JP2002094282A - Radio wave absorbent and its manufacturing method - Google Patents

Radio wave absorbent and its manufacturing method

Info

Publication number
JP2002094282A
JP2002094282A JP2000274569A JP2000274569A JP2002094282A JP 2002094282 A JP2002094282 A JP 2002094282A JP 2000274569 A JP2000274569 A JP 2000274569A JP 2000274569 A JP2000274569 A JP 2000274569A JP 2002094282 A JP2002094282 A JP 2002094282A
Authority
JP
Japan
Prior art keywords
radio wave
carbon
porous body
wave absorber
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000274569A
Other languages
Japanese (ja)
Inventor
Asao Tada
旭男 多田
Kenji Kubo
賢児 久保
Takashi Tabata
隆司 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ii & C Eng Kk
Hokkaido Technology Licensing Office Co Ltd
Original Assignee
Ii & C Eng Kk
Hokkaido Technology Licensing Office Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ii & C Eng Kk, Hokkaido Technology Licensing Office Co Ltd filed Critical Ii & C Eng Kk
Priority to JP2000274569A priority Critical patent/JP2002094282A/en
Priority to AU2001284506A priority patent/AU2001284506A1/en
Priority to PCT/JP2001/007844 priority patent/WO2002023968A1/en
Publication of JP2002094282A publication Critical patent/JP2002094282A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radio wave absorbent where conductive carbon is generated in a void of a noncombustible or fire-retardant porous body, and the manufacturing method of the radio wave absorbent. SOLUTION: The void of the noncombustible or fire-retardant porous body carries a catalyst containing metal such as nickel and cobalt by the impregnation or ion exchange method, or the porous body containing the metal elements is prepared for giving a catalyst function to the void and the contact of hydrocarbon is made under heating for generating the conductive carbon in the void inside the porous body, thus manufacturing the radio wave absorbent where the conductive carbon is uniformly distributed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不燃性又は難燃性
の多孔体の細孔に導電性炭素を生成させた電波吸収体及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorber in which conductive carbon is formed in pores of a non-combustible or non-combustible porous body and a method for producing the same.

【0002】[0002]

【従来の技術】電波吸収体は通常、導電性炭素やフェラ
イト等の電波吸収性物質を発泡ポリウレタン等の基材に
分散させたものである。基材としては発泡ポリウレタン
などの多孔質体やスチレン樹脂、シリコーン樹脂、フェ
ノール樹脂などの熱可塑性樹脂が多く使用されている。
これらの有機物の基材は、型枠を用いずに成形できるこ
と、切断、張り合わせ等によって様々な大きさ、形状に
成形しやすいこと、軽いことなどの利点を有する反面、
耐熱性が低いという欠点がある。電波の吸収は、電波吸
収性物質が電波を吸収し、電磁波がもつ電磁エネルギー
を熱エネルギーに変換することによって行われ、この際
電波吸収性物質が発熱する。高エネルギーの電波を照射
すると電波吸収体の発熱量が大きくなり、基材が溶融、
熱変形、熱分解を起こし、有害ガスの発生や燃焼も起こ
り得る。
2. Description of the Related Art Normally, a radio wave absorber is obtained by dispersing a radio wave absorbing material such as conductive carbon or ferrite in a base material such as polyurethane foam. As the base material, porous materials such as foamed polyurethane and thermoplastic resins such as styrene resin, silicone resin and phenol resin are often used.
These organic base materials have advantages such as being able to be formed without using a mold, being easily cut into various sizes and shapes by cutting, laminating, etc., and being light,
There is a disadvantage that heat resistance is low. Absorption of a radio wave is performed by the radio wave absorbing material absorbing the radio wave and converting the electromagnetic energy of the electromagnetic wave into heat energy. At this time, the radio wave absorbing material generates heat. Irradiation of high-energy radio waves increases the amount of heat generated by the radio wave absorber, melting the base material,
It causes thermal deformation and thermal decomposition, and may generate and burn harmful gases.

【0003】このような問題点を解決するため、基材と
して無機材料を使用することが提案されている。例え
ば、特開平3−131091号公報は、アルミニウム若
しくはアルミニウム合金の粉末を焼結した連続通気孔を
有する多孔質焼結材の連続通気孔内に電波吸収能を有す
る物質の粉末を含有させてなる電波吸収材料を開示して
いる。特開平3−217081号公報には、シリカ・ア
ルミナ系の無機質発泡結合材に炭素繊維を混合した不燃
性電波吸収体が記載されている。他の無機材料として
は、発泡セメント(特開平2−27798号公報)、ケ
イ酸カルシウム成形材、ACL、起泡コンクリート、軽
量コンクリート(特開昭64−82600号公報)、ガ
ラスを発泡させたもの(特開平2−49497号公報)
などが知られている。
In order to solve such problems, it has been proposed to use an inorganic material as a base material. For example, Japanese Patent Application Laid-Open No. H3-131091 discloses that a powder of a substance having radio wave absorption is contained in continuous pores of a porous sintered material having continuous pores obtained by sintering aluminum or aluminum alloy powder. A radio wave absorbing material is disclosed. JP-A-3-217081 describes a non-combustible radio wave absorber in which carbon fibers are mixed with a silica-alumina-based inorganic foamed binder. Other inorganic materials include foamed cement (JP-A-2-27798), calcium silicate molding material, ACL, foamed concrete, lightweight concrete (JP-A-64-82600), and foamed glass. (JP-A-2-49497)
Etc. are known.

【0004】電波吸収性物質を基材に分散させる方法
は、基材によって異なる。基材が圧縮減容可能な発泡ウ
レタン等の多孔体である場合には、電波吸収性物質を種
々の分散媒に分散させたものを基材に含浸させて、電波
吸収体を製造する。基材がポリスチレン樹脂やシリコー
ン樹脂のような樹脂である場合は、樹脂成分に電波吸収
性物質を添加し、必要により溶剤、可塑剤、老化防止剤
などの添加剤を加えて混合、成形している。
[0004] The method of dispersing the radio wave absorbing material in the base material differs depending on the base material. When the base material is a porous material such as urethane foam that can be compressed and reduced in volume, a radio wave absorber is manufactured by impregnating the base material with a dispersion of a radio wave absorbing material in various dispersion media. If the base material is a resin such as polystyrene resin or silicone resin, add a radio wave absorbing substance to the resin component, add additives such as solvent, plasticizer, anti-aging agent, etc. if necessary, mix and mold. I have.

