JP2011001611A - Steel sheet excellent in delayed fracture resistance, and method for producing the same - Google Patents

Steel sheet excellent in delayed fracture resistance, and method for producing the same Download PDF

Info

Publication number
JP2011001611A
JP2011001611A JP2009146432A JP2009146432A JP2011001611A JP 2011001611 A JP2011001611 A JP 2011001611A JP 2009146432 A JP2009146432 A JP 2009146432A JP 2009146432 A JP2009146432 A JP 2009146432A JP 2011001611 A JP2011001611 A JP 2011001611A
Authority
JP
Japan
Prior art keywords
steel sheet
delayed fracture
steel
fracture resistance
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009146432A
Other languages
Japanese (ja)
Other versions
JP2011001611A5 (en
Inventor
Shinji Otsuka
真司 大塚
Hiroki Nakamaru
裕樹 中丸
Toshihiko Oi
利彦 大居
Hiroyuki Masuoka
弘之 増岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009146432A priority Critical patent/JP2011001611A/en
Publication of JP2011001611A publication Critical patent/JP2011001611A/en
Publication of JP2011001611A5 publication Critical patent/JP2011001611A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high tensile strength steel sheet having a tensile strength of ≥1,180 MPa, which has excellent delayed fracture resistance and is suitable as a strength member used for an automobile field and building materials by sticking copper to the surface of a steel sheet, and to provide the same steel sheet.SOLUTION: Regarding the production method, to a cold rolled steel sheet having a tensile strength of ≥1,180 MPa, a Cu or Cu based alloy film of 1 to 2,000 mg/mper side is stuck by the well-known method such as an electroless plating method, an electroplating method and a deposition method. The steel sheet is obtained by the method.

Description

本発明は、耐遅れ破壊特性に優れた鋼板に関するものである。詳しく述べると本発明は、主として自動車分野および建材分野に用いる強度部材に適用され、耐遅れ破壊特性が要求される、引張り強度1180MPa(約120kgf/mm)以上を有する高張力鋼板に関するものである。 The present invention relates to a steel sheet having excellent delayed fracture resistance. More specifically, the present invention relates to a high-strength steel sheet having a tensile strength of 1180 MPa (about 120 kgf / mm 2 ) or more, which is applied to a strength member mainly used in the automobile field and the building material field, and requires delayed fracture resistance. .

従来、自動車用鋼板としては、その板厚の精度や平担度に関する要求から冷延鋼板が用いられているが、近年、自動車のCO排出量の低減及び安全性確保の観点から、自動車用鋼板の高強度化が図られている。 Conventionally, cold-rolled steel sheets have been used as steel sheets for automobiles because of demands regarding the accuracy and flatness of the sheet thickness. In recent years, from the viewpoint of reducing CO 2 emissions and ensuring safety in automobiles, The strength of the steel sheet is increased.

しかしながら、鋼材の強度を高めていくと、「遅れ破壊」という現象が生じやすくなることが知られており、これは強度の増大と共に著しく激しくなり、特に引張り強さ1180MPa以上の高強度鋼で顕著となる。なお、「遅れ破壊」とは、高強度鋼材が静的な負荷応力(引張り強さ以下の負荷応力)を受けた状態で、ある時間が経過したとき、外見上はほとんど組成変形を伴うことなく、突然脆性的な破壊が生じる現象である。   However, it is known that the phenomenon of “delayed fracture” is likely to occur when the strength of the steel material is increased, and this phenomenon becomes remarkably severe as the strength increases, particularly in a high-strength steel having a tensile strength of 1180 MPa or more. It becomes. “Delayed fracture” means that high strength steel is subjected to static load stress (load stress less than tensile strength) and after a certain amount of time, there is almost no compositional deformation. This is a phenomenon where sudden brittle fracture occurs.

この「遅れ破壊」は、鋼板の場合、プレス加工により所定の形状に成形したときの残留応力と、このような応力集中部における鋼の水素脆性により生じるものであることが知られている。この水素脆性の起因となる水素は、ほとんどの場合外部環境より鋼中に侵入し、それが拡散するものと考えられており、代表的には、鋼材の腐食に伴い侵入する水素である。   In the case of a steel sheet, this “delayed fracture” is known to be caused by residual stress when formed into a predetermined shape by press working and hydrogen embrittlement of the steel in such a stress concentration portion. The hydrogen that causes hydrogen embrittlement is considered to invade into the steel from the external environment in most cases and diffuse, and is typically hydrogen that intrudes as the steel material corrodes.

高強度鋼板におけるこのような遅れ破壊を防止する上で、例えば特許文献1に記載のように、鋼板の組織や成分を調整することにより、遅れ破壊感受性を弱める検討がなされている。しかしながら、このような手法を用いた場合には、鋼板内部へ外部環境から侵入する水素量を抑制する効果はなく、遅れ破壊発生を遅らせることは可能であるとしても、遅れ破壊自体を抑制することはできない。すなわち、遅れ破壊を本質的に改善するためには、鋼板内部への水素侵入量自体を制御する方法が必要である。   In order to prevent such delayed fracture in a high-strength steel plate, for example, as described in Patent Document 1, studies are made to weaken delayed fracture sensitivity by adjusting the structure and components of the steel plate. However, when such a method is used, there is no effect of suppressing the amount of hydrogen entering the steel sheet from the outside environment, and even if it is possible to delay the occurrence of delayed fracture, the delayed fracture itself is suppressed. I can't. That is, in order to substantially improve delayed fracture, a method for controlling the hydrogen penetration amount itself into the steel sheet is necessary.

このような観点から、特許文献2においては、冷延鋼板上にNi又はNi基合金メッキを施すことにより鋼板内部への水素侵入量を抑制することで遅れ破壊を抑制する技術が開示されている。   From such a viewpoint, Patent Document 2 discloses a technique for suppressing delayed fracture by suppressing the amount of hydrogen intrusion into the steel sheet by performing Ni or Ni-based alloy plating on the cold-rolled steel sheet. .

しかしながら、特許文献2に記載のNi又はNi基合金を電気メッキした場合、メッキ時に発生する水素が鋼板内に残存することで、遅れ破壊を引き起こすことが考えられる。さらに、特許文献2におけるNi又はNi基合金メッキ層は、その付着量が5mg/mm以上と比較的多く、鋼板表面にメッキしたままで、プレス加工に供した場合、メッキ層と鋼板との密着性が弱く、加工時にメッキ層が損傷し、目的とする効果が得られない可能性も高い。 However, when the Ni or Ni-based alloy described in Patent Document 2 is electroplated, hydrogen generated during plating remains in the steel sheet, which may cause delayed fracture. Furthermore, the Ni or Ni-based alloy plating layer in Patent Document 2 has a relatively large adhesion amount of 5 mg / mm 2 or more, and when it is subjected to press working while being plated on the steel plate surface, There is a high possibility that the adhesion is weak and the plated layer is damaged during processing, and the intended effect cannot be obtained.

特開2004−231992JP2004-231992 特開平6−346277JP-A-6-346277

従って本発明は、上記したような従来技術における課題を解決してなる耐遅れ破壊特性に優れた鋼板を提供することを課題とするものである。本発明はさらに、主として自動車分野および建材に用いる強度部材として好適な、耐遅れ破壊特性に優れた、引張り強度1180MPa以上を有する高張力鋼板を提供することを課題とする。   Accordingly, an object of the present invention is to provide a steel sheet having excellent delayed fracture resistance, which solves the problems in the prior art as described above. It is another object of the present invention to provide a high-tensile steel sheet having a tensile strength of 1180 MPa or more and excellent in delayed fracture resistance, which is suitable as a strength member mainly used in the automotive field and building materials.

本発明者らは、上記の課題を解決すべく、鋼板内への水素の侵入を抑制することにより、遅れ破壊を防止する手段に関し、鋭意検討および研究を重ねた。その結果、鋼板表面に比較的少量のCuないしCu基合金を付着させることにより、鋼材への水素侵入量を大幅に抑制し、鋼材の遅れ破壊を抑制することが可能であることを見出した。
本発明は、以上のような知見に基づきなされたものであり、その要旨は以下のとおりである。
In order to solve the above-mentioned problems, the present inventors have made extensive studies and researches on means for preventing delayed fracture by suppressing the penetration of hydrogen into the steel sheet. As a result, it was found that a relatively small amount of Cu or a Cu-based alloy is adhered to the surface of the steel sheet, so that the amount of hydrogen intrusion into the steel material can be significantly suppressed and delayed fracture of the steel material can be suppressed.
The present invention has been made based on the above findings, and the gist thereof is as follows.

すなわち、上記課題を解決する本発明は、鋼板表面に片面当たり1mg/m以上2000mg/m以下のCuまたはCu基合金(Cu基合金の場合、上記量はCu換算値である。)を付着させたことを特徴とする耐遅れ破壊性に優れた鋼板である。 That is, in the present invention for solving the above-mentioned problems, 1 mg / m 2 or more and 2000 mg / m 2 or less of Cu or Cu-based alloy (in the case of a Cu-based alloy, the above amount is a Cu-converted value) on one surface of the steel sheet. It is a steel sheet excellent in delayed fracture resistance characterized by being adhered.

本発明は、また、前記鋼板が、1180MPa以上の引張り強度を有する冷延鋼板である耐遅れ破壊性に優れた鋼板を示すものである。   The present invention also shows a steel sheet excellent in delayed fracture resistance, wherein the steel sheet is a cold-rolled steel sheet having a tensile strength of 1180 MPa or more.

本発明は、また、鋼板表面に付着されたCuまたはCu基合金が、鋼板表面を完全に覆うことのない不連続な皮膜であることを特徴とする耐遅れ破壊性に優れた鋼板を示すものである。   The present invention also shows a steel sheet excellent in delayed fracture resistance, characterized in that Cu or a Cu-based alloy adhered to the steel sheet surface is a discontinuous film that does not completely cover the steel sheet surface. It is.

上記課題を解決する本発明は、鋼板表面に片面当たり1mg/m以上2000mg/m以下のCuまたはCu基合金を付着させることを特徴とする耐遅れ破壊性に優れた鋼板の製造方法である。 This invention which solves the said subject is a manufacturing method of the steel plate excellent in the delayed fracture resistance characterized by making 1 mg / m < 2 > or more and 2000 mg / m < 2 > or less of Cu or Cu base alloy adhere to the steel plate surface. is there.

本発明は、また、前記鋼板として、冷延鋼板を用いるものである、耐遅れ破壊性に優れた鋼板の製造方法を示すものである。   The present invention also shows a method for producing a steel sheet having excellent delayed fracture resistance, which uses a cold-rolled steel sheet as the steel sheet.

本発明によれば、遅れ破壊を効果的に抑制することが可能である鋼板、特に高張力冷延鋼板を提供することができ、腐食代の削減による板厚減少も可能となるため、自動車ないし各種構造物の重量削減が可能となり、工業的に極めて価値の高いものである。   According to the present invention, it is possible to provide a steel plate, particularly a high-tensile cold-rolled steel plate, which can effectively suppress delayed fracture, and it is possible to reduce the plate thickness by reducing the corrosion allowance. This makes it possible to reduce the weight of various structures and is extremely valuable industrially.

実施例における遅れ破壊評価に際して用いられた評価用試験片の概略形状を示す図である。It is a figure which shows schematic shape of the test piece for evaluation used in the case of delayed fracture evaluation in an Example. 実施例において行った複合サイクル腐食試験の工程を説明する図である。It is a figure explaining the process of the combined cycle corrosion test performed in the Example.

以下、本発明を、実施形態に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明に係る耐遅れ破壊性に優れた鋼板の基質となる鋼板としては、その化学組成および組織構造、あるいは圧延方法等については特に限定されるものではなく、各種のものとすることができる。   The steel plate that serves as a substrate for the steel plate having excellent delayed fracture resistance according to the present invention is not particularly limited in terms of its chemical composition and structure, or rolling method, and may be various types.

しかしながら、このうち、自動車分野や建材分野等において用いられる、特に自動車分野等において多く用いられる冷延鋼板が望ましく、なかでも、引張り強度が、980MPa(約100kgf/mm)以上、特に、1180MPa(約120kgf/mm)以上の冷延鋼板であることが望ましい。 However, these are used in the automotive field and construction materials such as cold-rolled steel sheet is desirable especially often used in the automotive field and the like, among others, the tensile strength, 980 MPa (about 100 kgf / mm 2) or more, particularly, 1180 MPa ( A cold-rolled steel sheet of about 120 kgf / mm 2 ) or more is desirable.

すなわち、引張り強度が、例えば980MPa以下の鋼板に対し、本発明に係るCuを付着させても当該鋼板の各種特性には影響は与えないので980MPa以下の鋼板へ適用してもよい。しかしながら、引張り強度の低い鋼板は、本質的に遅れ破壊が生じにくいため、本発明に係るCuを付着させることでコスト増加につながることから、上記したような高張力鋼に適用することが望ましい。   That is, even if Cu according to the present invention is attached to a steel sheet having a tensile strength of, for example, 980 MPa or less, the various properties of the steel sheet are not affected, and therefore, it may be applied to a steel sheet having a tensile strength of 980 MPa or less. However, since a steel sheet having a low tensile strength is essentially unlikely to cause delayed fracture, it is preferable to apply it to the high-strength steel as described above, because it causes an increase in cost by attaching Cu according to the present invention.

なお、上記したように本発明において好ましく用いられる高強度冷延鋼板においては、機械特性等の諸特性を向上させるために、例えば、C、Nなどの侵入型固溶元素およびSi、Mn、P、Crなどの置換型固溶元素の添加による固溶体強化、Ti、Nb、Vなどの炭・窒化物による析出強化、その他、W、Zr、Hf、Co、B、希土類元素等の強化元素の添加といった化学組成的改質、再結晶の起こらない温度で回復焼きなましすることによる強化あるいは完全に再結晶させずに未再結晶領域を残す部分再結晶強化、ベイナイトやマルテンサイト単相化あるいはフェライトとこれら変態組織の複合組織化といった変態組織による強化、フェライト粒径をdとしたときのHall-Petchの式:σ=σ0+kd1/2(式中σ:応力、σ0、k:材料定数)で表される細粒化強化、圧延などによる加工強化といった組織的ないし構造的改質が、単独ないし複数組み合わせて行われているが、上記したように本発明において用いられる鋼板の化学組成および金属組織としては、特に限定されるものではなく、所期の引張り強度を有するものであれば、いかなる組成および組織を有するものでも良い。   As described above, in the high strength cold rolled steel sheet preferably used in the present invention, in order to improve various properties such as mechanical properties, for example, interstitial solid solution elements such as C and N, and Si, Mn, P , Solid solution strengthening by addition of substitutional solid solution elements such as Cr, precipitation strengthening by charcoal / nitrides such as Ti, Nb, and V, and addition of strengthening elements such as W, Zr, Hf, Co, B, rare earth elements Such as chemical composition modification, strengthening by recovery annealing at a temperature at which recrystallization does not occur, partial recrystallization strengthening that leaves unrecrystallized regions without complete recrystallization, bainite or martensite single phase or ferrite and these Strengthening by transformation structure such as complex organization of transformation structure, Hall-Petch formula when ferrite grain size is d: σ = σ0 + kd1 / 2 (where σ: stress, σ0, k: material constant) The structural or structural modification such as grain refinement strengthening or work strengthening by rolling or the like represented by the above is carried out singly or in combination, but as described above, the chemical composition and metal of the steel sheet used in the present invention The structure is not particularly limited and may have any composition and structure as long as it has a desired tensile strength.

なお、このような高強度冷延鋼板の組成として、一例を挙げると、例えば、C:0.1〜0.4質量%、Si:0〜2.5質量%、Mn:1〜3質量%、P:0〜0.05質量%、S:0〜0.005質量%、および残部がFeおよび不可避的不純物であるもの、Cu、Ti、V、Al、Crなどを例示することができるが、もちろん何らこれらに限定されるものではない。   As an example of the composition of such a high-strength cold-rolled steel sheet, for example, C: 0.1 to 0.4 mass%, Si: 0 to 2.5 mass%, Mn: 1 to 3 mass% , P: 0 to 0.05 mass%, S: 0 to 0.005 mass%, and the balance being Fe and inevitable impurities, Cu, Ti, V, Al, Cr, etc. Of course, the present invention is not limited to these.

また、高強度冷延鋼板として商業的に入手可能なものとしては、例えば、JFE−CA1180、JFE−CA1370、JFE−CA1470、JFE−CA1180SF、JFE−CA1180Y1、JFE−CA1180Y2 (以上、JFEスチール製)、SAFC1180D(新日本製鐵製)等が非限定的に例示できる。   Moreover, as what is commercially available as a high-strength cold-rolled steel plate, for example, JFE-CA1180, JFE-CA1370, JFE-CA1470, JFE-CA1180SF, JFE-CA1180Y1, JFE-CA1180Y2 (above, manufactured by JFE Steel) SAFC1180D (manufactured by Nippon Steel Corp.) and the like can be exemplified without limitation.

また、特に限定されるものではないが、本発明において基質となる鋼板の厚さとしては、例えば、0.8〜2.5mm程度、より好ましくは1.2〜2.0mm程度のものが適当である。   Further, although not particularly limited, the thickness of the steel plate serving as a substrate in the present invention is, for example, about 0.8 to 2.5 mm, more preferably about 1.2 to 2.0 mm. It is.

本発明に係る耐遅れ破壊性に優れた鋼板は、上記したような鋼板表面に比較的少量の所定量のCuまたはCu基合金を付着させてなるものである。   The steel sheet excellent in delayed fracture resistance according to the present invention is formed by adhering a relatively small amount of a predetermined amount of Cu or a Cu-based alloy to the surface of the steel sheet as described above.

本発明者らの研究および検討結果によれば、腐食過程における鋼板内部への水素侵入は、湿潤環境下におけるFe錆の酸化還元反応が大きく寄与していると考えられる。すなわち、水素侵入を抑制するためには、Fe錆を変化しにくい状態にするいわゆる「安定錆」を形成することが重要である。安定錆を形成するためには、鋼へのCu添加が有効であり、耐候性鋼として用いられる分野においては、Cu添加鋼は広く用いられ、大きな効果が得られている。しかしながら、耐候性鋼として用いられる分野においては、加工が厳しくないため、耐候性鋼を用いることができる。しかしながら、例えば、自動車分野のような強加工を強いられる分野では、加工により鋼材の割れの発生を引き起こし易くなるため、鋼板成分としてCuを添加することは好ましくない。また、鋼板成分としてCuを添加する場合、本発明と同等の効果を得るためには、過大な添加量が必要となるため、コスト増加につながり、工業的に好ましくないと言える。   According to the research and examination results of the present inventors, it is considered that the hydrogen intrusion into the steel sheet during the corrosion process greatly contributes to the oxidation / reduction reaction of Fe rust in a wet environment. That is, in order to suppress hydrogen intrusion, it is important to form so-called “stable rust” that makes Fe rust difficult to change. In order to form stable rust, Cu addition to steel is effective, and in the field used as weather-resistant steel, Cu-added steel is widely used and a great effect is obtained. However, in the field used as weather resistant steel, weathering steel can be used because processing is not severe. However, for example, in a field where strong processing such as the automobile field is forced, it becomes easy to cause cracking of the steel material by processing, so it is not preferable to add Cu as a steel plate component. Moreover, when adding Cu as a steel plate component, in order to obtain an effect equivalent to that of the present invention, an excessive amount of addition is required, which leads to an increase in cost and is not industrially preferable.

このような観点から、鋼板の表層部で生じる腐食生成物中に効率的にCuを含有させるには、鋼板表面へのCuないしはCu基合金の例えばメッキ等による付着が効率的である。   From such a viewpoint, in order to efficiently contain Cu in the corrosion product generated in the surface layer portion of the steel plate, it is efficient to attach Cu or a Cu-based alloy to the steel plate surface, for example, by plating.

いわゆる銅メッキ鋼板は、銅板のような外観を有している上、強度が銅板よりも高く価格も安価であるという特徴から、例えば、住宅の屋根、外壁、装飾材料等として、従来使用されている。さらに銅の耐食性を利用し、ガソリンタンクや各種パイプ等にも用いられている。しかしながら、このような銅メッキ鋼板は、銅メッキ皮膜に欠陥が存在した場合、欠陥部に露出しているFeがアノードとなり、孔食を引き起こすことが知られている。このことから、従来、銅メッキによる耐食性向上効果を目的として銅メッキを行う場合には、銅メッキ皮膜に欠陥を生じない十分な皮膜厚、例えば3μm以上、付着量に換算すると、概算で27000mg/m以上が必要とされていた。 The so-called copper-plated steel sheet has an appearance like a copper plate and is conventionally used as, for example, a roof of a house, an outer wall, a decoration material, etc., because it is stronger and cheaper than a copper plate. Yes. Furthermore, it uses copper corrosion resistance and is used in gasoline tanks and various pipes. However, it is known that in such a copper-plated steel sheet, when a defect exists in the copper plating film, Fe exposed in the defect portion becomes an anode and causes pitting corrosion. Therefore, conventionally, when copper plating is performed for the purpose of improving the corrosion resistance by copper plating, a sufficient film thickness that does not cause a defect in the copper plating film, for example, 3 μm or more, when converted to an adhesion amount, approximately 27000 mg / m 2 or more was required.

本発明においては、このような従来知られるバリアー型のCu皮膜形成による耐食性向上を目的とするものではなく、鉄の腐食生成物中にCuを含有させることにより安定錆を鋼板表層で形成させることを必須として、鋼中への水素侵入の抑制を目的とするものである。また、厚いCu皮膜で鋼材表面が覆われていると、鋼材中に侵入した水素が、例えば、ベーキング処理等を施しても外界へと放出され難くなる。さらに、このような厚いCu皮膜で鋼板表面が覆われている場合に、Cu皮膜にピンホール等の欠陥部が存在する場合、外界に曝されているFeの面積に比べ、Cuの面積が広くなるため、鋼板に孔食を引き起こしやすく、腐食を促進する虞れが生じる。   In the present invention, the purpose is not to improve the corrosion resistance by forming such a conventionally known barrier-type Cu film, but to form stable rust on the surface of the steel sheet by including Cu in the corrosion product of iron. Is essential to suppress hydrogen intrusion into the steel. In addition, when the steel material surface is covered with a thick Cu film, hydrogen that has entered the steel material is difficult to be released to the outside even if, for example, a baking treatment or the like is performed. Furthermore, when the steel plate surface is covered with such a thick Cu film, if there are defects such as pinholes in the Cu film, the area of Cu is larger than the area of Fe exposed to the outside world. Therefore, pitting corrosion is likely to occur in the steel sheet, which may promote corrosion.

このような観点から、本発明においては、鋼板表面に付着させるCu皮膜を薄く形成することが重要であり、特に望ましくは鋼板表面を完全に覆うことのない不連続な皮膜とすることが好ましい。すなわち、スポット的ないし部分的に存在する、例えば、鋼板表面において部分的に島状に点在するような形とすることが好ましい。   From such a viewpoint, in the present invention, it is important to form a thin Cu film to be adhered to the steel sheet surface, and it is particularly desirable to form a discontinuous film that does not completely cover the steel sheet surface. That is, it is preferable to have a shape that is spot-like or partially present, for example, is partially dotted in an island shape on the steel plate surface.

具体的には、鋼板表面へのCuの片面当たりの付着量として1mg/m以上2000mg/m以下とすることが必要である。Cuの付着量が1mg/mより少ない場合、安定錆が形成されることがなく、Cuを添加しない場合と同程度の遅れ破壊挙動を示す。一方、付着量が2000mg/mより多くなる場合、遅れ破壊を抑制する効果は得られないばかりか、プレス加工時に、表面に形成したCu皮膜が欠損し、例えば、自動車の製造における連続プレス時の欠陥となるため好ましくない。さらに上記したように外界に曝されているFeの面積に比べ、Cuの面積が広くなるため、孔食を引き起こしやすく、腐食を促進することからも好ましくない。 Specifically, it is necessary that the adhesion amount per one side of Cu to the steel sheet surface is 1 mg / m 2 or more and 2000 mg / m 2 or less. When the adhesion amount of Cu is less than 1 mg / m 2 , stable rust is not formed, and the delayed fracture behavior is the same as when Cu is not added. On the other hand, when the adhesion amount is more than 2000 mg / m 2, not only the effect of suppressing delayed fracture is obtained, but also the Cu film formed on the surface is deficient during pressing, for example, during continuous pressing in automobile production It is not preferable because it becomes a defect. Furthermore, as described above, since the area of Cu is larger than the area of Fe exposed to the outside world, it is not preferable because it easily causes pitting corrosion and promotes corrosion.

なお、特に限定されるものではないが、より望ましいCu付着量としては、20mg/m以上300mg/m以下程度である。とくに、300mg/m以下とすると、CuまたはCu基合金が鋼板表面を完全に覆うことのない不連続な皮膜とすることによる、次に示す水素侵入を抑制する極めて高い効果が得られる。 Although not particularly limited, a more preferable Cu deposition amount of the order 20 mg / m 2 or more 300 mg / m 2 or less. In particular, when it is 300 mg / m 2 or less, the following extremely high effect of suppressing hydrogen intrusion due to a discontinuous film in which Cu or a Cu-based alloy does not completely cover the steel sheet surface can be obtained.

また上記したように、鋼材表面にCu皮膜が不連続にスポット的ないし部分的に存在する場合、外部の腐食環境下にFeとCuとが曝されることになるが、FeとCuとの酸化還元電位差が大きいため、上記したような安定化錆が形成されるまでの間は、Feがアノード、Cuがカソードとなって電気化学的に腐食が生じる。従って、水素はカソード領域であるCu側で発生するために、鋼材側への水素侵入が抑制される。   In addition, as described above, when the Cu film is discontinuously spotted or partially present on the steel surface, Fe and Cu are exposed to the external corrosive environment. Since the reduction potential difference is large, until the above-described stabilized rust is formed, electrochemical corrosion occurs with Fe serving as the anode and Cu serving as the cathode. Accordingly, since hydrogen is generated on the Cu side which is the cathode region, hydrogen intrusion to the steel material side is suppressed.

すなわち、Cuは、3.4質量%CuOの共晶が存在することが知られており、Cu塊中には酸素含有量に応じて、この共晶組織が分布している。上記したように安定化錆が形成されるまでの間に腐食反応によりCu側で発生した水素は、Cu中に拡散侵入し、CuOを還元して水(水蒸気)を発生し、Cu皮膜に水素脆化を引き起こすと考えられる。しかしながら、このようにCu皮膜側で水素脆化が生じることによって、水素は消費され、鋼板側への水素拡散は抑制されることから、鋼材側の水素脆化は有効に防止されることとなる。 That is, Cu is known to have a 3.4 mass% Cu 2 O eutectic, and this eutectic structure is distributed in the Cu lump according to the oxygen content. As described above, the hydrogen generated on the Cu side by the corrosion reaction until the stabilization rust is formed diffuses and penetrates into Cu, reduces Cu 2 O to generate water (water vapor), and forms a Cu film. It is thought to cause hydrogen embrittlement. However, since hydrogen embrittlement occurs on the Cu film side in this way, hydrogen is consumed and hydrogen diffusion to the steel sheet side is suppressed, so that hydrogen embrittlement on the steel material side is effectively prevented. .

このような観点から、鋼材表面に付着されるCuとしては、酸化銅(I)の形で酸素を含有する銅、例えば、酸素を0.02〜0.05原子%含有するタフピッチ銅等が望ましい。なお、形成時には脱酸銅や無酸素銅のように酸素を含まない銅であっても、その後外部環境下(酸化雰囲気下)で熱履歴に曝されることで、銅中に酸素が拡散侵入することが考えられるので、経済的な観点を考慮しなければ、このような銅も十分に使用可能である。   From this point of view, as the Cu attached to the steel surface, copper containing oxygen in the form of copper (I) oxide, for example, tough pitch copper containing 0.02 to 0.05 atomic% of oxygen is desirable. . In addition, even when copper that does not contain oxygen such as deoxidized copper and oxygen-free copper is formed, oxygen is diffused and penetrated into copper by being exposed to a thermal history in an external environment (under an oxidizing atmosphere). Such copper can be used sufficiently if an economic viewpoint is not taken into consideration.

本発明に係る耐遅れ破壊性に優れた鋼板を得る上で、鋼板上に付着させるCuとしては、Cu単体のみならず、Cu基合金であっても良い。ここで、Cu基合金とは、CuにFe、Co、Zn、Cr、Mn、Ni、およびMo等の1種または2種以上を、当該合金の20質量%以下で含有するものを指し、この範囲内のものであれば、本発明の所期の効果を十分に達成することが可能である。なお、このようなCu基合金を使用する場合、上記した1mg/m以上2000mg/m以下という付着量は、これらの合金に含まれるCuでの換算値である。 In obtaining the steel sheet excellent in delayed fracture resistance according to the present invention, the Cu deposited on the steel sheet may be not only a simple substance of Cu but also a Cu-based alloy. Here, the Cu-based alloy refers to an alloy containing one or more of Fe, Co, Zn, Cr, Mn, Ni, and Mo in Cu at 20% by mass or less of the alloy. If it is within the range, the desired effect of the present invention can be sufficiently achieved. In addition, when using such Cu base alloy, the above-mentioned adhesion amount of 1 mg / m 2 or more and 2000 mg / m 2 or less is a conversion value in Cu contained in these alloys.

CuまたはCu基合金を鋼材表面へと付着させる方法としては、特に限定されるものではなく、公知の各種の方法により実施することが可能であるが、例えば、電気メッキ法、無電解メッキ法、蒸着法等を用いることができる。   The method for adhering Cu or a Cu-based alloy to the steel surface is not particularly limited and can be carried out by various known methods. For example, electroplating, electroless plating, An evaporation method or the like can be used.

このような工程を経て得られる本発明に係る耐遅れ破壊性に優れた鋼板は、代表的には、その表面にCuまたはCu基合金を片面当たり1mg/m以上2000mg/m以下の含有量(Cu基合金の場合、上記量はCu換算値である。)付着させてなり、980MPa以上、より好ましくは、1180MPa以上の引張り強度を有することを特徴とするものとなる。なお、上記したCuまたはCu基合金の皮膜は、鋼板のいずれか一方の表面上のみに被着させたものでも、もちろん、両方の表面上に被着させたものであっても良い。 The steel sheet excellent in delayed fracture resistance according to the present invention obtained through such a process typically contains 1 mg / m 2 or more and 2000 mg / m 2 or less of Cu or a Cu-based alloy on one surface per side. An amount (in the case of a Cu-based alloy, the above amount is a value converted to Cu) is adhered, and has a tensile strength of 980 MPa or more, more preferably 1180 MPa or more. In addition, the above-mentioned Cu or Cu-based alloy film may be deposited on only one surface of the steel plate, or may be deposited on both surfaces.

以上述べたような本発明に係る耐遅れ破壊性に優れた鋼板の製造方法としては、既に述べたように、鋼板表面に片面当たり1mg/m以上2000mg/m以下のCuまたはCu基合金を付着させるというごく単純な工程からなることを特徴とするものである。 As described above, the method for producing a steel sheet excellent in delayed fracture resistance according to the present invention as described above is a Cu or Cu-based alloy having 1 mg / m 2 or more and 2000 mg / m 2 or less per side on the steel sheet surface. It consists of a very simple process of adhering.

なお、基質として使用される鋼板としては前記したように特に限定されるものではなく、その製造履歴としても任意のものである。   In addition, as above-mentioned as a steel plate used as a substrate, it is not specifically limited, The manufacturing history is also arbitrary.

本発明の理解を容易とするために、例えば、冷延鋼板に本発明に係るCuないしCu基合金皮膜を形成する場合における、製鋼からの一連のプロセスを、以下に一例を挙げて簡単に説明するが、基質となる鋼板の製造工程としては、もちろん以下の例示に何ら限定されるものではない。   In order to facilitate understanding of the present invention, for example, a series of processes from steelmaking in the case of forming a Cu or Cu-based alloy film according to the present invention on a cold-rolled steel sheet will be briefly described with an example below. However, as a manufacturing process of the steel plate used as a substrate, of course, it is not limited to the following examples.

所定成分の鋼を溶製し、常法に従い連続鋳造でスラブとする。次いで、得られたスラブを加熱炉中で1100〜1300℃の温度で加熱し、750〜950℃の仕上げ温度で熱間圧延を行い、500〜650℃にて巻き取る。これに続いて酸洗後、圧下率30〜70%の冷間圧延を行う。その後、必要に応じて、常法に従い、アルカリまたはアルカリと界面活性剤およびキレート剤との混合溶液による洗浄、電解洗浄、温水洗浄、乾燥といった清浄化処理を行った後、750〜900℃にて加熱処理し、急速冷却を行い、鋼板の硬度調整を行う。さらに必要に応じて、常法に従い0.01〜0.5%程度の調質圧延を行うことで所期の引張り強度を有する冷延鋼板を得る。このようにして得られた冷延鋼板表面に、上記したような電気メッキ法、無電解メッキ法、蒸着法等の適当な方法にて、CuまたはCu基合金を1mg/m以上2000mg/m以下の所定量付着させることにより、本発明に係る耐遅れ破壊性に優れた冷延鋼板を得る。 The steel of a predetermined component is melted and made into a slab by continuous casting according to a conventional method. Next, the obtained slab is heated at a temperature of 1100 to 1300 ° C. in a heating furnace, hot-rolled at a finishing temperature of 750 to 950 ° C., and wound up at 500 to 650 ° C. Subsequently, after pickling, cold rolling is performed at a rolling reduction of 30 to 70%. After that, if necessary, according to a conventional method, after performing cleaning treatment such as washing with an alkali or a mixed solution of an alkali and a surfactant and a chelating agent, electrolytic washing, warm water washing, and drying, at 750 to 900 ° C. Heat treatment, rapid cooling, and adjustment of steel sheet hardness. Furthermore, if necessary, a cold-rolled steel sheet having a desired tensile strength is obtained by performing temper rolling of about 0.01 to 0.5% according to a conventional method. On the surface of the cold-rolled steel plate thus obtained, Cu or a Cu-based alloy is added in an amount of 1 mg / m 2 or more to 2000 mg / m 2 by an appropriate method such as electroplating, electroless plating, or vapor deposition. By attaching a predetermined amount of 2 or less, a cold-rolled steel sheet having excellent delayed fracture resistance according to the present invention is obtained.

なお、CuまたはCu基合金を冷延鋼板表上に付着させる場合に、メッキ法、特に電気メッキ法を用いた場合には、メッキ処理時に鋼材および銅ないし銅基合金皮膜中に水素が侵入する虞れがあるため、必要に応じて、メッキ処理後に、100〜300℃程度の温度の加熱処理を施し、鋼材および銅ないし銅基合金皮膜中に侵入した水素を除去する処理を施しても良い。   In addition, when depositing Cu or a Cu-based alloy on the surface of a cold-rolled steel sheet, when a plating method, particularly an electroplating method is used, hydrogen penetrates into the steel material and the copper or copper-based alloy film during the plating process. Since there is a fear, if necessary, after the plating treatment, a heat treatment at a temperature of about 100 to 300 ° C. may be performed to remove the hydrogen that has entered the steel material and the copper or copper-based alloy film. .

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲はこれらの実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.

使用した供試材である鋼板の成分を表1に示す。冷間圧延を行ったままの厚さ1.5mmの当該鋼板を用い、硫酸銅溶液(硫酸Cu:0.1g/L、または10g/L)に浸漬することによりCuメッキ皮膜を鋼板両面に付与した。ここでCuメッキ量は、浸漬時間を変化させることで変化させ、鋼板上に付着したCuメッキの付着量は、付着量既知の標準板により作成した検量線を用いて蛍光X線分析により測定した。   Table 1 shows the components of the steel sheet used as the test material. Using the steel plate with a thickness of 1.5 mm as it is cold-rolled, it is immersed in a copper sulfate solution (Cu sulfate: 0.1 g / L or 10 g / L) to provide a Cu plating film on both sides of the steel plate. did. Here, the amount of Cu plating was changed by changing the dipping time, and the amount of Cu plating deposited on the steel sheet was measured by fluorescent X-ray analysis using a calibration curve prepared with a standard plate with a known amount of adhesion. .

また、比較対照として、メッキ処理を行わなかった鋼板も用意した。なお、得られた鋼板の強度はメッキの有無に関らず、1480MPaであった。   Moreover, the steel plate which did not perform a plating process was also prepared as a comparison control. The strength of the obtained steel sheet was 1480 MPa regardless of the presence or absence of plating.

以上のようにして得られた、Cu付着量が0.5mg/m(比較例1)、1mg/m(実施例1)、10mg/m(実施例2)、100mg/m(実施例3)、1000mg/m(実施例4)、3000mg/m(比較例2)、10000mg/m(比較例3)のCuメッキ鋼板、および、比較対照としてのメッキ処理を行なわなかった鋼板(比較例4)の各鋼板に対し、以下の評価を行った。得られた結果を表2に示す。 The Cu adhesion amounts obtained as described above were 0.5 mg / m 2 (Comparative Example 1), 1 mg / m 2 (Example 1), 10 mg / m 2 (Example 2), 100 mg / m 2 ( Example 3), 1000 mg / m 2 (Example 4), 3000 mg / m 2 (Comparative Example 2), 10000 mg / m 2 (Comparative Example 3) Cu-plated steel sheet and no plating treatment as a comparative control The following evaluation was performed on each steel plate (Comparative Example 4). The obtained results are shown in Table 2.

(1)加工性評価
上述したCuメッキ鋼板および非メッキ鋼板をそれぞれ幅35mm×長さ100mmにせん断し、幅が30mmとなるまで研削加工を施し、試験片を作製した。次に、この試験片に対し、3点曲げ試験機を用い、曲げ加工を施した。曲げの曲率は4mmRとし、加工性を評価した。評価は曲げ頂部外側面の目視による外観観察を行い、メッキ皮膜の欠落などの有無を、以下の基準により評価した。
〇:メッキ皮膜の欠落なし。
△:表面に微細なクラックが認められる。
×:メッキ皮膜の剥れが認められる。
(1) Evaluation of workability Each of the above-described Cu-plated steel plate and non-plated steel plate was sheared to a width of 35 mm x a length of 100 mm, and subjected to grinding until the width was 30 mm, thereby preparing a test piece. Next, the test piece was subjected to bending using a three-point bending tester. The bending curvature was 4 mmR and the workability was evaluated. The evaluation was performed by visually observing the outer surface of the bending top, and the presence or absence of a plating film was evaluated according to the following criteria.
○: No missing plating film.
Δ: Fine cracks are observed on the surface.
X: Peeling of the plating film is recognized.

(2)遅れ破壊評価
上記したと同様にして研削加工後、曲げ加工を施し作製した試験片1を、図1に模示するようにボルト2とナット3を用いて締結し、試験片形状を固定させ、遅れ破壊評価用試験片を得た。このようにして作製した遅れ破壊評価用試験片に対し、米国自動車技術会で定めたSAE J2334に規定された、乾燥・湿潤・塩水浸漬の工程からなる複合サイクル腐食試験(図2参照)を、最大80サイクルまで実施した。各サイクルの塩水浸漬の工程前に目視により試験片外側面の鋼板の割れの発生の有無を調査し、割れ発生サイクルを測定した。また、本試験は、各鋼板3検体ずつ実施し、その平均値をもって評価を行った。評価はサイクル数から、以下の基準により評価した。
〇:70サイクル以上。
△:40サイクル以上70サイクル未満。
×:40サイクル未満。
(2) Delayed Fracture Evaluation After the grinding process in the same manner as described above, the test piece 1 produced by bending is fastened using bolts 2 and nuts 3 as shown in FIG. A test piece for delayed fracture evaluation was obtained. For the delayed fracture evaluation test piece produced in this way, a combined cycle corrosion test (see FIG. 2) consisting of drying, wetting, and salt water soaking processes defined in SAE J2334 defined by the American Society of Automotive Engineers, Up to 80 cycles were performed. The presence or absence of cracks in the steel sheet on the outer surface of the test piece was visually inspected before the salt water immersion process in each cycle, and the crack generation cycle was measured. In addition, this test was performed on three specimens of each steel plate, and the average value was evaluated. Evaluation was performed according to the following criteria from the number of cycles.
○: 70 cycles or more.
Δ: 40 cycles or more and less than 70 cycles.
X: Less than 40 cycles.

Figure 2011001611
Figure 2011001611

Figure 2011001611
Figure 2011001611

実施例1〜4並びに比較例1〜3は、鋼板表面に付着させるCuメッキのメッキ量を変化させた例、比較例4は鋼板表面にCuメッキを施さなかった例であるが、加工性に着目すると、表2に示す結果から明らかなように、メッキ量の少ない比較例1および実施例1〜3ではメッキ皮膜の欠落がなく、優れた加工性を有していることが判る。メッキ量が1000mg/mの実施例4で一部微細なクラックが認められ、メッキ量が3000mg/m以上の比較例2、3では、皮膜の剥れが認められ、メッキ量が増加することにより加工性が悪くなる傾向が明らかとなった。 Examples 1 to 4 and Comparative Examples 1 to 3 are examples in which the amount of Cu plating applied to the steel sheet surface was changed, and Comparative Example 4 was an example in which the steel sheet surface was not subjected to Cu plating. When attention is paid, as is apparent from the results shown in Table 2, it can be seen that Comparative Example 1 and Examples 1 to 3 having a small amount of plating have no lack of plating film and have excellent workability. In Example 4 where the plating amount was 1000 mg / m 2 , some fine cracks were observed, and in Comparative Examples 2 and 3 where the plating amount was 3000 mg / m 2 or more, peeling of the film was observed and the plating amount increased. As a result, the tendency for the workability to deteriorate was revealed.

次に遅れ破壊評価に着目すると、比較例1は、メッキ処理を施さなかった比較対照となる比較例4と比較して、遅れ破壊特性が若干向上する傾向を示したが、メッキ量が少ないために十分な効果が得られていないことが判る。また加工において一部メッキ皮膜の脱離が認められた比較例2、3は、メッキ処理を施さなかった比較対照となる比較例4と比較しても、遅れ破壊特性が低下することが明らかとなった。これに対し、所定量のCuメッキを付着させた本発明に係る実施例1〜4においては、いずれも遅れ破壊特性が良好な結果を示した。とくに、メッキ付着量が300mg/m以下となる実施例1〜3では、Cu皮膜が鋼板表面を完全に覆うことのない不連続な皮膜となることによる水素侵入抑制効果が大きく、遅れ破壊特性が非常に優れていた。 Next, focusing on delayed fracture evaluation, Comparative Example 1 showed a tendency to slightly improve delayed fracture characteristics as compared with Comparative Example 4 that was not subjected to plating treatment, but because the plating amount was small. It can be seen that sufficient effects are not obtained. Further, it is clear that Comparative Examples 2 and 3 in which part of the plating film was removed during processing showed a delayed fracture characteristic lower than that of Comparative Example 4 which was a comparative control which was not subjected to the plating treatment. became. On the other hand, in Examples 1 to 4 according to the present invention in which a predetermined amount of Cu plating was adhered, the delayed fracture characteristics were all good. In particular, in Examples 1 to 3 in which the plating adhesion amount is 300 mg / m 2 or less, the effect of suppressing hydrogen intrusion due to the Cu film being a discontinuous film that does not completely cover the steel sheet surface is large, and delayed fracture characteristics. Was very good.

本発明によれば、遅れ破壊を抑制する高張力鋼板を提供でき、自動車分野や建材分野を中心に広範な分野で適用が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the high strength steel plate which suppresses delayed fracture can be provided, and it becomes possible to apply in a wide field | area centering on the motor vehicle field | area or a building material field | area.

1 試験片
2 ボルト
3 ナット
1 Test piece 2 Bolt 3 Nut

Claims (5)

鋼板表面に片面当たり1mg/m以上2000mg/m以下のCuまたはCu基合金(Cu基合金の場合、上記量はCu換算値である。)を付着させたことを特徴とする耐遅れ破壊性に優れた鋼板。 Delayed fracture resistance, characterized in that 1 mg / m 2 or more and 2000 mg / m 2 or less of Cu or a Cu-based alloy (in the case of a Cu-based alloy, the above amount is a Cu-converted value) is adhered to the steel sheet surface. Steel sheet with excellent properties. 前記鋼板が、1180MPa以上の引張り強度を有する冷延鋼板である請求項1に記載の耐遅れ破壊性に優れた鋼板。   The steel plate excellent in delayed fracture resistance according to claim 1, wherein the steel plate is a cold-rolled steel plate having a tensile strength of 1180 MPa or more. 鋼板表面に付着されたCuまたはCu基合金が、鋼板表面を完全に覆うことのない不連続な皮膜であることを特徴とする請求項1または2に記載の耐遅れ破壊性に優れた鋼板。   The steel sheet excellent in delayed fracture resistance according to claim 1 or 2, wherein the Cu or Cu-based alloy adhered to the steel sheet surface is a discontinuous film that does not completely cover the steel sheet surface. 鋼板表面に片面当たり1mg/m以上2000mg/m以下のCuまたはCu基合金を付着させることを特徴とする耐遅れ破壊性に優れた鋼板の製造方法。 A method for producing a steel sheet having excellent delayed fracture resistance, wherein 1 mg / m 2 or more and 2000 mg / m 2 or less of Cu or a Cu-based alloy is adhered to one surface of the steel sheet. 前記鋼板として、冷延鋼板を用いるものである請求項4に記載の耐遅れ破壊性に優れた鋼板の製造方法。
The method for producing a steel sheet having excellent delayed fracture resistance according to claim 4, wherein a cold-rolled steel sheet is used as the steel sheet.
JP2009146432A 2009-06-19 2009-06-19 Steel sheet excellent in delayed fracture resistance, and method for producing the same Pending JP2011001611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146432A JP2011001611A (en) 2009-06-19 2009-06-19 Steel sheet excellent in delayed fracture resistance, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146432A JP2011001611A (en) 2009-06-19 2009-06-19 Steel sheet excellent in delayed fracture resistance, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011001611A true JP2011001611A (en) 2011-01-06
JP2011001611A5 JP2011001611A5 (en) 2012-03-15

Family

ID=43559800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146432A Pending JP2011001611A (en) 2009-06-19 2009-06-19 Steel sheet excellent in delayed fracture resistance, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011001611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044712A (en) * 2011-08-26 2013-03-04 Jfe Steel Corp Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal portion of moving body
JP2018044240A (en) * 2016-09-08 2018-03-22 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance, and method for producing the same
CN112267070A (en) * 2020-09-30 2021-01-26 联峰钢铁(张家港)有限公司 High-strength high-toughness steel wire stranded wire and production process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573863A (en) * 1978-11-29 1980-06-03 Nippon Steel Corp Surface treating method for preventing hydrogen embrittlement cracking of steel material
JP2003041384A (en) * 2001-07-30 2003-02-13 Kawasaki Steel Corp Steel sheet superior in delayed fracture resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573863A (en) * 1978-11-29 1980-06-03 Nippon Steel Corp Surface treating method for preventing hydrogen embrittlement cracking of steel material
JP2003041384A (en) * 2001-07-30 2003-02-13 Kawasaki Steel Corp Steel sheet superior in delayed fracture resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044712A (en) * 2011-08-26 2013-03-04 Jfe Steel Corp Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal portion of moving body
JP2018044240A (en) * 2016-09-08 2018-03-22 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance, and method for producing the same
CN112267070A (en) * 2020-09-30 2021-01-26 联峰钢铁(张家港)有限公司 High-strength high-toughness steel wire stranded wire and production process thereof

Similar Documents

Publication Publication Date Title
JP6836600B2 (en) Hot stamping material
JP5860959B2 (en) Plated steel sheet for hot press forming with excellent plating layer stability
JP4457667B2 (en) Surface-treated steel sheet
KR101445813B1 (en) HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF
JP6839283B2 (en) Molten aluminum-based plated steel with excellent corrosion resistance and workability and its manufacturing method
KR102426324B1 (en) Fe-Al-based plated hot stamp member and method for manufacturing Fe-Al-based plated hot stamp member
JP5392116B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
CN114945698B (en) Plated steel material
JP5532086B2 (en) Hot-dip galvanized steel pipe
JP4940813B2 (en) Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
JP2019026893A (en) High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
JP2011001611A (en) Steel sheet excellent in delayed fracture resistance, and method for producing the same
JP7332967B2 (en) hot stamping parts
JP7260840B2 (en) HOT STAMP MEMBER AND MANUFACTURING METHOD THEREOF
JP7453583B2 (en) Al-plated hot stamping steel material
JP5320899B2 (en) Alloyed hot-dip galvanized steel sheet with excellent plating adhesion
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
JP6962452B2 (en) High-strength alloyed hot-dip galvanized steel sheet and its manufacturing method
JP2002030384A (en) Rust preventive steel sheet for fuel tank excellent in secondary workability and press workability and its production method
KR20230069975A (en) Hot-pressed members and steel sheets for hot-pressing and their manufacturing methods
JP5446499B2 (en) Steel sheet with excellent delayed fracture resistance and method for producing the same
JP4123976B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
JP3383121B2 (en) Stainless steel hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance and method for producing the same
JP3383125B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance, and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203