JP2003313018A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube

Info

Publication number
JP2003313018A
JP2003313018A JP2002117353A JP2002117353A JP2003313018A JP 2003313018 A JP2003313018 A JP 2003313018A JP 2002117353 A JP2002117353 A JP 2002117353A JP 2002117353 A JP2002117353 A JP 2002117353A JP 2003313018 A JP2003313018 A JP 2003313018A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
catalyst
diameter
carbon nanotube
mesopores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002117353A
Other languages
Japanese (ja)
Inventor
Michio Sugimoto
道雄 杉本
Yoshimasa Takeda
芳正 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2002117353A priority Critical patent/JP2003313018A/en
Publication of JP2003313018A publication Critical patent/JP2003313018A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing diameter-controlled carbon nanotubes, particularly diameter-controlled single layer carbon nanotubes by thermal decomposition of a hydrocarbon compound using a catalyst. <P>SOLUTION: A hydrocarbon compound is thermally decomposed using a catalyst obtained by highly dispersing and carrying metal iron or a metal iron- containing substance on a porous silica-base carrier having mesopores. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブの製造方法に関する。さらに詳しくは、本発明は、
機能性材料として有用な直径が制御されたカーボンナノ
チューブ、特に直径が制御された単層カーボンナノチュ
ーブを、触媒を用いる炭化水素化合物の熱分解法によ
り、効率よく製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing carbon nanotubes. More specifically, the present invention provides
The present invention relates to a method for efficiently producing diameter-controlled carbon nanotubes, particularly diameter-controlled single-wall carbon nanotubes, which are useful as functional materials, by a thermal decomposition method of a hydrocarbon compound using a catalyst.

【0002】[0002]

【従来の技術】近年、直径が数ナノメートルから数十ナ
ノメートルの筒状炭素材料であるカーボンナノチューブ
は、例えば超高集積化が可能な分子素子、水素を始めと
する各種ガスの吸蔵材料、電界放出ディスプレー(FE
D)用部材、樹脂成形品用添加材などの機能性材料とし
て注目されている。このカーボンナノチューブは、19
91年に飯島らによって、アーク放電法の陰極に堆積し
た炭素の塊の中に見出されたものであり[「ネイチャー
(Nature)」、第354巻、第56〜58ページ
(1991年)]、それ以来積極的に研究が行われ、レ
ーザー光照射法や熱分解による気相合成法など、各種の
方法により合成されている。
2. Description of the Related Art In recent years, carbon nanotubes, which are tubular carbon materials having a diameter of several nanometers to several tens of nanometers, are, for example, molecular elements capable of ultra-high integration, storage materials for various gases such as hydrogen, Field emission display (FE
D) has attracted attention as a functional material such as a member and an additive for a resin molded product. This carbon nanotube has 19
It was found by Iijima et al. In a mass of carbon deposited on the cathode of the arc discharge method in 1991 ["Nature", vol. 354, pp. 56-58 (1991)]. , Has been actively researched since then, and has been synthesized by various methods such as a laser irradiation method and a vapor phase synthesis method by thermal decomposition.

【0003】該カーボンナノチューブには、多層のもの
と単層のものとが存在し、特に単層カーボンナノチュー
ブは、水素を始めとする各種ガスの吸蔵材料としての用
途が期待されている。しかしながら、この単層カーボン
ナノチューブを、安価で多量かつ効率的・簡便に製造し
得る技術は、これまで見出されていないのが実状であ
る。例えば、単層カーボンナノチューブの製造方法とし
ては、アーク放電法(特開平6−322616号公報)
やレーザー光照射法(特開平10−273308号公
報)などが開示されているが、これらの方法は、製造コ
ストが高くつく上、量産が困難である。また、カーボン
ナノチューブの直径は、触媒金属の粒子径によって支配
されるが、前記のアーク放電法やレーザー光照射法で
は、使用する触媒金属の粒子径の制御が困難であるた
め、所望の直径を有する単層カーボンナノチューブを得
るためには、反応条件や触媒金属種の詳細な設定が必要
である。
There are multi-layered carbon nanotubes and single-walled carbon nanotubes. In particular, single-walled carbon nanotubes are expected to be used as a storage material for various gases such as hydrogen. However, the reality is that no technology has been found so far that can produce such single-walled carbon nanotubes inexpensively, in large quantities, efficiently, and easily. For example, as a method for producing single-walled carbon nanotubes, an arc discharge method (Japanese Patent Laid-Open No. 6-322616) is used.
Although a laser beam irradiation method (Japanese Patent Laid-Open No. 10-273308) and the like are disclosed, these methods require high manufacturing costs and are difficult to mass produce. Further, the diameter of the carbon nanotube is controlled by the particle diameter of the catalyst metal, but it is difficult to control the particle diameter of the catalyst metal to be used by the arc discharge method or the laser light irradiation method described above. In order to obtain the single-walled carbon nanotubes possessed, it is necessary to set the reaction conditions and the catalytic metal species in detail.

【0004】一方、触媒を用いた通常の気相合成法で
は、反応性の高いアセチレン(特開2000−8621
7号公報)や一酸化炭素[「ケミカル・フィジクス・レ
ターズ(Chemical Physics Lett
ers)」、第317巻、第497〜503ページ(2
000年)]が原料として用いられるが、これらの原料
は、安全性や有害性の面から問題がある。さらに、同じ
く触媒を用いた通常の気相合成法では、触媒担体細孔外
でカーボンナノチューブの成長が進行するため、該カー
ボンナノチューブの直径が制御されず、また、多層化が
進行しやすいという問題がある。
On the other hand, in the usual gas phase synthesis method using a catalyst, acetylene having high reactivity (Japanese Patent Laid-Open No. 2000-8621) is used.
No. 7) and carbon monoxide [“Chemical Physics Letters (Chemical Physics Letters
ers), vol. 317, pp. 497-503 (2
000 years)] is used as a raw material, but these raw materials have problems in terms of safety and harmfulness. Further, in the same vapor phase synthesis method using a catalyst, since the growth of carbon nanotubes proceeds outside the pores of the catalyst support, the diameter of the carbon nanotubes is not controlled, and the problem that multilayering is likely to proceed There is.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況下で、機能性材料として有用な直径が制御されたカ
ーボンナノチューブ、特に直径が制御された単層カーボ
ンナノチューブを、触媒を用いる炭化水素化合物の熱分
解法により、効率よく製造する方法を提供することを目
的とするものである。
Under such circumstances, the present invention aims to carbonize carbon nanotubes having a controlled diameter useful as a functional material, particularly single-walled carbon nanotubes having a controlled diameter, using a catalyst. It is an object of the present invention to provide a method for efficiently producing a hydrogen compound by a thermal decomposition method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、担体として、
メソ細孔を有するシリカ系材料を用いた触媒を使用し、
炭化水素化合物を、該触媒のメソ細孔内で熱分解させる
ことにより、その目的を達成し得ることを見出した。本
発明は、かかる知見に基づいて完成したものである。す
なわち、本発明は、(1)メソ細孔を有する多孔質シリ
カ系担体に鉄金属又は鉄金属含有物を高分散担持させて
なる触媒を用い、炭化水素化合物を熱分解させることを
特徴とするカーボンナノチューブの製造方法、(2)熱
分解温度が500〜1100℃である上記(1)のカー
ボンナノチューブの製造方法、(3)メソ細孔を有する
多孔質シリカ系担体が、細孔径1〜10nm、細孔容量
0.1〜1.5cm3/g及び比表面積100〜200
0m2/gを有するものである上記(1)のカーボンナ
ノチューブの製造方法、(4)炭化水素化合物が、炭素
数1〜4のアルカン及び炭素数2〜4のアルケンの中か
ら選ばれる少なくとも一種である上記(1)のカーボン
ナノチューブの製造方法、及び(5)カーボンナノチュ
ーブが単層カーボンナノチューブである上記(1)のカ
ーボンナノチューブの製造方法、を提供するものであ
る。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to achieve the above object,
Using a catalyst using a silica-based material having mesopores,
It has been found that the object can be achieved by thermally decomposing a hydrocarbon compound in the mesopores of the catalyst. The present invention has been completed based on such findings. That is, the present invention is characterized in that (1) a hydrocarbon compound is thermally decomposed by using a catalyst in which iron metal or an iron metal-containing material is highly dispersed and supported on a porous silica-based carrier having mesopores. Method for producing carbon nanotubes, (2) Method for producing carbon nanotubes according to the above (1) having a thermal decomposition temperature of 500 to 1100 ° C., (3) Porous silica-based carrier having mesopores has a pore diameter of 1 to 10 nm. , Pore volume 0.1 to 1.5 cm 3 / g and specific surface area 100 to 200
The method for producing carbon nanotubes according to (1), which has 0 m 2 / g, and (4) the hydrocarbon compound is at least one selected from alkanes having 1 to 4 carbon atoms and alkenes having 2 to 4 carbon atoms. And (5) the method for producing a carbon nanotube according to (1), wherein the carbon nanotube is a single-wall carbon nanotube.

【0007】[0007]

【発明の実施の形態】本発明のカーボンナノチューブの
製造方法においては、原料として炭化水素化合物が用い
られる。この炭化水素化合物としては、炭素数1〜4の
アルカン、具体的にはメタン、エタン、プロパン、ブタ
ンなどが、あるいは炭素数2〜4のアルケン、具体的に
はエチレン、プロピレン、ブテンなどが挙げられ、これ
らは一種を単独で用いてもよく、二種以上を組み合わせ
て用いてもよい。本発明においては、原料ガスとして、
上記炭化水素化合物を、窒素、ヘリウム、アルゴンなど
の不活性ガス、あるいは水素により任意の割合で希釈混
合したものを用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing carbon nanotubes of the present invention, a hydrocarbon compound is used as a raw material. Examples of the hydrocarbon compound include alkanes having 1 to 4 carbon atoms, specifically methane, ethane, propane, butane, and alkenes having 2 to 4 carbon atoms, specifically ethylene, propylene, butene, and the like. These may be used alone or in combination of two or more. In the present invention, as the raw material gas,
An inert gas such as nitrogen, helium or argon, or a mixture of the above hydrocarbon compounds diluted with hydrogen at an arbitrary ratio can be used.

【0008】一方、触媒としては、メソ細孔を有する多
孔質シリカ系担体に鉄金属又は鉄金属含有物を高分散担
持したものが用いられる。本発明で用いるメソ細孔を有
する多孔質シリカ系担体の性状としては、細孔径が1〜
10nm、細孔容量が0.1〜1.5cm3/g及び比
表面積が100〜2000m2/gの範囲にあるものを
好ましく挙げることができ、特にシリカからなり、かつ
細孔径が2〜5nm、細孔容量が0.5〜1.0cm3
/g及び比表面積が500〜1500m2/gの範囲に
あるものが好適である。このようなメソ細孔を有する多
孔質シリカ系担体としては、例えば[C.T.Kres
geら、Nature、359(1992)、710]
に記載されている「MCM−41」などが挙げられる。
On the other hand, as the catalyst, there is used a porous silica-based carrier having mesopores on which iron metal or an iron metal-containing material is highly dispersed and supported. The properties of the porous silica-based carrier having mesopores used in the present invention include a pore size of 1 to
Preferable ones are those having a diameter of 10 nm, a pore volume of 0.1 to 1.5 cm 3 / g and a specific surface area of 100 to 2000 m 2 / g, and particularly made of silica and having a pore diameter of 2 to 5 nm. , The pore volume is 0.5 to 1.0 cm 3.
/ G and specific surface area in the range of 500-1500 m < 2 > / g are suitable. Examples of the porous silica-based carrier having such mesopores include [C. T. Kres
ge et al., Nature, 359 (1992), 710].
"MCM-41" and the like described in.

【0009】前記触媒において、メソ細孔を有する多孔
質シリカ系担体への鉄金属又は鉄金属含有物の担持方法
としては、特に制限はなく、様々な方法を用いることが
できるが、例えば鉄の無機塩又は鉄の有機塩を含浸させ
て担持させる方法などを、好ましく用いることができ
る。
In the above catalyst, the method of supporting the iron metal or the iron metal-containing material on the porous silica-based carrier having mesopores is not particularly limited, and various methods can be used. A method in which an inorganic salt or an organic salt of iron is impregnated and supported, or the like can be preferably used.

【0010】このようにして得られた触媒中の担持鉄金
属量としては特に制限はないが、通常Fe23換算で
0.1質量%以上である。また、上限については、鉄金
属が高分散で担持されていればよく、特に制限はない
が、鉄金属の分散担持性及び触媒調製などの面から、一
般的には、2質量%程度である。この触媒の形状につい
ては、特に制限はないが、通常粉末状や粒状の形態で用
いられる。次に、反応方法の好ましい実施態様について
説明する。まず、円筒状などの反応器に前記触媒をセッ
トしたのち、窒素、ヘリウム、アルゴンなどの不活性ガ
ス、あるいは水素などを流通させながら、所定の温度ま
で反応器を加熱する。所定の温度に達したら、上記の流
通ガスを原料ガスに切り替え、所定のガス流量となるよ
うに調整したのち、反応を開始する。反応温度は、通常
500〜1100℃の範囲で選定される。この温度が5
00℃未満では炭化水素化合物の熱分解が進行しにくい
し、1100℃を超えるとグラファイト質炭素の生成量
が増大するため、目的物である単層カーボンナノチュー
ブが効率よく得られにくい。したがって、好ましい反応
温度は700〜900℃の範囲である。
The amount of supported iron metal in the catalyst thus obtained is not particularly limited, but is usually 0.1% by mass or more in terms of Fe 2 O 3 . The upper limit is not particularly limited as long as the iron metal is supported in a highly dispersed state, but is generally about 2% by mass from the viewpoint of the dispersibility and supportability of the iron metal and the preparation of the catalyst. . The shape of this catalyst is not particularly limited, but it is usually used in the form of powder or particles. Next, a preferred embodiment of the reaction method will be described. First, the catalyst is set in a cylindrical reactor, and then the reactor is heated to a predetermined temperature while circulating an inert gas such as nitrogen, helium, or argon, or hydrogen. When the temperature reaches a predetermined temperature, the flow gas is switched to the raw material gas, the flow rate of the gas is adjusted to a predetermined value, and then the reaction is started. The reaction temperature is usually selected in the range of 500 to 1100 ° C. This temperature is 5
If the temperature is lower than 00 ° C., the thermal decomposition of the hydrocarbon compound is difficult to proceed, and if the temperature exceeds 1100 ° C., the amount of graphitic carbon produced increases, so that the target single-walled carbon nanotube cannot be efficiently obtained. Therefore, the preferred reaction temperature is in the range of 700 to 900 ° C.

【0011】ガス流量は、触媒1g当たり、好ましく
は、10〜10000cm3/分、より好ましくは10
0〜1000cm3/分である。この流量が10cm3
分未満では目的物である単層カーボンナノチューブを収
率よく得ることができにくいし、 10000cm3
/分を超えると、目的物である単層カーボンナノチュー
ブの生成及び成長に充分な触媒と原料ガスとの接触滞量
時間を確保することができにくい。反応時間は、通常5
〜120分程度、好ましくは15〜60分である。反応
時間が5分未満では目的物である単層カーボンナノチュ
ーブの成長が充分に進行しないおそれがあり、120分
を超えるとグラファイト質炭素の生成量が増大して、目
的物である単層カーボンナノチューブが効率よく得られ
にくい。反応終了後、窒素、ヘリウム、アルゴンなどの
不活性ガスを流通させながら、室温まで冷却したのち、
反応器内から触媒を取り出し、目的物である単層カーボ
ンナノチューブを触媒から分離する。上記単層カーボン
ナノチューブの触媒からの分離の手段については特に制
限はないが、例えばフッ化水素酸や塩酸、硝酸あるいは
水酸化ナトリウム水溶液により触媒のみを溶解させ、分
離する方法を用いることができる。これらの酸や水酸化
ナトリウム水溶液に対して、単層カーボンナノチューブ
は化学的に極めて安定であるため、触媒との分離が可能
である。このようにして、炭化水素化合物を熱分解する
ことにより、該メソ細孔直径以下の直径を有する単層カ
ーボンナノチューブが選択的に効率よく得られる。
The gas flow rate is preferably 10 to 10,000 cm 3 / min, more preferably 10 per 1 g of the catalyst.
It is 0 to 1000 cm 3 / min. This flow rate is 10 cm 3 /
If it is less than a minute, it is difficult to obtain the target single-walled carbon nanotubes in a high yield, and 10000 cm 3
When it exceeds / min, it is difficult to secure a sufficient amount of contact and retention time between the catalyst and the raw material gas for the production and growth of the target single-walled carbon nanotube. Reaction time is usually 5
It is about 120 minutes, preferably 15 to 60 minutes. If the reaction time is less than 5 minutes, the growth of the target single-walled carbon nanotubes may not proceed sufficiently, and if it exceeds 120 minutes, the amount of graphitic carbon produced increases, and the target single-walled carbon nanotubes. Is difficult to obtain efficiently. After completion of the reaction, after cooling to room temperature while circulating an inert gas such as nitrogen, helium or argon,
The catalyst is taken out of the reactor and the target single-walled carbon nanotube is separated from the catalyst. The means for separating the single-walled carbon nanotubes from the catalyst is not particularly limited, but for example, a method in which only the catalyst is dissolved with hydrofluoric acid, hydrochloric acid, nitric acid or an aqueous sodium hydroxide solution and separated can be used. The single-walled carbon nanotubes are chemically extremely stable against these acids and aqueous sodium hydroxide solution, and therefore can be separated from the catalyst. Thus, by thermally decomposing the hydrocarbon compound, single-walled carbon nanotubes having a diameter not larger than the mesopore diameter can be selectively and efficiently obtained.

【0012】[0012]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。 調製例1 触媒の調製 メソ細孔を有する多孔質シリカ系担体として、細孔径
2.5〜4.0nm、細孔容量0.95cm3/g及び
比表面積720m2/gを有する「MCM−41」を用
い、下記のようにして、鉄金属を選択的に担持させた粉
末状触媒を調製した。この触媒中の鉄金属含有量は、F
23換算で1.4質量%であった。硝酸鉄(III)・九
水和物を用いて調製した0.35モル/リットル濃度の
鉄水溶液を真空下で上記多孔質シリカ系担体にその吸水
当量分だけ含浸させ、80℃で2時間、さらに120℃
で2時間の乾燥後、550℃で6時間の焼成をすること
で、触媒を調製した。 調製例2 触媒の調製 調製例1と同様な含浸法により、鉄金属含有量がFe2
3換算で0.4質量%の粉末状触媒を調製した。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. Preparation Example 1 Preparation of Catalyst As a porous silica-based carrier having mesopores, “MCM-41” having a pore diameter of 2.5 to 4.0 nm, a pore volume of 0.95 cm 3 / g and a specific surface area of 720 m 2 / g. Was used as described below to prepare a powdery catalyst on which iron metal was selectively supported. The iron metal content in this catalyst is F
It was 1.4% by mass in terms of e 2 O 3 . An aqueous iron solution having a concentration of 0.35 mol / liter prepared using iron (III) nitrate nonahydrate was impregnated under vacuum in the water-equivalent amount of the porous silica-based carrier, and at 80 ° C. for 2 hours. 120 ° C
After drying for 2 hours at 550 ° C., the catalyst was prepared by baking at 550 ° C. for 6 hours. Preparation Example 2 Preparation of catalyst By the same impregnation method as in Preparation Example 1, the iron metal content was Fe 2
A 0.4% by mass powdery catalyst in terms of O 3 was prepared.

【0013】実施例1 反応器として、入口側にガス導入管、出口側にガス排出
管が接続され、反応器全体を電気ヒーターで加熱でき、
かつ循環水により冷却できる構造のアルミナ製円筒横型
反応器を用いた。まず、アルミナ製円筒横型反応器内
に、調製例1で得た粉末状触媒0.5gをアルミナ製皿
の上に乗せてセットし、反応器内を真空排気後、水素ガ
スの流通を開始した。反応器内に、水素ガスを100c
3/分で流通させたまま、15℃/分の速度で昇温さ
せ550℃まで達したのち、最終的に10℃/分の速度
で、反応開始温度である750℃まで昇温させた。75
0℃に到達後、直ちにエチレン10体積%と窒素90体
積%とからなる原料ガスに切り替え、温度を750℃に
保持しながら、100cm3/分で30分間流通させ
て、反応を行った。反応終了後、流速100cm3/分
の窒素ガスに切り替え、100℃/分の速度で室温まで
冷却降温したのち、反応器内を大気開放させた状態で反
応済み触媒を取り出した。次いで、この反応済み触媒を
フッ化水素酸及び塩酸にて溶解させ、ろ別後、ろ紙上の
残渣物を透過型電子顕微鏡(TEM)で観察し、約3n
mの均一な直経を有する単層カーボンナノチューブが生
成していることを確認した。図1は、得られたカーボン
ナノチューブのTEM写真図であり、その直経はMCM
−41のメソ細孔直経以下に制御されていることが分か
る。
Example 1 As a reactor, a gas introduction pipe was connected to the inlet side and a gas discharge pipe was connected to the outlet side, and the entire reactor can be heated by an electric heater,
In addition, an alumina horizontal cylindrical reactor having a structure capable of being cooled by circulating water was used. First, 0.5 g of the powdery catalyst obtained in Preparation Example 1 was set on an alumina dish in an alumina cylindrical horizontal reactor, and the reactor was evacuated to start the flow of hydrogen gas. . 100 g of hydrogen gas was put in the reactor.
While circulating at m 3 / min, the temperature was raised at a rate of 15 ° C / min to 550 ° C, and finally, at a rate of 10 ° C / min, the reaction initiation temperature was raised to 750 ° C. . 75
Immediately after reaching 0 ° C, the raw material gas consisting of 10% by volume of ethylene and 90% by volume of nitrogen was switched to, and the reaction was carried out by keeping the temperature at 750 ° C and flowing at 100 cm 3 / min for 30 minutes. After the completion of the reaction, the flow rate was switched to 100 cm 3 / min of nitrogen gas, the temperature was cooled to room temperature at a rate of 100 ° C./min, and the reacted catalyst was taken out with the inside of the reactor open to the atmosphere. Next, this reacted catalyst is dissolved with hydrofluoric acid and hydrochloric acid, and after filtering, the residue on the filter paper is observed with a transmission electron microscope (TEM) to obtain about 3n.
It was confirmed that single-walled carbon nanotubes having a uniform diameter of m were produced. FIG. 1 is a TEM photograph of the obtained carbon nanotubes, and the diameter is MCM.
It can be seen that it is controlled to be equal to or less than the mesopore diameter of −41 or less.

【0014】実施例2 実施例1で示したアルミナ製円筒横型反応器内に、調整
例2で得られた粉末状触媒0.5gをアルミナ皿の上に
乗せてセットし、反応器内を真空排気後、水素ガスの流
通を開始した。反応器内に、水素ガスを100cm3
分で流通させたまま、15℃/分の速度で昇温させ65
0℃まで達したのち、最終的に10℃/分の速度で、反
応開始温度である850℃まで昇温させた。850℃に
到達後、直ちに実施例1と同一の原料ガスに切り替え、
温度を850℃に保持しながら、100cm3/分で3
0分間流通させて、反応を行った。反応終了後、流速1
00cm3/分の窒素ガスに切り替え、100℃/分の
速度で室温まで冷却降温したのち、反応器内を大気開放
させた状態で反応済み触媒を取り出した。次いで、この
反応済み触媒を10モル/リットル濃度の水酸化ナトリ
ウム水溶液に加熱溶解させ、ろ別後、ろ紙上の残渣物を
透過型電子顕微鏡(TEM)で観察し、約1.5nmの
均一な直径を有する単層カーボンナノチューブが生成し
ていることを確認した。図2は、得られたカーボンナノ
チューブのTEM写真図であり、その直径はMCM−4
1のメソ細孔直径以下に制御されていることが分かる。
Example 2 0.5 g of the powdery catalyst obtained in Preparation Example 2 was placed on an alumina dish in the cylindrical horizontal alumina reactor shown in Example 1, and the inside of the reactor was vacuumed. After exhausting, circulation of hydrogen gas was started. 100 cm 3 of hydrogen gas in the reactor
The temperature is raised at a rate of 15 ° C./min while circulating for 65 min.
After reaching 0 ° C., the temperature was finally raised to 850 ° C. which is a reaction start temperature at a rate of 10 ° C./min. Immediately after reaching 850 ° C., switching to the same raw material gas as in Example 1,
3 at 100 cm 3 / min while maintaining the temperature at 850 ° C
The reaction was allowed to proceed for 0 minutes. Flow rate after reaction is 1
After switching to nitrogen gas at 00 cm 3 / min and cooling and cooling to room temperature at a rate of 100 ° C./min, the reacted catalyst was taken out with the inside of the reactor open to the atmosphere. Next, this reacted catalyst was dissolved by heating in an aqueous solution of sodium hydroxide having a concentration of 10 mol / liter, and after filtration, the residue on the filter paper was observed with a transmission electron microscope (TEM) to obtain a uniform particle of about 1.5 nm. It was confirmed that single-walled carbon nanotubes having a diameter were produced. FIG. 2 is a TEM photograph of the obtained carbon nanotube, the diameter of which is MCM-4.
It can be seen that the diameter is controlled to be equal to or smaller than the mesopore diameter of 1.

【0015】[0015]

【発明の効果】本発明の方法によれば、製造時の反応時
間や反応温度に左右されずに、該メソ細孔以下の直径を
有し、直径がよく制御された単層カーボンナノチューブ
を、選択的に効率よく得ることができる。本発明の方法
で得られた単層カーボンナノチューブは、機能性材料と
して種々の用途、特に水素を始めとする各種のガス吸蔵
材料としての利用が期待されている。
EFFECTS OF THE INVENTION According to the method of the present invention, single-walled carbon nanotubes having a diameter equal to or smaller than the mesopores and having a well-controlled diameter can be obtained regardless of the reaction time and reaction temperature during production. It can be selectively and efficiently obtained. The single-walled carbon nanotubes obtained by the method of the present invention are expected to be used as various functional materials, especially as various gas storage materials including hydrogen.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた単層カーボンナノチューブ
の透過型電子顕微鏡(TEM)写真図である。
FIG. 1 is a transmission electron microscope (TEM) photograph of the single-walled carbon nanotube obtained in Example 1.

【図2】実施例2で得られた単層カーボンナノチューブ
の透過型電子顕微鏡(TEM)写真図である。
FIG. 2 is a transmission electron microscope (TEM) photograph of the single-walled carbon nanotube obtained in Example 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G146 AA12 BA12 BC08 BC33A BC33B BC34A BC34B BC44 BC46    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G146 AA12 BA12 BC08 BC33A                       BC33B BC34A BC34B BC44                       BC46

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】メソ細孔を有する多孔質シリカ系担体に鉄
金属又は鉄金属含有物を高分散担持させてなる触媒を用
い、炭化水素化合物を熱分解させることを特徴とするカ
ーボンナノチューブの製造方法。
1. Production of carbon nanotubes, characterized in that a hydrocarbon compound is thermally decomposed by using a catalyst in which iron metal or an iron metal-containing material is highly dispersed and supported on a porous silica-based carrier having mesopores. Method.
【請求項2】熱分解温度が500〜1100℃である請
求項1記載のカーボンナノチューブの製造方法。
2. The method for producing carbon nanotubes according to claim 1, wherein the thermal decomposition temperature is 500 to 1100 ° C.
【請求項3】メソ細孔を有する多孔質シリカ系担体が、
細孔径1〜10nm、細孔容量0.1〜1.5cm3
g及び比表面積100〜2000m2/gを有するもの
である請求項1記載のカーボンナノチューブの製造方
法。
3. A porous silica-based carrier having mesopores,
Pore diameter 1-10 nm, pore volume 0.1-1.5 cm 3 /
The method for producing carbon nanotubes according to claim 1, which has g and a specific surface area of 100 to 2000 m 2 / g.
【請求項4】炭化水素化合物が、炭素数1〜4のアルカ
ン及び炭素数2〜4のアルケンの中から選ばれる少なく
とも一種である請求項1記載のカーボンナノチューブの
製造方法。
4. The method for producing carbon nanotubes according to claim 1, wherein the hydrocarbon compound is at least one selected from alkanes having 1 to 4 carbon atoms and alkenes having 2 to 4 carbon atoms.
【請求項5】カーボンナノチューブが単層カーボンナノ
チューブである請求項1記載のカーボンナノチューブの
製造方法。
5. The method for producing a carbon nanotube according to claim 1, wherein the carbon nanotube is a single-wall carbon nanotube.
JP2002117353A 2002-04-19 2002-04-19 Method for producing carbon nanotube Pending JP2003313018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117353A JP2003313018A (en) 2002-04-19 2002-04-19 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117353A JP2003313018A (en) 2002-04-19 2002-04-19 Method for producing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2003313018A true JP2003313018A (en) 2003-11-06

Family

ID=29534589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117353A Pending JP2003313018A (en) 2002-04-19 2002-04-19 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2003313018A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056758A (en) * 2004-08-23 2006-03-02 Shinzo Suzuki Manufacturing method of carbon nanotube and carbon nanotube structure
JP2007176767A (en) * 2005-12-28 2007-07-12 Toray Ind Inc Purifying method for composition containing carbon nanotube
JP2007521664A (en) * 2003-12-11 2007-08-02 イエール ユニバーシティ Growth of boron nanostructures with controlled diameter
JP2008526683A (en) * 2005-01-11 2008-07-24 本田技研工業株式会社 Method for growing long carbon single-walled nanotubes
JP2009507744A (en) * 2005-05-05 2009-02-26 本田技研工業株式会社 Synthesis of narrow-diameter carbon single-walled nanotubes
KR100995388B1 (en) 2008-09-19 2010-11-19 한국과학기술원 Method For Controlling Diameter Of Carbon Nitride Nanotubes Using Template
KR101007184B1 (en) 2008-10-17 2011-01-12 제일모직주식회사 Supported Catalyst for Synthesizing Carbon Nanotubes, Method for Preparing thereof and Carbon Nanotube Using the Same
CN114314564A (en) * 2021-12-22 2022-04-12 长沙晟天新材料有限公司 Carbon nanotube conductive network coated SiO @ C composite material and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521664A (en) * 2003-12-11 2007-08-02 イエール ユニバーシティ Growth of boron nanostructures with controlled diameter
JP2006056758A (en) * 2004-08-23 2006-03-02 Shinzo Suzuki Manufacturing method of carbon nanotube and carbon nanotube structure
JP2008526683A (en) * 2005-01-11 2008-07-24 本田技研工業株式会社 Method for growing long carbon single-walled nanotubes
JP2009507744A (en) * 2005-05-05 2009-02-26 本田技研工業株式会社 Synthesis of narrow-diameter carbon single-walled nanotubes
JP2007176767A (en) * 2005-12-28 2007-07-12 Toray Ind Inc Purifying method for composition containing carbon nanotube
KR100995388B1 (en) 2008-09-19 2010-11-19 한국과학기술원 Method For Controlling Diameter Of Carbon Nitride Nanotubes Using Template
KR101007184B1 (en) 2008-10-17 2011-01-12 제일모직주식회사 Supported Catalyst for Synthesizing Carbon Nanotubes, Method for Preparing thereof and Carbon Nanotube Using the Same
CN114314564A (en) * 2021-12-22 2022-04-12 长沙晟天新材料有限公司 Carbon nanotube conductive network coated SiO @ C composite material and preparation method and application thereof
CN114314564B (en) * 2021-12-22 2023-11-28 湖南京舟股份有限公司 Carbon nanotube conductive network coated SiO@C composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
EP1558524B1 (en) Cvd synthesis of carbon nanotubes
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
JP5223335B2 (en) Carbon nanotube production method and carbon nanotube production catalyst
JP3963893B2 (en) Method for producing single-walled carbon nanotube
JP5550833B2 (en) Method and apparatus for high quality single-walled carbon nanotube growth
JP2010137222A (en) Metal nano catalyst, manufacturing method therefor, and adjusting method of growth mode of carbon nanotube using therewith
WO2006033457A1 (en) Vapor phase method for producing carbon nanotube
JP2004002182A (en) Oriented carbon nanotube film and its manufacturing method
JP4443423B2 (en) Single-walled carbon nanotube manufacturing method and manufacturing apparatus
JP2003313018A (en) Method for producing carbon nanotube
JP5585275B2 (en) Carbon nanotube manufacturing method
JP4459212B2 (en) Single-walled carbon nanotube-containing composition
JP2004217511A (en) Method and apparatus for manufacturing fullerene or carbon nanotube
KR100596677B1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
JP5473306B2 (en) Catalyst for producing carbon nanotube, method for producing carbon nanotube using the same, and method for producing the catalyst
JP2009078235A (en) Manufacturing method of catalyst body for carbon nanotube synthesis
WO2022047600A1 (en) Method for preparing multi-walled carbon nanotubes
JP4049097B2 (en) Gas storage material and gas storage device
JP2003313017A (en) Method for producing carbon nanotube
JP3952479B2 (en) Method for producing carbon nanotube
Zhu Detonation of molecular precursors as a tool for the assembly of nano-sized materials
JP2005171443A (en) Chemical vapor growth apparatus of carbon fiber and method for producing carbon fiber
JP2003292314A (en) Production of carbon nanotube
JPWO2007083831A1 (en) Platelet-type slit vapor-grown carbon fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328