【0005】[0005]

【発明が解決しようとする課題】基材に無機材料を使用
すれば、耐熱性が低いという従来の電波吸収体が有する
問題点を解決できる。しかし、無機質多孔体に電波吸収
性物質を分散させる場合、分散媒に電波吸収性物質を均
一に分散させることが難しく、電波吸収性物質が均一に
分散した電波吸収体を製造することが困難となってい
る。このように、電波吸収性物質の分布を均一にしよう
としても意図に反して均一にならない場合には、再現性
のよい電波吸収体を歩留まりよく得ることが困難とな
る。なぜなら、電波吸収性物質の密度が大きすぎる部分
では電波を反射し、電波吸収性物質の密度が小さすぎる
部分では電波が透過してしまい、このような電波吸収性
物質の分布が均一でない電波吸収体では電波吸収特性が
一様ではなくなるからである。また水硬性無機結合材を
使用して作製した電波吸収体は、乾燥不十分の場合、残
存する水自体の電波吸収能も寄与するため、初期特性が
不安定となる。水硬性無機結合材に電波吸収性物質を混
合し型枠に入れて常温固化するという従来の方法とは全
く異なる方法が最近提案されている。すなわち、ニュー
カーボンフォーラムだより、Vol.5, No.1, p2 には、メ
タン接触分解によって得られる炭素は炭素系電波吸収体
に応用でき、成形済みの無機質多孔体内部に導電性炭素
を析出させて、高エネルギー電磁波に対応できる耐熱性
軽量電磁波吸収体が製造可能であることが記載されてい
る。この方法によれば予め成形された基材を使用し、加
熱下で電波吸収体を製造するので、水硬性無機結合材を
使用して製造した電波吸収体における残存水の問題は解
決する。しかし、この文献には、炭素を所定の深さまで
均一に充填する技術及び適切な気相率を確保するために
充填密度を制御する技術に関する記載はない。また、含
浸法で多孔体に触媒成分を添加する場合、一旦内部に入
った触媒成分溶液が乾燥過程で表面に移動すると表面の
触媒濃度が高くなるためメタン分解が起こりやすくなり
導電性炭素が表面に生成しやすい、という問題もある。
これらを解決する技術が確立されなければ、種々のサイ
ズ及び形状の成形済み不燃性又は難燃性の多孔体の炭素
分布、炭素密度、気相率等を設計通りに実現することは
できない。また、炭素源としてメタンのみが開示され、
それ以外の炭化水素についてはまったく記載されていな
い。
If an inorganic material is used for the base material, the problem of low heat resistance of the conventional radio wave absorber can be solved. However, when dispersing a radio-absorbing substance in an inorganic porous material, it is difficult to uniformly disperse the radio-absorbing substance in a dispersion medium, and it is difficult to manufacture a radio-absorbing substance in which the radio-absorbing substance is uniformly dispersed. Has become. As described above, if the distribution of the radio-absorbing material is not uniform even if it is intended, it is difficult to obtain a radio-absorbing material having good reproducibility with a high yield. This is because radio waves are reflected in areas where the density of the radio-absorbing substance is too high, and radio waves are transmitted in areas where the density of the radio-absorbing substance is too low. This is because the radio wave absorption characteristics are not uniform in the body. In addition, when the radio wave absorber produced using the hydraulic inorganic binder is insufficiently dried, the radio wave absorbing ability of the remaining water itself also contributes, so that the initial characteristics become unstable. A method completely different from the conventional method of mixing a radio-absorbing substance with a hydraulic inorganic binder, placing the mixture in a mold, and solidifying it at room temperature has recently been proposed. In other words, from the New Carbon Forum, Vol. 5, No. 1, p2 states that carbon obtained by catalytic decomposition of methane can be applied to carbon-based electromagnetic wave absorbers, and that conductive carbon is deposited inside a molded inorganic porous material. It describes that a heat-resistant lightweight electromagnetic wave absorber capable of coping with high-energy electromagnetic waves can be manufactured. According to this method, since the radio wave absorber is manufactured under heating using a preformed base material, the problem of residual water in the radio wave absorber manufactured using the hydraulic inorganic binder is solved. However, there is no description in this document regarding a technique for uniformly filling carbon to a predetermined depth and a technique for controlling the packing density to ensure an appropriate gas phase ratio. In addition, when the catalyst component is added to the porous body by the impregnation method, once the catalyst component solution that has entered inside moves to the surface during the drying process, the catalyst concentration on the surface increases, so that methane decomposition easily occurs and the conductive carbon becomes There is also a problem that it is easily generated.
Unless a technique for solving these problems is established, it is impossible to achieve the carbon distribution, carbon density, gas phase ratio, etc. of molded noncombustible or flame-retardant porous bodies of various sizes and shapes as designed. Also, only methane is disclosed as a carbon source,
No other hydrocarbons are described.

【0006】[0006]

【課題を解決するための手段】本発明はこの方法を発展
させたものであり、不燃性又は難燃性の多孔体内部に電
波吸収性物質をその場で析出させて電波吸収体を製造す
る方法において、該多孔体の表面部から中心部に至る任
意の位置の細孔に触媒機能を賦与し、適切な炭化水素を
接触させて該多孔体の細孔に一定の気相率を確保しつつ
導電性炭素を生成させることによって、耐熱性、難燃性
に優れ、入念な乾燥工程が不要で軽量な、電波吸収性物
質を均一に分散担持する電波吸収体を製造するものであ
る。
SUMMARY OF THE INVENTION The present invention is an extension of this method, in which a radio wave absorbing substance is deposited in a non-combustible or non-combustible porous body in situ to produce a radio wave absorbing body. In the method, a catalytic function is imparted to pores at any position from the surface to the center of the porous body, and a suitable hydrocarbon is brought into contact with the porous body to secure a constant gas phase rate in the pores of the porous body. By producing conductive carbon while producing conductive carbon, it is possible to produce a light-wave absorber that is excellent in heat resistance and flame retardancy, does not require a careful drying step, and is lightweight and uniformly disperses and supports a wave-absorbing substance.

【0007】[0007]

【発明の実施の形態】本発明においては、含浸法又はイ
オン交換法によってニッケル、コバルト等の金属を含む
触媒を不燃性又は難燃性の多孔体の細孔に担持させる
か、又はこれらの金属元素を含む多孔体を調製して細孔
に触媒機能を賦与し、加熱下に炭化水素を接触させて該
多孔体の内部の細孔に導電性炭素を生成させることによ
って電波吸収体を製造する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a catalyst containing a metal such as nickel or cobalt is supported on pores of a nonflammable or flame-retardant porous body by an impregnation method or an ion exchange method, A radio wave absorber is produced by preparing a porous body containing an element, imparting a catalytic function to the pores, and contacting a hydrocarbon under heating to generate conductive carbon in the pores inside the porous body. .

【0008】本発明の特徴は、電波吸収体の基材である
不燃性又は難燃性の多孔体の細孔に炭化水素から導電性
炭素を生成する触媒機能を賦与し、加熱下に炭化水素と
接触させて該細孔に導電性炭素をその場で生成させるこ
とにある。すなわち、基材が触媒の担体となり、該担体
に担持された活性金属の作用によって接触した炭化水素
から導電性炭素がその場で生成され、担体、すなわち基
材の細孔に沈着し、電波吸収体が形成される。
[0008] The feature of the present invention is to impart a catalytic function of generating conductive carbon from hydrocarbons to the pores of a non-combustible or flame-retardant porous material which is a base material of a radio wave absorber, and to provide the hydrocarbons with heating. And to form conductive carbon in the pores in situ. That is, the base material serves as a support for the catalyst, and conductive carbon is generated in situ from the hydrocarbons contacted by the action of the active metal supported on the support, deposited on the support, that is, the pores of the base material, and absorbs radio waves. A body is formed.

