JP4725376B2 - High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same - Google Patents

High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same Download PDF

Info

Publication number
JP4725376B2
JP4725376B2 JP2006070102A JP2006070102A JP4725376B2 JP 4725376 B2 JP4725376 B2 JP 4725376B2 JP 2006070102 A JP2006070102 A JP 2006070102A JP 2006070102 A JP2006070102 A JP 2006070102A JP 4725376 B2 JP4725376 B2 JP 4725376B2
Authority
JP
Japan
Prior art keywords
steel sheet
chemical conversion
corrosion resistance
rolled steel
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006070102A
Other languages
Japanese (ja)
Other versions
JP2007246961A (en
Inventor
直樹 西山
玲子 杉原
哲雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006070102A priority Critical patent/JP4725376B2/en
Publication of JP2007246961A publication Critical patent/JP2007246961A/en
Application granted granted Critical
Publication of JP4725376B2 publication Critical patent/JP4725376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、成形性に優れ、かつ化成処理性および塩温水浸漬試験および複合サイクル腐食試験により評価される塗装後耐食性にも優れた高強度冷延鋼板およびその製造方法に関する。   The present invention relates to a high-strength cold-rolled steel sheet excellent in formability and excellent in post-coating corrosion resistance evaluated by chemical conversion treatment, salt warm water immersion test and combined cycle corrosion test, and a method for producing the same.

近年、地球環境の保全という観点から自動車の燃費改善が求められている。また、衝突時における乗員保護の観点から自動車の安全性向上も要求されている。このため、自動車車体には軽量化と高強度化が必要とされ、最近では自動車部品の薄肉化と高強度化が積極的に進んでいる。   In recent years, improvement in fuel efficiency of automobiles has been demanded from the viewpoint of conservation of the global environment. There is also a demand for improving the safety of automobiles from the viewpoint of occupant protection in the event of a collision. For this reason, it is necessary to reduce the weight and the strength of the automobile body, and recently, the thickness and the strength of the automobile parts have been actively promoted.

一方、自動車部品の多くは鋼板をプレス成形して製造されることから、鋼板には高いプレス成形性、特に高い強度と高い延性、すなわち優れた強度-延性バランスが強く求められる。高い延性を有する高強度冷延鋼板には、強化元素として多量のSiが含有される場合が多く、焼鈍時にはSiの酸化物が鋼板表面に形成される。そのため、こうしたSi含有量の多い高強度冷延鋼板は、化成処理性に劣り、しかも電着塗装後に塩温水浸漬試験や湿潤-乾燥を繰り返す複合サイクル腐食試験のような過酷な環境に曝されると、通常の鋼板に比べて、塗膜がはがれ、塗装後耐食性が低下し易い。   On the other hand, since many automobile parts are manufactured by press-forming steel sheets, the steel sheets are strongly required to have high press formability, particularly high strength and high ductility, that is, excellent strength-ductility balance. A high strength cold-rolled steel sheet having high ductility often contains a large amount of Si as a strengthening element, and an oxide of Si is formed on the steel sheet surface during annealing. Therefore, these high-strength cold-rolled steel sheets with a high Si content are inferior in chemical conversion treatment, and are exposed to harsh environments such as a salt-water immersion test and a combined cycle corrosion test that repeats wet-drying after electrodeposition coating. And compared with a normal steel plate, a coating film peels and the corrosion resistance after a coating tends to fall.

そこで、特許文献1には、例えば、熱延時にスラブを1200℃以上の温度で加熱し、高圧でデスケーリングし、酸洗前に熱延鋼板の表面を砥粒入りナイロンブラシで研削し、9%塩酸槽に2回浸漬して酸洗を行って、鋼板表面のSi濃度を下げた高強度冷延鋼板が提案されている。また、特許文献2には、鋼板表面から1〜10μmに観察されるSiを含む線状の酸化物の線幅を300nm以下として耐食性を向上させた高強度冷延鋼板が提案されている。
特開2004-204350号公報 特開2004-244698号公報
Therefore, in Patent Document 1, for example, the slab is heated at a temperature of 1200 ° C. or higher during hot rolling, descaled at a high pressure, and the surface of the hot rolled steel sheet is ground with a nylon brush containing abrasive grains before pickling. A high-strength cold-rolled steel sheet is proposed in which the Si concentration on the steel sheet surface is lowered by dipping twice in a hydrochloric acid bath and pickling. Patent Document 2 proposes a high-strength cold-rolled steel sheet in which the line width of a linear oxide containing Si observed at 1 to 10 μm from the steel sheet surface is 300 nm or less to improve corrosion resistance.
JP 2004-204350 A JP 2004-244698 A

しかしながら、特許文献1に記載の高強度冷延鋼板では、冷間圧延前に鋼板表面のSi酸化物を低減しても、その後の焼鈍により鋼板表面にSi酸化物が形成され、化成処理性および塗装後耐食性を十分には改善できない。また、特許文献2に記載の高強度冷延鋼板では、化成処理性やJIS Z 2371の塩水噴霧試験のような環境では耐食性が問題になることはないが、塩温水浸漬試験や複合サイクル腐食試験のような過酷な環境では塗装後耐食性が十分でない。このように、鋼板表面のSi量を低減するだけでは十分な化成処理性および塗装後耐食性を確保できず、成形性、化成処理性、塗装後耐食性いずれにも優れた高強度冷延鋼板が得られない。   However, in the high-strength cold-rolled steel sheet described in Patent Document 1, even if Si oxide on the steel sheet surface is reduced before cold rolling, Si oxide is formed on the steel sheet surface by subsequent annealing, and chemical conversion treatment and Corrosion resistance after painting cannot be improved sufficiently. In the high-strength cold-rolled steel sheet described in Patent Document 2, corrosion resistance does not become a problem in environments such as chemical conversion treatment and the salt spray test of JIS Z 2371, but the salt warm water immersion test and the combined cycle corrosion test In such a severe environment, the corrosion resistance after painting is not sufficient. Thus, reducing the amount of Si on the steel sheet surface does not ensure sufficient chemical conversion properties and post-coating corrosion resistance, resulting in a high-strength cold-rolled steel plate with excellent formability, chemical conversion properties, and post-coating corrosion resistance. I can't.

本発明は、引張強度TSが590MPa以上と高強度で、TS×El(El:伸び)が23000MPa・%以上と成形性に優れ、かつ化成処理性および塩温水浸漬試験や複合サイクル腐食試験のような過酷な環境での塗装後耐食性にも優れた高強度冷延鋼板およびその製造方法を提供することを目的とする。   The present invention has a high tensile strength TS of 590 MPa or higher, TS × El (El: Elongation) of 23000 MPa ·% or more, excellent moldability, chemical conversion treatment, salt warm water immersion test, and combined cycle corrosion test. An object of the present invention is to provide a high-strength cold-rolled steel sheet excellent in corrosion resistance after coating in a severe environment and a method for producing the same.

上記目的は、質量%で、C:0.05〜0.25%、Si:0.8〜3.0%、Mn:0.5〜3.0%、P:0.05%以下、S:0.01%以下、Al:0.06%以下、残部Feおよび不可避的不純物からなり、体積率で、フェライトを30%以上、残留オーステナイトを2%以上、ベイナイトおよび/またはマルテンサイトを合計で3〜50%を含む組織を有し、かつ以下の式(1)で定義される鋼板表面のSi量Cs(Si)が2.5%以下で、鋼板表面に10〜100mg/m2のZnが存在していることを特徴とする成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板によって達成できる。
Cs(Si)=Cb(Si)×[Rs(Si/Fe)/Rb(Si/Fe)] ・・・(1)
ここで、Cb(Si)は鋼中のSi量を、Rs(Si/Fe)は鋼板表面から50nmの深さまでのSiとFeのGDSカウント積算値比を、Rb(Si/Fe)は鋼中のSiとFeのGDSカウント比を表す。
The purpose is mass%, C: 0.05-0.25%, Si: 0.8-3.0%, Mn: 0.5-3.0%, P: 0.05% or less, S: 0.01% or less, Al: 0.06% or less, balance Fe and It consists of inevitable impurities, and has a structure containing, by volume, 30% or more of ferrite, 2% or more of retained austenite, and 3 to 50% in total of bainite and / or martensite, and the following formula (1) moldability, chemical conversion treatability and corrosion resistance after coating tHAT defined by the surface of the steel sheet Si content Cs (Si) is 2.5% or less, wherein the Zn of 10-100 mg / m 2 is present on the surface of the steel sheet Can be achieved by a high-strength cold-rolled steel sheet with excellent resistance.
Cs (Si) = Cb (Si) × [Rs (Si / Fe) / Rb (Si / Fe)] (1)
Where Cb (Si) is the amount of Si in the steel, Rs (Si / Fe) is the GDS count integrated value ratio of Si and Fe from the steel sheet surface to a depth of 50 nm, and Rb (Si / Fe) is in the steel. Represents the GDS count ratio of Si and Fe.

また、本発明の高強度冷延鋼板には、質量%で、Ti:0.005〜0.3%、Nb:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた少なくとも1種の元素を含有させることができる。   Further, the high-strength cold-rolled steel sheet of the present invention contains at least one element selected from Ti: 0.005-0.3%, Nb: 0.005-0.3%, and V: 0.005-0.3% by mass%. Can be made.

さらに、本発明の高強度冷延鋼板には、質量%で、Mo:0.005〜0.3%を含有させることができる。   Furthermore, the high-strength cold-rolled steel sheet of the present invention can contain Mo: 0.005 to 0.3% by mass.

さらにまた、本発明の高強度冷延鋼板には、質量%で、Ca:0.001〜0.1%、REM:0.001〜0.1%のうちから選ばれた少なくとも1種の元素を含有させることができる。   Furthermore, the high-strength cold-rolled steel sheet of the present invention can contain at least one element selected from Ca: 0.001 to 0.1% and REM: 0.001 to 0.1% by mass.

本発明の高強度冷延鋼板は、例えば、上記の組成を有する鋼スラブを、1170℃以下の温度に加熱後、熱間圧延を行い熱延鋼板とし、次いで該熱延鋼板を30〜60%の圧下率で冷間圧延した後、700℃以上の温度に加熱し30s以上保持した後、300〜480℃の温度まで10℃/s以上の平均冷却速度で冷却し、その温度で60〜600s保持した後、冷却し、上記式(1)のCs(Si)が2.5%以下となるように酸洗後、さらに鋼板表面に10〜100mg/m2のZnが存在するようにZnめっきすることを特徴とする成形性、化成処理性およびおよび塗装後耐食性に優れた高強度冷延鋼板の製造方法により製造できる。 The high-strength cold-rolled steel sheet of the present invention is, for example, a steel slab having the above composition, heated to a temperature of 1170 ° C. or less, and then hot-rolled into a hot-rolled steel sheet, and then the hot-rolled steel sheet is 30 to 60% After cold rolling at a reduction rate of 700 ° C, heat to 700 ° C or higher and hold for 30s or more, then cool to 300 to 480 ° C with an average cooling rate of 10 ° C / s or more, and at that temperature 60 to 600s After holding, cool, and after pickling so that Cs (Si) of the above formula (1) is 2.5% or less, further plating with Zn so that 10 to 100 mg / m 2 of Zn exists on the steel plate surface Can be produced by a method for producing a high-strength cold-rolled steel sheet excellent in formability, chemical conversion property and corrosion resistance after coating.

本発明により、TS×Elが23000MPa・%以上で成形性に優れ、かつ化成処理性および塩温水浸漬試験や複合サイクル腐食試験のような過酷な環境での塗装後耐食性にも優れた高強度冷延鋼板を製造できるようになった。   By this invention, TS × El is 23000MPa ・% or more, excellent moldability, and high strength cooling excellent in chemical conversion treatment and post-coating corrosion resistance in harsh environments such as salt warm water immersion test and combined cycle corrosion test. It became possible to manufacture rolled steel sheets.

以下に、本発明の詳細を説明する。なお、本発明では、成分組成、濃度における「%」表示は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. In the present invention, “%” in the component composition and concentration means “% by mass” unless otherwise specified.

1)成分
C: Cは、鋼の高強度化に必須の元素であり、さらにTRIP(変態誘起塑性:Transformation Induced Plasticity)効果を有する残留オーステナイト、ベイナイト、マルテンサイトの生成に不可欠の元素である。しかし、C量が0.05%未満では所望の高強度化が得られず、0.25%を超えると溶接性の低下を招く。このため、C量は0.05〜0.25%、好ましくは0.10〜0.20%に限定する。
1) ingredients
C: C is an essential element in high strength steel, further TRIP (transformation induced plasticity: Tr ansformation I nduced P lasticity) residual austenite has an effect, bainite, is an essential element for the generation of martensite. However, if the C content is less than 0.05%, the desired high strength cannot be obtained, and if it exceeds 0.25%, weldability is deteriorated. For this reason, the amount of C is limited to 0.05 to 0.25%, preferably 0.10 to 0.20%.

Si: Siは、固溶強化により鋼を強化するとともに、オーステナイトを安定化し、残留オーステナイト相の生成を促進する作用を有する。このような作用は、Si量が0.8%以上で認められるが、3.0%を超えると延性が低下する。このため、Si量は0.8〜3.0%、好ましくは1.0〜2.5%に限定する。   Si: Si has the effect of strengthening steel by solid solution strengthening, stabilizing austenite, and promoting the formation of residual austenite phase. Such an effect is recognized when the Si content is 0.8% or more, but when it exceeds 3.0%, the ductility is lowered. For this reason, Si amount is limited to 0.8 to 3.0%, preferably 1.0 to 2.5%.

Mn: Mnは、固溶強化により鋼を強化するとともに、鋼の焼入性を向上させ、残留オーステナイト、ベイナイト、マルテンサイトの生成を促進する作用を有する。このような作用は、Mn量が0.5%以上で認められるが、3.0%を超えると飽和し、コストの上昇を招く。このため、Mn量は0.5〜3.0%、好ましくは1.0〜2.0%に限定する。   Mn: Mn strengthens the steel by solid solution strengthening, improves the hardenability of the steel, and promotes the formation of retained austenite, bainite, and martensite. Such an effect is recognized when the Mn content is 0.5% or more, but when it exceeds 3.0%, it is saturated and the cost is increased. For this reason, the amount of Mn is limited to 0.5 to 3.0%, preferably 1.0 to 2.0%.

P: Pは、固溶強化元素であり、通常、高強度鋼板を得るのに有効な元素ではあるため、0.005%以上含有させることが好ましいが、0.05%を超えるとスポット溶接性を低下させる。このため、P量は0.05%以下、好ましくは0.02%以下に限定する。   P: P is a solid solution strengthening element and is usually an element effective for obtaining a high-strength steel sheet. Therefore, P is preferably contained in an amount of 0.005% or more, but if it exceeds 0.05%, spot weldability is lowered. For this reason, the amount of P is limited to 0.05% or less, preferably 0.02% or less.

S: Sは、鋼中にMnSとして析出し、鋼板の伸びフランジ性を低下させる。このため、S量は0.01%以下、好ましくは0.005%以下、より好ましくは0.003%以下に限定する。   S: S precipitates as MnS in the steel and lowers the stretch flangeability of the steel sheet. For this reason, the amount of S is limited to 0.01% or less, preferably 0.005% or less, more preferably 0.003% or less.

Al: Alは、製鋼段階での脱酸剤として添加される元素であり、伸びフランジ性を低下させる非金属介在物をスラグとして分離するのに有効な元素であるので、0.01%以上含有させることが好ましいが、0.06%を超えるとコストの上昇を招く。このため、Al量は0.06%以下に限定するが、好ましくは0.02〜0.06%である。   Al: Al is an element added as a deoxidizer in the steelmaking stage, and is an effective element for separating nonmetallic inclusions that reduce stretch flangeability as slag. However, if it exceeds 0.06%, cost increases. For this reason, the Al content is limited to 0.06% or less, but is preferably 0.02 to 0.06%.

残部はFeおよび不可避的不純物であるが、次の理由により、Ti:0.005〜0.3%、Nb:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた少なくとも1種の元素、Ca:0.001〜0.1%、REM:0.001〜0.1%のうちから選ばれた少なくとも1種、Mo:0.005〜0.3%を、適宜組み合わせてあるいは個別に含有させることができる。   The balance is Fe and inevitable impurities, but for the following reasons, at least one element selected from Ti: 0.005-0.3%, Nb: 0.005-0.3%, V: 0.005-0.3%, Ca: At least one selected from 0.001 to 0.1% and REM: 0.001 to 0.1%, Mo: 0.005 to 0.3% can be appropriately combined or individually contained.

Ti、Nb、V: Ti、Nb、Vは、炭化物や窒化物を形成し、焼鈍時の加熱段階でフェライトの成長を抑制し、組織を微細化させ、成形性、特に伸びフランジ性を著しく向上させる。そのため、こうした元素を少なくとも1種含有させることが効果的である。このとき各々の元素は0.005%以上含有させる必要がある。しかしながら、0.3%を超えると析出強化により降伏強度YSが上昇して成形性が低下し、またTRIP効果を発現させるための残留オーステナイトが減少する。したがって、これらの元素の量は、それぞれ0.005〜0.3%、好ましくは0.01〜0.2%に限定する。   Ti, Nb, V: Ti, Nb, V forms carbides and nitrides, suppresses the growth of ferrite in the heating stage during annealing, refines the structure, and remarkably improves formability, especially stretch flangeability Let Therefore, it is effective to contain at least one of these elements. At this time, each element needs to be contained by 0.005% or more. However, if it exceeds 0.3%, the yield strength YS increases due to precipitation strengthening, the formability decreases, and the retained austenite for expressing the TRIP effect decreases. Therefore, the amount of these elements is limited to 0.005 to 0.3%, preferably 0.01 to 0.2%, respectively.

Mo: Moは、鋼の焼入性を向上し、ベイナイトやマルテンサイトの生成を促進する作用を有する元素である。このような作用は、Mo量が0.005%以上で認められるが、0.3%を超えるとその効果が飽和し、コストの上昇を招く。このため、Mo量は0.005〜0.3%、好ましくは0.01〜0.2%に限定する。   Mo: Mo is an element that has the effect of improving the hardenability of steel and promoting the formation of bainite and martensite. Such an action is recognized when the Mo content is 0.005% or more, but when it exceeds 0.3%, the effect is saturated and the cost is increased. For this reason, the amount of Mo is limited to 0.005 to 0.3%, preferably 0.01 to 0.2%.

Ca、REM: Ca、REMは、硫化物系介在物の形態を制御し、鋼板の伸びフランジ性を向上させる効果を有する。このような効果は、こうした元素を少なくとも1種含有させることで得られる。このとき各々の元素は0.001%以上含有させる必要がある。しかしながら、0.1%を超えるとその効果は飽和する。したがって、これらの元素の量は、それぞれ0.001〜0.1%、好ましくは0.001〜0.05%に限定する。   Ca, REM: Ca and REM have the effect of controlling the form of sulfide inclusions and improving the stretch flangeability of the steel sheet. Such an effect can be obtained by including at least one of these elements. At this time, each element needs to be contained by 0.001% or more. However, the effect is saturated when it exceeds 0.1%. Therefore, the amount of these elements is limited to 0.001 to 0.1%, preferably 0.001 to 0.05%, respectively.

2)組織
優れた成形性、具体的には23000MPa・%以上のTS×Elを得るには、上記の成分に加えて、次の理由により、体積率で、フェライトを30%以上、残留オーステナイトを2%以上、ベイナイトおよび/またはマルテンサイトを合計で3〜50%を含む組織とする必要がある。
2) Microstructure In order to obtain excellent formability, specifically, TS x El of 23000 MPa ·% or more, in addition to the above components, the volume ratio of ferrite is 30% or more and residual austenite is added for the following reasons. It is necessary to make it a structure containing 2% or more and 3 to 50% in total of bainite and / or martensite.

フェライト: フェライトは、鉄炭化物を含まない軟質な相であり、高い変形能を有し、鋼板の延性を向上させる。しかし、フェライトの体積率が30%未満では顕著な延性向上効果が期待できないので、フェライトの体積率は30%以上、好ましくは50%以上に限定する。   Ferrite: Ferrite is a soft phase containing no iron carbide, has high deformability, and improves the ductility of the steel sheet. However, if the ferrite volume fraction is less than 30%, a significant ductility improvement effect cannot be expected. Therefore, the ferrite volume fraction is limited to 30% or more, preferably 50% or more.

残留オーステナイト: 残留オーステナイトは、成形時にマルテンサイトに歪誘起変態し、局所的に加えられた歪を広く分散させ、鋼板の延性を向上させる作用、いわゆるTRIP効果を有する。しかし、残留オーステナイトの体積率が2%未満では顕著な延性向上が期待できないので、残留オーステナイトの体積率は2%以上、好ましくは5%以上に限定する。   Residual austenite: Residual austenite has a so-called TRIP effect that causes strain-induced transformation to martensite during forming, disperses locally applied strain widely, and improves the ductility of the steel sheet. However, if the volume fraction of retained austenite is less than 2%, a significant improvement in ductility cannot be expected. Therefore, the volume fraction of retained austenite is limited to 2% or more, preferably 5% or more.

ベイナイトおよび/またはマルテンサイト: ベイナイト、マルテンサイトは、ともに硬質であり、組織強化によって鋼板強度を増加させる作用を有する。また、変態時に可動転位の発生を伴うため、鋼板の降伏比を低下させる作用も有する。このような作用は、ベイナイトおよび/またはマルテンサイトの体積率を合計で3%以上にすることにより認められるが、50%を超えると鋼板強度が高くなりすぎ、延性を低下させるため、50%を上限とする。このため、ベイナイトおよび/またはマルテンサイトの体積率は合計で3〜50%、好ましくは10〜30%に限定する。   Bainite and / or martensite: Both bainite and martensite are hard and have the effect of increasing the steel sheet strength by strengthening the structure. Moreover, since it involves the generation of movable dislocations during transformation, it also has the effect of reducing the yield ratio of the steel sheet. Such an effect is recognized by setting the volume fraction of bainite and / or martensite to 3% or more in total, but if it exceeds 50%, the steel sheet strength becomes too high and the ductility is lowered. The upper limit. For this reason, the volume fraction of bainite and / or martensite is limited to 3 to 50% in total, preferably 10 to 30%.

