JP2002090605A - Lens-adjusting device and lens-adjusting method - Google Patents

Lens-adjusting device and lens-adjusting method

Info

Publication number
JP2002090605A
JP2002090605A JP2000280249A JP2000280249A JP2002090605A JP 2002090605 A JP2002090605 A JP 2002090605A JP 2000280249 A JP2000280249 A JP 2000280249A JP 2000280249 A JP2000280249 A JP 2000280249A JP 2002090605 A JP2002090605 A JP 2002090605A
Authority
JP
Japan
Prior art keywords
lens
diffraction
adjusting
diffraction grating
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000280249A
Other languages
Japanese (ja)
Inventor
Koji Fukui
厚司 福井
和政 ▲高▼田
Kazumasa Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000280249A priority Critical patent/JP2002090605A/en
Publication of JP2002090605A publication Critical patent/JP2002090605A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lens-adjusting device with which dust or the like is prevented from adhering to a diffraction grating, and a lens-adjusting method utilizing such a device. SOLUTION: This lens-adjusting device 10 is provided with a diffraction device 22 diffracting the light transmitted through a lens 12 to zero-th order diffracted light and first-order diffracted light differently and making the diffracted light interfere, a moving device 36 for moving the device 22, and an aberration measuring device 44 for obtaining the aberration of the lens from the interference image by the zero-th order diffracted light and the first- order diffracted light. Then, the device 22 is equipped with the diffraction grating 24, having a diffraction surface 26 where plural grooves 28 are formed, a conductive film 30 covering over the diffraction surface, in a state where a recessed part 60 corresponding to a groove is left and an electrical wire 32 which grounds the conductive film to ground.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスク方式の
情報記億媒体、例えばDVD(Digita1 VersatileDis
k)、に情報を読み書きする光学レンズ、またはレーザ加
工機、レーザ顕微鏡などにおいて光を結橡して光スポッ
トを形成する光学レンズの調整装置及び調整方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information storage medium of an optical disk system, for example, a DVD (Digita1 VersatileDisable).
The present invention relates to an apparatus and method for adjusting an optical lens for reading and writing information, or an optical lens for forming a light spot by combining light in a laser processing machine, a laser microscope, or the like.

【0002】[0002]

【発明の背景】光ディスク方式の高密度情報記憶媒体か
ら情報を読み取り、またこの高密度情報記録媒体に情報
を記億するためには、光源から出射された光を目的の場
所に正確に照射できる光学系が必要である。そのため、
特に、光学系の対物レンズは、それ自体に厳格な光学的
特性が要求されるだけでなく、目的の場所に精度良く固
定されなければならない。
BACKGROUND OF THE INVENTION In order to read information from an optical disk type high-density information storage medium and to store information on the high-density information storage medium, light emitted from a light source can be accurately irradiated to a target place. Optical system is required. for that reason,
In particular, the objective lens of the optical system not only requires strict optical characteristics per se, but also must be accurately fixed to a target place.

【0003】そこで、対物レンズの検査又は調整の方法
として、図1に示すように、対物レンズ1を介して出射
した光(例えば、レーザ光)2をレンズ検査用の参照基準
3(例えば、光ディスク)に照射し、この参照基準3から
の反射光を検出し、この検出から得られた再生信号4を
基準信号5と比較し、これら再生信号4と基準信号5と
の位相差6を最小にするように又はその位相差が所定の
許容値に収まるように、対物レンズ1の傾き等を調整す
ること(ジッタ法)が考えられる。
As a method of inspecting or adjusting an objective lens, as shown in FIG. 1, light (eg, laser light) 2 emitted through an objective lens 1 is used as a reference 3 for lens inspection (eg, an optical disk). ), The reflected light from the reference reference 3 is detected, the reproduction signal 4 obtained from this detection is compared with the reference signal 5, and the phase difference 6 between the reproduction signal 4 and the reference signal 5 is minimized. It is conceivable to adjust the inclination or the like of the objective lens 1 so that the phase difference falls within a predetermined allowable value (jitter method).

【0004】しかし、一般に対物レンズ1の特性は個々
に異なり、対物レンズ1の傾斜量等と位相差6との間に
は一定した関係がなく、図2に示すように、1つの対物
レンズ1Aと別の対物レンズ1Bでは、著しく異なる特
性(レンズ傾斜角―位相特性)を示すことがある。また、
対物レンズの傾斜調整と信号の対比とを繰り返し行なわ
なければならないし、どの段階で調整を完了するかの客
観的判断が難しい。さらに、再生信号4から対物レンズ
1の傾斜等を十分に把握できない。そこで、本発明は、
上述したジッタ法に代わる新たなレンズの調整装置を提
供することを目的とする。
However, the characteristics of the objective lens 1 generally differ from each other, and there is no fixed relationship between the amount of tilt of the objective lens 1 and the like and the phase difference 6, and as shown in FIG. The other objective lens 1B may exhibit significantly different characteristics (lens tilt angle-phase characteristics). Also,
The tilt adjustment of the objective lens and the comparison of signals must be repeatedly performed, and it is difficult to objectively determine at which stage the adjustment is completed. Further, the inclination of the objective lens 1 and the like cannot be sufficiently grasped from the reproduction signal 4. Therefore, the present invention
It is an object of the present invention to provide a new lens adjusting device that replaces the above-described jitter method.

【0005】[0005]

【発明の概要】本発明のレンズ調整装置の第1の形態
は、上記レンズを透過した光から異なる次数の回折光を
得ると共にこれら異なる次数の回折光(例えば、0次回
折光と±1次回折光)を干渉させて干渉像を得る回折手
段と、上記回折装置を移動させる移動手段と、上記干渉
像から上記レンズの収差を求める収差計測手段と有す
る。また、上記回折手段は、複数の溝が形成された回折
面を有する回折格子と、上記溝に対応する凹部を残した
状態で上記回折面を覆う導電膜と、上記導電膜をアース
に接地する接地手段とを備えている。なお、導電膜の厚
さは溝の幅の約40%以下とするのが好ましい。
SUMMARY OF THE INVENTION A first embodiment of a lens adjusting apparatus according to the present invention is to obtain diffracted lights of different orders from light transmitted through the lens, and to obtain diffracted lights of these different orders (for example, 0th-order diffracted light and ± 1st-order diffracted light). ), A diffracting means for obtaining an interference image by causing interference, a moving means for moving the diffraction device, and an aberration measuring means for obtaining aberration of the lens from the interference image. Further, the diffraction means includes a diffraction grating having a diffraction surface in which a plurality of grooves are formed, a conductive film covering the diffraction surface while leaving a concave portion corresponding to the groove, and grounding the conductive film to ground. Grounding means. Note that the thickness of the conductive film is preferably about 40% or less of the width of the groove.

【0006】本発明の第2の形態のレンズ調整装置は、
上記回折手段が、複数の溝が形成された回折面を有する
回折格子と、上記回折面の各溝を埋めかつ上記回折面の
反対側に平滑な面を形成し、上記回折格子と異なる屈折
率を有する材料からなる被覆層とを備えている。
A lens adjusting device according to a second embodiment of the present invention comprises:
The diffraction means has a diffraction grating having a diffraction surface on which a plurality of grooves are formed, and forms a smooth surface on the opposite side of the diffraction surface by filling each groove of the diffraction surface, and has a different refractive index from the diffraction grating. And a coating layer made of a material having the following.

【0007】本発明の第3の形態のレンズ調整装置は、
上記回折手段が、複数の溝が形成された回折面を有する
回折格子と、上記回折面上に該回折面から所定の間隔を
あけて配置された被覆板とを備えていることを特徴とす
る。
A lens adjusting device according to a third embodiment of the present invention comprises:
The diffraction means includes a diffraction grating having a diffraction surface in which a plurality of grooves are formed, and a covering plate disposed on the diffraction surface at a predetermined distance from the diffraction surface. .

【0008】これら第1から第3の形態のレンズ調整装
置は、さらに、上記レンズの傾きを調整する傾斜調整手
段と、上記収差計測手段で求めた収差に応じて上記傾斜
調整手段を動作させる制御手段とを備えていることが好
ましい。
The lens adjusting devices of the first to third embodiments further include a tilt adjusting means for adjusting the tilt of the lens, and a control for operating the tilt adjusting means in accordance with the aberration obtained by the aberration measuring means. Means are preferably provided.

【0009】本発明の第1の形態のレンズ調整方法は、
複数の溝が形成された回折面を有する回折格子と、上記
溝に対応する凹部を残した状態で上記回折面を覆う導電
膜と、上記導電膜をアースに接地する接地手段とを備え
た回折手段を準備する工程と、上記レンズを透過した光
を上記回折格子に入射し、上記回折格子から得られた異
なる次数の回折光を干渉させる工程と、上記回折装置を
移動させる工程と、上記干渉像から上記レンズの収差を
求める工程と、上記収差に応じて上記レンズの傾きを調
整する工程とを備えている。なお、導電膜の厚さは溝の
幅の約40%以下とするのが好ましい。
A lens adjusting method according to a first embodiment of the present invention is as follows.
A diffraction grating having a diffraction grating having a diffraction surface with a plurality of grooves formed thereon, a conductive film covering the diffraction surface while leaving a concave portion corresponding to the groove, and grounding means for grounding the conductive film to ground. Providing a means, providing light transmitted through the lens to the diffraction grating, causing the diffracted lights of different orders obtained from the diffraction grating to interfere with each other, moving the diffraction device; and A step of obtaining the aberration of the lens from an image; and a step of adjusting the inclination of the lens according to the aberration. Note that the thickness of the conductive film is preferably about 40% or less of the width of the groove.

【0010】本発明の第2の形態のレンズ調整方法は、
回折手段が、複数の溝が形成された回折面を有する回折
格子と、上記回折面の各溝を埋めかつ上記回折面の反対
側に平滑な面を形成し、上記回折格子と異なる屈折率を
有する材料からなる被覆層とを備えていることを特徴と
する。
A lens adjusting method according to a second embodiment of the present invention includes:
Diffraction means, a diffraction grating having a diffraction surface in which a plurality of grooves are formed, fills each groove of the diffraction surface and forms a smooth surface on the opposite side of the diffraction surface, and has a different refractive index from the diffraction grating. And a coating layer made of a material having the same.

【0011】本発明の第2の形態のレンズ調整方法は、
回折手段が、複数の溝が形成された回折面を有する回折
格子と、上記回折面上に該回折面から所定の間隔をあけ
て配置された被覆板とを備えていることを特徴とする。
A lens adjusting method according to a second embodiment of the present invention comprises:
The diffraction means includes a diffraction grating having a diffraction surface on which a plurality of grooves are formed, and a covering plate disposed on the diffraction surface at a predetermined distance from the diffraction surface.

【0012】[0012]

【発明の実施の形態】以下、添付図面を参照して本発明
の複数の形態について説明する。まず、図3は、光ディ
スク方式の情報記億媒体、例えばDVD(Digita1 Versa
tile Disk)、に情報を読み書きする光学レンズ、または
レーザ加工機、レーザ顕微鏡などにおいて光を結橡して
光スポットを形成する光学レンズの調整システム(調整
装置)10の全体を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plurality of embodiments of the present invention will be described below with reference to the accompanying drawings. First, FIG. 3 shows an optical storage medium such as a DVD (Digita1 Versa).
1 shows an optical lens adjustment system (adjustment device) 10 for reading and writing information on a tile disk, or an optical lens for forming a light spot by combining light in a laser processing machine, a laser microscope, or the like.

【0013】調整システム10によって調整される対象
のレンズ(以下、「対物レンズ」という。)12は、光
ピックアップ14に設けてある。対物レンズ12は傾斜
調整装置16によって支持されており、この傾斜調整装
置16を操作することにより対物レンズ12の傾斜(図
面の左右方向とこれに直交する方向の2方向の傾斜)が
調整できるようにしてある。対物レンズ12及び光ピッ
クアップ14は、対物レンズ12の傾斜を読み取ると
き、対物レンズ12の光軸を後述する評価装置18の光
軸20にほぼ一致させた状態で保持される。なお、本実
施形態では対物レンズ12だけを単独で傾斜調整装置1
6に支持しているが、光ピックアップ14を傾斜調整装
置16で支持し、傾斜調整装置16で光ピックアップ1
4の傾斜を変えることによって対物レンズ12の傾斜を
調整できるようにしてもよい。また、傾斜調整装置16
は、単なるマニアル調整ねじであってもよいし、モータ
駆動による装置であってもよい。
A lens to be adjusted by the adjustment system 10 (hereinafter, referred to as an “objective lens”) 12 is provided on an optical pickup 14. The objective lens 12 is supported by a tilt adjusting device 16, and by operating the tilt adjusting device 16, the tilt of the objective lens 12 (in two directions, a left-right direction and a direction perpendicular to the drawing) can be adjusted. It is. When reading the tilt of the objective lens 12, the objective lens 12 and the optical pickup 14 are held with the optical axis of the objective lens 12 substantially aligned with the optical axis 20 of an evaluation device 18 described later. In the present embodiment, only the objective lens 12 is used alone and the tilt adjustment device 1 is used.
6, the optical pickup 14 is supported by the tilt adjusting device 16, and the optical pickup 1 is supported by the tilt adjusting device 16.
By changing the inclination of 4, the inclination of the objective lens 12 may be adjusted. Also, the tilt adjusting device 16
May be a simple manual adjustment screw or a device driven by a motor.

【0014】対物レンズ12の傾きを評価する評価装置
18は回折装置22を有する。回折装置22は板状の回
折格子24を有する。回折格子24は、アクリル樹脂、
ポリカーボネート樹脂、またはガラスなど透明な材料の
板からなり、図4(a)に示すように、一方の表面(回
折面)26に所定のピッチをあけて平行に並ぶ複数の溝
28が形成されている。溝28のピッチは、例えば、調
整対象である光学レンズが光ディスクの情報読取・書込
用の対物レンズの場合、この光ディスクのトラック間の
距離に等しくするのが好ましい。溝28の形成されてい
る回折面26、またはこの回折面26及び反対側の表面
の両方が、導電性の材料からなる導電膜30で被覆され
ている。また、導電膜30は、接地手段である電線32
を介してアース34に接地されている。
The evaluation device 18 for evaluating the inclination of the objective lens 12 has a diffraction device 22. The diffraction device 22 has a plate-like diffraction grating 24. The diffraction grating 24 is made of acrylic resin,
As shown in FIG. 4A, a plurality of grooves 28 are formed on one surface (diffraction surface) 26 at a predetermined pitch and arranged in parallel with each other. I have. When the optical lens to be adjusted is, for example, an objective lens for reading and writing information on an optical disk, the pitch of the grooves 28 is preferably equal to the distance between tracks on the optical disk. The diffraction surface 26 on which the groove 28 is formed, or both the diffraction surface 26 and the surface on the opposite side, are covered with a conductive film 30 made of a conductive material. In addition, the conductive film 30 includes an electric wire 32 serving as a grounding means.
Is grounded to the ground 34 via the.

【0015】回折格子24は、光軸20に対して垂直
に、また回折面26が対物レンズ12の焦点にほぼ一致
するように配置される。回折格子24はまた、該回折格
子24を光軸20に直交する方向(図3の左右方向)に
移動する移動装置36に連結されている。なお、移動装
置36には、回折格子24を微小量づつ移動できる、ピ
エゾ素子・直流モータ・又は分解能の高いステッピング
モータを有するリニアステージが好適に利用できる。回
折格子24を挟んで対物レンズ12の反対側には、対物
レンズ12と回折格子24を透過した光を平行な光に復
調するコリメートレンズ38と、コリメートレンズ38
を透過した平行光を再び結像する結像レンズ40と、結
像レンズ40を透過した光を受光する撮像素子(例え
ば、電荷結合素子)42が配置されている。
The diffraction grating 24 is arranged perpendicular to the optical axis 20 so that the diffraction surface 26 substantially coincides with the focal point of the objective lens 12. The diffraction grating 24 is also connected to a moving device 36 that moves the diffraction grating 24 in a direction perpendicular to the optical axis 20 (the left-right direction in FIG. 3). Note that, as the moving device 36, a linear stage having a piezo element, a DC motor, or a stepping motor with high resolution, which can move the diffraction grating 24 by a small amount can be suitably used. On the opposite side of the objective lens 12 with the diffraction grating 24 interposed therebetween, a collimating lens 38 for demodulating light transmitted through the objective lens 12 and the diffraction grating 24 into parallel light, and a collimating lens 38
An imaging lens 40 that re-images the parallel light transmitted through the imaging lens 40 and an imaging element (for example, a charge-coupled device) 42 that receives the light transmitted through the imaging lens 40 are arranged.

【0016】撮像素子42は、収差計測装置44に電気
的に接続されている。収差計測装置44は、撮像素子4
2で受光した像を表示する表示装置46と、表示装置4
6に表示された像をもとに対物レンズ12の収差を計測
する収差演算装置48を有する。収差測定装置44は、
上述した傾斜調整装置16と移動装置36の駆動を制御
する制御装置50に電気的に接続されている。
The image pickup device 42 is electrically connected to an aberration measuring device 44. The aberration measurement device 44 includes the imaging device 4
The display device 46 for displaying the image received by the display device 2 and the display device 4
An aberration calculator 48 for measuring the aberration of the objective lens 12 based on the image displayed in 6 is provided. The aberration measuring device 44
It is electrically connected to the control device 50 for controlling the driving of the tilt adjusting device 16 and the moving device 36 described above.

【0017】以上の構成を供えた調整システム10によ
る対物レンズ12の傾斜調整について具体的に説明す
る。傾斜調整時、図3に示すように、対物レンズ12は
その光軸を光軸20にほぼ一致させた状態で固定され
る。次に、対物レンズ12を挟んで回折格子24の反対
側に配置された光源(図示せず)を点灯し、対物レンズ
12に平行光(例えば、レーザ光)を入射する。対物レ
ンズ12を透過した光は、回折格子24、特に溝28が
形成されている表面で焦点を結ぶ。また、回折格子24
を透過した光は、0次回折光、±1次回折光、・・・±
n次回折光に分かれ、コリメートレンズ38、結像レン
ズ40を介し、撮像素子42に投射される。ここで、回
折格子24は、撮像素子42の投影面で、0次回折光5
2と+1次回折光54が部分的に干渉し、また0次回折
光52と−1次回折光56が干渉するように設計されて
いる。したがって、撮像素子42に投射された像を再生
する表示装置46には、図5(a)、(b)に示すよう
に、0次回折光52と+1次回折光54の干渉像(干渉
縞)と、0次回折光52と−1次回折光56の干渉像
(干渉縞)が映し出される。
The tilt adjustment of the objective lens 12 by the adjustment system 10 having the above configuration will be specifically described. At the time of adjusting the tilt, as shown in FIG. 3, the objective lens 12 is fixed with its optical axis substantially aligned with the optical axis 20. Next, a light source (not shown) arranged on the opposite side of the diffraction grating 24 with the objective lens 12 therebetween is turned on, and parallel light (for example, laser light) is incident on the objective lens 12. The light transmitted through the objective lens 12 is focused on the diffraction grating 24, particularly on the surface where the groove 28 is formed. Also, the diffraction grating 24
Are the 0th-order diffracted light, ± 1st-order diffracted light,.
The light is split into nth-order diffracted light, and is projected on an image sensor 42 via a collimator lens 38 and an imaging lens 40. Here, the diffraction grating 24 is the zero-order diffracted light 5 on the projection surface of the image sensor 42.
The 2nd and + 1st-order diffracted lights 54 are designed to partially interfere with each other, and the 0th-order diffracted light 52 and the -1st-order diffracted light 56 are designed to interfere with each other. Therefore, as shown in FIGS. 5A and 5B, the display device 46 for reproducing the image projected on the image sensor 42 has an interference image (interference fringe) of the 0th-order diffracted light 52 and the + 1st-order diffracted light 54. , An interference image (interference fringe) of the 0th-order diffracted light 52 and the -1st-order diffracted light 56 is projected.

【0018】干渉縞の形は、対物レンズ12の傾斜方向
に応じて異なる。いま、対物レンズ12が回折格子24
の溝28の長手方向と平行であるが、この溝28と直交
する方向(溝の横断方向)に傾いている場合、図5
(a)に示す干渉縞が現れる。また、対物レンズ12が
回折格子24の溝28の横断方向に平行であるが、この
溝28の長手方向に傾いている場合、図5(b)に示す
干渉縞が現れる。
The shape of the interference fringes differs depending on the tilt direction of the objective lens 12. Now, the objective lens 12 is
5 is parallel to the longitudinal direction of the groove 28 but inclined in a direction perpendicular to the groove 28 (transverse direction of the groove).
The interference pattern shown in FIG. When the objective lens 12 is parallel to the transverse direction of the groove 28 of the diffraction grating 24 but is inclined in the longitudinal direction of the groove 28, interference fringes shown in FIG. 5B appear.

【0019】このとき、制御装置50からの信号に基づ
いて移動装置36を駆動し、回折格子24を図3の左右
方向(溝の横断方向)に移動すると、0次回折光の位相
の変化と+1次回折光および−1次回折光の位相の変化
との間にずれを生じ、干渉縞の各点における光強度が変
化する。例えば、図5(a)中の点aの光強度変化は図
6に示す波形(正弦波)Iaを描き、図5(a)中の点
bの光強度変化は図6に示す波形(正弦波)Ibを描
き、両波形Ia,Ibの間に位相差φが見られる。した
がって、例えば点aの位相を基準として、この点aの位
相と図5(a)のX軸上における別の複数の点の位相と
の差をグラフにプロットすると、図7に示す2次曲線が
得られ、この2次曲線の2次の係数が横断方向に関する
対物レンズ12の傾きを表す。なお、X軸は、図示する
ように、0次回折光の中心と±1次回折光の中心とを結
ぶ線(中心線)上にある干渉縞の中心点(点aに相当)
を通り、その中心線に直交する線である。
At this time, when the moving device 36 is driven based on a signal from the control device 50 to move the diffraction grating 24 in the left-right direction (the direction transverse to the groove) in FIG. 3, the change in the phase of the 0th-order diffracted light and +1 A shift occurs between the change in the phase of the first-order diffracted light and the change in the phase of the minus first-order diffracted light, and the light intensity at each point of the interference fringes changes. For example, the light intensity change at point a in FIG. 5A draws a waveform (sine wave) Ia shown in FIG. 6, and the light intensity change at point b in FIG. 5A shows the waveform (sine wave) shown in FIG. (Wave) Ib, and a phase difference φ is observed between both waveforms Ia and Ib. Therefore, for example, when the difference between the phase of the point a and the phases of a plurality of other points on the X-axis in FIG. 5A is plotted on a graph based on the phase of the point a, a quadratic curve shown in FIG. 7 is obtained. And the quadratic coefficient of this quadratic curve represents the tilt of the objective lens 12 in the transverse direction. As shown, the X axis is the center point of the interference fringes (corresponding to point a) on the line (center line) connecting the center of the 0th-order diffracted light and the center of the ± 1st-order diffracted light.
, And a line orthogonal to the center line.

【0020】同様に、点aの位相を基準として、この点
aの位相と図5(b)に示すY、Y’軸上における別の
複数の点の位相との差をグラフにプロットすると、図7
に示す2次曲線と同様の2次曲線が得られ、この2次曲
線の2次の係数が長手方向に関する対物レンズ12の傾
きを表す。なお、Y、Y’軸は、図示するように、点a
を通り、中心線と例えば45°の角度を成す方向の線で
ある。
Similarly, on the basis of the phase of the point a, the difference between the phase of the point a and the phases of a plurality of other points on the Y and Y 'axes shown in FIG. FIG.
Are obtained, and the quadratic coefficient of the quadratic curve represents the inclination of the objective lens 12 with respect to the longitudinal direction. It should be noted that the Y and Y ′ axes are points a
And a line in a direction making an angle of, for example, 45 ° with the center line.

【0021】なお、以上のようにして対物レンズ12の
傾きを求める演算は、収差演算装置48で自動的に行な
うことができる。
The calculation for obtaining the inclination of the objective lens 12 as described above can be automatically performed by the aberration calculator 48.

【0022】収差演算装置48で演算された対物レンズ
12の傾きは、制御装置50に出力される。制御装置5
0は、収差演算装置48から得られた対物レンズ12の
傾きをもとに、傾斜調整装置16を駆動し、対物レンズ
12の傾きを補正する。なお、必要であれば、補正後の
対物レンズ12に対して上述の処理を再度実行し、対物
レンズ12の傾斜が補正されているか否かを検証し、さ
らに必要であれば再度対物レンズ12の傾きを補正する
こともできる。
The inclination of the objective lens 12 calculated by the aberration calculator 48 is output to the controller 50. Control device 5
In the case of 0, the tilt adjusting device 16 is driven based on the tilt of the objective lens 12 obtained from the aberration calculator 48 to correct the tilt of the objective lens 12. If necessary, the above-described processing is performed again on the corrected objective lens 12 to verify whether or not the inclination of the objective lens 12 has been corrected. Tilt can also be corrected.

【0023】このようにして行なわれる対物レンズの傾
斜調整の成果は、撮像素子42に投射される干渉像に光
学的な歪み(すなわち、干渉縞の乱れ)に左右される。
そして、干渉縞の乱れは、その殆どが回折格子24の表
面に付着した塵埃や汚れに起因する。特に、対物レンズ
12の焦点位置にある溝28に塵埃や汚れが付着する
と、回折光の強度や回折方向が場所によって変化し、よ
り大きな干渉縞の乱れ、引いては傾斜調整の成果に悪影
響を及ぼす。
The result of the tilt adjustment of the objective lens performed in this way depends on the optical distortion (that is, disturbance of interference fringes) of the interference image projected on the image sensor 42.
Most of the disturbance of the interference fringes is caused by dust or dirt attached to the surface of the diffraction grating 24. In particular, if dust or dirt adheres to the groove 28 at the focal position of the objective lens 12, the intensity or direction of the diffracted light changes depending on the location, and the interference fringes are more disturbed, which adversely affects the result of the tilt adjustment. Exert.

【0024】また、回折格子24は樹脂成型等によって
容易に作成できるが、樹脂は静電気を帯び易いため、特
に塵埃が付着し易く、また付着した塵埃は容易に除去で
きないという問題がある。一方、回折格子の溝の深さや
幅は一般に約数μm以下であるため、特に比較的柔らか
い樹脂からなる回折格子の場合、回折格子に物理的に物
を接触させて塵埃等を除去しようとすると、溝を壊して
しまう可能性もある。また、回折格子は対物レンズの傾
斜を調整する基準面であることから、溝の壊れた回折格
子を交換するためには、再度回折格子の傾き、位置等を
調整しなければならない。
The diffraction grating 24 can be easily formed by resin molding or the like. However, since the resin is easily charged with static electricity, there is a problem that dust is particularly easily adhered and the adhered dust cannot be easily removed. On the other hand, since the depth and width of the grooves of the diffraction grating are generally about several μm or less, particularly in the case of a diffraction grating made of a relatively soft resin, if an attempt is made to physically contact an object with the diffraction grating to remove dust and the like. In addition, the groove may be broken. Further, since the diffraction grating is a reference surface for adjusting the inclination of the objective lens, in order to replace a diffraction grating with a broken groove, the inclination, position, and the like of the diffraction grating must be adjusted again.

【0025】この問題に対し、本実施形態の調整システ
ム10では、上述のように回折格子24の表面を導電膜
30で被覆し、この回折格子24に保有する電荷を電線
32を介してアース34に流し、これにより回折格子2
4に電荷が蓄積されないようにしている。したがって、
電荷を持った塵埃が回折格子24に付着に難く、また付
着した塵埃はレンズペーパ等のクリーニング部材を回折
格子24に軽く接触させるだけで除去できる。そのた
め、回折格子24が比較的柔らかい樹脂で形成されてい
る場合でも、この回折格子に形成されている溝を壊すこ
とがない。
To cope with this problem, in the adjustment system 10 of the present embodiment, the surface of the diffraction grating 24 is covered with the conductive film 30 as described above, and the electric charge held in the diffraction grating 24 is transferred to the ground 34 via the electric wire 32. To the diffraction grating 2
No electric charge is stored in 4. Therefore,
Dust having electric charge is hard to adhere to the diffraction grating 24, and the attached dust can be removed only by lightly contacting a cleaning member such as a lens paper with the diffraction grating 24. Therefore, even when the diffraction grating 24 is formed of a relatively soft resin, the grooves formed in the diffraction grating are not broken.

【0026】導電膜30の厚さについて図4(a)を参
照して説明する。明部と暗部の明瞭な干渉縞を得るため
には、0次回折光の光量に対する±1次回折光の光量の
比率(以下、「光量比率」という。)を、0.2〜5、
好ましくは、0.5〜2とするのが好ましい。一方、0
次回折光の光量に対する±1次回折光の光量比率は、溝
表面の寸法、更に細かく見ると、導電膜の大気に接する
面によって描かれる凹部60及び隣接する凹部間の凸部
62の寸法によって異なる。具体的に説明すると、導電
膜30の膜厚が全ての場所で一定とした場合、凹部60
の深さは溝28の深さと等しいため、導電膜30が無い
場合と導電膜30が有る場合とで、深さ方向に関して光
路長の差はなく、光量比率に影響を及ぼさない。しか
し、導電膜30は溝28の側面(側壁)にも形成される
ため、導電膜30を形成した回折格子24では、凹部6
0の幅B1と、凸部62の幅B2に違いを生じ、これが
光量比率に影響を及ぼす。具体的に凹部60の幅B1と
凸部62の幅B2が同一のとき光量比率は1であり、凹
部60が導電膜30で完全に埋められているとき光量比
率は0である。そこで、本実施形態では、上述した下限
値(0.2)以上の光量比率が得られるように、導電膜
30の厚さを溝28の幅B1’の約40%以下としてい
る。なお、更に明瞭の干渉縞を得るためには、導電膜3
0の厚さが溝28の幅B1’の約20%以下とするのが
好ましい。
The thickness of the conductive film 30 will be described with reference to FIG. In order to obtain clear interference fringes between a bright part and a dark part, the ratio of the light quantity of the ± 1st-order diffracted light to the light quantity of the 0th-order diffracted light (hereinafter referred to as “light quantity ratio”) is 0.2 to 5,
Preferably, it is 0.5 to 2. On the other hand, 0
The ratio of the light quantity of the ± 1st-order diffracted light to the light quantity of the second-order diffracted light varies depending on the dimensions of the groove surface, and more specifically, the dimensions of the concave portion 60 drawn by the surface of the conductive film that comes into contact with the atmosphere and the convex portion 62 between adjacent concave portions. More specifically, when the thickness of the conductive film 30 is constant at all places,
Is equal to the depth of the groove 28, so that there is no difference in the optical path length in the depth direction between the case without the conductive film 30 and the case with the conductive film 30, and does not affect the light amount ratio. However, since the conductive film 30 is also formed on the side surface (side wall) of the groove 28, in the diffraction grating 24 where the conductive film 30 is formed, the concave portion 6 is formed.
A difference occurs between the width B1 of 0 and the width B2 of the convex portion 62, which affects the light amount ratio. Specifically, when the width B1 of the concave portion 60 is equal to the width B2 of the convex portion 62, the light amount ratio is 1, and when the concave portion 60 is completely filled with the conductive film 30, the light amount ratio is 0. Therefore, in the present embodiment, the thickness of the conductive film 30 is set to about 40% or less of the width B1 ′ of the groove 28 so that a light amount ratio equal to or more than the above-described lower limit (0.2) is obtained. In order to obtain a clearer interference fringe, the conductive film 3
It is preferable that the thickness of 0 is about 20% or less of the width B1 'of the groove 28.

【0027】なお、以上の説明では、導電膜30は電荷
を除去する目的から導電性を有していればよい。また、
導電膜30は光を透過する必要から透明であるのが好ま
しいが、非透明な導電膜であっても膜厚が小さければ十
分光を透過し、また撮像素子42の感度を上げることに
よって計測に必要なコントラストを有する干渉縞を得る
ことができる。したがって、導電膜30を作る材料とし
て、種々の導電材料(例えば、クロム、金、白金、銀)
が利用できる。
In the above description, the conductive film 30 only needs to have conductivity for the purpose of removing charges. Also,
The conductive film 30 is preferably transparent because it needs to transmit light. However, even if it is a non-transparent conductive film, if the film thickness is small, it can sufficiently transmit light, and the sensitivity can be increased by increasing the sensitivity of the image sensor 42 for measurement. An interference fringe having a necessary contrast can be obtained. Therefore, various conductive materials (for example, chromium, gold, platinum, and silver) are used as a material for forming the conductive film 30.
Is available.

【0028】また、以上の説明では、回折装置22にお
いて、回折格子24の表面を薄い導電膜30で被覆した
が、図4(b)に示すように、回折格子24の回折面2
6を該回折格子24を構成する材料と異なる屈折率の材
料からなる被覆層70で覆ってもよい。この場合、図示
するように、被覆層70は、回折格子24の溝28を完
全に埋め、溝28と反対側にある面が平滑な面72とし
てある。この回折装置の場合、平滑な面72に付着した
塵埃等は、レンズペーパ等のクリーニング部材を回折格
子24に軽く接触させるだけで除去できる。
In the above description, in the diffraction device 22, the surface of the diffraction grating 24 is covered with the thin conductive film 30, but as shown in FIG.
6 may be covered with a covering layer 70 made of a material having a different refractive index from the material constituting the diffraction grating 24. In this case, as shown, the coating layer 70 completely fills the groove 28 of the diffraction grating 24, and the surface on the side opposite to the groove 28 is a smooth surface 72. In the case of this diffraction device, dust and the like adhering to the smooth surface 72 can be removed only by lightly bringing a cleaning member such as a lens paper into contact with the diffraction grating 24.

【0029】さらに、図4(c)に示すように、回折格
子24の回折面26を該回折面26に所定の間隔をあけ
て配置された被覆板80で覆い、これら回折格子24と
被覆板80との間の距離をそれらの間に配置したスペー
サ82で正確に規定してもよい。この回折装置の場合、
回折面26は被覆板80によって塵埃等から保護され
る。また、被覆板80に付着した塵埃等は、レンズペー
パ等のクリーニング部材を回折格子24に軽く接触させ
るだけで除去できる。
Further, as shown in FIG. 4C, the diffraction surface 26 of the diffraction grating 24 is covered with a coating plate 80 arranged at a predetermined interval on the diffraction surface 26, and these diffraction gratings 24 and the coating plate are covered. The distance between them may be precisely defined by the spacers 82 disposed therebetween. In the case of this diffractometer,
The diffraction surface 26 is protected from dust and the like by the cover plate 80. Further, dust and the like adhering to the cover plate 80 can be removed only by lightly bringing a cleaning member such as a lens paper into contact with the diffraction grating 24.

【0030】さらにまた、回折装置22から撮像素子4
2に至るまでの光路中に配置される光学系の構成(すな
わち、レンズの種類や数等)は、上記実施形態に限るも
のでない。
Further, the diffraction device 22 to the image pickup device 4
The configuration of the optical system arranged in the optical path up to 2 (that is, the type and number of lenses) is not limited to the above embodiment.

【0031】[0031]

【発明の効果】以上のように本発明のレンズ調整装置お
よびレンズ調整方法によれば、対物レンズの傾斜を容易
にかつ短時間で調整できる。また、回折格子の回折面を
清潔な状態に維持できるので、同一の回折格子を交換す
ることなく長時間使用でき、結果として、調整歩留まり
を高めることができる。
As described above, according to the lens adjusting apparatus and the lens adjusting method of the present invention, the inclination of the objective lens can be adjusted easily and in a short time. Further, since the diffraction surface of the diffraction grating can be maintained in a clean state, it can be used for a long time without replacing the same diffraction grating, and as a result, the adjustment yield can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のジッター式光ピックアップのレンズ調
整の概略図。
FIG. 1 is a schematic diagram of lens adjustment of a conventional jitter type optical pickup.

【図2】 従来例の説明図。FIG. 2 is an explanatory view of a conventional example.

【図3】 本発明にかかるレンズ調整装置の概略構成
図。
FIG. 3 is a schematic configuration diagram of a lens adjustment device according to the present invention.

【図4】 (a)第1の形態の回折装置の部分断面図、
(b)第2の形態の回折装置の部分断面図、(c)第3
の形態の回折装置の部分断面図。
FIG. 4A is a partial cross-sectional view of the diffraction device according to the first embodiment;
(B) Partial sectional view of the diffraction device of the second embodiment, (c) third
FIG. 2 is a partial cross-sectional view of the diffraction device according to the embodiment.

【図5】 回折格子により生じる干渉縞を示す図。FIG. 5 is a diagram showing interference fringes generated by a diffraction grating.

【図6】 回折格子の微小変位による光強度変化を示す
FIG. 6 is a diagram showing a change in light intensity due to a minute displacement of a diffraction grating.

【図7】 干渉縞の位相分布を示す図。FIG. 7 is a diagram showing a phase distribution of interference fringes.

【符号の説明】[Explanation of symbols]

10:光学レンズの調整システム 12:対物レンズ 14:光ピックアップ 16:傾斜調整装置 18:評価装置 20:光軸 22:回折装置 24:回折格子 26:回折面 28:溝 30:導電膜 34:アース 36:移動装置 38:コリメートレンズ 40:結像レンズ 42:撮像素子 44:収差計測装置 46:表示装置 48:収差演算装置 10: Optical lens adjustment system 12: Objective lens 14: Optical pickup 16: Inclination adjustment device 18: Evaluation device 20: Optical axis 22: Diffraction device 24: Diffraction grating 26: Diffraction surface 28: Groove 30: Conductive film 34: Ground 36: moving device 38: collimating lens 40: imaging lens 42: imaging device 44: aberration measuring device 46: display device 48: aberration calculating device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G086 HH06 2H044 AC01 2H049 AA03 AA13 AA43 AA50 AA55 AA57 AA70 5D117 AA02 CC07 KK15 KK16 KK17 5D119 AA38 BA01 NA02 PA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G086 HH06 2H044 AC01 2H049 AA03 AA13 AA43 AA50 AA55 AA57 AA70 5D117 AA02 CC07 KK15 KK16 KK17 5D119 AA38 BA01 NA02 PA05

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 レンズを調整するレンズ調整装置であっ
て、 上記レンズを透過した光から異なる次数の回折光を得る
と共にこれら異なる次数の回折光を干渉させて干渉像を
得る回折手段と、 上記回折装置を移動させる移動手段と、 上記干渉像から上記レンズの収差を求める収差計測手段
と備え、 上記回折手段は、 複数の溝が形成された回折面を有する回折格子と、 上記溝に対応する凹部を残した状態で上記回折面を覆う
導電膜と、 上記導電膜をアースに接地する接地手段とを備えている
ことを特徴とするレンズ調整装置。
1. A lens adjusting device for adjusting a lens, comprising: diffracting means for obtaining diffracted lights of different orders from light transmitted through the lens, and interfering the diffracted lights of the different orders to obtain an interference image; Moving means for moving the diffraction device; and aberration measuring means for obtaining the aberration of the lens from the interference image, wherein the diffraction means corresponds to a diffraction grating having a diffraction surface on which a plurality of grooves are formed, and the grooves. A lens adjusting device comprising: a conductive film that covers the diffraction surface while leaving a concave portion; and a grounding unit that grounds the conductive film to ground.
【請求項2】 上記導電膜の厚さを、上記溝の幅の約4
0%以下としたことを特徴とする請求項1に記載のレン
ズ調整装置。
2. The method according to claim 1, wherein the thickness of the conductive film is about 4 times the width of the groove.
2. The lens adjusting device according to claim 1, wherein the value is set to 0% or less.
【請求項3】 レンズを調整するレンズ調整装置であっ
て、 上記レンズを透過した光から異なる次数の回折光を得る
と共にこれら異なる次数の回折光を干渉させて干渉像を
得る回折手段と、 上記回折装置を移動させる移動手段と、 上記干渉像から上記レンズの収差を求める収差計測手段
とを備え、 上記回折手段は、 複数の溝が形成された回折面を有する回折格子と、 上記回折面の各溝を埋めかつ上記回折面の反対側に平滑
な面を形成し、上記回折格子と異なる屈折率を有する材
料からなる被覆層とを備えていることを特徴とするレン
ズ調整装置。
3. A lens adjusting device for adjusting a lens, comprising: diffracting means for obtaining diffracted lights of different orders from light transmitted through the lens, and interfering the diffracted lights of the different orders to obtain an interference image; A moving means for moving the diffraction device; and an aberration measuring means for obtaining the aberration of the lens from the interference image, wherein the diffraction means comprises: a diffraction grating having a diffraction surface formed with a plurality of grooves; A lens adjusting device comprising: a filling layer formed of a material having a different refractive index from the diffraction grating, wherein each lens groove is filled and a smooth surface is formed on a side opposite to the diffraction surface.
【請求項4】 レンズを調整するレンズ調整装置であっ
て、 上記レンズを透過した光から異なる次数の回折光を得る
と共にこれら異なる次数の回折光を干渉させて干渉像を
得る回折手段と、 上記回折装置を移動させる移動手段と、 上記干渉像から上記レンズの収差を求める収差計測手段
とを備え、 上記回折手段は、 複数の溝が形成された回折面を有する回折格子と、 上記回折面上に該回折面から所定の間隔をあけて配置さ
れた被覆板とを備えていることを特徴とするレンズ調整
装置。
4. A lens adjusting device for adjusting a lens, comprising: diffracting means for obtaining diffracted lights of different orders from light transmitted through the lens, and interfering the diffracted lights of the different orders to obtain an interference image; A moving means for moving the diffraction device; and an aberration measuring means for obtaining aberration of the lens from the interference image, wherein the diffracting means comprises: a diffraction grating having a diffraction surface on which a plurality of grooves are formed; And a cover plate disposed at a predetermined distance from the diffraction surface.
【請求項5】 上記レンズの傾きを調整する傾斜調整手
段と、 上記収差計測手段で求めた収差に応じて上記傾斜調整手
段を動作させる制御手段とを備えたことを特徴とする請
求項1から4のいずれかに記載のレンズ調整装置。
5. The apparatus according to claim 1, further comprising: tilt adjusting means for adjusting the tilt of the lens; and control means for operating the tilt adjusting means in accordance with the aberration obtained by the aberration measuring means. 5. The lens adjustment device according to any one of 4.
【請求項6】 レンズを調整するレンズ調整方法であっ
て、 複数の溝が形成された回折面を有する回折格子と、上記
溝に対応する凹部を残した状態で上記回折面を覆う導電
膜と、上記導電膜をアースに接地する接地手段とを備え
た回折手段を準備する工程と、 上記レンズを透過した光を上記回折格子に入射し、上記
回折格子から得られた異なる次数の回折光を干渉させる
工程と、 上記回折装置を移動させる工程と、 上記干渉像から上記レンズの収差を求める工程と、 上記収差に応じて上記レンズの傾きを調整する工程とを
備えたことを特徴とするレンズ調整方法。
6. A lens adjusting method for adjusting a lens, comprising: a diffraction grating having a diffraction surface with a plurality of grooves formed therein; and a conductive film covering the diffraction surface with a concave portion corresponding to the groove remaining. Preparing a diffracting means having grounding means for grounding the conductive film to ground; and impinging light transmitted through the lens on the diffraction grating and diffracted light of different orders obtained from the diffraction grating. A lens comprising: a step of causing interference; a step of moving the diffraction device; a step of determining the aberration of the lens from the interference image; and a step of adjusting the tilt of the lens according to the aberration. Adjustment method.
【請求項7】 上記導電膜の厚さを、上記溝の幅の約4
0%以下としたことを特徴とする請求項6に記載のレン
ズ調整方法。
7. The thickness of the conductive film is set to about 4 times the width of the groove.
7. The lens adjusting method according to claim 6, wherein the value is set to 0% or less.
【請求項8】 レンズを調整するレンズ調整方法であっ
て、 複数の溝が形成された回折面を有する回折格子と、上記
回折面の各溝を埋めかつ上記回折面の反対側に平滑な面
を形成し、上記回折格子と異なる屈折率を有する材料か
らなる被覆層とを備えた回折手段を準備する工程と、 上記レンズを透過した光を上記回折格子に入射し、上記
回折格子から得られた異なる次数の回折光を干渉させる
工程と、 上記回折装置を移動させる工程と、 上記干渉像から上記レンズの収差を求める工程と、 上記収差に応じて上記レンズの傾きを調整する工程とを
備えたことを特徴とするレンズ調整方法。
8. A lens adjusting method for adjusting a lens, comprising: a diffraction grating having a diffraction surface having a plurality of grooves formed thereon; and a smooth surface filling each groove of the diffraction surface and being opposite to the diffraction surface. Forming a diffraction means comprising a coating layer made of a material having a different refractive index from the diffraction grating; anda step of providing light transmitted through the lens to the diffraction grating, and obtaining the light from the diffraction grating. Interfering diffracted lights of different orders, moving the diffraction device, obtaining aberration of the lens from the interference image, and adjusting a tilt of the lens according to the aberration. A lens adjustment method characterized by that:
【請求項9】 レンズを調整するレンズ調整方法であっ
て、 複数の溝が形成された回折面を有する回折格子と、上記
回折面上に該回折面から所定の間隔をあけて配置された
被覆板とを備えた回折手段を準備する工程と、 上記レンズを透過した光を上記回折格子に入射し、上記
回折格子から得られた異なる次数の回折光を干渉させる
工程と、 上記回折装置を移動させる工程と、 上記干渉像から上記レンズの収差を求める工程と、 上記収差に応じて上記レンズの傾きを調整する工程とを
備えたことを特徴とするレンズ調整方法。
9. A lens adjusting method for adjusting a lens, comprising: a diffraction grating having a diffraction surface on which a plurality of grooves are formed; and a coating disposed on the diffraction surface at a predetermined distance from the diffraction surface. A step of preparing a diffractive means including a plate; a step of irradiating the light transmitted through the lens onto the diffraction grating to interfere with diffracted lights of different orders obtained from the diffraction grating; and moving the diffraction device. A lens adjustment method, comprising: a step of determining the aberration of the lens from the interference image; and a step of adjusting a tilt of the lens according to the aberration.
JP2000280249A 2000-09-14 2000-09-14 Lens-adjusting device and lens-adjusting method Pending JP2002090605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280249A JP2002090605A (en) 2000-09-14 2000-09-14 Lens-adjusting device and lens-adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280249A JP2002090605A (en) 2000-09-14 2000-09-14 Lens-adjusting device and lens-adjusting method

Publications (1)

Publication Number Publication Date
JP2002090605A true JP2002090605A (en) 2002-03-27

Family

ID=18765127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280249A Pending JP2002090605A (en) 2000-09-14 2000-09-14 Lens-adjusting device and lens-adjusting method

Country Status (1)

Country Link
JP (1) JP2002090605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020220A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Lens inspecting apparatus
JP2019120499A (en) * 2017-12-28 2019-07-22 株式会社ミツトヨ Scale and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107405A (en) * 1991-10-16 1993-04-30 Sony Corp Optical component
JPH07191206A (en) * 1993-12-27 1995-07-28 Canon Inc Reflection mirror unit of electrophotographic device
JPH1164616A (en) * 1997-08-20 1999-03-05 Canon Inc Diffraction optical element and optical system using the same
JP2000105168A (en) * 1998-07-27 2000-04-11 Matsushita Electric Ind Co Ltd Method and device for evaluating aberration of optical element for optical device
JP2000214048A (en) * 1999-01-26 2000-08-04 Matsushita Electric Ind Co Ltd Lens aberration measuring instrument and lens tilt adjusting device using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107405A (en) * 1991-10-16 1993-04-30 Sony Corp Optical component
JPH07191206A (en) * 1993-12-27 1995-07-28 Canon Inc Reflection mirror unit of electrophotographic device
JPH1164616A (en) * 1997-08-20 1999-03-05 Canon Inc Diffraction optical element and optical system using the same
JP2000105168A (en) * 1998-07-27 2000-04-11 Matsushita Electric Ind Co Ltd Method and device for evaluating aberration of optical element for optical device
JP2000214048A (en) * 1999-01-26 2000-08-04 Matsushita Electric Ind Co Ltd Lens aberration measuring instrument and lens tilt adjusting device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020220A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Lens inspecting apparatus
JP4618202B2 (en) * 2006-07-11 2011-01-26 パナソニック株式会社 Lens inspection device
JP2019120499A (en) * 2017-12-28 2019-07-22 株式会社ミツトヨ Scale and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4850673A (en) Optical scanning apparatus which detects scanning spot focus error
JPH0328737B2 (en)
WO2005106856A1 (en) Information carrier, and system for positioning such an information carrier in an apparatus
TW440818B (en) Device and method for obtaining and calibrating compact disk's tilt error signals
JP2002237077A (en) Element and unit for aberration correction
JPWO2006118221A1 (en) Objective lens tilt adjusting method, optical pickup manufacturing method, objective lens tilt adjusting apparatus, optical pickup component, optical pickup, and optical information recording / reproducing apparatus
US4352564A (en) Missing order defect detection apparatus
JP2002090605A (en) Lens-adjusting device and lens-adjusting method
JPH0917011A (en) Double-focus optical pickup
JP2004103110A (en) Objective lens and optical pickup device
JPH09120557A (en) Optical pickup device
JP2008032588A (en) Lens-measuring device
JP2007078605A (en) Method and device of measuring position of interface
US20100034072A1 (en) Fresnel member having variable sag for multiple wavelength optical system
JP2008518247A (en) Optical device for scanning an information carrier
JP2007033098A (en) Lens measuring method and lens measuring instrument
JP3989656B2 (en) Optical unit adjustment method and optical unit adjustment device
JP2002182091A (en) Lens adjusting device and lens adjusting method
TW200403649A (en) Optical head and optical disk drive
JP4421755B2 (en) Lens adjustment device and lens adjustment method
JP2009110639A (en) Wavefront aberration inspection apparatus, optical pickup assembly adjustment device, lens evaluation device, lens assembly device, objective lens actuator assembly adjustment device, optical pickup, optical disk drive, and optical information recording and reproducing device
US8149487B2 (en) Optical apparatus
JP2005345363A (en) Measuring device of optical equipment and its measuring method
JPH03115809A (en) Encoder
JP4147912B2 (en) Optical lens aberration detection method and apparatus, and optical pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406