【0009】基材となる不燃性又は難燃性の多孔体とし
ては、シリカゲル、アルミナ、シリカ・アルミナ、炭素
系多孔体、ゼオライト、層間架橋した粘土系多孔体、多
孔質セラミックス、多孔質コンクリートなどを挙げるこ
とができる。また、多孔体には、ガラス繊維、シリカ・
アルミナ繊維、ロックウールなどの無機繊維の集合形成
体も含まれる。電波吸収体の形状を、シート状、クロス
状、平板状、ピラミッド状、くさび状、円錐状、四角錐
状等とすることができる。種々の形状を有する電波吸収
体を製造するには、予めこのような形状に成形した多孔
体に導電性炭素を生成させる方法、導電性炭素を生成さ
せた多孔体を切断、静水圧加圧法、加圧吸引ろ過法、ホ
ットプレス法等によりこれらの形状に成形する方法など
がある。
The non-combustible or flame-retardant porous material used as the base material includes silica gel, alumina, silica-alumina, carbon-based porous material, zeolite, interlayer-crosslinked clay-based porous material, porous ceramics, porous concrete and the like. Can be mentioned. In addition, glass fiber, silica
An aggregate formed body of inorganic fibers such as alumina fibers and rock wool is also included. The shape of the radio wave absorber can be a sheet shape, a cross shape, a flat plate shape, a pyramid shape, a wedge shape, a conical shape, a quadrangular pyramid shape, or the like. In order to manufacture radio wave absorbers having various shapes, a method of generating conductive carbon in a porous body previously formed into such a shape, cutting the porous body having generated conductive carbon, a hydrostatic pressure method, There is a method of molding into these shapes by a pressure suction filtration method, a hot press method, or the like.

【0010】本発明で使用する炭化水素は、不燃性又は
難燃性の多孔体の細孔に担持した触媒と炭化水素が接触
する場合に気体であれば、いかなる炭化水素又はそれを
含む混合物であってよい。このような炭化水素として、
アルカン、アルケン、アルキンの鎖式炭化水素、脂環式
炭化水素及び芳香族炭化水素を挙げることができ、これ
らのうち鎖式炭化水素が好ましく、アルカンがより好ま
しく、炭素数3以下のアルカンが最も好ましい。炭化水
素を単独で又はそれらを含む混合物として使用すること
ができる。炭化水素を含む混合物には、炭化水素以外の
物質を含むもの、例えば天然ガス、石油ガスなども含ま
れる。また、炭化水素を不活性気体、例えば窒素、アル
ゴンなどと混合したものも使用することができる。
The hydrocarbon used in the present invention may be any hydrocarbon or a mixture containing the hydrocarbon as long as it is a gas when the hydrocarbon is brought into contact with the catalyst supported on the pores of the non-combustible or flame-retardant porous material. May be. As such hydrocarbons,
Alkanes, alkenes, alkyne chain hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons can be mentioned, among which chain hydrocarbons are preferred, alkanes are more preferred, and alkanes having 3 or less carbon atoms are most preferred. preferable. Hydrocarbons can be used alone or as mixtures containing them. The mixture containing hydrocarbons includes those containing substances other than hydrocarbons, such as natural gas and petroleum gas. Further, a mixture of a hydrocarbon and an inert gas such as nitrogen or argon can be used.

【0011】同一炭素数の炭化水素の場合には、一般に
アルキン>アルケン>アルカンの順に分解の反応性が低
下する。しかし、アルキンやアルケンの場合には触媒が
失活しやすい傾向がある。アルカンは炭素数が多いほど
反応しやすく、メタン以外のアルカンの場合、メタンな
どの炭化水素も生成する。炭化水素から生成する炭素は
アモルファス炭素と結晶性炭素の混合物である。このう
ちアモルファス炭素は、炭化水素の炭素数が同一の場
合、アルカンよりもアルケン及びアルキンで生成しやす
く、炭化水素がアルカンの場合には、炭素数が多いほど
生成しやすい。炭化水素がメタンの場合、炭素−炭素間
結合がないので、炭素−水素間結合をすべて切断するよ
うにすれば炭素原子が結晶性炭素の前駆体ユニットとな
る。このとき、炭素原子を規則的に配列する能力が高い
ニッケル等が存在すると結晶性炭素を容易に生成する。
従って、炭化水素の炭素への選択率の観点から見た場
合、反応性は低いがメタンが最も好ましく、エタン、プ
ロパンがそれに次ぐ。しかし、炭素への選択率よりも炭
素生成速度や反応温度を重視する場合にはプロパンが最
も好ましく、以下、エタン、メタンの順となる。
In the case of hydrocarbons having the same carbon number, the reactivity of decomposition generally decreases in the order of alkyne>alkene> alkane. However, in the case of alkyne or alkene, the catalyst tends to be deactivated. Alkanes react more as the number of carbon atoms increases, and in the case of alkanes other than methane, hydrocarbons such as methane are also produced. The carbon produced from hydrocarbons is a mixture of amorphous carbon and crystalline carbon. Of these, amorphous carbon is more likely to be produced with alkenes and alkynes than with alkanes when the hydrocarbon has the same carbon number, and is more easily produced with higher carbon numbers when the hydrocarbon is an alkane. When the hydrocarbon is methane, there is no carbon-carbon bond, and if all the carbon-hydrogen bonds are cut, the carbon atom becomes a precursor unit of crystalline carbon. At this time, if there is nickel or the like having a high ability to arrange carbon atoms regularly, crystalline carbon is easily generated.
Accordingly, from the viewpoint of the selectivity of hydrocarbons to carbon, methane is the most preferable, but ethane and propane are second, although the reactivity is low. However, when the carbon generation rate and the reaction temperature are more important than the selectivity to carbon, propane is most preferable, and ethane and methane are used in this order.

【0012】一般に、炭化水素から得られる結晶性炭素
としては中空フィラメント状炭素、タマネギ状炭素、ヘ
リンボーン状炭素、ナノチューブ、フラーレンなどが知
られており、その形状は炭化水素の種類及び分圧、触媒
の種類、活性金属粒子の大きさ、反応温度等によって異
なる。例えば、純メタンをニッケル系触媒を担持した多
孔体に接触させ、500℃〜800℃で分解させた場合
には、上述した各種結晶性炭素のうち少なくとも中空フ
ィラメント状炭素(概寸:直径数十nm、長さ数μm)を
含むことが分かっている。反応温度が高いほど炭素の収
率が増すが、フィラメント状炭素が減りタマネギ状炭素
が増える傾向がある。また、エチレンから炭素を生成さ
せた場合には、螺旋構造を持つフィラメントも得られ
る。上述した各種結晶性炭化水素は、いずれも黒鉛のよ
うに巨視的に発達した六員環炭素積層連続構造をとれな
いので、炭素粒子間には気相が存在する。このように結
晶性炭素の周囲に気相が存在するものを電波吸収性物質
として用いて電波吸収体を作るとその気相率が高くなり
やすいため、電波が反射されにくくなると考えられる。
In general, as the crystalline carbon obtained from hydrocarbons, hollow filament-like carbon, onion-like carbon, herringbone-like carbon, nanotube, fullerene, etc. are known. , The size of the active metal particles, the reaction temperature and the like. For example, when pure methane is brought into contact with a porous body supporting a nickel-based catalyst and decomposed at 500 ° C. to 800 ° C., at least hollow filamentous carbon (approximately: several tens of nm, several μm in length). As the reaction temperature increases, the yield of carbon increases, but the amount of filamentary carbon tends to decrease and the amount of onion-like carbon tends to increase. When carbon is produced from ethylene, a filament having a helical structure is also obtained. Since none of the various crystalline hydrocarbons described above can take a macrolayer-developed six-membered ring carbon laminated continuous structure like graphite, a gas phase exists between carbon particles. It is considered that when a radio wave absorber is produced by using a material in which a gas phase exists around crystalline carbon as a radio wave absorbing material, the gas phase rate is likely to be high, so that radio waves are hardly reflected.

【0013】より低い反応温度で炭化水素から結晶性炭
素を多く得るには、炭化水素の炭素−炭素間結合の切断
及び炭素−水素間の切断を合理的に促進して結晶性炭素
の前駆体ユニットを効率よく生成するとともに、この前
駆体ユニットを規則的に配列させる機能を持つ触媒の存
在が不可欠である。このような触媒機能を有する触媒成
分から成る触媒はすべて本発明で使用可能である。この
ような触媒機能は、単一活性金属成分のみならず二つ以
上の活性金属成分でも発現させることができる。二つ以
上の活性金属成分は合金を形成していてもよいが、合金
である必要はない。単一活性金属成分としては、例えば
ニッケル、コバルト、鉄、銅、モリブデン等を使用する
ことができ、そのうちニッケルが特に好ましい。また、
第二活性金属成分としては、例えば白金、ロジウム、銀
等の貴金属を使用することができる。触媒金属粒子の大
きさは結晶性炭素の構造及び形状と密接な関係を有す
る。例えば、メタン分解において金属粒子が大きすぎる
場合には、少なくとも中空フィラメント状炭素を発生し
ない。金属粒子を微粒状に保つには、適切な担体、例え
ば本願発明における不燃性又は難燃性の多孔体を用いる
必要がある。さらに適切な助触媒を用いると、結晶性炭
素の収率を高めたり、その構造及び形状に好影響を与え
たりする効果がある。例えば、カルシウム、マグネシウ
ム等のアルカリ土類元素及びナトリウム、カリウム等の
アルカリ金属元素の化合物等を使用することができる。
なお、単一活性金属成分の複数使用は、結晶性炭素の構
造及び形状に影響を与える。
In order to obtain a large amount of crystalline carbon from a hydrocarbon at a lower reaction temperature, the cleavage of the carbon-carbon bond and the cleavage of the carbon-hydrogen of the hydrocarbon are promoted by reasonably promoting the precursor of the crystalline carbon. It is indispensable to have a catalyst having a function of efficiently producing units and a function of regularly arranging the precursor units. All the catalysts comprising the catalyst component having such a catalytic function can be used in the present invention. Such a catalytic function can be expressed not only by a single active metal component but also by two or more active metal components. The two or more active metal components may form an alloy, but need not be an alloy. As the single active metal component, for example, nickel, cobalt, iron, copper, molybdenum and the like can be used, of which nickel is particularly preferred. Also,
As the second active metal component, a noble metal such as platinum, rhodium, silver or the like can be used. The size of the catalytic metal particles is closely related to the structure and shape of the crystalline carbon. For example, if the metal particles are too large in the methane decomposition, at least no hollow filamentous carbon is generated. In order to keep the metal particles fine, it is necessary to use a suitable carrier, for example, a non-combustible or flame-retardant porous body in the present invention. Further, the use of a suitable co-catalyst has the effect of increasing the yield of crystalline carbon and of favorably affecting its structure and shape. For example, compounds of alkaline earth elements such as calcium and magnesium and alkali metal elements such as sodium and potassium can be used.
Note that the use of multiple single active metal components affects the structure and shape of crystalline carbon.

【0014】多孔体の細孔に触媒機能を賦与する方法に
は、ニッケル、コバルト等の触媒活性金属の化合物の溶
液を多孔体に含浸させ、乾燥してこれらの金属を含む触
媒を多孔体の細孔に担持させる方法、これらの金属イオ
ンを多孔体の細孔にイオン交換担持させる方法、メタロ
シリケート等の態様でこれらの金属元素を含有する多孔
体を予め調製する方法等がある。
A method for imparting a catalytic function to the pores of the porous body is to impregnate the porous body with a solution of a compound of a catalytically active metal such as nickel or cobalt, and then to dry the catalyst containing these metals. There are a method of supporting these metal ions in the pores, a method of supporting these metal ions in the pores of the porous body by ion exchange, and a method of preparing a porous body containing these metal elements in advance such as a metallosilicate.

【0015】本発明の電波吸収体の製造方法を、含浸法
を例にとって以下に説明する。最初に、通常の触媒調製
法に従って触媒の金属を担体である基材に担持させる。
まず、触媒活性成分を含む化合物の溶液を基材に含浸さ
せる。この場合、触媒活性成分が基材の奥まで行きわた
るよう配慮する。例えば硝酸、塩酸、有機酸等の競争吸
着剤を使用する。また、該化合物の溶媒は、その蒸気
圧、溶質の溶解度、溶液の表面張力などのほかに基材の
親水性・疎水性などを考慮して水又は非水溶媒又は両者
の混合物の中から最も適切なものを選択する。例えば親
水性の基材には、メタノール、エタノールなどの低級ア
ルコール又は低級アルコールと水との混合物が酢酸ニッ
ケルの溶媒として好ましい。この場合には基材中の空気
を除去せずに触媒成分溶液を基材上に滴下するだけで含
浸することも可能である。基材に含浸された触媒成分溶
液が次に述べる乾燥工程で表面に移動することによる触
媒成分偏析を妨げる方法として、例えば尿素などの沈殿
剤(あるいは同前駆体)を加えた触媒成分溶液を基材に
含浸させた後に90℃程度に加熱して触媒成分を細孔内
に沈殿させることは極めて有効である。引き続き加熱乾
燥、凍結乾燥などの適切な方法により溶媒を気化除去す
る。乾燥の条件は基材の大きさ、一度に乾燥する基材の
個数等に合わせて決める。乾燥過程では、含浸された触
媒活性成分の再分布が起こり、偏在化しないように配慮
する。乾燥終了後は、活性金属化合物の分解温度以上で
加熱し、続いて水素中で加熱することによって金属に還
元する。乾燥、熱分解、還元のための機器及び触媒前駆
体を還元するための水素を別途用意しなくても済むよう
に、これらの一連の工程を流通式管型反応器中で行うこ
ともできる。すなわち、触媒を含浸した基材を反応温度
に設定済みの流通式管型反応器に入れ、炭化水素流通下
で入り口部から中央部に移動させる間に乾燥、熱分解、
還元の過程を終了させる。この場合、還元には炭化水素
の分解によって生成した水素が主に使われる。金属化合
物としては、例えばニッケルの場合、硝酸塩、塩化物、
酢酸塩等の有機酸塩、錯塩等を使用できる。最も好まし
いのは酢酸塩である。特に、触媒前駆体の還元を流通式
管型反応器の中で水素の代わりに炭化水素を用いて行う
場合には、酢酸ニッケルから調製した触媒を含む基材が
最も高い炭素収率を示す。次いで、基材の細孔に導電性
カーボンを生成させる。常法に従って、流通式管型反応
器中に、活性化した触媒を含む基材を置き、炭化水素を
流通させる。炭素密度が目標値に到達したと判断した時
点で該基材を反応管出口付近に移動させて徐冷した後、
反応管外に取り出す。
The method for producing a radio wave absorber of the present invention will be described below by taking an impregnation method as an example. First, the metal of the catalyst is supported on a substrate, which is a carrier, according to a usual catalyst preparation method.
First, a substrate is impregnated with a solution of a compound containing a catalytically active component. In this case, care is taken so that the catalytically active component reaches the inside of the substrate. For example, a competitive adsorbent such as nitric acid, hydrochloric acid, and organic acid is used. In addition, the solvent of the compound may be selected from the group consisting of water or a non-aqueous solvent or a mixture of both in consideration of the hydrophilicity / hydrophobicity of the substrate in addition to the vapor pressure, the solubility of the solute, the surface tension of the solution, and the like. Choose the right one. For example, for a hydrophilic substrate, a lower alcohol such as methanol or ethanol or a mixture of a lower alcohol and water is preferable as a solvent for nickel acetate. In this case, it is also possible to impregnate simply by dropping the catalyst component solution onto the substrate without removing the air in the substrate. As a method for preventing catalyst component segregation due to the catalyst component solution impregnated in the base material moving to the surface in the drying step described below, for example, a catalyst component solution to which a precipitant such as urea (or the same precursor) is added is used. It is extremely effective that the catalyst component is precipitated in the pores by heating to about 90 ° C. after impregnating the material. Subsequently, the solvent is vaporized and removed by an appropriate method such as heat drying or freeze drying. Drying conditions are determined according to the size of the substrate, the number of substrates to be dried at one time, and the like. In the drying process, redistribution of the impregnated catalytically active component occurs, and care is taken to prevent uneven distribution. After the drying is completed, the active metal compound is heated at a temperature not lower than the decomposition temperature, and then heated in hydrogen to be reduced to a metal. These series of steps can also be performed in a flow-through tube reactor so that equipment for drying, pyrolysis and reduction and hydrogen for reducing the catalyst precursor need not be separately prepared. That is, the base material impregnated with the catalyst is placed in a flow-type tubular reactor that has been set to a reaction temperature, and dried, thermally decomposed, while being moved from the entrance to the center under hydrocarbon flow.
End the reduction process. In this case, hydrogen generated by the decomposition of hydrocarbons is mainly used for the reduction. As the metal compound, for example, in the case of nickel, nitrate, chloride,
Organic salts such as acetates and complex salts can be used. Most preferred are acetates. In particular, when the reduction of the catalyst precursor is carried out in a flow tube reactor using hydrocarbons instead of hydrogen, the substrate containing the catalyst prepared from nickel acetate exhibits the highest carbon yield. Next, conductive carbon is generated in the pores of the substrate. According to a conventional method, a substrate containing the activated catalyst is placed in a flow-type tubular reactor, and the hydrocarbon is flowed. At the time when the carbon density was determined to have reached the target value, the substrate was moved to near the reaction tube outlet and gradually cooled,
Take out of the reaction tube.

【0016】炭化水素から炭素を生成する反応は吸熱反
応であるため、反応温度が高いほど炭化水素の転化率が
高くなる。また反応速度論的にも、反応温度は高いほど
良い。炭素生成速度を重視する場合には、炭化水素の種
類に合わせて反応温度を選択する。例えばメタンの場
合、無触媒下では800℃以上が必要であるが、触媒存
在下では500℃以上で十分である。所望量の炭素の生
成に要する反応時間は反応温度に反比例し、基材の大き
さに比例する。結局、反応時間と反応温度は、炭素の結
晶性、基材の大きさ及び形状、電波吸収体の生産速度、
所要電力量等を総合的に考慮して、それぞれ10分〜5
0分、300℃〜900℃の範囲内で選択する。
Since the reaction for producing carbon from hydrocarbon is an endothermic reaction, the higher the reaction temperature, the higher the conversion of hydrocarbon. Also, the reaction temperature is better as the reaction temperature is higher. When the carbon generation rate is important, the reaction temperature is selected according to the type of hydrocarbon. For example, in the case of methane, 800 ° C. or higher is required in the absence of a catalyst, but 500 ° C. or higher is sufficient in the presence of a catalyst. The reaction time required to produce the desired amount of carbon is inversely proportional to the reaction temperature and proportional to the size of the substrate. Eventually, the reaction time and reaction temperature depend on the crystallinity of the carbon, the size and shape of the
10 minutes to 5 minutes, taking into account the required power
0 min, choose between 300 ° C and 900 ° C.

【0017】[0017]

【実施例】実施例1 電波吸収体の基材として珪藻土レンガ(イソライト C
3、イソライト工業製)の試験片(30mm×60mm×5
mm)を使用した。これに酢酸ニッケル0.1M水溶液を
室温で20分間真空含浸させ、120℃で12時間乾燥
し、500℃で4時間熱分解後、管状電気炉中で水素気
流中400℃で0.5時間還元して触媒を活性化した。
続いて上記管状電気炉の雰囲気をメタンに切り替え、5
00℃で0.5時間メタン分解を行った。メタンガスの
流速は120mL/分とした。この場合の導電性炭素の含
有率は3質量%であった。この電波吸収体の誘電率を測
定した結果を図1に示す。図1から、本電波吸収体が優
れた電波吸収効果を有することが分かる。
EXAMPLES Example 1 Diatomaceous earth brick (Isolite C
Test piece (30mm × 60mm × 5)
mm) was used. This is impregnated with a 0.1 M aqueous solution of nickel acetate in vacuo at room temperature for 20 minutes, dried at 120 ° C for 12 hours, pyrolyzed at 500 ° C for 4 hours, and then reduced in a tubular electric furnace at 400 ° C in a stream of hydrogen for 0.5 hour in a hydrogen stream. To activate the catalyst.
Subsequently, the atmosphere in the tubular electric furnace was switched to methane, and 5
Methane decomposition was performed at 00 ° C. for 0.5 hour. The flow rate of methane gas was 120 mL / min. In this case, the content of the conductive carbon was 3% by mass. FIG. 1 shows the result of measuring the dielectric constant of this radio wave absorber. FIG. 1 shows that the present radio wave absorber has an excellent radio wave absorption effect.

【0018】実施例2 炭化水素としてメタンを用い、乾燥、熱分解、還元を反
応管中で行い、還元剤としてメタンを用いた以外は実施
例1と同様の操作を行った。これにより得られた電波吸
収体は実施例1と同等の電波吸収効果を示した。
Example 2 The same operation as in Example 1 was performed except that methane was used as a hydrocarbon, drying, thermal decomposition, and reduction were performed in a reaction tube, and methane was used as a reducing agent. The radio wave absorber thus obtained exhibited the same radio wave absorption effect as in Example 1.

【0019】実施例3 炭化水素としてエチレンを用い、その流速を40mL/分
とした以外は実施例1と同様の操作を行った。これによ
り得られた電波吸収体は実施例1と同等の電波吸収効果
を示した。
Example 3 The same operation as in Example 1 was carried out except that ethylene was used as the hydrocarbon and the flow rate was 40 mL / min. The radio wave absorber thus obtained exhibited the same radio wave absorption effect as in Example 1.

【0020】実施例4 炭化水素としてエタンを用い、その流速を60mL/分と
した以外は実施例1と同様の操作を行った。これにより
得られた電波吸収体は実施例1と同等の電波吸収効果を
示した。
Example 4 The same operation as in Example 1 was performed except that ethane was used as the hydrocarbon and the flow rate was 60 mL / min. The radio wave absorber thus obtained exhibited the same radio wave absorption effect as in Example 1.

【0021】実施例5 炭化水素としてメタンの代わりにベンゼンを使用し、炉
内の反応温度を1000℃とした以外は実施例1と同様
の操作を行った。これにより得られた電波吸収体は実施
例1と同等の電波吸収効果を有する。
Example 5 The same operation as in Example 1 was performed except that benzene was used instead of methane as a hydrocarbon, and the reaction temperature in the furnace was set at 1000 ° C. The radio wave absorber thus obtained has a radio wave absorption effect equivalent to that of the first embodiment.

【0022】実施例6 電波吸収体の基材として珪藻土レンガ(イソライト C
3、イソライト工業製)の試験片(15mm×50mm×1
5mm)を使用した。これに酢酸ニッケル0.1M水溶液
を室温で20分間真空含浸させ、120℃で12時間乾
燥し、500℃で4時間熱分解後、管状電気炉中で水素
気流中400℃で0.5時間還元して触媒を活性化し
た。続いて上記管状電気炉の雰囲気をメタンに切り替
え、500℃で0.5時間メタン分解を行った。メタン
の流速は30mL/分とした。この場合の導電性炭素の含
有率は1.2質量%であった。得られた電波吸収体を切
断してみたところ、炭素は内部まで完全に充填されてい
ることを確認できた。またこの実験において反応時間を
12時間にしたところ、反応後の電波吸収体は粉化して
いた。この事実は本法により、細孔内を完全に炭素で満
たすことが可能であることを示す。
Example 6 A diatomaceous earth brick (Isolite C
Test piece (15mm × 50mm × 1)
5 mm). This is impregnated with a 0.1 M aqueous solution of nickel acetate in vacuo at room temperature for 20 minutes, dried at 120 ° C for 12 hours, pyrolyzed at 500 ° C for 4 hours, and then reduced in a tubular electric furnace at 400 ° C in a stream of hydrogen for 0.5 hour in a hydrogen stream. To activate the catalyst. Subsequently, the atmosphere in the tubular electric furnace was switched to methane, and methane was decomposed at 500 ° C. for 0.5 hour. The flow rate of methane was 30 mL / min. The conductive carbon content in this case was 1.2% by mass. When the obtained radio wave absorber was cut, it was confirmed that carbon was completely filled into the inside. When the reaction time was set to 12 hours in this experiment, the radio wave absorber after the reaction was powdered. This fact indicates that the method makes it possible to completely fill the pores with carbon.

【0023】参考例1 実施例1の電波吸収体で65mmの厚さの平板を構成し、
これを金属板の前面に配置して反射係数を求めた。結果
を図2に示す。この図から、周波数の増加とともに吸収
性能が増加し、すなわち反射係数が減少して、900M
Hzで16dBを超える吸収性能が得られることが分か
る。
Reference Example 1 A flat plate having a thickness of 65 mm was formed from the radio wave absorber of Example 1.
This was arranged on the front surface of the metal plate to determine the reflection coefficient. The results are shown in FIG. From this figure, it can be seen that as the frequency increases, the absorption performance increases, that is, the reflection coefficient decreases and 900M
It can be seen that an absorption performance exceeding 16 dB can be obtained at Hz.

【0024】参考例2 流通型反応管に担持ニッケル触媒を充填し、500℃で
0.5時間メタン分解反応を行い、触媒の周囲に炭素を
生成させた。この炭素を粉砕して0.5mLをガラス容器
に入れて、電子レンジ(定格出力:600W、発信周波
数:2450MHz)中で3分間電波を照射した。その
結果、炭素の温度は150℃に上昇した。この事実は本
法により製造した炭素に電波吸収効果があることを示
す。しかもその効果は黒鉛と同等であることが分かった
(比較例1を参照)。なお、電波照射試験中に火花を発
したり赤熱したりすることはなかった。
Reference Example 2 A flow-type reaction tube was filled with a supported nickel catalyst, and a methane decomposition reaction was performed at 500 ° C. for 0.5 hour to produce carbon around the catalyst. This carbon was pulverized, and 0.5 mL was placed in a glass container and irradiated with radio waves for 3 minutes in a microwave oven (rated output: 600 W, transmission frequency: 2450 MHz). As a result, the temperature of the carbon rose to 150 ° C. This fact indicates that carbon produced by this method has a radio wave absorption effect. Moreover, the effect was found to be equivalent to that of graphite (see Comparative Example 1). No sparks or red heat were generated during the radio wave irradiation test.

【0025】参考例3 実施例1の電波吸収体を炉内温度を750(±5)℃に
調整した市販の電気炉(発熱体はニクロム線)中に1時
間置いた。熱処理後重量を測定したところ、重量の減少
率は1%以下であった。
Reference Example 3 The radio wave absorber of Example 1 was placed in a commercial electric furnace (heating element was a nichrome wire) whose furnace temperature was adjusted to 750 (± 5) ° C. for 1 hour. When the weight was measured after the heat treatment, the weight reduction rate was 1% or less.

【0026】参考例4 実施例1の電波吸収体を電子レンジ(定格出力:600
W、発信周波数:2450MHz)に入れて1分間電波
を照射した。その結果、電波吸収体の温度は200℃に
上昇したが、重量減少率は1%以下であった。
Reference Example 4 The electromagnetic wave absorber of Example 1 was replaced with a microwave oven (rated output: 600
W, transmission frequency: 2450 MHz) and irradiated with radio waves for 1 minute. As a result, the temperature of the radio wave absorber increased to 200 ° C., but the weight reduction rate was 1% or less.

【0027】比較例1 市販の高純度黒鉛粉末0.5mLをガラス容器に入れて、
電子レンジ(定格出力:600W、発信周波数:245
0MHz)中で3分間電波を照射した。その結果、電波
吸収体の温度は155℃に上昇した。電波照射9秒後に
は火花を発し、20秒後には赤熱した。
Comparative Example 1 A commercially available high-purity graphite powder (0.5 mL) was placed in a glass container.
Microwave oven (rated output: 600W, transmission frequency: 245
(0 MHz) for 3 minutes. As a result, the temperature of the radio wave absorber increased to 155 ° C. Sparks were emitted 9 seconds after radio wave irradiation, and glowed red 20 seconds after.

【0028】比較例2 ウレタン基材にカーボングラファイトを含浸させた電波
吸収材料(電波暗室用の汎用品で、難燃塗料が塗布され
ている市販品)とカーボングラファイトを含浸させてい
ないスポンジ状ウレタンを電子レンジ(定格出力600
W、発信周波数2450MHz)に入れてスイッチを入
れた。カーボングラファイトを含浸させた電波吸収材料
は、スイッチ投入後約1秒で煙を出し始め、約3秒後に
発火した。これに伴い、いやなにおいが部屋中に立ちこ
めた。カーボングラファイトを含浸させていないスポン
ジ状ウレタンは、電波を吸収しないため発熱せず、5分
経過後も何の変化もなかった。
Comparative Example 2 A radio wave absorbing material obtained by impregnating a urethane base material with carbon graphite (a general-purpose product for an anechoic chamber and a commercially available product coated with a flame-retardant paint) and a sponge-like urethane not impregnated with carbon graphite The microwave oven (rated output 600
W, transmission frequency 2450 MHz). The radio wave absorbing material impregnated with carbon graphite started emitting smoke about 1 second after the switch was turned on, and ignited about 3 seconds later. Along with this, an unpleasant smell stood in the room. The sponge-like urethane not impregnated with carbon graphite did not generate heat because it did not absorb radio waves, and there was no change even after 5 minutes.

【0029】[0029]

【発明の効果】本発明により以下のような効果が得られ
る。 1.触媒活性成分が溶液の形で、また、炭化水素が気体
の形で基材と接触するため、生成する導電性炭素を基材
に均一に分散させることができる。 2.炭素数が3以下の炭化水素を接触分解する場合は3
00〜900℃で導電性炭素が生成するため、ガラス繊
維などのように、900℃以上で材料強度が著しく低下
するような基材も使用可能である。 3.セメント等の水硬性固化剤、電波吸収性物質等を用
いて常温で製造した電波吸収体は、高出力電波照射下で
は割れることがある、乾燥を十分に行って水分を除去し
ないと水自体の電波吸収能も寄与するため使用初期の電
波吸収特性が不安定となる等の問題点があるが、本願発
明の電波吸収体は予め高温焼成して製造した不燃性又は
難燃性の多孔質性成形体を基材として使用するため、耐
熱衝撃性・耐熱性が格段に優れ、初期の電波吸収特性が
安定している。
According to the present invention, the following effects can be obtained. 1. Since the catalytically active component is in contact with the substrate in the form of a solution and the hydrocarbon is in the form of a gas, the conductive carbon produced can be uniformly dispersed in the substrate. 2. 3 when catalytic cracking of hydrocarbons with 3 or less carbon atoms
Since conductive carbon is generated at 00 to 900 ° C, a substrate such as glass fiber whose material strength is significantly reduced at 900 ° C or higher can also be used. 3. Radio wave absorbers manufactured at room temperature using hydraulic hardening agents such as cement, radio wave absorbing materials, etc., may crack under high-power radio wave irradiation.The water itself must be dried sufficiently to remove water. There is a problem that the radio wave absorption characteristics in the initial stage of use become unstable because the radio wave absorption ability also contributes, but the radio wave absorber of the present invention is made of non-combustible or flame-retardant porous Since the molded article is used as a base material, the thermal shock resistance and heat resistance are remarkably excellent, and the initial electromagnetic wave absorption characteristics are stable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の一実施態様である電波吸収体の比誘
電率を示すグラフである。
FIG. 1 is a graph showing the relative dielectric constant of a radio wave absorber according to one embodiment of the present invention.

【図2】は本発明の一実施態様である電波吸収体の電波
吸収性能を示すグラフである。
FIG. 2 is a graph showing the radio wave absorption performance of a radio wave absorber according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 賢児 北海道夕張郡栗山町旭台1−98 (72)発明者 田畑 隆司 神奈川県横浜市港北区新横浜3−16−1 KCビル イー・アンド・シー・エンジニ アリング株式会社内 Fターム(参考) 4G028 DA01 DB00 DC01 5E321 BB31 BB51 BB60 GG11  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenji Kubo 1-98 Asahidai, Kuriyama-cho, Yubari-gun, Hokkaido (72) Inventor Takashi Tabata 3-16-1 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa Prefecture KC Building E & C F-term (reference) in Engineering Co., Ltd. 4G028 DA01 DB00 DC01 5E321 BB31 BB51 BB60 GG11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 細孔に触媒機能を賦与した不燃性又は難
燃性の多孔体に、炭化水素又はそれを含む混合物を接触
させて多孔体の細孔に結晶性炭素及びアモルファス炭素
より成る群から選択する導電性炭素を生成させた電波吸
収体。
1. A group consisting of crystalline carbon and amorphous carbon in which pores of a porous material are brought into contact with a non-combustible or flame-retardant porous material having a catalytic function given to the pores with hydrocarbons or a mixture containing the hydrocarbons. A radio wave absorber produced from conductive carbon selected from the following.
【請求項2】 細孔に触媒機能を賦与した不燃性又は難
燃性の多孔体に、炭化水素又はそれを含む混合物を30
0〜900℃で接触させて多孔体の細孔に結晶性炭素及
びアモルファス炭素より成る群から選択する導電性炭素
を生成させた電波吸収体。
2. A non-combustible or flame-retardant porous body having a pore provided with a catalytic function, and a hydrocarbon or a mixture containing the hydrocarbon being mixed with 30 parts by mass.
A radio wave absorber in which conductive carbon selected from the group consisting of crystalline carbon and amorphous carbon is generated in pores of a porous body by contacting at 0 to 900 ° C.
【請求項3】 細孔に触媒機能を賦与した不燃性又は難
燃性の多孔体に、炭化水素又はそれを含む混合物を接触
させて多孔体の細孔に結晶性炭素及びアモルファス炭素
より成る群から選択する導電性炭素を生成させることを
特徴とする、電波吸収体の製造方法。
3. A group consisting of crystalline carbon and amorphous carbon in the pores of a porous body by contacting a hydrocarbon or a mixture containing the same with a non-combustible or flame-retardant porous body provided with a catalytic function in the pores. Producing a conductive carbon selected from the group consisting of:
【請求項4】 細孔に触媒機能を賦与した不燃性又は難
燃性の多孔体に、炭化水素又はそれを含む混合物を30
0〜900℃で接触させて多孔体の細孔に結晶性炭素及
びアモルファス炭素より成る群から選択する導電性炭素
を生成させることを特徴とする、電波吸収体の製造方
法。
4. A non-combustible or flame-retardant porous material having pores provided with a catalytic function is provided with 30% of a hydrocarbon or a mixture containing the hydrocarbon.
A method for producing a radio wave absorber, comprising contacting at 0 to 900 ° C. to generate conductive carbon selected from the group consisting of crystalline carbon and amorphous carbon in pores of a porous body.
【請求項5】 触媒活性成分を含む化合物の溶液を不燃
性又は難燃性の多孔体に含浸させて多孔体の細孔に触媒
機能を賦与する、請求項3又は4の製造方法。
5. The method according to claim 3, wherein a solution of the compound containing a catalytically active component is impregnated into a nonflammable or flame-retardant porous body to impart a catalytic function to the pores of the porous body.
【請求項6】 炭化水素が炭素数3以下のアルカンであ
る、請求項1又は2の電波吸収体。
6. The radio wave absorber according to claim 1, wherein the hydrocarbon is an alkane having 3 or less carbon atoms.
【請求項7】 炭化水素がメタンである、請求項1又は
2の電波吸収体。
7. The radio wave absorber according to claim 1, wherein the hydrocarbon is methane.
【請求項8】 炭化水素の混合物が天然ガスである、請
求項1又は2の電波吸収体。
8. The radio wave absorber according to claim 1, wherein the mixture of hydrocarbons is natural gas.
【請求項9】 多孔体が無機繊維の集合形成体、層間架
橋した粘土系多孔体又は炭素系多孔体のいずれかであ
る、請求項1又は2の電波吸収体。
9. The radio wave absorber according to claim 1, wherein the porous body is any one of an inorganic fiber aggregate forming body, an interlayer crosslinked clay-based porous body, and a carbon-based porous body.
【請求項10】 多孔体が予めシート状、クロス状、平
板状、ピラミッド状、くさび状、円錐状又は四角錐状に
成形してある、請求項1又は2の電波吸収体。
10. The radio wave absorber according to claim 1, wherein the porous body is formed in advance into a sheet, cloth, flat plate, pyramid, wedge, cone, or pyramid.
【請求項11】 さらにシート状、クロス状、平板状、
ピラミッド状、くさび状、円錐状又は四角錐状に成形し
た、請求項1又は2の電波吸収体。
11. A sheet, cloth, flat plate,
3. The radio wave absorber according to claim 1, wherein the radio wave absorber is formed into a pyramid shape, a wedge shape, a conical shape, or a quadrangular pyramid shape.
JP2000274569A 2000-09-11 2000-09-11 Radio wave absorbent and its manufacturing method Pending JP2002094282A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000274569A JP2002094282A (en) 2000-09-11 2000-09-11 Radio wave absorbent and its manufacturing method
AU2001284506A AU2001284506A1 (en) 2000-09-11 2001-09-10 Electric wave absorber and method for preparation thereof
PCT/JP2001/007844 WO2002023968A1 (en) 2000-09-11 2001-09-10 Electric wave absorber and method for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274569A JP2002094282A (en) 2000-09-11 2000-09-11 Radio wave absorbent and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002094282A true JP2002094282A (en) 2002-03-29

Family

ID=18760311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274569A Pending JP2002094282A (en) 2000-09-11 2000-09-11 Radio wave absorbent and its manufacturing method

Country Status (3)

Country Link
JP (1) JP2002094282A (en)
AU (1) AU2001284506A1 (en)
WO (1) WO2002023968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003204967B2 (en) * 2002-07-18 2004-12-09 Hokkaido University Electromagnetic wave absorber
JP2015536295A (en) * 2012-11-26 2015-12-21 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Lightweight carbon foam as electromagnetic interference (EMI) shielding material and heat conducting material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299387B2 (en) * 1998-10-05 2009-07-22 Tdk株式会社 Radio wave absorber assembly member and radio wave absorber manufacturing method
JP2000244177A (en) * 1999-02-22 2000-09-08 Nitto Denko Corp Electromagnetic-wave absorption sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003204967B2 (en) * 2002-07-18 2004-12-09 Hokkaido University Electromagnetic wave absorber
JP2015536295A (en) * 2012-11-26 2015-12-21 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Lightweight carbon foam as electromagnetic interference (EMI) shielding material and heat conducting material

Also Published As

Publication number Publication date
WO2002023968A1 (en) 2002-03-21
AU2001284506A1 (en) 2002-03-26

Similar Documents

Publication Publication Date Title
Shaikhutdinov et al. Nickel catalysts supported on carbon nanofibers: structure and activity in methane decomposition
US5157005A (en) Supported high silica zeolites
JP2003520751A (en) Composite material containing activated carbon and expanded graphite
JP6400077B2 (en) Novel carbon molecular sieve and pellet composition useful for C2-C3 alkane / alkene separation
Truong-Phuoc et al. Silicon carbide foam decorated with carbon nanofibers as catalytic stirrer in liquid-phase hydrogenation reactions
KR101605055B1 (en) Metal loaded catalyst and preparation method thereof
CN102145884A (en) Method for preparing composite carbon material with high specific surface area
JP4328618B2 (en) Improved precious metal catalyst for debenzylation
Gao et al. Synthesis and catalytic performance of highly ordered Ru-containing mesoporous carbons for hydrogenation of cinnamaldehyde
JP2002094282A (en) Radio wave absorbent and its manufacturing method
Guan et al. Structured cobalt–manganese oxides on SiC nano-whisker modified SiC foams for catalytic combustion of toluene
Li et al. The role of boron sites in side-chain alkylation of toluene with methanol and a high performance composite catalyst
Li et al. Highly selective MTO reaction over a nanosized ZSM-5 zeolite modified by Fe via the low-temperature dielectric barrier discharge plasma method
JP2003313018A (en) Method for producing carbon nanotube
CN110026231A (en) A kind of hydrophobic structure catalysis material and the preparation method and application thereof
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
Shim et al. Plasma generation of supported metal catalysts
JPH06107476A (en) Exhaust gas purifiyng sic porous body capable of being regenerated by microwave
US10926244B2 (en) Foam-based substrate for catalytic converter
JP3849007B2 (en) Method for producing hydrogen
WO2005028105A1 (en) Catalyst for aromatizing lower hydrocarbon and method for preparation thereof, and method for producing aromatic compound and hydrogen
JP2014515702A (en) Method for producing monolithic catalytic element including fibrous support, and monolithic catalytic element
JPH11253807A (en) Catalyst for production of lower olefin
JPS6359966B2 (en)
JP2005254122A (en) Lower hydrocarbon direct-reforming catalyst and its manufacturing method