3)鋼板表面のSi量Cs(Si)
電着塗装後にカッターで素地の鋼板まで達する傷を入れ、塩温水(5%食塩水、60℃)中に240時間浸漬する塩温水浸漬試験、または乾燥-湿潤を繰り返す複合サイクル腐食試験ような劣悪な環境下にさらされた場合、上記の式(1)で定義されるCs(Si)が2.5%を超えるとカット部から塗膜剥離が大きく発生し、塗装後耐食性が著しく低下することを、本発明者らは見出した。このような塗装後耐食性の低下は、電着塗装の下地処理として行われるリン酸亜鉛処理において、鋼板表面のSiが鋼板のエッチングを阻害して健全な化成処理皮膜の形成を阻害するためと考えられる。したがって、塗装後耐食性を改善するには、Cs(Si)を2.5%以下、好ましくは2.2%以下とする必要がある。
3) Si content on steel sheet surface Cs (Si)
After electrodeposition coating, scratches that reach the base steel plate with a cutter and soak in salt warm water (5% saline, 60 ° C) for 240 hours, or a combined cycle corrosion test that repeats dry-wetting When Cs (Si) defined by the above formula (1) exceeds 2.5% when exposed to an unfavorable environment, film peeling occurs greatly from the cut part, and the corrosion resistance after coating is significantly reduced. The inventors have found. This decrease in post-coating corrosion resistance is thought to be due to the fact that Si on the surface of the steel sheet inhibits the etching of the steel sheet and inhibits the formation of a healthy chemical conversion film in the zinc phosphate treatment that is performed as a base treatment for electrodeposition coating. It is done. Therefore, in order to improve the corrosion resistance after painting, Cs (Si) needs to be 2.5% or less, preferably 2.2% or less.

なお、上記式(1)のRs(Si/Fe)を鋼板表面から50nmの深さまでのSiとFeのGDS(Glow Discharge Spectroscopy)カウント積算値から求めた理由は、化成処理時のエッチングによる鋼板の溶解は50nmの深さ程度であるので、鋼板表面から50nmの深さまでに存在するSi量が塗装後耐食性に大きく影響するためである。   The reason why Rs (Si / Fe) in the above formula (1) was obtained from the GDS (Glow Discharge Spectroscopy) count integrated value of Si and Fe from the steel sheet surface to a depth of 50 nm is that the steel sheet by etching during chemical conversion treatment was used. This is because the dissolution is about 50 nm deep, and the amount of Si existing from the steel sheet surface to a depth of 50 nm greatly affects the corrosion resistance after coating.

ここで、鋼板表面からの50nm深さまでのSiとFeのGDSカウント積算値を求めるには、別途GDSによるスパッタリング深さとスパッタリング時間との関係を求め、50nmに相当するスパッタリング時間までのGDSカウント積算値を求めればよい。また、Rb(Si/Fe)は、鋼中のSiとFeのGDSカウント比であり、スパッタリング時間に対してSiとFeのGDSカウントがほぼ一定となり、表面濃化の影響が認められなくなった所でのSiとFeのGDSカウント値を用いればよい。なお、Cb(Si)は、鋼中のSiの含有量(質量%)である。   Here, in order to obtain the GDS count integrated value of Si and Fe from the steel sheet surface to a depth of 50 nm, separately obtain the relationship between the sputtering depth by GDS and the sputtering time, and the GDS count integrated value up to the sputtering time corresponding to 50 nm. You can ask for. Rb (Si / Fe) is the GDS count ratio of Si and Fe in the steel. The GDS count of Si and Fe is almost constant with respect to the sputtering time, and the effect of surface enrichment is no longer observed. The GDS count values of Si and Fe at Cb (Si) is the Si content (% by mass) in the steel.

4)鋼板表面のZnの量
鋼板表面には、化成処理によってリン酸塩皮膜が形成されるが、このとき、リン酸亜鉛結晶が緻密に生成するためには、リン酸亜鉛結晶核が化成処理初期段階で微細に数多く生成することが重要である。このリン酸亜鉛結晶核の生成は鋼板表面に存在するセメンタイトや硫化物などのカソードサイトを起点に起こっていると考えられている。一方、焼鈍時に鋼板表面に形成されたSi酸化物は鋼板のエッチングを阻害し、化成処理性を劣化させるため、事前に酸洗処理で取り除く必要があるが、酸洗によって鋼板表面に存在しているセメンタイトや硫化物などのカソードサイトも同時に溶解除去され、リン酸亜鉛結晶核の数が少なくなる。そのため、皮膜結晶の粗大化、スケ発生などが起こり、酸洗処理のみでは良好な化成処理性が得られず、塗装後耐食性が低下してしまう。
4) Amount of Zn on the surface of the steel sheet A phosphate film is formed on the surface of the steel sheet by chemical conversion treatment. At this time, the zinc phosphate crystal nuclei are chemically treated to form zinc phosphate crystals densely. It is important to produce a large number in the initial stage. The formation of zinc phosphate crystal nuclei is thought to have started from cathode sites such as cementite and sulfide existing on the steel sheet surface. On the other hand, the Si oxide formed on the surface of the steel sheet during annealing hinders the etching of the steel sheet and degrades the chemical conversion processability. Therefore, it is necessary to remove it by pickling in advance. The cathode sites such as cementite and sulfide are dissolved and removed at the same time, and the number of zinc phosphate crystal nuclei is reduced. For this reason, the film crystal becomes coarse, the scale is generated, and a good chemical conversion treatment property cannot be obtained only by the pickling treatment, and the corrosion resistance after coating is lowered.

本発明者らは、鋼板表面に10〜100mg/m2のZnを存在させることにより、リン酸亜鉛結晶核の数を増加させてリン酸亜鉛結晶の微細化、緻密化を図り、リン酸塩処理性を向上させて塗装後耐食性を改善できることを見出した。このとき、鋼板表面に存在するZnの量が10mg/m2未満ではリン酸塩処理性向上効果がほとんどなく、また100mg/m2を超えると、ホパイト(020)面のX線回折強度Hとフォスフォフィライト(100)面のX線回折強度Pから算出される化成処理性の指標であるリン酸亜鉛皮膜のP比[=P/(H+P)]が低下し、塗装後耐食性が低下する。 The present inventors increase the number of zinc phosphate crystal nuclei by making Zn in the surface of the steel sheet 10 to 100 mg / m 2 , thereby achieving refinement and densification of zinc phosphate crystals, and phosphates. It was found that the corrosion resistance after coating can be improved by improving the processability. At this time, when the amount of Zn present on the steel sheet surface is less than 10 mg / m 2 , there is almost no effect of improving the phosphate treatment property, and when it exceeds 100 mg / m 2 , the X-ray diffraction intensity H of the hopite (020) plane is The P ratio [= P / (H + P)] of the zinc phosphate coating, which is an index of chemical conversion treatment calculated from the X-ray diffraction intensity P of the phosphophyllite (100) surface, decreases, and the corrosion resistance after coating is reduced. descend.

鋼板表面にZnが存在することで化成処理性が向上する機構の詳細は不明であるが、以下のように考えられる。リン酸亜鉛皮膜は、酸性の化成処理液中で鋼板表面が溶解することによって鋼板表面のpH上昇が起り、処理液中のZnイオンとリン酸イオンが反応して析出する。このため、鋼板表面に存在するZnイオン量が多いほどリン酸亜鉛皮膜の析出に有利であると考えられるが、Znイオン量を上げるとスラッジの発生が多くなるなどの不具合が発生するため、化成処理液中のZnイオン量を現在の量よりも多くするには限界がある。しかし、鋼板表面にZnが存在するようにすると、Znは電気化学的にFeよりも卑な金属であるためZnが優先的に溶解し、その結果、鋼板表面のZnイオン量の増大をもたらし、リン酸亜鉛結晶核の析出が容易に起こるようになり、リン酸亜鉛結晶核数が増加し、化成処理性が向上する。一方、鋼板表面のZn量が100mg/m2を超えると、化成処理液中でZnの溶解のみが起り、Feの溶解が起こらなくなるため、ホパイトのみが形成され、フォスフォフィライトが形成されなくなる。その結果、P比が低下し、塗装後耐食性が低下する。 Although the details of the mechanism by which Zn is present on the steel sheet surface improves chemical conversion properties are unclear, it is considered as follows. In the zinc phosphate coating, when the steel plate surface is dissolved in the acidic chemical conversion treatment solution, the pH of the steel plate surface rises, and Zn ions and phosphate ions in the treatment solution react and precipitate. For this reason, it is considered that the greater the amount of Zn ions present on the surface of the steel sheet, the more advantageous is the precipitation of the zinc phosphate film.However, increasing the amount of Zn ions causes problems such as increased sludge generation. There is a limit to increasing the amount of Zn ions in the treatment liquid from the current amount. However, if Zn is present on the steel sheet surface, Zn is a base metal electrochemically than Fe, so Zn is preferentially dissolved, resulting in an increase in the amount of Zn ions on the steel sheet surface, Precipitation of zinc phosphate crystal nuclei easily occurs, the number of zinc phosphate crystal nuclei increases, and chemical conversion treatment performance improves. On the other hand, when the amount of Zn on the steel sheet surface exceeds 100 mg / m 2 , only dissolution of Zn occurs in the chemical conversion solution, and Fe does not dissolve, so that only hopite is formed and phosphophyllite is not formed. . As a result, the P ratio decreases and the corrosion resistance after coating decreases.

5)製造方法
本発明の高強度冷延鋼板の製造方法の一例を上述したが、以下に上記の製造方法例における各条件の限定理由を説明する。なお、本発明鋼板の製造方法は、上記例に限定されるものではない。
5) Manufacturing method An example of the manufacturing method of the high-strength cold-rolled steel sheet according to the present invention has been described above. The reasons for limiting each condition in the above manufacturing method example will be described below. In addition, the manufacturing method of this invention steel plate is not limited to the said example.

スラブ加熱温度: スラブ加熱温度が1170℃を超えるとSiが表面に濃化して、熱間圧延時のデスケーリング、熱間圧延後の酸洗などで除去し難いスケールが形成され、これが冷間圧延・焼鈍後も残存し、化成処理性が劣化する。このため、スラブの加熱温度は1170℃以下とする。   Slab heating temperature: When the slab heating temperature exceeds 1170 ° C, Si concentrates on the surface, forming a scale that is difficult to remove by descaling during hot rolling, pickling after hot rolling, etc., which is cold rolling -Remains after annealing and chemical conversion processability deteriorates. For this reason, the heating temperature of a slab shall be 1170 degrees C or less.

スラブ加熱温度以外の熱間圧延条件は、特に限定するものではないが、以下の条件とすることが好ましい。   Hot rolling conditions other than the slab heating temperature are not particularly limited, but are preferably the following conditions.

仕上温度: 熱間圧延の仕上温度がAr3変態点未満では、オーステナイト+フェライトの2相域で圧延され、成形性が劣化しやすい。また、仕上温度が(Ar3変態点+100)℃を超えると鋼の組織が粗大化し、成形性や表面性状が劣化しやすい。このため、仕上温度は、Ar3変態点〜(Ar3変態点+100)℃とすることが好ましい。 Finishing temperature: When the finishing temperature of hot rolling is less than the Ar 3 transformation point, rolling is performed in a two-phase region of austenite + ferrite, and formability tends to deteriorate. On the other hand, if the finishing temperature exceeds (Ar 3 transformation point +100) ° C., the structure of the steel becomes coarse and the formability and surface properties are likely to deteriorate. For this reason, the finishing temperature is preferably Ar 3 transformation point to (Ar 3 transformation point + 100) ° C.

熱間圧延後の冷却速度: 熱間圧延された鋼板は冷却され、オーステナイトがフェライトへ変態する。このとき、冷却速度が遅いと変態により生成したフェライトが粗大化し、成形性に悪影響を与えることがあるため、平均冷却速度は20℃/s以上とすることが好ましい。また、冷却は400〜650℃の温度まで行い、その後鋼板は巻取ることが好ましい。このとき、400℃未満では熱延鋼板の強度が高くなりすぎ、その後の冷間圧延での圧延負荷が著しく上昇し、冷間圧延が困難となるなどの問題が発生しやすいため、巻取温度の下限は400℃とし、また、650℃を超えると熱延鋼板での粒界酸化が著しくなり、表面性状が劣化したり、疲労特性が低下したりするなどの問題が生じやすいため、巻取温度の上限は650℃とすることが好ましい。   Cooling rate after hot rolling: The hot-rolled steel sheet is cooled and austenite is transformed into ferrite. At this time, if the cooling rate is slow, the ferrite produced by the transformation becomes coarse and may adversely affect the formability. Therefore, the average cooling rate is preferably 20 ° C./s or more. Moreover, it is preferable to cool to 400-650 degreeC and to wind up a steel plate after that. At this time, if the temperature is lower than 400 ° C, the strength of the hot-rolled steel sheet becomes too high, the rolling load in the subsequent cold rolling is remarkably increased, and problems such as difficulty in cold rolling are likely to occur. The lower limit of the temperature is 400 ° C, and if it exceeds 650 ° C, grain boundary oxidation in the hot-rolled steel sheet becomes significant, and problems such as deterioration of surface properties and deterioration of fatigue characteristics are likely to occur. The upper limit of the temperature is preferably 650 ° C.

冷間圧延の圧下率: 熱延鋼板は所望の板厚に冷間圧延されるが、圧下率が30%未満だと導入される歪みが不十分なため焼鈍後の特性が劣り、60%を超えると特性には影響がなく、むしろ冷間圧延機の圧延負荷が大きくなる。このため、冷間圧延の圧下率は30〜60%とする。なお、熱延鋼板は、表面に生成しているスケールを除くため、冷間圧延前に常法に従い酸洗することが好ましい。   Cold rolling reduction: The hot-rolled steel sheet is cold-rolled to the desired thickness, but if the rolling reduction is less than 30%, the introduced strain is insufficient and the post-annealing properties are inferior. If it exceeds, the properties will not be affected, but rather the rolling load of the cold rolling mill will increase. For this reason, the rolling reduction of cold rolling is 30 to 60%. In addition, in order to remove the scale generated on the surface of the hot-rolled steel sheet, it is preferable that the hot-rolled steel sheet be pickled according to a conventional method before cold rolling.

焼鈍温度および保持時間: 冷間圧延後の鋼板は連続焼鈍などによりオーステナイト+フェライトの2相域まで、すなわち700℃以上の温度に加熱して、その後冷却で残留オーステナイトが得られるようにする必要がある。なお、850℃を超えて加熱すると、フェライト粒径が粗大となり成形性が劣化するため、焼鈍温度は850℃以下とすることが好ましい。
また、2相域に加熱後直ちに冷却すると残留オーステナイトが得られないため、焼鈍温度で30s以上保持する必要がある。しかし、長時間保持するとフェライト粒径が粗大化し、成形性が劣化するおそれがあるため、保持時間は300s以内とすることが好ましい。
Annealing temperature and holding time: It is necessary to heat the steel sheet after cold rolling to the austenite + ferrite two-phase region by continuous annealing, that is, to a temperature of 700 ° C or higher, and then to obtain residual austenite by cooling. is there. In addition, when it heats exceeding 850 degreeC, since a ferrite particle size becomes coarse and a moldability deteriorates, it is preferable that an annealing temperature shall be 850 degrees C or less.
In addition, when the two-phase region is cooled immediately after heating, retained austenite cannot be obtained. Therefore, it is necessary to maintain the annealing temperature for 30 seconds or more. However, if the holding time is long, the ferrite grain size becomes coarse and the moldability may be deteriorated. Therefore, the holding time is preferably within 300 s.

焼鈍後の冷却速度: 焼鈍後の鋼板は、残留オーステナイトを生成させるために、焼鈍温度から次に述べる急冷停止温度まで10℃/s以上、好ましくは20℃/s以上の平均冷却速度で冷却する必要がある。   Cooling rate after annealing: The steel plate after annealing is cooled at an average cooling rate of 10 ° C / s or higher, preferably 20 ° C / s or higher, from the annealing temperature to the quenching stop temperature described below in order to generate retained austenite. There is a need.

急冷停止温度および保持時間: 急冷停止温度が300℃未満だとオーステナイトはすべてマルテンサイトに変態し、480℃を超えるとオーステナイトはほとんどがパーライトもしくはベイナイトに変態し、残留オーステナイトが得られなくなりTRIP効果が期待できなくなる。したがって、急冷停止温度は300〜480℃、好ましくは350〜450℃とする。また、そのときの保持時間は、60s未満で次の冷却を開始するとほとんどの残留オーステナイトがマルテンサイトに変態し、600sを超えるとベイナイト変態が生成し、残留オーステナイトが減少してTRIP効果が期待できなくなる。したがって、急冷停止温度での保持時間は60〜600s、好ましくは60〜300sとする。   Quenching stop temperature and holding time: When the quenching stop temperature is less than 300 ° C, all austenite transforms into martensite, and when it exceeds 480 ° C, most of the austenite transforms into pearlite or bainite, resulting in no residual austenite and a TRIP effect. You can't expect. Therefore, the rapid cooling stop temperature is 300 to 480 ° C, preferably 350 to 450 ° C. The retention time is less than 60 s, and when the next cooling starts, most of the retained austenite transforms to martensite, and when it exceeds 600 s, the bainite transformation is generated and the retained austenite is reduced, so the TRIP effect can be expected. Disappear. Therefore, the holding time at the rapid cooling stop temperature is 60 to 600 s, preferably 60 to 300 s.

酸洗: こうして冷却された鋼板は、焼鈍時に鋼板表面に形成されたSi酸化物を除去して上記Cs(Si)を2.5%以下にするため、塩酸、硫酸、硝酸+塩酸などで酸洗する必要がある。酸の種類、酸洗温度、酸洗時間などは特に限定しないが、例えば、10%塩酸や1%塩酸+25%硝酸を用い、30〜70℃で5〜20s浸漬することが好ましい。   Pickling: The steel sheet cooled in this way is pickled with hydrochloric acid, sulfuric acid, nitric acid + hydrochloric acid, etc. in order to remove the Si oxide formed on the steel sheet surface during annealing and make the above Cs (Si) 2.5% or less. There is a need. The type of acid, pickling temperature, pickling time and the like are not particularly limited. For example, it is preferable to use 10% hydrochloric acid or 1% hydrochloric acid + 25% nitric acid and immerse at 30 to 70 ° C. for 5 to 20 seconds.

Znめっき: 酸洗後の鋼板には、鋼板表面に10〜100mg/m2のZnを存在させるために、Znめっきする必要がある。Znめっきの方法は特に限定しないが、例えば、濃度200g/1のZnSO4・7H2O水溶液を硫酸でpH2.0に調整した温度60℃のめっき浴中で、酸洗後の鋼板をカソードにして、電流密度5A/dm2で2s間電気めっきすることで、鋼板表面に30mg/m2程度のZnを存在させることができる。 Zn plating: In order to make 10-100 mg / m < 2 > Zn exist on the steel plate surface after pickling, it is necessary to carry out Zn plating. The method of Zn plating is not particularly limited. For example, the steel plate after pickling is used as a cathode in a plating bath at a temperature of 60 ° C. in which a ZnSO 4 .7H 2 O aqueous solution having a concentration of 200 g / 1 is adjusted to pH 2.0 with sulfuric acid. Thus, by electroplating for 2 s at a current density of 5 A / dm 2 , about 30 mg / m 2 of Zn can be present on the steel sheet surface.

表1に示す組成の鋼a〜qを溶製し、スラブとした。これらスラブを表2に示す熱延条件で熱間圧延し、板厚3〜4mmの熱延板とした。これら熱延板を表2に示す冷延条件で冷間圧延し、板厚1.8mmの冷延板とした。これらの冷延板を表2に示す焼鈍条件で焼鈍後、表2に示す酸洗条件で酸洗し、ZnSO4・7H2Oが200g/リットルのめっき浴中でZnめっきを行い、水洗・乾燥後、0.7%の調質圧延を行った。ここで、Znめっきは表2のようにめっき条件を変えて、鋼板表面のZn量を調整した。そして、得られた鋼板表面のZn量、Cs(Si)、組織、機械的特性、化成処理性、塗装後耐食性を、以下の方法で調査した。 Steels a to q having the compositions shown in Table 1 were melted to form slabs. These slabs were hot-rolled under the hot rolling conditions shown in Table 2 to obtain hot rolled plates having a thickness of 3 to 4 mm. These hot-rolled sheets were cold-rolled under the cold rolling conditions shown in Table 2 to obtain cold-rolled sheets having a thickness of 1.8 mm. These cold-rolled sheets are annealed under the annealing conditions shown in Table 2, then pickled under the pickling conditions shown in Table 2, and Zn-plated in a plating bath of ZnSO4 · 7H 2 O at 200g / liter, washed and dried Thereafter, temper rolling of 0.7% was performed. Here, the Zn plating was performed by changing the plating conditions as shown in Table 2 to adjust the Zn content on the steel sheet surface. Then, the Zn amount, Cs (Si), structure, mechanical properties, chemical conversion property, and post-coating corrosion resistance of the obtained steel plate surface were investigated by the following methods.

(1)鋼板表面のZn量
あらかじめ蛍光X線のZnカウントとZn量の検量線を作成しておき、鋼板の蛍光X線のZnカウント値から算出した。
(1) Zn content on steel plate surface A Zn count of fluorescent X-rays and a calibration curve of Zn content were prepared in advance and calculated from the Zn count value of fluorescent X-rays on the steel plate.

(2) Cs(Si)
上述したように、Rs(Si/Fe)とRb(Si/Fe)をGDS分析により測定し、上記の式(1)を用いて算出した。
(2) Cs (Si)
As described above, Rs (Si / Fe) and Rb (Si / Fe) were measured by GDS analysis and calculated using the above formula (1).

(3)組織
鋼板の圧延方向断面を光学顕微鏡または走査型電子顕微鏡(SEM)で観察することにより調査した。倍率1000倍の断面組織写真を用いて、画像解析により任意に設定した写真上で100mm四方の正方領域内に存在するフェライト、ベイナイト/マルテンサイトの占有面積率を求め、それぞれの体積率とした。また、残留オーステナイト量は、鋼板の板厚方向の1/4まで研磨し、X線回折強度の測定により求めた。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}各面のX線回折強度比を求め、これらから残留オーステナイトの体積率を求めた。
(3) Microstructure The cross section in the rolling direction of the steel sheet was examined by observing it with an optical microscope or a scanning electron microscope (SEM). Using a cross-sectional structure photograph at a magnification of 1000 times, the occupied area ratios of ferrite and bainite / martensite existing in a 100 mm square area on a photograph arbitrarily set by image analysis were determined and used as the respective volume ratios. The amount of retained austenite was determined by measuring the X-ray diffraction intensity after polishing to 1/4 of the thickness direction of the steel sheet. MoKα rays were used as incident X-rays, and the X-ray diffraction intensity ratio of each surface of retained austenite {111}, {200}, {220}, {311} was determined, and the volume fraction of retained austenite was determined from these. .

(4)機械的特性
圧延方向に直角方向に採取したJIS Z 2201に規定の5号試験片を用いて、JIS Z 2241に規定の方法に準拠して、YS、TS、Elを測定した。また、降伏比YR(=YS/TS)、強度-延性バランスTS×Elを計算した。
(4) Mechanical properties YS, TS, and El were measured in accordance with the method specified in JIS Z 2241 using No. 5 test piece specified in JIS Z 2201 collected in a direction perpendicular to the rolling direction. Further, the yield ratio YR (= YS / TS) and the strength-ductility balance TS × El were calculated.

(5)化成処理性、塗装後耐食性
化成処理は、日本ペイント社製の脱脂剤;サーフクリーナーEC90、表面調整剤;サーフファイン5N-10、化成処理剤;サーフダインSD2800を用い、それぞれの温度や濃度条件は標準条件とより劣悪な条件で実施した。標準条件の1例として、脱脂工程は、濃度16g/l、処理温度42〜44℃、処理時間120s、スプレー脱脂、表面調整工程は、全アルカリ度1.5〜2.5ポイント、温度は20〜25℃、処理時間30s、浸漬、化成処理工程は、全酸度21〜24ポイント、遊離酸度0.7〜0.9ポイント、促進剤濃度2.8〜3.5ポイント、処理温度44℃、処理時間120sとした。劣悪条件としては、化成処理工程での処理温度を38℃に低下させた。その後、日本ペイント社製の電着塗料;V-50を使用して電着塗装を行った。化成処理皮膜の付着量は2〜2.5g/m2、電着塗装は膜厚25μmを狙いとした。
(5) Chemical conversion treatment, post-coating corrosion resistance Chemical conversion treatment uses a degreasing agent manufactured by Nippon Paint Co., Ltd .; Surf Cleaner EC90, surface conditioner; Surffine 5N-10, chemical conversion treatment agent; Surfdyne SD2800. Concentration conditions were performed under conditions worse than the standard conditions. As an example of standard conditions, the degreasing process has a concentration of 16 g / l, a processing temperature of 42 to 44 ° C., a processing time of 120 s, a spray degreasing, and a surface adjustment process of 1.5 to 2.5 points of total alkalinity, and a temperature of 20 to 25 ° C. The treatment time was 30 s, the immersion, and the chemical conversion treatment step were performed with a total acidity of 21 to 24 points, a free acidity of 0.7 to 0.9 points, an accelerator concentration of 2.8 to 3.5 points, a treatment temperature of 44 ° C., and a treatment time of 120 s. As an inferior condition, the treatment temperature in the chemical conversion treatment step was lowered to 38 ° C. Then, electrodeposition coating was performed using an electrodeposition paint; V-50 manufactured by Nippon Paint. The amount of chemical conversion coating was 2 to 2.5 g / m 2 , and electrodeposition coating was aimed at a film thickness of 25 μm.

化成処理性の評価は、上記標準条件にて化成処理を施した鋼板のP比を求めることによって行った。P比は、ホパイト(020)面のX線回折強度Hとフォスフォフィライト(100)面のX線回折強度Pを求め、P比=P/(H+P)から算出した。P比が0.85以上で、化成処理性良好とした。   Evaluation of chemical conversion property was performed by calculating | requiring P ratio of the steel plate which performed chemical conversion treatment on the said standard conditions. The P ratio was calculated from the P ratio = P / (H + P) by obtaining the X-ray diffraction intensity H of the hoplite (020) plane and the X-ray diffraction intensity P of the phosphophyllite (100) plane. The P ratio was 0.85 or higher, and chemical conversion treatment was good.

塗装後耐食性の評価は、塩温水浸漬試験、塩水噴霧試験(SST)、複合サイクル腐食試験(CCT)の3通りで行った。それぞれの条件を以下に示す。
塩温水浸漬試験:化成処理、電着塗装を施した試料にカッターでカット疵(長さ:45mm)を付与し、60℃の5%NaCl溶液に240h浸漬後、水洗、乾燥し、カット疵部について粘着テープを貼り付けた後にはがすテープ剥離を行い、カット疵部左右の最大剥離全幅を測定した。最大剥離全幅が5.0mm以下であれば、耐塩温水密着性は良好といえる。
塩水噴霧試験(SST):化成処理、電着塗装を施した試料のカッターでクロスカット疵を付与し、5%NaCl溶液を使用し、JIS Z 2371に従い、1000hの塩水噴霧を行ったあと、クロスカット疵部をテープ剥離した時のクロスカット左右を合わせた最大剥離全幅を測定した。最大剥離全幅が4.0mm以下であれば、SSTは良好といえる。
複合サイクル腐食試験(CCT):化成処理、電着塗装を施した試料にカッターにてクロスカット疵を付与し、塩水噴霧(5%NaCl:35℃-98%RH)2h→乾燥(60℃-30%RH)2h→湿潤(50℃-95%RH)2hを1サイクルとして90サイクルの繰返し試験後、水洗、乾燥し、カット疵部についてテープ剥離を行い、カット疵部左右の最大剥離幅を測定した。最大剥離全幅が6.0mm以下であれば、複合サイクル耐食性は良好といえる。
The corrosion resistance after coating was evaluated in three ways: a salt warm water immersion test, a salt spray test (SST), and a combined cycle corrosion test (CCT). Each condition is shown below.
Salt warm water immersion test: Samples that have been subjected to chemical conversion treatment and electrodeposition coating were provided with cut shears (length: 45 mm) with a cutter, immersed in a 5% NaCl solution at 60 ° C for 240 hours, washed with water, dried, and the cut collar After sticking the adhesive tape on, the tape was peeled off, and the maximum peeled width on the left and right sides of the cut collar was measured. If the maximum peel width is 5.0 mm or less, it can be said that the salt warm water adhesion is good.
Salt spray test (SST): Applying cross-cut wrinkles with a sample cutter with chemical conversion treatment and electrodeposition coating, using a 5% NaCl solution, spraying salt water for 1000h according to JIS Z 2371, The maximum width of the entire peel when the left and right cross cuts were taken when the cut collar was peeled was measured. SST is good when the maximum peel width is 4.0 mm or less.
Combined cycle corrosion test (CCT): Samples that have been subjected to chemical conversion treatment and electrodeposition coating are subjected to crosscut wrinkles with a cutter and sprayed with salt water (5% NaCl: 35 ° C to 98% RH) for 2 hours → dried (60 ° C- 30% RH) 2h → Wet (50 ° C-95% RH) 2h as one cycle After 90 cycles of repeated tests, rinsed with water, dried, and then peeled off the tape from the cut collar. It was measured. If the maximum peel width is 6.0 mm or less, it can be said that the combined cycle corrosion resistance is good.

結果を表3に示す。本発明の要件を満足する発明例はいずれも、TSが590MPa以上と高強度で、かつTS×Elが23000MPa・%以上と非常に良好な強度-延性バランスを示し、P比が0.90以上と極めて良好な化成処理性を示し、塩温水浸漬試験、塩水噴霧試験、複合サイクル腐食試験のいずれにおいても最大剥離全幅が小さく、極めて良好な塗装後耐食性を示す。   The results are shown in Table 3. In all of the invention examples satisfying the requirements of the present invention, TS has a high strength of 590 MPa or more, and TS × El has a very good strength-ductility balance of 23000 MPa ·% or more, and the P ratio is 0.90 or more. Excellent chemical conversion treatment properties are exhibited, and the maximum total peel width is small in any of the salt warm water immersion test, salt spray test, and combined cycle corrosion test, and extremely excellent corrosion resistance after coating.

Figure 0004725376
Figure 0004725376

Figure 0004725376
Figure 0004725376

Figure 0004725376
Figure 0004725376

Claims (5)

質量%で、C:0.05〜0.25%、Si:0.8〜3.0%、Mn:0.5〜3.0%、P:0.05%以下、S:0.01%以下、Al:0.06%以下、残部Feおよび不可避的不純物からなり、体積率で、フェライトを30%以上、残留オーステナイトを2%以上、ベイナイトおよび/またはマルテンサイトを合計で3〜50%を含む組織を有し、かつ以下の式(1)で定義される鋼板表面のSi量Cs(Si)が2.5%以下で、鋼板表面に10〜100mg/m2のZnが存在していることを特徴とする成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板;
Cs(Si)=Cb(Si)×[Rs(Si/Fe)/Rb(Si/Fe)] ・・・(1)
ここで、Cb(Si)は鋼中のSi量を、Rs(Si/Fe)は鋼板表面から50nmの深さまでのSiとFeのGDSカウント積算値比を、Rb(Si/Fe)は鋼中のSiとFeのGDSカウント比を表す。
In mass%, C: 0.05-0.25%, Si: 0.8-3.0%, Mn: 0.5-3.0%, P: 0.05% or less, S: 0.01% or less, Al: 0.06% or less, remaining Fe and inevitable impurities And having a structure containing, in volume ratio, 30% or more of ferrite, 2% or more of retained austenite, and 3 to 50% in total of bainite and / or martensite, and is defined by the following formula (1) Excellent in formability, chemical conversion treatment and post-coating corrosion resistance, characterized in that the Si content Cs (Si) on the steel sheet surface is 2.5% or less and 10-100 mg / m 2 of Zn exists on the steel sheet surface. Strength cold-rolled steel sheet;
Cs (Si) = Cb (Si) × [Rs (Si / Fe) / Rb (Si / Fe)] (1)
Where Cb (Si) is the amount of Si in the steel, Rs (Si / Fe) is the GDS count integrated value ratio of Si and Fe from the steel sheet surface to a depth of 50 nm, and Rb (Si / Fe) is in the steel. Represents the GDS count ratio of Si and Fe.
上記組成に加え、さらに、質量%で、Ti:0.005〜0.3%、Nb:0.005〜0.3%、V:0.005〜0.3%のうちから選ばれた少なくとも1種の元素を含むことを特徴とする請求項1に記載の成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板。   In addition to the above composition, it further contains at least one element selected from Ti: 0.005-0.3%, Nb: 0.005-0.3%, and V: 0.005-0.3% by mass%. Item 5. A high-strength cold-rolled steel sheet excellent in formability, chemical conversion property and post-coating corrosion resistance. 上記組成に加え、さらに、質量%で、Mo:0.005〜0.3%を含むことを特徴とする請求項1または請求項2に記載の成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板。   In addition to the above composition, the composition further comprises Mo: 0.005 to 0.3% by mass%, and the high-strength cooling excellent in formability, chemical conversion treatment property and post-coating corrosion resistance according to claim 1 or 2. Rolled steel sheet. 上記組成に加え、さらに、質量%で、Ca:0.001〜0.1%、REM:0.001〜0.1%のうちから選ばれた少なくとも1種の元素を含むことを特徴とする請求項1から請求項3のいずれか1項に記載の成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板。   The composition according to any one of claims 1 to 3, further comprising at least one element selected from Ca: 0.001 to 0.1% and REM: 0.001 to 0.1% by mass% in addition to the above composition. A high-strength cold-rolled steel sheet excellent in formability, chemical conversion property and post-coating corrosion resistance according to any one of the items. 請求項1から請求項4のいずれか1項に記載の組成を有する鋼スラブを、1170℃以下の温度に加熱後、熱間圧延を行い熱延鋼板とし、ついで該熱延鋼板を30〜60%の圧下率で冷間圧延した後、700℃以上の温度に加熱し30s以上保持した後、300〜480℃の温度まで10℃/s以上の平均冷却速度で冷却し、その温度で60〜600s保持した後、冷却し、上記式(1)のCs(Si)が2.5%以下となるように酸洗後、さらに鋼板表面に10〜100mg/m2のZnが存在するようにZnめっきすることを特徴とする成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板の製造方法。 The steel slab having the composition according to any one of claims 1 to 4 is heated to a temperature of 1170 ° C or lower, and then hot-rolled to form a hot-rolled steel sheet, and then the hot-rolled steel sheet is 30 to 60 After cold rolling at a reduction rate of%, heated to a temperature of 700 ° C. or higher and held for 30 s or more, then cooled to a temperature of 300 to 480 ° C. at an average cooling rate of 10 ° C./s or more, and at that temperature 60 to 60 After holding for 600 s, it is cooled, pickled so that Cs (Si) of the above formula (1) is 2.5% or less, and further plated with Zn so that 10 to 100 mg / m 2 of Zn exists on the steel plate surface. A method for producing a high-strength cold-rolled steel sheet excellent in formability, chemical conversion property and post-coating corrosion resistance.
JP2006070102A 2006-03-15 2006-03-15 High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same Expired - Fee Related JP4725376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070102A JP4725376B2 (en) 2006-03-15 2006-03-15 High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070102A JP4725376B2 (en) 2006-03-15 2006-03-15 High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007246961A JP2007246961A (en) 2007-09-27
JP4725376B2 true JP4725376B2 (en) 2011-07-13

Family

ID=38591579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070102A Expired - Fee Related JP4725376B2 (en) 2006-03-15 2006-03-15 High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4725376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549238B2 (en) * 2010-01-22 2014-07-16 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5780019B2 (en) * 2011-06-30 2015-09-16 Jfeスチール株式会社 Method for producing high-Si, high-tensile cold-rolled steel strip with excellent chemical conversion properties
US9914848B1 (en) 2016-10-31 2018-03-13 Ppg Architectural Finishes, Inc. Refinish coating composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548491B2 (en) * 2000-04-07 2004-07-28 新日本製鐵株式会社 High strength galvannealed steel sheet with good corrosion resistance and good press workability
JP3990349B2 (en) * 2002-12-10 2007-10-10 新日本製鐵株式会社 Good workability, high strength cold-rolled steel sheet with excellent corrosion resistance after painting

Also Published As

Publication number Publication date
JP2007246961A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
CN109312433B (en) Steel plate
CN105518173B (en) Heat stamping and shaping body and its manufacture method
US9109275B2 (en) High-strength galvanized steel sheet and method of manufacturing the same
JP5403185B2 (en) High-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in plating adhesion, formability and hole expansibility having a tensile strength of 980 MPa or more, and a method for producing the same
CN111971408B (en) Steel sheet and method for producing same
CN111902554B (en) Steel sheet and method for producing same
CN111902553B (en) Steel sheet and method for producing same
CN111511945B (en) High-strength cold-rolled steel sheet and method for producing same
CN110475892B (en) High-strength cold-rolled steel sheet and method for producing same
KR101996119B1 (en) Hot-rolled steel sheet and method for producing same
CN112840045B (en) Hot-rolled steel sheet and method for producing same
JP6912007B2 (en) Steel members, steel sheets, and their manufacturing methods
JP6793081B2 (en) A method of pickling a hot-rolled steel sheet containing high Si and high Mn and a method of manufacturing a steel sheet containing high Si and high Mn.
JP7095818B2 (en) Covered steel members, coated steel sheets and their manufacturing methods
JP5168793B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent corrosion resistance after painting
JP6460238B2 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
JP4725374B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
JP4725376B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
JP5835547B2 (en) Method for producing Si-containing cold-rolled steel sheet
JP4821365B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet with excellent corrosion resistance after painting
JP7269526B2 (en) Steel plate for hot stamping
JP5076434B2 (en) High-strength cold-rolled steel sheet with excellent formability and post-coating corrosion resistance and method for producing the same
WO2020203979A1 (en) Coated steel member, coated steel sheet, and methods for producing same
JP4940691B2 (en) High-strength cold-rolled steel sheet with excellent post-painting corrosion resistance and its manufacturing
JP3875958B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Ref document number: 4725376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees