぞれ0.1質量%以下とすることが好ましい。
・B:5〜30質量ppm
Bは、焼き入れ性を高めるために非常に有用な元素であり、また、粒界を強化して耐遅れ破壊特性を向上させる効果があり、これらの効果を十分に発現させるためには、B量は5質量ppm以上とすることが好ましい。一方、Bを過剰に含有させると熱間加工性が劣化するため、B量は30質量ppm以下とすることが好ましい。
Ni: 0.05% by mass or less Ni is a solid solution strengthening element, but even if Ni is excessively contained, the effect of improving the mechanical properties of the steel sheet is saturated and the cost is increased. It is preferable to set it as 0.05 mass% or less.
Ti: 0.1% by mass or less, Nb: 0.1% by mass or less Ti and Nb are elements that refine the steel structure and are very useful elements for improving strength without impairing toughness. It is. However, even if Ti and Nb are contained excessively, the effect of improving the mechanical properties of the steel sheet is saturated, and on the contrary, the cost is increased. Therefore, the Ti amount and the Nb amount are each preferably 0.1% by mass or less.
・ B: 5-30 mass ppm
B is an extremely useful element for enhancing the hardenability, and has an effect of strengthening the grain boundary and improving the delayed fracture resistance. In order to sufficiently exhibit these effects, B The amount is preferably 5 ppm by mass or more. On the other hand, since hot workability deteriorates when B is contained excessively, the amount of B is preferably 30 mass ppm or less.

次に、本発明の高強度冷延鋼板の製造方法について説明する。
さきに述べたように、良好な化成処理性(特に低温型化成処理での化成処理性)が得られるようにするには、(i)酸洗により鋼板表面の酸化物層がほぼ完全に除去され、鋼板表面に酸化物層が実質的に存在しなくなること、(ii)酸洗後から水洗までの間に酸洗液膜が鋼板と反応することによって金属Cuが鋼板表面に析出するのを抑制する(金属Cuによる断面被覆率を30%以下とする)こと、が必要である。
このため本発明の高強度冷延鋼板の製造工程では、連続焼鈍することにより易酸化性の金属元素を含む酸化物が表面に生成した冷延鋼板を、以下のような条件で酸洗することが好ましい。
Next, the manufacturing method of the high intensity | strength cold-rolled steel plate of this invention is demonstrated.
As mentioned earlier, in order to obtain good chemical conversion (especially chemical conversion in low-temperature chemical conversion), (i) the oxide layer on the steel sheet surface is almost completely removed by pickling. That the oxide layer is substantially absent on the surface of the steel sheet, and (ii) that the pickling liquid film reacts with the steel sheet between pickling and rinsing so that metal Cu is deposited on the surface of the steel sheet. It is necessary to suppress (the cross-sectional coverage by the metal Cu is 30% or less).
For this reason, in the manufacturing process of the high-strength cold-rolled steel sheet according to the present invention, the cold-rolled steel sheet on which the oxide containing an easily oxidizable metal element is generated by continuous annealing is pickled under the following conditions. Is preferred.

易酸化性の金属のうち特にSiを含有する酸化物の中には、SiOのように酸に対して難溶性を示す酸化物が存在する。このような難溶性のSiOを含めた易酸化性の金属元素を含む酸化物層を完全に除去するためには、酸洗により鋼板表面の酸化物層を地鉄ごと取り除く必要がある。また、酸洗では、易酸化性の金属元素を含む酸化物層を短時間で効率的に除去する必要がある。
このため酸洗液は、強酸化性の酸である硝酸をベースとした酸成分からなることが好ましい。すなわち、易酸化性の金属元素を含む酸化物層を短時間で効率的に除去するには、硝酸の酸化力(=鉄を酸化(溶解)させる作用)を利用することが有効である。一方、そのような酸洗液を用いると、鉄の再表層が酸化(=Fe系酸化物が形成)されやすく、また、FeとともにCuも酸洗液に溶出し、CuはFeよりも貴な元素であるため、溶出後に鋼板表面にすぐ金属Cuとして析出してしまう。すなわち、酸洗によって鋼中のCuがFeとともに溶出するが、鋼板表面に析出する金属Cuの断面被覆率を低減させるには、そのCuの溶出を抑制することが重要である。したがって、「易酸化性の金属元素を含む酸化物層の除去」と「再表層でのFe系酸化物の生成・金属Cuの析出」はトレードオフの関係であり、このため鋼板のCu添加量に加えて、硝酸をベースとした酸洗液の組成・濃度を最適化する必要がある。
Among the oxidizable metals, particularly, oxides containing Si include oxides that are hardly soluble in acids such as SiO 2 . In order to completely remove the oxide layer containing an easily oxidizable metal element including such hardly soluble SiO 2 , it is necessary to remove the oxide layer on the surface of the steel sheet together with the base iron by pickling. In pickling, it is necessary to efficiently remove an oxide layer containing an easily oxidizable metal element in a short time.
For this reason, it is preferable that a pickling liquid consists of an acid component based on nitric acid which is a strong oxidizing acid. That is, in order to efficiently remove an oxide layer containing an easily oxidizable metal element in a short time, it is effective to use the oxidizing power of nitric acid (= the action of oxidizing (dissolving) iron). On the other hand, when such a pickling solution is used, the iron resurfacing layer is easily oxidized (= Fe-based oxide is formed), and Cu is also eluted into the pickling solution together with Fe, and Cu is more noble than Fe. Since it is an element, it immediately deposits as metallic Cu on the surface of the steel plate after elution. That is, Cu in steel is eluted together with Fe by pickling, but it is important to suppress elution of Cu in order to reduce the cross-sectional coverage of metal Cu deposited on the steel sheet surface. Therefore, “removal of oxide layer containing easily oxidizable metal element” and “generation of Fe-based oxide / precipitation of metal Cu in resurfaced layer” are in a trade-off relationship. In addition, it is necessary to optimize the composition and concentration of the pickling solution based on nitric acid.

具体的には、酸成分が硝酸をベースとし、これに適量の塩酸又は弗酸を加えた下記(1)又は(2)の酸洗液を用いることが好ましい。
(1)酸成分が硝酸と塩酸からなり、硝酸濃度が50g/L超110g/L以下、塩酸濃度(g/L)と硝酸濃度(g/L)の比R1[塩酸/硝酸]が0.1〜0.3、Fe3+イオン濃度が3〜30g/Lである酸洗液
(2)酸成分が硝酸と弗酸からなり、硝酸濃度が50g/L超110g/L以下、
弗酸濃度(g/L)と硝酸濃度(g/L)の比R2[弗酸/硝酸]が0.1〜0.3、Fe3+イオン濃度が3〜30g/Lである酸洗液
Specifically, it is preferable to use the following pickling solution (1) or (2) in which the acid component is based on nitric acid and an appropriate amount of hydrochloric acid or hydrofluoric acid is added thereto.
(1) The acid component is composed of nitric acid and hydrochloric acid, the nitric acid concentration is more than 50 g / L and 110 g / L or less, and the ratio R1 [hydrochloric acid / nitric acid] of hydrochloric acid concentration (g / L) to nitric acid concentration (g / L) is 0. 1 to 0.3, pickling solution having Fe 3+ ion concentration of 3 to 30 g / L (2) The acid component is composed of nitric acid and hydrofluoric acid, and the nitric acid concentration is over 50 g / L and 110 g / L or less,
Pickling solution having a ratio R2 [hydrofluoric acid / nitric acid] of hydrofluoric acid concentration (g / L) to nitric acid concentration (g / L) of 0.1 to 0.3 and Fe 3+ ion concentration of 3 to 30 g / L

上記(1)の酸洗液は、酸成分が硝酸をベースとし、これに酸化膜破壊効果がある塩酸を適量加えた酸洗液である。ここで、硝酸濃度が50g/L以下では、易酸化性の金属元素を含む酸化物層を適切に除去できず、残存した酸化物が化成処理性を阻害して耐食性の低下を招く。また、酸化物に起因して鋼板表面が黒色を呈し、鋼板表面の美観を損ねる。一方、硝酸濃度が110g/Lを超えると、易酸化性の金属元素を含む酸化物層は容易に除去できるが、FeやCuの溶解が激しく起こるため、金属Cuが析出しやすくなり、鋼板表面に析出する金属Cuの断面被覆率を低減させることができない。また、鋼板表面の凹凸が激しくなり塗装表面の美観を損ねる。また、塩酸濃度(g/L)と硝酸濃度(g/L)の比R1[塩酸/硝酸]が0.1未満では、十分な酸洗速度は得られるが、硝酸比率が高いと、硝酸の強い酸化力により地鉄の溶解が促進されてCuの溶出量が多くなるため、鋼板表面に金属Cuが析出しやすくなり、鋼板表面に析出する金属Cuの断面被覆率を低減させることができない。また、酸洗に伴う反応熱が大きくなるため温度制御が非常に難しくなり、冷却設備が必要となるので製造設備が複雑になる。一方、比R1[塩酸/硝酸]が0.3を超えると、硝酸の酸化力が塩酸により抑制されるため、所望の酸洗速度が得られず、鋼板表面の酸化物を効率よく除去することができない。   The pickling solution (1) is a pickling solution in which an acid component is based on nitric acid and an appropriate amount of hydrochloric acid having an effect of destroying an oxide film is added thereto. Here, when the nitric acid concentration is 50 g / L or less, the oxide layer containing an easily oxidizable metal element cannot be removed properly, and the remaining oxide inhibits chemical conversion treatment and causes a decrease in corrosion resistance. Further, the steel sheet surface is black due to the oxide, and the aesthetic appearance of the steel sheet surface is impaired. On the other hand, when the nitric acid concentration exceeds 110 g / L, the oxide layer containing an easily oxidizable metal element can be easily removed, but since dissolution of Fe and Cu occurs vigorously, metal Cu is likely to precipitate, and the steel sheet surface It is not possible to reduce the cross-sectional coverage of the metal Cu deposited on the surface. Moreover, the unevenness | corrugation on the surface of a steel plate becomes intense, and the beauty | look of the coating surface is spoiled. Further, when the ratio R1 [hydrochloric acid / nitric acid] of hydrochloric acid concentration (g / L) and nitric acid concentration (g / L) is less than 0.1, a sufficient pickling speed can be obtained, but when the nitric acid ratio is high, the nitric acid concentration Since the dissolution of the base iron is promoted by the strong oxidizing power and the amount of elution of Cu increases, metal Cu is likely to be deposited on the steel plate surface, and the cross-sectional coverage of the metal Cu deposited on the steel plate surface cannot be reduced. Moreover, since the reaction heat accompanying pickling increases, temperature control becomes very difficult, and cooling equipment is required, which complicates manufacturing equipment. On the other hand, if the ratio R1 [hydrochloric acid / nitric acid] exceeds 0.3, the oxidizing power of nitric acid is suppressed by hydrochloric acid, so that the desired pickling rate cannot be obtained, and the oxide on the steel sheet surface is efficiently removed. I can't.

酸洗液中のFe3+イオン濃度が3g/L未満では、Fe3+イオンによる鉄の酸化反応が不十分であるため、所望の酸洗速度が得られず、鋼板表面の酸化物を効率よく除去することができない。一方、Fe3+イオン濃度が30g/Lを超えると、Fe3+イオンによる鉄の酸化反応が十分に行われ、所望の酸洗速度は得られるものの、酸洗液中のFe3+イオンが多いために、鋼板表面にFe系酸化物が多く形成してしまい、酸洗により新たに形成されるFe系酸化物を除去しきれず、化成処理性及び塗装後耐食性を改善することができない。 If the Fe 3+ ion concentration in the pickling solution is less than 3 g / L, the oxidation reaction of iron by Fe 3+ ions is insufficient, so the desired pickling rate cannot be obtained, and the oxide on the steel sheet surface is efficiently removed. Can not do it. On the other hand, when the Fe 3+ ion concentration exceeds 30 g / L, the iron oxidation reaction with Fe 3+ ions is sufficiently performed, and the desired pickling speed can be obtained, but there are many Fe 3+ ions in the pickling solution. A large amount of Fe-based oxides are formed on the surface of the steel sheet, and Fe-based oxides newly formed by pickling cannot be removed, so that the chemical conversion property and the corrosion resistance after coating cannot be improved.

上記(2)の酸洗液は、酸成分が硝酸をベースとし、これに酸化膜破壊効果がある弗酸を適量加えた酸洗液である。ここで、硝酸濃度とFe3+イオン濃度の限定理由は上記(1)の酸洗液と同様であり、また、弗酸濃度(g/L)と硝酸濃度(g/L)の比R2[弗酸/硝酸]の限定理由も、上記(1)の酸洗液と同様である。
ここで、(1)又は(2)の酸洗液のFe3+イオン濃度は、次のようにして調整することができる。すなわち、鋼板を酸洗液に浸漬すると、鋼板が溶解してFe2+イオンとなり、これが硝酸で酸化されてFe3+イオンとなり、その濃度が経時的に増加していく。このため、酸洗液中のFe3+イオン濃度を測定・監視し、管理濃度(例えば30g/L)を超える前に酸洗液の一部を抜き出し、Fe3+イオンを含有しない新液を補給することにより、酸洗液のFe3+イオン濃度を所定のレベルに調整することができる。
The pickling solution (2) is a pickling solution in which an acid component is based on nitric acid and an appropriate amount of hydrofluoric acid having an effect of destroying an oxide film is added thereto. Here, the reasons for limiting the nitric acid concentration and the Fe 3+ ion concentration are the same as in the pickling solution of (1) above, and the ratio R2 of the hydrofluoric acid concentration (g / L) to the nitric acid concentration (g / L) [fluoride] The reason for the limitation of [acid / nitric acid] is also the same as in the pickling solution (1) above.
Here, the Fe 3+ ion concentration of the pickling solution (1) or (2) can be adjusted as follows. That is, when the steel sheet is immersed in the pickling solution, the steel sheet dissolves to become Fe 2+ ions, which are oxidized with nitric acid to become Fe 3+ ions, and the concentration thereof increases with time. For this reason, the Fe 3+ ion concentration in the pickling solution is measured and monitored, a part of the pickling solution is extracted before exceeding the control concentration (for example, 30 g / L), and a new solution not containing Fe 3+ ions is supplied. Thus, the Fe 3+ ion concentration of the pickling solution can be adjusted to a predetermined level.

また、上記の(1)又は(2)の酸洗液を用いる場合には、酸洗液温度20〜70℃、酸洗時間3〜30秒の条件で酸洗を行うのが好ましい。
酸洗液温度が20℃未満では、易酸化性の金属元素を含む酸化物層の除去が不十分となりやすく、残存した酸化物が化成処理性を阻害して耐食性の低下を招きやすい。また、酸化物に起因して鋼板表面が黒色を呈し、鋼板表面の美観を損ねる。一方、酸洗液温度が70℃を超えると、十分な酸洗速度は得られるが、酸洗に伴う反応熱が大きくなるため温度制御が非常に難しくなり、冷却設備が必要となるので製造設備が複雑になる。また、酸洗時間が3秒未満の場合、易酸化性の金属元素を含む酸化物層を十分に除去するには硝酸濃度を高める必要があり、これにより上述したような問題を生じやすい。一方、酸洗時間が30秒を超えても性能上は問題ないが、設備が長くなり、設備コストが増加する。
また、酸洗を行うに当たっては、酸洗液に酸洗促進剤を添加したり、電解処理を併用したりして、地鉄の溶解を促進することも有効である。
Moreover, when using said pickling solution of (1) or (2), it is preferable to perform pickling on the conditions of pickling solution temperature 20-70 degreeC, and pickling time 3-30 seconds.
When the pickling solution temperature is less than 20 ° C., the removal of the oxide layer containing the easily oxidizable metal element tends to be insufficient, and the remaining oxide tends to inhibit the chemical conversion treatment and cause the corrosion resistance to decrease. Further, the steel sheet surface is black due to the oxide, and the aesthetic appearance of the steel sheet surface is impaired. On the other hand, if the pickling solution temperature exceeds 70 ° C., a sufficient pickling speed can be obtained, but since the reaction heat associated with pickling increases, temperature control becomes very difficult, and cooling equipment is required. Becomes complicated. In addition, when the pickling time is less than 3 seconds, it is necessary to increase the concentration of nitric acid in order to sufficiently remove the oxide layer containing the easily oxidizable metal element, which tends to cause the problems described above. On the other hand, even if the pickling time exceeds 30 seconds, there is no problem in performance, but the equipment becomes longer and the equipment cost increases.
Moreover, in performing pickling, it is also effective to promote dissolution of base iron by adding a pickling accelerator to the pickling solution or using an electrolytic treatment in combination.

一般に高強度冷延鋼板の製造工程では、連続焼鈍した冷延鋼板を水焼入れした後、酸洗し、その後、調質圧延等の通常の処理工程を経て製品鋼板とする。   In general, in the manufacturing process of a high-strength cold-rolled steel sheet, the continuously annealed cold-rolled steel sheet is water-quenched and then pickled, and then processed into a product steel sheet through normal processing steps such as temper rolling.

供試材として表1に示す成分組成と引張り強度TSを有する連続焼鈍材(冷延鋼板)を使用した。これらの鋼板に対して表2及び表3に示す条件で酸洗を行い、水洗し、乾燥した後、伸び率0.7%の調質圧延を施してNo.1〜24の高強度冷延鋼板を製造した。なお、酸洗液のFe3+イオン濃度は、上述した方法により調整した。
製造された各鋼板から試験片を採取し、任意に選ばれた試験片表面の5箇所をグロー放電発光分光分析(GDS)で深さ方向に分析し、Al、Si、Mn、Oのピークが現れるか否かを調べ、Al、Si、Mn、Oのうちの1つ以上のピークが現れた場合を「酸化物層が存在(残存)する」、いずれのピークも現れない場合を「酸化物層が存在(残存)しない」と評価した。また、金属Cuの断面被覆率は、試験片の表層断面について、さきに説明した手法で求めた。
A continuously annealed material (cold rolled steel sheet) having the component composition and tensile strength TS shown in Table 1 was used as a test material. These steel sheets are pickled under the conditions shown in Table 2 and Table 3, washed with water, dried, then subjected to temper rolling with an elongation of 0.7%, and No. 1-24 high strength cold rolling. A steel plate was produced. The Fe 3+ ion concentration of the pickling solution was adjusted by the method described above.
Specimens are collected from each manufactured steel sheet, and 5 points on the selected specimen surface are analyzed in the depth direction by glow discharge optical emission spectrometry (GDS). The peaks of Al, Si, Mn, and O are observed. Investigate whether or not one or more peaks of Al, Si, Mn, and O appear, and “Oxide layer is present (remains)”. The layer was not present (residual) ”. Moreover, the cross-sectional coverage of metal Cu was calculated | required by the method demonstrated previously about the surface layer cross section of the test piece.

製造された各鋼板から試験片を採取し、これらの試験片に下記条件で化成処理(化成処理液温度が35℃の低温型化成処理)と塗装を施した後、塩温水浸漬試験、塩水噴霧試験及び複合サイクル腐食試験の3種類の腐食試験に供して塗装後耐食性を評価した。また、製造された各鋼板(化成処理・塗装されていない鋼板)から試験片を採取し、この試験片で耐遅れ破壊特性を評価した。なお、化成処理では皮膜付着量が1.7〜3.0g/mとなるように化成処理時間を調整した。
(1)化成処理条件
・脱脂工程
脱脂剤:日本パーカライジング社製「FC−E2011」
脱脂方法:スプレー脱脂
処理温度:40℃
処理時間:120秒
・表面調整工程
表面調整剤:日本パーカライジング社製「PL−X」
表面調整剤pH:9.5
処理温度:室温
処理時間:20秒
・化成処理工程
化成処理剤:日本パーカライジング社製「パルボンドPB−SX」
化成処理液温度:35℃
処理時間:90秒
(2)塗装条件
化成処理を施した試験片の表面に、日本ペイント社製の電着塗料「GT−100」を用いて、膜厚が15μmとなるように電着塗装を施した。
Specimens are collected from each manufactured steel sheet, and these specimens are subjected to chemical conversion treatment (low-temperature chemical conversion treatment at a chemical conversion solution temperature of 35 ° C.) and coating under the following conditions, followed by a salt warm water immersion test and salt spray. The corrosion resistance after coating was evaluated by three types of corrosion tests, a test and a combined cycle corrosion test. Moreover, the test piece was extract | collected from each manufactured steel plate (steel plate which is not a chemical conversion process and coating), and delayed fracture resistance was evaluated by this test piece. In addition, in the chemical conversion treatment, the chemical conversion treatment time was adjusted so that the coating adhesion amount was 1.7 to 3.0 g / m 2 .
(1) Chemical treatment conditions-Degreasing process Degreasing agent: "FC-E2011" manufactured by Nihon Parkerizing Co., Ltd.
Degreasing method: Spray degreasing Treatment temperature: 40 ° C
Processing time: 120 seconds ・ Surface conditioning step Surface conditioning agent: “PL-X” manufactured by Nihon Parkerizing
Surface conditioner pH: 9.5
Treatment temperature: Room temperature Treatment time: 20 seconds ・ Chemical conversion treatment process Chemical conversion treatment agent: “Palbond PB-SX” manufactured by Nihon Parkerizing Co., Ltd.
Chemical conversion solution temperature: 35 ° C
Treatment time: 90 seconds (2) Coating conditions Electrodeposition coating is applied to the surface of the test piece subjected to chemical conversion treatment using an electrodeposition paint “GT-100” manufactured by Nippon Paint Co., Ltd. so that the film thickness becomes 15 μm. gave.

(3)腐食試験
<塩温水浸漬試験>
化成処理と電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を5質量%NaCl溶液(60℃)に240時間浸漬し、その後、水洗し、乾燥し、クロスカット疵部に粘着テープを貼り付けた後、引き剥がすテープ剥離試験を行い、クロスカット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が5.0mm以下であれば、塩温水浸漬試験における耐食性は良好と評価することができる。
(3) Corrosion test <Salt warm water immersion test>
The surface of the above-mentioned test piece (n = 1) subjected to chemical conversion treatment and electrodeposition coating was applied with a 45 mm long crosscut wrinkle with a cutter, and then the test piece was placed in a 5 mass% NaCl solution (60 ° C.). After immersing for a period of time, washed with water, dried, affixed with an adhesive tape on the crosscut collar, and then peeled off, a tape peel test was performed to measure the maximum total peel width of the crosscut collar on the left and right. If this maximum peeling full width is 5.0 mm or less, it can be evaluated that the corrosion resistance in the salt warm water immersion test is good.

<塩水噴霧試験(SST)>
化成処理と電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片に対して、5質量%NaCl水溶液を用いてJIS Z2371:2000に規定される中性塩水噴霧試験に準拠して960時間の塩水噴霧試験を行った後、クロスカット疵部についてテープ剥離試験を実施し、クロスカット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が4.0mm以下であれば、塩水噴霧試験における耐食性は良好と評価することができる。
<Salt spray test (SST)>
After applying a 45 mm long crosscut wrinkle to the surface of the above-mentioned test piece (n = 1) subjected to chemical conversion treatment and electrodeposition coating, a 5 mass% NaCl aqueous solution was used for this test piece. After performing a salt water spray test for 960 hours in accordance with the neutral salt spray test specified in JIS Z2371: 2000, a tape peel test is performed on the crosscut collar, and the maximum peel is obtained by combining the left and right of the crosscut collar The full width was measured. If the maximum total peel width is 4.0 mm or less, it can be evaluated that the corrosion resistance in the salt spray test is good.

<複合サイクル腐食試験(CCT)>
化成処理と電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片に対して、「塩水噴霧(5質量%NaCl水溶液:35℃、相対湿度:98%)×2時間→乾燥(60℃、相対湿度:30%)×2時間→湿潤(50℃、相対湿度:95%)×2時間」を1サイクルとして、これを50サイクル繰り返す腐食試験を実施し、水洗し、乾燥した後、クロスカット疵部についてテープ剥離試験を実施し、クロスカット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が6.0mm以下であれば、複合サイクル腐食試験での耐食性は良好と評価できる。
<Composite cycle corrosion test (CCT)>
The surface of the above test piece (n = 1) subjected to chemical conversion treatment and electrodeposition coating was applied with a 45 mm long crosscut wrinkle with a cutter, and then “salt spray (5 mass% NaCl) was applied to this test piece. “Aqueous solution: 35 ° C., relative humidity: 98%) × 2 hours → drying (60 ° C., relative humidity: 30%) × 2 hours → wet (50 ° C., relative humidity: 95%) × 2 hours” A corrosion test was repeated 50 cycles, washed with water, and dried, and then a tape peel test was performed on the crosscut collar, and the maximum width of the maximum peel along the crosscut collar was measured. If this maximum peel width is 6.0 mm or less, it can be evaluated that the corrosion resistance in the combined cycle corrosion test is good.

(4)耐遅れ破壊特性
製造された各鋼板をそれぞれ幅35mm×長さ100mmにせん断し、幅が30mmになるまで研削加工を施し、試験片を作製した。図2に示すように、この試験片1をU字形状に曲げて、ボルト2とナット3で拘束して試験片形状を固定し、遅れ破壊評価用試験片を得た。このようにして作製した遅れ破壊評価用試験片に対し、米国自動車技術会で定めたSAE J2334に規定された、乾燥・湿潤・塩水浸漬の工程からなる複合サイクル腐食試験(図3参照)を、最大20サイクルまで実施した。各サイクルの塩水浸漬の工程前に目視により割れの発生の有無を調査し、割れ発生サイクル数を測定した。また、本試験は、各鋼板3検体ずつ実施し、その平均値をもって割れ発生サイクル数とした。
(4) Delayed fracture resistance The manufactured steel sheets were each sheared to a width of 35 mm and a length of 100 mm, and subjected to grinding until the width became 30 mm, thereby producing test pieces. As shown in FIG. 2, the test piece 1 was bent into a U shape and restrained by a bolt 2 and a nut 3 to fix the test piece shape, thereby obtaining a delayed fracture evaluation test piece. For the test specimen for delayed fracture evaluation prepared in this way, a combined cycle corrosion test (see FIG. 3) consisting of drying, wetting, and salt water soaking processes defined in SAE J2334 defined by the American Society of Automotive Engineers. Up to 20 cycles were performed. The presence or absence of cracks was visually examined before the salt water immersion process in each cycle, and the number of crack generation cycles was measured. In addition, this test was performed for three specimens of each steel plate, and the average value was defined as the number of crack generation cycles.

上記試験の結果を、酸洗条件及び鋼板表面性状とともに表2及び表3に示す。これによれば、本発明例の鋼板は、優れた耐遅れ破壊特性を有するとともに、塩温水浸漬試験、塩水噴霧試験及び複合サイクル腐食試験のいずれにおいても最大剥離全幅が小さく、極めて優れた塗装後耐食性を有していることが判る。
なお、表3のNo.28〜32の比較例は、本発明例に較べて耐遅れ破壊特性が劣っているが、これは、鋼板表面に酸化物層があるか若しくは金属Cuの断面被覆率が高いために化成処理性が悪く、塗装後耐食性が不十分であるため、暴露に伴う腐食反応で水素が多く発生し、割れが発生し易いためであると考えられる。
The result of the said test is shown in Table 2 and Table 3 with pickling conditions and steel plate surface property. According to this, the steel sheet of the example of the present invention has excellent delayed fracture resistance, and the maximum total peel width is small in any of the salt warm water immersion test, the salt spray test and the combined cycle corrosion test. It turns out that it has corrosion resistance.
In addition, although the comparative example of No. 28-32 of Table 3 is inferior in the delayed fracture resistance compared with the example of this invention, this has the oxide layer in the steel plate surface, or the cross-sectional coverage of metal Cu Therefore, it is considered that the chemical conversion treatment property is poor and the post-coating corrosion resistance is insufficient, so that a lot of hydrogen is generated due to the corrosion reaction accompanying the exposure and cracking is likely to occur.

Claims (5)

Si、Mn、Alのうちの少なくとも1種とCu:0.05〜0.25質量%を含有する引張り強度が1180Mpa以上の鋼板であって、鋼組織が再結晶組織からなり、鋼板表面にAl、Si、Mnのうちの少なくとも1種を含む酸化物層が存在せず(但し、酸化物層が存在しないとは、任意に選ばれた鋼板表面の5箇所をグロー放電発光分光分析で深さ方向に分析したときに、Al、Si、Mn、Oのピークが現れない場合をいう。)、鋼板表面に存在する析出金属Cuによる鋼板表面の被覆率(但し、鋼板断面で測定される鋼板表面の被覆率)が30%以下であることを特徴とする塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板。 A steel plate having a tensile strength of 1180 Mpa or more containing at least one of Si, Mn, and Al and Cu: 0.05 to 0.25% by mass, the steel structure being a recrystallized structure, There is no oxide layer containing at least one of Si, Mn (provided that the oxide layer does not exist is a depth determined by glow discharge emission spectroscopic analysis at five locations on the steel sheet surface selected arbitrarily. When the analysis is made in the direction, the peak of Al, Si, Mn, O does not appear.) The coverage of the steel sheet surface by the precipitated metal Cu existing on the steel sheet surface (however, the steel sheet surface measured by the steel sheet cross section) High-strength cold-rolled steel sheet excellent in post-coating corrosion resistance and delayed fracture resistance, characterized in that the coating ratio is 30% or less. C:0.08〜0.30質量%、Si:0.1〜2.0質量%、Mn:0.1〜2.5質量%、P:0.020質量%以下、S:0.005質量%以下、Sol.Al:0.01〜0.05質量%、Cu:0.05〜0.25質量%を含有し、残部が鉄及び不可避不純物からなる成分組成を有することを特徴とする請求項1に記載の塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板。   C: 0.08-0.30 mass%, Si: 0.1-2.0 mass%, Mn: 0.1-2.5 mass%, P: 0.020 mass% or less, S: 0.005 Less than mass%, Sol.Al:0.01-0.05 mass%, Cu: 0.05-0.25 mass%, The remainder has the component composition which consists of iron and an unavoidable impurity, It is characterized by the above-mentioned. The high-strength cold-rolled steel sheet excellent in post-coating corrosion resistance and delayed fracture resistance according to claim 1. さらに、Ni:0.05質量%以下、Ti:0.1質量%以下、Nb:0.1質量%以下、B:5〜30質量ppmの中から選ばれる1種以上を含有することを特徴とする請求項2に記載の塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板。   Furthermore, Ni: 0.05% by mass or less, Ti: 0.1% by mass or less, Nb: 0.1% by mass or less, B: containing one or more selected from 5 to 30 ppm by mass The high-strength cold-rolled steel sheet excellent in post-coating corrosion resistance and delayed fracture resistance according to claim 2. 請求項1〜3のいずれかに記載の成分組成を有する冷延鋼板を連続焼鈍した後、下記(1)又は(2)の酸洗液で酸洗することを特徴とする塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板の製造方法。
(1)酸成分が硝酸と塩酸からなり、硝酸濃度が50g/L超110g/L以下、塩酸濃度(g/L)と硝酸濃度(g/L)の比R1[塩酸/硝酸]が0.1〜0.3、Fe3+イオン濃度が3〜30g/Lである酸洗液
(2)酸成分が硝酸と弗酸からなり、硝酸濃度が50g/L超110g/L以下、
弗酸濃度(g/L)と硝酸濃度(g/L)の比R2[弗酸/硝酸]が0.1〜0.3、Fe3+イオン濃度が3〜30g/Lである酸洗液
After continuously annealing the cold-rolled steel sheet having the component composition according to any one of claims 1 to 3, the steel sheet is pickled with the pickling solution of (1) or (2) below, and is subjected to post-coating corrosion resistance and resistance. A method for producing high-strength cold-rolled steel sheets with excellent delayed fracture characteristics.
(1) The acid component is composed of nitric acid and hydrochloric acid, the nitric acid concentration is more than 50 g / L and 110 g / L or less, and the ratio R1 [hydrochloric acid / nitric acid] of hydrochloric acid concentration (g / L) to nitric acid concentration (g / L) is 0. 1 to 0.3, pickling solution having Fe 3+ ion concentration of 3 to 30 g / L (2) The acid component is composed of nitric acid and hydrofluoric acid, and the nitric acid concentration is over 50 g / L and 110 g / L or less,
Pickling solution having a ratio R2 [hydrofluoric acid / nitric acid] of hydrofluoric acid concentration (g / L) to nitric acid concentration (g / L) of 0.1 to 0.3 and Fe 3+ ion concentration of 3 to 30 g / L
酸洗液温度20〜70℃、酸洗時間3〜30秒の条件で酸洗を行うことを特徴とする請求項4に記載の塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板の製造方法。   The high-strength cold-rolled steel sheet with excellent post-coating corrosion resistance and delayed fracture resistance according to claim 4, wherein pickling is performed under conditions of a pickling temperature of 20 to 70 ° C and a pickling time of 3 to 30 seconds. Manufacturing method.
JP2017143786A 2017-07-25 2017-07-25 High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same Active JP6699633B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017143786A JP6699633B2 (en) 2017-07-25 2017-07-25 High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
PCT/JP2018/023302 WO2019021695A1 (en) 2017-07-25 2018-06-19 High-strength cold-rolled steel sheet and manufacturing method therefor
CN201880049690.6A CN110945160A (en) 2017-07-25 2018-06-19 High-strength cold-rolled steel sheet and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143786A JP6699633B2 (en) 2017-07-25 2017-07-25 High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2019026864A true JP2019026864A (en) 2019-02-21
JP6699633B2 JP6699633B2 (en) 2020-05-27

Family

ID=65041357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143786A Active JP6699633B2 (en) 2017-07-25 2017-07-25 High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same

Country Status (3)

Country Link
JP (1) JP6699633B2 (en)
CN (1) CN110945160A (en)
WO (1) WO2019021695A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035617A (en) 2021-09-13 2024-03-15 제이에프이 스틸 가부시키가이샤 Friction stir welding method for electrical steel strips and manufacturing method for electrical steel strips
KR20240058192A (en) 2021-11-30 2024-05-03 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip and manufacturing method of electronic steel strip
KR20240058191A (en) 2021-11-30 2024-05-07 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221586A (en) * 2008-03-19 2009-10-01 Jfe Steel Corp High strength cold rolled sheet steel excellent in chemical conversion properties and corrosion resistance after coating, and method for producing the same
JP2011246764A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd High-strength thin steel sheet and method for production thereof
JP2016050354A (en) * 2014-09-02 2016-04-11 Jfeスチール株式会社 Cold rolled steel sheet, method for producing cold rolled steel sheet, automotive member, and cold rolled steel sheet production equipment
WO2016147549A1 (en) * 2015-03-18 2016-09-22 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400372B2 (en) * 2004-08-20 2010-01-20 Jfeスチール株式会社 Sn-based plated steel sheet excellent in solderability, corrosion resistance and whisker resistance, and method for producing the same
CN100386461C (en) * 2006-04-04 2008-05-07 山西太钢不锈钢股份有限公司 Ferrite antibacterial stainless steel for low-chrome copper-containing dishware and manufacturing method thereof
CN104471115A (en) * 2012-07-18 2015-03-25 杰富意钢铁株式会社 Method for producing steel sheet having excellent chemical conversion properties and galling resistance
CN108699647B (en) * 2016-02-18 2020-07-28 杰富意钢铁株式会社 High-strength cold-rolled steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221586A (en) * 2008-03-19 2009-10-01 Jfe Steel Corp High strength cold rolled sheet steel excellent in chemical conversion properties and corrosion resistance after coating, and method for producing the same
JP2011246764A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd High-strength thin steel sheet and method for production thereof
JP2016050354A (en) * 2014-09-02 2016-04-11 Jfeスチール株式会社 Cold rolled steel sheet, method for producing cold rolled steel sheet, automotive member, and cold rolled steel sheet production equipment
WO2016147549A1 (en) * 2015-03-18 2016-09-22 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035617A (en) 2021-09-13 2024-03-15 제이에프이 스틸 가부시키가이샤 Friction stir welding method for electrical steel strips and manufacturing method for electrical steel strips
KR20240058192A (en) 2021-11-30 2024-05-03 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip and manufacturing method of electronic steel strip
KR20240058191A (en) 2021-11-30 2024-05-07 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip

Also Published As

Publication number Publication date
WO2019021695A1 (en) 2019-01-31
CN110945160A (en) 2020-03-31
JP6699633B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
KR101502213B1 (en) Method for producing cold-rolled steel sheet, cold-rolled steel sheet, and vehicle member
JP5256936B2 (en) Manufacturing method of high strength cold-rolled steel sheet
WO2016035261A1 (en) Cold-rolled steel sheet, method for producing cold-rolled steel sheet, automobile member, and equipment for producing cold-rolled steel sheet
WO2003074751A1 (en) Surface treated steel plate and method for production thereof
KR101704308B1 (en) High-strength steel plate and method for producing same
KR101692179B1 (en) High strength steel sheet and method for manufacturing the same
KR101538240B1 (en) High strength steel sheet and method for manufacturing the same
US10174430B2 (en) Si-containing high strength cold rolled steel sheet, method of producing the same, and automotive members
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
JP5835545B2 (en) Method for producing Si-containing hot-rolled steel sheet
JP5835547B2 (en) Method for producing Si-containing cold-rolled steel sheet
JP4725374B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
JP4821365B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet with excellent corrosion resistance after painting
JP4725376B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
JP6108028B2 (en) Cold rolled steel sheet manufacturing method
JP5446499B2 (en) Steel sheet with excellent delayed fracture resistance and method for producing the same
JP2016041833A (en) Si-CONTAINING HOT ROLLED STEEL SHEET WITH EXCELLENT CHEMICAL CONVERSION TREATMENT PROPERTY AND MANUFACTURING METHOD OF THE SAME
JPS62243738A (en) Steel material having high corrosion resistance
JP2012082489A (en) METHOD OF MANUFACTURING HIGH Si-CONTAINING HIGH TENSILE STRENGTH STEEL SHEET EXCELLENT IN CHEMICAL CONVERSION TREATMENT PROPERTY
JP2002180182A (en) Steel having excellent pitting resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250