JP2002097531A - Method for manufacturing porous intermetallic compound or ceramics - Google Patents

Method for manufacturing porous intermetallic compound or ceramics

Info

Publication number
JP2002097531A
JP2002097531A JP2000291508A JP2000291508A JP2002097531A JP 2002097531 A JP2002097531 A JP 2002097531A JP 2000291508 A JP2000291508 A JP 2000291508A JP 2000291508 A JP2000291508 A JP 2000291508A JP 2002097531 A JP2002097531 A JP 2002097531A
Authority
JP
Japan
Prior art keywords
powder
ceramics
intermetallic compound
combustion synthesis
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000291508A
Other languages
Japanese (ja)
Other versions
JP4402823B2 (en
Inventor
Naoyuki Kanetake
直幸 金武
Makoto Kobashi
眞 小橋
Takao Cho
隆郎 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000291508A priority Critical patent/JP4402823B2/en
Publication of JP2002097531A publication Critical patent/JP2002097531A/en
Application granted granted Critical
Publication of JP4402823B2 publication Critical patent/JP4402823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide porous intermetallic compounds or ceramics useful for a filter for cleaning waste gas, an impact absorption member, a heat insulating and sound absorbing material, biomaterial and the like. SOLUTION: This method for manufacturing the porous intermetallic compounds or ceramics comprises mixing different kinds of metal powders according to a composition in manufacturing the intermetallic compounds or the ceramics, forming them with combustion synthesis, and making them porous by means of generating bubbles of gas components absorbed or occluded in the metal powders, during the combustion synthesis. Pore size or porosity of the porous intermetallic compound or the ceramics is controlled by a mixing rate of a raw material powder, a compression ratio of the mixed powders, a heat quantity on preheating and the combustion synthesis, and an addition of exothermic or endothermic auxiliaries.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排ガス浄化用フィル
タ,衝撃吸収部材,生体材料,断熱材等として広範な分
野で使用される多孔質金属間化合物を製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous intermetallic compound used in a wide range of fields as an exhaust gas purifying filter, a shock absorbing member, a biomaterial, a heat insulating material and the like.

【0002】[0002]

【従来技術及び問題点】構造材料や機能材料に対する要
求が高度化且つ多様化する中で、従来の均質材料に代わ
る複合材料,傾斜材料等の開発が進められている。最近
では、将来の環境調和性等の要求に応えるため、複合
化,傾斜化に留まらず、多孔質構造等の幾何学的構造の
不均質化や傾斜化も検討され始めている。多孔質構造体
としては、水素を気孔生成源とするアルミニウム系発泡
体が開発され,工業化されている。しかし、従来の製造
法は、比較的融点の低いアルミニウム等の金属材料に適
用対象が限られ、高融点のセラミックスや金属間化合物
のセル構造体に適用できない。セラミックス系のセル構
造体では精密鋳造法,粉末成形焼結法等の方法が採用さ
れているが、製造工程が複雑で、大型製品への適用がで
きないことが欠点である。
2. Description of the Related Art As demands for structural materials and functional materials become more sophisticated and diversified, development of composite materials, gradient materials, and the like, which replace conventional homogeneous materials, has been promoted. Recently, in order to meet future demands for environmental harmony, etc., studies have begun on non-homogeneous and graded geometric structures such as porous structures, as well as composite and graded structures. As the porous structure, an aluminum-based foam using hydrogen as a pore generation source has been developed and industrialized. However, the application of the conventional manufacturing method is limited to a metal material such as aluminum having a relatively low melting point, and cannot be applied to a cell structure of a ceramic or an intermetallic compound having a high melting point. For the ceramic-based cell structure, a method such as a precision casting method or a powder molding sintering method is employed. However, a drawback is that the manufacturing process is complicated and cannot be applied to a large product.

【0003】燃焼合成反応によって多孔質材料を製造す
ることも一部で実施されている。燃焼合成反応では、原
料粉末を高温に加熱することによって、原料粉末に含ま
れている膨張促進剤を発泡させ、多孔質構造を形成させ
る。たとえば、Materials Sci. & Eng. A255 (1998) p7
0-74では、Ti−Ni粉末からTiNiを燃焼合成する
際、Ti−Ni粉末に添加したTiH2粉末を分解して
2ガスを発生させ、多孔質化を図っている。しかし、
この方法では、気孔サイズや気孔率を正確に制御するこ
とが困難であり、セラミックス系多孔質体への適用も困
難である。
[0003] The production of porous materials by a combustion synthesis reaction has also been partially practiced. In the combustion synthesis reaction, by heating the raw material powder to a high temperature, the expansion promoter contained in the raw material powder is foamed to form a porous structure. For example, Materials Sci. & Eng. A255 (1998) p7
In No. 0-74, at the time of burning and synthesizing TiNi from Ti—Ni powder, TiH 2 powder added to the Ti—Ni powder is decomposed to generate H 2 gas, thereby achieving porosity. But,
In this method, it is difficult to accurately control the pore size and porosity, and it is also difficult to apply the method to a porous ceramic body.

【0004】[0004]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、複数種の金属粉
末を高温加熱して金属間化合物又はセラミックスを合成
する際に金属粉末に吸着又は吸蔵されているガス成分が
放出されて気泡となることに着目し、圧粉成形圧力,予
熱,昇温速度,吸熱助剤又は発熱助剤の添加等によって
燃焼合成反応を制御することにより、所定の気孔サイズ
や気孔率をもった多孔質金属間化合物又はセラミックス
を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve such a problem. When a plurality of kinds of metal powders are heated to a high temperature to synthesize an intermetallic compound or ceramics, the metal is used. Focusing on the gas components adsorbed or occluded in the powder being released to form bubbles, the combustion synthesis reaction is controlled by the powder compaction pressure, preheating, heating rate, addition of heat-absorbing aid or exothermic aid. Thus, an object is to obtain a porous intermetallic compound or ceramic having a predetermined pore size and porosity.

【0005】本発明の製造方法は、その目的を達成する
ため、ガス成分が吸着又は吸蔵されている第1金属の粉
末と第1金属との間に金属間化合物又はセラミックスを
生成する第2金属の粉末を配合して原料粉末とし、必要
に応じて吸熱助剤又は発熱助剤を添加した原料粉末を圧
粉成形した後、金属間化合物又はセラミックスを生成す
る燃焼合成反応時にガス成分を第1の金属粉末から放出
させ、金属間化合物又はセラミックスの内部に気孔を生
じさせることを特徴とする。
[0005] In order to achieve the object, the production method of the present invention provides a second metal which forms an intermetallic compound or ceramic between a first metal powder and a first metal powder in which a gas component is adsorbed or occluded. The raw material powder obtained by mixing the powders of the above is used as a raw material powder, and a raw material powder to which an endothermic auxiliary agent or an exothermic auxiliary agent is added, if necessary, is compacted. Characterized in that the metal powder is released from the metal powder to generate pores in the intermetallic compound or ceramics.

【0006】燃焼合成に先立って粉末成形体を予熱する
とき、予熱雰囲気中の酸素,水素,窒素等が金属粉末の
表面に吸着又は吸蔵され、燃焼合成反応時の多孔質化が
促進される。勿論、予熱工程は省略することも可能であ
る。なお、本件明細書では、水和物,窒化物等として金
属粉末と反応しているガス成分を包含する意味で「吸
着」を使用している。また、燃焼合成反応とは、異種金
属を融点近傍の温度に加熱することによって相互拡散反
応を活発化させ、酸素等の酸化剤を必要とすることな
く、金属間化合物(セラミックスも含む)を生成する反
応をいう。この反応は発熱反応であり、高い気孔率をも
つ多孔質金属間化合物が瞬時に生成する。
When the powder compact is preheated prior to the combustion synthesis, oxygen, hydrogen, nitrogen and the like in the preheating atmosphere are adsorbed or occluded on the surface of the metal powder, thereby promoting porosity during the combustion synthesis reaction. Of course, the preheating step can be omitted. In the present specification, “adsorption” is used to mean a gas component that has reacted with a metal powder as a hydrate, a nitride, or the like. In addition, combustion synthesis reaction activates the interdiffusion reaction by heating a dissimilar metal to a temperature near the melting point, and generates intermetallic compounds (including ceramics) without the need for an oxidizing agent such as oxygen. Reaction. This reaction is exothermic, and instantaneously produces a porous intermetallic compound having a high porosity.

【0007】ガス成分が吸着又は吸蔵された第1金属と
しては、Al,Ni,Ti,Zr、Hfから選ばれた1
種又は2種以上が使用される。第2金属は、高温に加熱
したとき第1金属との間に金属間化合物を生成する金属
であり、Ni,Ti,Zr,Hf,B,C,BN,B4
Cから選ばれた1種又は2種以上が使用される。
The first metal to which the gas component is adsorbed or occluded is selected from Al, Ni, Ti, Zr and Hf.
Species or two or more are used. The second metal is a metal that forms an intermetallic compound with the first metal when heated to a high temperature, and includes Ni, Ti, Zr, Hf, B, C, BN, and B 4.
One or more selected from C are used.

【0008】得られる多孔質金属間化合物又はセラミッ
クスの気孔サイズや気孔率は、金属粉末に吸着又は吸蔵
されているガス成分の量や燃焼合成反応の進展度に応じ
て定まる。ガス成分が多いほど、また燃焼合成反応が進
むほど、多孔質金属間化合物又はセラミックスの気孔率
が増加し、気孔サイズも大きくなる。逆に、ガス成分が
少ないほど、また燃焼合成反応が遅延するほど、多孔質
金属間化合物の気孔率及び気孔サイズが小さくなる。燃
焼合成反応の進展度は、原料粉末に添加される吸熱助剤
や発熱助剤によって制御できる。吸熱助剤としては、T
iC,SiC,Al23,AlN,TiB2等がある。
発熱助剤としては、Zr,Ti,B4C,BN,B,C
等がある。
[0008] The pore size and porosity of the obtained porous intermetallic compound or ceramic are determined according to the amount of gas components adsorbed or occluded in the metal powder and the progress of the combustion synthesis reaction. The porosity of the porous intermetallic compound or the ceramic increases and the pore size increases as the gas component increases and the combustion synthesis reaction proceeds. Conversely, the smaller the gas component and the slower the combustion synthesis reaction, the smaller the porosity and pore size of the porous intermetallic compound. The progress of the combustion synthesis reaction can be controlled by an endothermic auxiliary agent and an exothermic auxiliary agent added to the raw material powder. As an endothermic assistant, T
iC, SiC, Al 2 O 3 , AlN, TiB 2 and the like.
Zr, Ti, B 4 C, BN, B, C
Etc.

【0009】[0009]

【作用】Al粉末(第1金属)とTi粉末(第2金属)
とを配合した原料粉末に吸熱助剤又は発熱助剤を添加し
て燃焼合成すると、Ti原子とAl原子との間で結合が
生じ金属間化合物TiAlが生成する(図1)。燃焼合
成反応の際に原料表面に吸着又は吸蔵されている水素,
酸素,窒素等のガス成分が放出され、内部に複数のセル
が生じたTiAl多孔質体となる。
[Action] Al powder (first metal) and Ti powder (second metal)
When a combustion synthesis is performed by adding an endothermic auxiliary agent or an exothermic auxiliary agent to a raw material powder in which Ti is blended, a bond is formed between Ti atoms and Al atoms to generate an intermetallic compound TiAl (FIG. 1). Hydrogen adsorbed or occluded on the surface of the raw material during the combustion synthesis reaction,
Gas components such as oxygen and nitrogen are released to form a TiAl porous body having a plurality of cells formed therein.

【0010】燃焼合成反応によって多孔質の金属間化合
物を生成する組合せとしては、Al−Tiの他に、Al
−Ni,Al−Zr,Ti−Ni等がある。セラミック
スを生成する組合せとしては、Ti−C系セラミックス
ではTi,C、Zr−C系セラミックスではZr,C、
Hf−C系セラミックスではHf,C、Ti−B系セラ
ミックスではTi,B、Zr−B系セラミックスではZ
r,B、Hf−B系セラミックスではHf,B、Ti−
B,Ti−C系複合セラミックスではTi,B 4C、Z
r−B,Zr−C系複合セラミックスではZr,B
4C、Hf−B,Hf−C系複合セラミックスではH
f,B4C、Ti−B,Al−N系複合セラミックスで
はAl,Ti,BN、Zr−B,Al−N系複合セラミ
ックスではAl,Zr,BN、Hf−B,Al−N系複
合セラミックスではAl,Hf,BN等がある。
[0010] Porous intermetallic compound by combustion synthesis reaction
As a combination for producing a product, in addition to Al—Ti, Al
-Ni, Al-Zr, Ti-Ni and the like. ceramic
Ti-C ceramics
In the case of Ti, C and Zr-C ceramics, Zr, C,
For Hf-C ceramics, Hf, C, Ti-B ceramics
Ti, B in the mix, Z in the Zr-B ceramics
For r, B, Hf-B ceramics, Hf, B, Ti-
B, Ti-C based composite ceramics FourC, Z
In the case of r-B, Zr-C composite ceramics, Zr, B
FourC, Hf-B and Hf-C composite ceramics
f, BFourC, Ti-B, Al-N composite ceramics
Is an Al, Ti, BN, Zr-B, Al-N composite ceramic
In the box, Al, Zr, BN, Hf-B, Al-N
The composite ceramics include Al, Hf, BN and the like.

【0011】セルのサイズや気孔率は、金属粉末に吸着
又は吸蔵されているガス成分の量や燃焼合成反応の進展
度によって制御できる。たとえば、Al粉末では粉末表
面に酸化物や酸水化物からなる皮膜が形成されている
が、酸化物,酸水化物は、燃焼合成時に粉末から放出さ
れ、酸素,水素,水蒸気等の気泡となって多孔質金属間
化合物又はセラミックスの内部に気孔を形成する。
The cell size and porosity can be controlled by the amount of gas components adsorbed or occluded in the metal powder and the degree of progress of the combustion synthesis reaction. For example, in the case of Al powder, a film made of an oxide or an acid hydrate is formed on the surface of the powder. However, the oxide and the acid hydride are released from the powder at the time of combustion synthesis to form bubbles such as oxygen, hydrogen, and water vapor. To form pores inside the porous intermetallic compound or ceramic.

【0012】燃焼合成に先立って金属粉末を予熱する
と、予熱雰囲気中の酸素,水素,窒素等が金属粉末表面
と反応(吸着)し、気泡生成源として取り込まれる。或
いは逆に、減圧雰囲気又は還元性雰囲気で予熱すると金
属粉末の表面からガス成分が放出され、多孔質金属間化
合物の気孔サイズや気孔率を減少できる。金属粉末の種
類や予熱雰囲気にもよるが、予熱条件を200〜450
℃,0.5〜10時間の範囲で設定するとき、ガス成分
の吸着・脱着によるガス成分の量的制御が効果的に行わ
れる。
When the metal powder is preheated prior to the combustion synthesis, oxygen, hydrogen, nitrogen and the like in the preheating atmosphere react (adsorb) with the surface of the metal powder and are taken in as a bubble generation source. Alternatively, conversely, when preheating is performed in a reduced pressure atmosphere or a reducing atmosphere, gas components are released from the surface of the metal powder, and the pore size and porosity of the porous intermetallic compound can be reduced. Although it depends on the type of metal powder and the preheating atmosphere, the preheating condition is 200 to 450.
When the temperature is set in the range of 0.5 to 10 hours, the quantitative control of the gas component by the adsorption and desorption of the gas component is effectively performed.

【0013】原料粉末は、燃焼合成後に所定形状を確保
する上で予め圧粉成形しておくことが好ましい。圧粉成
形は、得られる多孔質金属間化合物又はセラミックスの
気孔率を調整する上でも有効である。たとえば、圧力5
0〜100MPaで原料粉末を圧粉成形して相対密度を
0.65〜1.0に調整した圧粉成形体を燃焼合成する
と,相対密度に応じて気孔率20〜80%の多孔質金属
間化合物又はセラミックスが得られる。
The raw material powder is preferably compacted in advance in order to secure a predetermined shape after combustion synthesis. Powder compaction is also effective in adjusting the porosity of the obtained porous intermetallic compound or ceramic. For example, pressure 5
When a green compact having a relative density adjusted to 0.65 to 1.0 is formed by burning and compacting the raw material powder at 0 to 100 MPa, a porous metal having a porosity of 20 to 80% depending on the relative density is obtained. A compound or ceramic is obtained.

【0014】燃焼合成反応の開始温度は、使用する原料
粉末中で最も低い融点をもつ物質の融点で決まる。燃焼
合成反応は、加熱速度50〜120℃/分の範囲で確認
され、全ての試料で反応開始温度に達すると数秒以内の
短時間で完了する。酸化防止の上からは、Ar,N2
の不活性雰囲気下で燃焼合成反応させることが好まし
い。
The starting temperature of the combustion synthesis reaction is determined by the melting point of the substance having the lowest melting point among the raw material powders used. The combustion synthesis reaction is confirmed at a heating rate of 50 to 120 ° C./min, and is completed in a short time within several seconds when the reaction start temperature is reached for all the samples. From the viewpoint of preventing oxidation, it is preferable to carry out the combustion synthesis reaction in an inert atmosphere such as Ar or N 2 .

【0015】原料粉末に吸熱助剤又は発熱助剤を添加す
ることによっても、燃焼合成反応を制御できる。吸熱助
剤は、燃焼合成時に金属粉末から吸熱し、多孔質金属間
化合物又はセラミックスの気孔サイズを小さくすると共
に気孔率も低下させる。逆に、発熱助剤は、燃焼合成反
応を促進させ、多孔質金属間化合物又はセラミックスの
気孔サイズを大きくすると共に気孔率を増加させる。
[0015] The combustion synthesis reaction can also be controlled by adding an endothermic auxiliary agent or an exothermic auxiliary agent to the raw material powder. The heat-absorbing auxiliary agent absorbs heat from the metal powder at the time of combustion synthesis, reduces the pore size of the porous intermetallic compound or ceramic, and also reduces the porosity. Conversely, the exothermic auxiliary promotes the combustion synthesis reaction, increases the pore size of the porous intermetallic compound or ceramics, and increases the porosity.

【0016】[0016]

【実施例1】平均粒径44μmのAl粉末と平均粒径4
4μmのTiとを原子量比1:1の割合で混合し、圧力
50〜110MPaの1軸圧縮で径15mm,長さ16
mmの円柱状圧粉体に成形した。圧粉体を赤外線イメー
ジ炉に装入し、Ar雰囲気下で加熱したところAlの融
点(660℃)近傍で燃焼合成反応が生じた。燃焼反応
後に圧粉体をイメージ炉から取り出し、内部構造を調査
したところ、アルキメデス法による気孔率が35〜40
%で多数の気孔が分散していた。気孔は、主として独立
気孔であった。
Example 1 Al powder having an average particle size of 44 μm and an average particle size of 4
4 μm Ti and an atomic weight ratio of 1: 1 were mixed and uniaxially compressed at a pressure of 50 to 110 MPa to a diameter of 15 mm and a length of 16 mm.
mm into a green compact. When the green compact was placed in an infrared image furnace and heated under an Ar atmosphere, a combustion synthesis reaction occurred near the melting point of Al (660 ° C.). After the combustion reaction, the green compact was taken out of the image furnace, and the internal structure was examined.
% Of the pores were dispersed. The pores were mainly closed pores.

【0017】Ti粉末の代わりにNi粉末をAl粉末と
原子量比1:3で混合し、同様に圧粉成形した後、燃焼
合成させた。この場合にも、主として独立気孔が多数分
散した気孔率40〜45%の多孔質金属間化合物が得ら
れた。次いで、Al−Ni圧粉成形体の相対密度が多孔
質金属間化合物の気孔率に及ぼす影響を調査するため、
50〜100MPaの範囲で成形圧力を変え、相対密度
が0.65,0.73,0.80と異なる3種類の圧粉
成形体を用意した。これら圧粉成形体を前述と同様な条
件下で燃焼合成したところ、それぞれ気孔率25%,4
5%,40%の多孔質金属間化合物が得られた。
Instead of Ti powder, Ni powder was mixed with Al powder at an atomic weight ratio of 1: 3, compacted in the same manner, and then subjected to combustion synthesis. Also in this case, a porous intermetallic compound having a porosity of 40 to 45% in which a large number of independent pores were dispersed was obtained. Next, in order to investigate the effect of the relative density of the Al-Ni compact on the porosity of the porous intermetallic compound,
The compacting pressure was changed in the range of 50 to 100 MPa to prepare three types of compacts having different relative densities of 0.65, 0.73, and 0.80. When these green compacts were burned and synthesized under the same conditions as described above, the porosity was 25% and the porosity was 4%.
5% and 40% of porous intermetallic compounds were obtained.

【0018】また、原料粉末の配合比及び昇温速度が多
孔質金属間化合物の気孔率に及ぼす影響を調査した。調
査結果を示す表1にみられるように、気孔率及び気孔サ
イズは、Al粉末とNi粉末との混合比によって強い影
響を受けていた。昇温速度は、30℃/分に比較して5
0℃/分の方が高い気孔率の多孔質金属間化合物が得ら
れた。これは、昇温速度が速いほど、燃焼合成反応開始
前に元素粉末間の固相拡散反応が抑制され、燃焼合成反
応を促進させた結果である。
Further, the effects of the mixing ratio of the raw material powder and the heating rate on the porosity of the porous intermetallic compound were investigated. As can be seen from Table 1 showing the results of the investigation, the porosity and pore size were strongly affected by the mixing ratio of the Al powder and the Ni powder. The rate of temperature rise is 5 compared to 30 ° C / min.
A porous intermetallic compound having a higher porosity was obtained at 0 ° C./min. This is a result of the solid-state diffusion reaction between elemental powders being suppressed before the start of the combustion synthesis reaction, and the combustion synthesis reaction being promoted as the heating rate was increased.

【0019】 [0019]

【0020】[0020]

【実施例2】平均粒径44μmのAl粉末と平均粒径4
μmのNi粉末を原子量比3:1の割合で混合した混合
粉末を圧力55〜165MPaの1軸圧縮で円柱状に圧
粉成形し、Ar雰囲気中で300℃及び500℃に1時
間予熱した後、昇温速度30〜50℃/分で660℃ま
で昇温し、燃焼合成した。得られた多孔質金属間化合物
Al3Niは、図2に示すように予熱保持温度によって
気孔率が異なっていた。
Example 2 Al powder having an average particle size of 44 μm and an average particle size of 4
A powder mixture obtained by mixing μm Ni powder at an atomic weight ratio of 3: 1 is compacted into a cylindrical shape by uniaxial compression at a pressure of 55 to 165 MPa, and preheated to 300 ° C. and 500 ° C. for 1 hour in an Ar atmosphere. Then, the temperature was raised to 660 ° C. at a temperature rising rate of 30 to 50 ° C./min to perform combustion synthesis. The porosity of the obtained porous intermetallic compound Al 3 Ni varied depending on the preheating holding temperature as shown in FIG.

【0021】[0021]

【実施例3】平均粒径44μmのAl粉末と平均粒径4
μmのNi粉末を原子量比3:1の割合で混合した混合
粉末に発熱助剤として(Ti:3モル%+B4C:1モ
ル%)混合粉末を添加し、圧粉成形した後、実施例2と
同じ加熱条件で燃焼合成した。得られた多孔質金属間化
合物Al3Niの気孔率を測定したところ、圧粉成形時
の圧力及び発熱助剤の添加量に応じて図3に示すように
気孔率が変化していた。図3から明らかなように、低い
圧力で圧粉成形した相対密度の低いものの方が、燃焼合
成反応を促進させる発熱助剤の影響が大きいことが判
る。
Example 3 Al powder having an average particle size of 44 μm and an average particle size of 4
After adding a mixed powder (Ti: 3 mol% + B 4 C: 1 mol%) as an exothermic aid to a mixed powder obtained by mixing a μm Ni powder at an atomic weight ratio of 3: 1 and compacting the mixture, Combustion synthesis was performed under the same heating conditions as in Example 2. When the porosity of the obtained porous intermetallic compound Al 3 Ni was measured, the porosity changed as shown in FIG. 3 according to the pressure at the time of compacting and the amount of the exothermic auxiliary added. As is evident from FIG. 3, it can be seen that the lower the relative density of the green compact formed at a lower pressure, the greater the effect of the exothermic aid that promotes the combustion synthesis reaction.

【0022】[0022]

【実施例4】平均粒径44μmのAl粉末と平均粒径4
μmのNi粉末を原子量比3:1の割合で混合した混合
粉末に吸熱助剤として平均粒径5μmのTiC粉末を添
加し、110MPaで圧粉成形した後、実施例2と同じ
加熱条件で燃焼合成した。得られた多孔質金属間化合物
Al3Niの気孔率を測定したところ、吸熱助剤の添加
量に応じて図4に示すように気孔率が変化していた。図
4から明らかなように、吸熱助剤として添加したTiC
粉末によって燃焼合成反応が抑制されていることが判
る。
Example 4 Al powder having an average particle size of 44 μm and an average particle size of 4
A TiC powder having an average particle diameter of 5 μm was added as a heat-absorbing aid to a mixed powder obtained by mixing a Ni powder of μm in an atomic weight ratio of 3: 1, followed by compacting at 110 MPa, and then burning under the same heating conditions as in Example 2. Synthesized. When the porosity of the obtained porous intermetallic compound Al 3 Ni was measured, the porosity changed as shown in FIG. 4 in accordance with the amount of the heat absorption auxiliary added. As is apparent from FIG. 4, TiC added as an endothermic aid
It can be seen that the combustion synthesis reaction is suppressed by the powder.

【0023】[0023]

【発明の効果】以上に説明したように、金属間化合物を
作る組合せで異種金属粉末を混合した粉末混合物を燃焼
合成することによって多孔質金属間化合物が得られる。
多孔質金属間化合物の気孔サイズ及び気孔率は、原料粉
末の混合比,混合粉末の圧縮比,予熱,燃焼合成時の熱
量,発熱助剤又は吸熱助剤の添加によって制御でき、排
ガス浄化用フィルター,衝撃吸収部材,断熱吸音材,生
体材料等の用途に応じて20〜80%の範囲で調整され
る。また、気孔率を大きくすることにより実効表面積を
大きくできるため、Ni−Ti,Ti−Zr,Zr−N
i等の金属化合物にあっては、水素吸蔵材料としての用
途展開も期待できる。
As described above, a porous intermetallic compound can be obtained by burning and synthesizing a powder mixture obtained by mixing different metal powders in a combination for forming an intermetallic compound.
The pore size and porosity of the porous intermetallic compound can be controlled by the mixing ratio of the raw material powder, the compression ratio of the mixed powder, preheating, the amount of heat during combustion synthesis, and the addition of an exothermic auxiliary agent or an endothermic auxiliary agent. It is adjusted in the range of 20 to 80% according to the use of the shock absorbing member, the heat insulating sound absorbing material, the biomaterial and the like. Also, since the effective surface area can be increased by increasing the porosity, Ni-Ti, Ti-Zr, Zr-N
For metal compounds such as i, application development as a hydrogen storage material can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 多孔質金属間化合物が生成するメカニズムの
説明図
FIG. 1 is an explanatory diagram of a mechanism of forming a porous intermetallic compound.

【図2】 予熱によって気孔率の異なる多孔質金属間化
合物が得られた例
FIG. 2 Example in which porous intermetallic compounds with different porosity were obtained by preheating

【図3】 発熱助剤が多孔質金属間化合物の気孔率に及
ぼす影響を示したグラフ
FIG. 3 is a graph showing the effect of a heat generating auxiliary on the porosity of a porous intermetallic compound.

【図4】 吸熱助剤が多孔質金属間化合物の気孔率に及
ぼす影響を示したグラフ
FIG. 4 is a graph showing the effect of a heat absorbing auxiliary on the porosity of a porous intermetallic compound.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長 隆郎 愛知県名古屋市千種区不老町 名古屋大学 内 Fターム(参考) 4K018 AA06 AA15 AB01 AB02 AB03 AB04 AB07 AC01 BA03 BA04 BA08 BC40 CA11 DA21 KA22 4K020 AA21 AC01 AC03 AC06 AC07 BA08 BB29  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takaro Chief F-term in Nagoya University, Nagoya City, Aichi Prefecture Furo-cho, Nagoya University AC06 AC07 BA08 BB29

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス成分が吸着又は吸蔵されている第1
金属の粉末と第1金属との間に金属間化合物を生成する
第2金属の粉末を配合して原料粉末とし、該原料粉末を
圧粉成形した後、金属間化合物又はセラミックスを生成
する燃焼合成反応時に前記ガス成分を第1の金属粉末か
ら放出させ、金属間化合物又はセラミックスの内部に気
孔を生じさせることを特徴とする多孔質金属間化合物又
はセラミックスの製造方法。
1. A method according to claim 1, wherein a gas component is adsorbed or occluded.
Combustion synthesis in which a powder of a second metal that forms an intermetallic compound is mixed between a metal powder and a first metal to form a raw material powder, and the raw material powder is compacted, and then an intermetallic compound or a ceramic is formed. A method for producing a porous intermetallic compound or ceramics, wherein the gas component is released from the first metal powder during the reaction to form pores inside the intermetallic compound or ceramics.
【請求項2】 燃焼合成に先立って粉末成形体を予熱す
る請求項1記載の製造方法。
2. The production method according to claim 1, wherein the powder compact is preheated prior to the combustion synthesis.
【請求項3】 Al,Ni,Ti,Zr、Hfから選ば
れた1種又は2種以上を第1金属、Ni,Ti,Zr,
Hf,B,C,BN,B4Cから選ばれた1種又は2種
以上を第2金属として使用する請求項1又は2記載の製
造方法。
3. One or more selected from Al, Ni, Ti, Zr and Hf as a first metal, Ni, Ti, Zr,
Hf, B, C, BN, The method according to claim 1 or 2, wherein using B 4 one or more selected from C as the second metal.
【請求項4】 TiC,SiC,Al23,AlN,T
iB2から選ばれた1種又は2種以上の吸熱助剤を原料
粉末に添加する請求項1又は2記載の製造方法。
4. TiC, SiC, Al 2 O 3 , AlN, T
The method according to claim 1 or 2, wherein one or more endothermic auxiliaries selected from iB 2 is added to the raw material powder.
【請求項5】 Zr,Ti,B4C,BN,B,Cから
選ばれた1種又は2種以上の発熱助剤を原料粉末に添加
する請求項1又は2記載の製造方法。
5. The production method according to claim 1, wherein one or more exothermic assistants selected from Zr, Ti, B 4 C, BN, B, and C are added to the raw material powder.
JP2000291508A 2000-09-26 2000-09-26 Method for producing porous intermetallic compound or ceramic Expired - Fee Related JP4402823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000291508A JP4402823B2 (en) 2000-09-26 2000-09-26 Method for producing porous intermetallic compound or ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000291508A JP4402823B2 (en) 2000-09-26 2000-09-26 Method for producing porous intermetallic compound or ceramic

Publications (2)

Publication Number Publication Date
JP2002097531A true JP2002097531A (en) 2002-04-02
JP4402823B2 JP4402823B2 (en) 2010-01-20

Family

ID=18774567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000291508A Expired - Fee Related JP4402823B2 (en) 2000-09-26 2000-09-26 Method for producing porous intermetallic compound or ceramic

Country Status (1)

Country Link
JP (1) JP4402823B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734416B1 (en) 2005-02-28 2007-07-03 인하대학교 산학협력단 Anisotropic porous intermetallic compounds and their preparation
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
JP2011047012A (en) * 2009-08-27 2011-03-10 Kobe Steel Ltd Method for manufacturing high-strength porous aluminum alloy
JP2011214046A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered body
JP2011214049A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered compact
JP2011214048A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered body
JP2011214047A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022598B3 (en) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Method for producing a closed-cell metal foam and component, which has a closed-cell metal foam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
KR100734416B1 (en) 2005-02-28 2007-07-03 인하대학교 산학협력단 Anisotropic porous intermetallic compounds and their preparation
JP2011047012A (en) * 2009-08-27 2011-03-10 Kobe Steel Ltd Method for manufacturing high-strength porous aluminum alloy
JP2011214046A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered body
JP2011214049A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered compact
JP2011214048A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered body
JP2011214047A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Method for producing aluminum porous sintered body

Also Published As

Publication number Publication date
JP4402823B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP2022058729A (en) Reactive additive manufacturing
Nygren et al. On the preparation of bio-, nano-and structural ceramics and composites by spark plasma sintering
JPH09511021A (en) Manufacturing method of metal composite material
JPH0472792B2 (en)
JP2012502878A (en) Method for producing porous mullite-containing composite
JP4402823B2 (en) Method for producing porous intermetallic compound or ceramic
JP2003160384A (en) Porous silicon nitride ceramic and its manufacturing method
JP2007522063A (en) Sinterable nano-powder ceramic material and manufacturing method thereof
JP2005264274A (en) Method for manufacturing porous material of intermetallic compound
JPS5983978A (en) Novel material comprising silicon and manufacture
JP2007145665A (en) METHOD FOR PRODUCING POROUS SiC SINTERED COMPACT
US6387480B1 (en) Setter for defatting and/or firing and method for producing the same
JP5620658B2 (en) Method for producing high-strength porous aluminum alloy
JPS62162608A (en) Production of silicon nitride fine powder
JPS61423A (en) Filter comprising silicon carbide sintered body
JP3175170B2 (en) Method for producing TiC sintered body
JP3626378B2 (en) TiB2-Ti (CN) -based composite and production method thereof
EP1545815B1 (en) Ni-coated ti powders
JP3603115B2 (en) Sintering and forming method for anisotropic porous silicon nitride ceramics
JP4289867B2 (en) Composite material manufacturing method and composite material manufactured by the manufacturing method
JP2801821B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP5565724B2 (en) Method for producing Al2O3 / Mo2N composite by capsule-free hot isostatic pressing
JP2002356706A (en) Method for producing porous material having open pore
JP2002526374A (en) Manufacturing method of composite material and representative material of this composite material
JPS60186469A (en) Manufacture of silicon nitride sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees