JP2008032588A - Lens-measuring device - Google Patents

Lens-measuring device Download PDF

Info

Publication number
JP2008032588A
JP2008032588A JP2006207524A JP2006207524A JP2008032588A JP 2008032588 A JP2008032588 A JP 2008032588A JP 2006207524 A JP2006207524 A JP 2006207524A JP 2006207524 A JP2006207524 A JP 2006207524A JP 2008032588 A JP2008032588 A JP 2008032588A
Authority
JP
Japan
Prior art keywords
lens
diffraction grating
protective layer
light
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207524A
Other languages
Japanese (ja)
Inventor
Hirokazu Furuta
寛和 古田
Nobuo Hara
伸夫 原
Hidetoshi Utsuro
英俊 宇津呂
Takesato Urashima
毅吏 浦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006207524A priority Critical patent/JP2008032588A/en
Publication of JP2008032588A publication Critical patent/JP2008032588A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device for simplifying device composition by improving the mechanical strength of a diffraction grating, in a lens-measuring device, such as an optical pickup and DSC that use the diffraction grating. <P>SOLUTION: The mechanical strength of the diffraction grating 8 is improved, and aberration measurement accuracy is improved, by forming a protective layer 22 adjusting a refractive index and thickness on the diffractive grating 8; and furthermore, the device composition can be significantly simplified and stable lens measurements in with stabilized accuracy can be achieved by possessing spherical aberration correction mechanism using a refractive index difference of the protective layer 22. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光ディスク方式の情報記録媒体、例えばDVD(Digital Versatile Disc)やBD(Blu−ray Disc)に情報を記録・再生するためのレンズ、又はDSC(Digital Still Camera)の撮像光学系内に搭載されるレンズなどの光学部品の測定装置に関するものである。   The present invention relates to an optical disc type information recording medium, for example, a lens for recording / reproducing information on a DVD (Digital Versatile Disc) or BD (Blu-ray Disc), or an imaging optical system of a DSC (Digital Still Camera). The present invention relates to a measuring device for optical components such as a lens to be mounted.

光ディスク方式の情報記録媒体の情報を再生し、また、この情報記録媒体に情報を記録するための光学装置として光ピックアップがある。この光ピックアップには、内蔵された光源からの出射光を、情報記録媒体における所定の位置に高精度かつ正確に照射するための光学系が必要である。ところが、この光学系を構成する部品の特性や組立のバラツキにより、製造された光ピックアップの特性が必要な範囲に収まらないことがある。   There is an optical pickup as an optical device for reproducing information on an information recording medium of an optical disc system and recording information on the information recording medium. This optical pickup requires an optical system for accurately and accurately irradiating light emitted from a built-in light source to a predetermined position on the information recording medium. However, the characteristics of the manufactured optical pickup may not be within the required range due to the characteristics of the parts constituting the optical system and the variations in assembly.

それらの光学系の中でも、特に対物レンズは使用するレーザ波長(例えばDVDならλ=660nm)の数百分の一程度の波面収差が必要になるなど、厳格な光学特性が要求されると共に、目的の場所に精度良く調製され固定される必要がある。   Among these optical systems, in particular, objective lenses require strict optical characteristics such as a wavefront aberration of about one-hundredth of the laser wavelength used (for example, λ = 660 nm for DVD). It must be prepared and fixed with high precision.

そこで、この光ピックアップの製造工程においてはその光学系の状態を計測し、調整することが必要となる。従来の光ピックアップの調整方法として、シェアリング干渉像を用いたレンズの評価方法がある(例えば、特許文献1参照)。   Therefore, in the optical pickup manufacturing process, it is necessary to measure and adjust the state of the optical system. As a conventional method of adjusting an optical pickup, there is a lens evaluation method using a sharing interference image (see, for example, Patent Document 1).

図5は、特許文献1のレンズ計測方法を示す図である。   FIG. 5 is a diagram illustrating the lens measurement method disclosed in Patent Document 1. In FIG.

図5において、光ピックアップ1内の光源2から出射した光はレンズ3で平行光にされた後、ミラー4で反射され、ホルダ5に支持されている対物レンズ6に入射する。対物レンズ6から出射された光、つまりは光ピックアップ1から出射された光は、回折格子調整機構7により、対物レンズ6の光軸に対する水平、垂直、傾きなどの位置を調整された回折格子8に入射する。入射した光は回折光を発生し、回折格子8から出射される。出射された0次光と±1次光は、0次光と+1次光、0次光と−1次光がそれぞれ重なって干渉が発生している。出射された光はカバーガラス調整機構9により水平、垂直、傾きなどの位置を調整されたカバーガラス10を透過する。   In FIG. 5, the light emitted from the light source 2 in the optical pickup 1 is collimated by the lens 3, is reflected by the mirror 4, and enters the objective lens 6 supported by the holder 5. The light emitted from the objective lens 6, that is, the light emitted from the optical pickup 1, is adjusted by the diffraction grating adjustment mechanism 7 in the diffraction grating 8 whose horizontal, vertical, and tilt positions are adjusted with respect to the optical axis of the objective lens 6. Is incident on. The incident light generates diffracted light and is emitted from the diffraction grating 8. The emitted 0th-order light and ± 1st-order light are interfered by overlapping 0th-order light and + 1st-order light, and 0th-order light and −1st-order light, respectively. The emitted light passes through the cover glass 10 whose positions such as horizontal, vertical, and tilt are adjusted by the cover glass adjusting mechanism 9.

カバーガラス10を透過した光のうち、0次光と0次光に重なった±1次光を集光レンズ11で取り込む。ここで、集光レンズ11は、対物レンズ6の0次光を全て取り込むために対物レンズ6の開口数(NA)より大きい開口数を有している。さらに、集光レンズ11は、カバーガラス10を透過することにより発生する球面収差を考慮に入れたレンズであり、たとえば生物用の顕微鏡対物レンズや光ピックアップの対物レンズなどが用いられる。集光レンズ11を出射した光は、結像レンズ12により撮像素子13に結像される。撮像素子13に結像された像の干渉縞の模様を、処理装置14で解析を行い光ピックアップ1および対物レンズ6の光学特性である収差を検出し、表示装置15に表示する。この検出結果に基づいて、光ピックアップ1内の対物レンズ6の位置を対物レンズ調整機構16により調整する。   Of the light transmitted through the cover glass 10, the zero-order light and the ± first-order light overlapping the zero-order light are captured by the condenser lens 11. Here, the condenser lens 11 has a numerical aperture larger than the numerical aperture (NA) of the objective lens 6 in order to capture all the zero-order light of the objective lens 6. Further, the condensing lens 11 is a lens that takes into account spherical aberration that occurs due to transmission through the cover glass 10, and for example, a biological microscope objective lens or an optical pickup objective lens is used. The light emitted from the condenser lens 11 is imaged on the image sensor 13 by the imaging lens 12. The processing device 14 analyzes the interference fringe pattern of the image formed on the image sensor 13 to detect aberrations that are optical characteristics of the optical pickup 1 and the objective lens 6, and displays them on the display device 15. Based on the detection result, the position of the objective lens 6 in the optical pickup 1 is adjusted by the objective lens adjusting mechanism 16.

回折格子は、その回折面に塵埃等が付着すると精度が低下してしまうため、回折面を清潔に保つ必要がある。そのために、従来の回折格子では、回折格子の回折面を被膜しているものがある(例えば、特許文献2参照)。   Since the accuracy of the diffraction grating decreases when dust or the like adheres to the diffraction surface, it is necessary to keep the diffraction surface clean. For this reason, some conventional diffraction gratings coat the diffraction surface of the diffraction grating (see, for example, Patent Document 2).

図6は、特許文献2の被覆板を備えた回折格子を示す図である。図6で、図5と同じ符号に関しては、説明を省略する。   FIG. 6 is a diagram showing a diffraction grating provided with the cover plate of Patent Document 2. As shown in FIG. In FIG. 6, the description of the same reference numerals as those in FIG. 5 is omitted.

図6において、回折格子17の回折面に所定の間隔をあけて配置された被膜板18で多い、これら回折格子17と被膜板18との間の距離をそれらの間に配置したスペーサ19で規定する。   In FIG. 6, many coating plates 18 are arranged on the diffraction surface of the diffraction grating 17 at a predetermined interval, and the distance between the diffraction grating 17 and the coating plate 18 is defined by the spacer 19 arranged between them. To do.

図7は、特許文献2の被覆層を備えた回折格子を示す図である。図7で、図5から6と同じ符号に関しては、説明を省略する。   FIG. 7 is a view showing a diffraction grating provided with a coating layer of Patent Document 2. As shown in FIG. In FIG. 7, the description of the same reference numerals as those in FIGS.

図7において、回折格子20の回折面を、回折格子20を構成する材料と異なる屈折率の材料からなる被覆層21で覆っている。   In FIG. 7, the diffraction surface of the diffraction grating 20 is covered with a coating layer 21 made of a material having a refractive index different from that of the material constituting the diffraction grating 20.

また、従来の光ピックアップ装置には、装置を小型化するために装置内の回折格子に波長板を取り付けているものがある(例えば、特許文献3参照)。   Some conventional optical pickup devices have a wave plate attached to a diffraction grating in the device in order to reduce the size of the device (see, for example, Patent Document 3).

また、BD等の次世代メディアにおいては、光ディスクの高密度化に伴う光ピックアップの対物レンズの高NA化により、回折格子のピッチが微細化すると共に回折格子の厚みを1μm以下とCD等の装置に比べ1/10程度と非常に薄くする必要がある。また、対物レンズと回折格子、回折格子とカバーガラス、カバーガラスと集光レンズの間隔も300μm以下としており、CD等の装置に比べ1/10以下と非常に狭い間隔となっている。
特開2000−329648号公報 特開2002−090605号公報 特開2003−217162号公報
Further, in next-generation media such as BDs, the diffraction grating pitch is reduced and the thickness of the diffraction grating is 1 μm or less due to the high NA of the objective lens of the optical pickup accompanying the increase in the density of the optical disk. It is necessary to make it very thin, about 1/10 compared to. In addition, the distance between the objective lens and the diffraction grating, the diffraction grating and the cover glass, and the cover glass and the condensing lens is set to 300 μm or less, which is a very narrow distance of 1/10 or less compared with a device such as a CD.
JP 2000-329648 A JP 2002-090605 A JP 2003-217162 A

しかしながら、前記従来のレンズ測定装置では、以下のような課題を有している。   However, the conventional lens measuring device has the following problems.

従来の構成では、回折格子が薄く機械的に脆弱な場合を想定していないので、対物レンズを調整した時に回折格子と対物レンズとが接触して回折格子が損傷を受ける場合がある。また、BD光学系やDVD光学系では、レンズと回折格子とのギャップが小さいため、新たに補強板を挿入することも困難である。   In the conventional configuration, since the case where the diffraction grating is thin and mechanically fragile is not assumed, when the objective lens is adjusted, the diffraction grating and the objective lens may come into contact with each other and the diffraction grating may be damaged. Further, in the BD optical system and the DVD optical system, since the gap between the lens and the diffraction grating is small, it is difficult to newly insert a reinforcing plate.

また、回折格子を補強板や調整機構へ取り付ける際に接着剤などで貼り付けを行うが、回折格子の薄化による機械的強度低下のため、接着貼り付け時に回折格子に歪み、たわみなどが発生し、回折格子で発生させる干渉縞に変化が生じて光ピックアップの収差検出精度が悪化することがある。   Also, when attaching the diffraction grating to the reinforcing plate or adjustment mechanism, it is pasted with an adhesive, etc., but due to the reduction in mechanical strength due to thinning of the diffraction grating, the diffraction grating is distorted and bent during bonding. However, the interference fringes generated by the diffraction grating may change, and the aberration detection accuracy of the optical pickup may deteriorate.

以上のように従来のレンズ検査装置では、ある一定回数以上の計測を行った場合に、回折格子の破損や回折面の汚れが発生して回折格子がその機能を果たせず、計測できなくなることがある。そのため、連続で数百個単位のレンズの計測を行う場合に、回折格子を取り替えることによる時間のロスや、微細な回折面が必要となる回折格子を数多く用意しておく必要がある。   As described above, in the conventional lens inspection apparatus, when the measurement is performed more than a certain number of times, the diffraction grating may be damaged or the diffraction surface may become dirty, and the diffraction grating may not perform its function and measurement may not be possible. is there. Therefore, when continuously measuring several hundred units of lenses, it is necessary to prepare a large number of diffraction gratings that require time loss due to replacement of the diffraction grating and fine diffraction surfaces.

上記目的を達成するために、本発明のレンズ測定装置は、レンズに光を出射する光源と、前記光源から出射され前記レンズを透過した光から異なる次数の回折光を形成する回折格子と、前記回折格子の前記レンズと反対側の回折面に形成された保護層と、互いに干渉した前記異なる次数の回折光を受光する受光装置と、前記受光した干渉像から前記レンズの収差を計測する計測装置と、を有し、前記レンズの光軸上において、前記保護層の前記回折面と反対側の面が平坦であり、且つ前記回折格子の前記レンズ側の面と前記計測装置側の面との光学距離と、前記保護層の前記レンズ側の面と前記計測装置側の面との光学距離とが等しいことを特徴とする。   In order to achieve the above object, a lens measuring device of the present invention includes a light source that emits light to a lens, a diffraction grating that forms diffracted light of different orders from light emitted from the light source and transmitted through the lens, A protective layer formed on the diffraction surface of the diffraction grating opposite to the lens, a light receiving device that receives the different orders of diffracted light that interfered with each other, and a measuring device that measures aberration of the lens from the received interference image And on the optical axis of the lens, the surface of the protective layer opposite to the diffraction surface is flat, and the surface of the diffraction grating on the lens side and the surface on the measurement device side The optical distance is equal to the optical distance between the lens side surface of the protective layer and the measurement device side surface.

以上のように、本発明のレンズ測定装置によれば、回折格子の回折面に形成された保護層により、回折格子の破損や汚れを防いでレンズ検査を連続で行う際の時間のロスを防ぎ、かつ、精密にレンズの計測を行うことのできる計測装置を提供することができる。そのため、レンズ検査装置の連続稼動回数を増やすことができる。   As described above, according to the lens measuring device of the present invention, the protective layer formed on the diffraction surface of the diffraction grating prevents damage and contamination of the diffraction grating and prevents time loss when continuously performing the lens inspection. In addition, it is possible to provide a measuring apparatus that can accurately measure the lens. Therefore, the number of continuous operations of the lens inspection device can be increased.

それに加え本発明のレンズ測定装置によれば、回折格子に歪みが発生する確率を減少させることができるため、精度が安定したレンズ測定装置を提供することができる。   In addition, according to the lens measuring device of the present invention, since the probability of distortion occurring in the diffraction grating can be reduced, a lens measuring device with stable accuracy can be provided.

以下、本発明の実施の形態について、図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、実施の形態1におけるレンズ測定装置の概略図である。図1で、図5から7と同じ符号については説明を省略する。
(Embodiment 1)
FIG. 1 is a schematic diagram of a lens measuring apparatus according to the first embodiment. In FIG. 1, the description of the same reference numerals as those in FIGS.

図1において、22は回折格子8の溝面上に形成された保護層である。   In FIG. 1, reference numeral 22 denotes a protective layer formed on the groove surface of the diffraction grating 8.

以下、本実施の形態のレンズ測定方法ついて説明する。   Hereinafter, the lens measurement method of the present embodiment will be described.

測定対象である光ピックアップ1の内部の光源2から出射されたレーザ光は、レンズ3で略平行光にされた後、ミラー4で反射され、ホルダ5に支持されている対物レンズ6に入射する。対物レンズ6から出射された光、つまりは光ピックアップ1から出射された光は回折格子調整機構7により水平、垂直、傾きなどの位置を調整された回折格子8に入射する。ここでは特に、傾きが光ピックアップ1の光軸に対して垂直を成すように調整されている。   The laser light emitted from the light source 2 inside the optical pickup 1 that is the measurement target is made substantially parallel light by the lens 3, then reflected by the mirror 4, and enters the objective lens 6 supported by the holder 5. . The light emitted from the objective lens 6, that is, the light emitted from the optical pickup 1 is incident on the diffraction grating 8 whose position such as horizontal, vertical, and tilt is adjusted by the diffraction grating adjusting mechanism 7. Here, in particular, the inclination is adjusted so as to be perpendicular to the optical axis of the optical pickup 1.

回折格子8は、光ピックアップ1からの光の入射面に高精度に平面化された平坦面と、その反対側の面に所定ピッチで複数の溝が形成された回折面とを有する構造となっている。   The diffraction grating 8 has a structure having a flat surface planarized with high accuracy on the light incident surface from the optical pickup 1 and a diffraction surface in which a plurality of grooves are formed at a predetermined pitch on the opposite surface. ing.

回折格子8の平坦面から入射した光は回折面の溝により、ある所定の角度で回折光を生じ、回折格子8から出射される。   Light incident from the flat surface of the diffraction grating 8 generates diffracted light at a certain predetermined angle and is emitted from the diffraction grating 8 by the grooves on the diffraction surface.

出射された回折光のうち0次光と+1次光、0次光と−1次光はそれぞれ重なって干渉を生じている。このようにして出射された光は、回折格子8の回折面の全てもしくは一部を覆うように形成された保護層22に入射する。   Of the emitted diffracted light, the 0th-order light and the + 1st-order light, and the 0th-order light and the −1st-order light are overlapped to cause interference. The light emitted in this way is incident on the protective layer 22 formed so as to cover all or part of the diffraction surface of the diffraction grating 8.

保護層22を透過した光は回折面と対向する面と反対側の平滑な面上に形成されている出射面から出射する。出射面から出射した光のうち、0次光と0次光に重なった±1次光を集光レンズ11で取り込む。   The light transmitted through the protective layer 22 is emitted from an emission surface formed on a smooth surface opposite to the surface facing the diffraction surface. Of the light emitted from the emission surface, the zero-order light and the ± first-order light superimposed on the zero-order light are captured by the condenser lens 11.

図2は、実施の形態1における集光レンズに入射する0次光と±1次光の概略図である。図2で、図1、図5から7と同じ符号については説明を省略する。   FIG. 2 is a schematic diagram of zero-order light and ± first-order light incident on the condenser lens in the first embodiment. In FIG. 2, the description of the same reference numerals as those in FIGS. 1 and 5 to 7 is omitted.

図2において、23は0次光で24は+1次光、25は−1次光、26は集光レンズ11から出射した光を集光レンズ上方から見た場合の干渉光である。集光レンズ11は対物レンズ6の0次光23を全て取り込むために対物レンズ6の開口数(NA)より大きい開口数を有している。   In FIG. 2, 23 is 0th-order light, 24 is + 1st-order light, 25 is -1st-order light, and 26 is interference light when the light emitted from the condenser lens 11 is viewed from above the condenser lens. The condenser lens 11 has a numerical aperture larger than the numerical aperture (NA) of the objective lens 6 in order to capture all the zero-order light 23 of the objective lens 6.

また、図2のように回折面を覆う保護層22の領域の大きさは集光レンズ11に取り込まれる0次光と±1次光の干渉光が保護層22を透過するような領域の大きさだけでも良いが、機械強度増強のためには回折格子8の全面を覆うことで全面の厚みを増し、均一な機械強度にするほうが好ましい。集光レンズ11を出射した光は結像レンズ12により撮像素子13に結像される。結像された像の干渉縞の模様を処理装置14で解析を行い光ピックアップ1および対物レンズ6の光学特性である収差を検出し、表示装置15に表示する。この検出結果に基づいて光ピックアップ1内の対物レンズ6の位置を、対物レンズ調整機構16により調整する。   Further, as shown in FIG. 2, the size of the region of the protective layer 22 covering the diffractive surface is the size of the region where the interference light of the 0th order light and the ± first order light taken into the condenser lens 11 is transmitted through the protective layer 22. However, in order to increase the mechanical strength, it is preferable to cover the entire surface of the diffraction grating 8 to increase the thickness of the entire surface to obtain a uniform mechanical strength. The light emitted from the condenser lens 11 is imaged on the image sensor 13 by the imaging lens 12. The interference fringe pattern of the formed image is analyzed by the processing device 14 to detect aberrations that are optical characteristics of the optical pickup 1 and the objective lens 6 and display them on the display device 15. Based on the detection result, the position of the objective lens 6 in the optical pickup 1 is adjusted by the objective lens adjusting mechanism 16.

図3は、実施の形態1における回折格子と保護層の寸法図である。図3で、図1から2、5から7と同じ符号については、説明を省略する。   FIG. 3 is a dimension diagram of the diffraction grating and the protective layer in the first embodiment. In FIG. 3, the description of the same reference numerals as those in FIGS. 1 to 2, 5 to 7 is omitted.

図3において、回折格子8の厚みをa、溝の凸部の幅をb、溝の凹部の幅をc、溝の高さをh、回折格子8のピッチをd、対物レンズ6の光軸における保護層22の厚みをe、回折格子8の屈折率をn1、保護層22の屈折率をn2とし、光ピックアップからのレーザの波長をλ、光ピックアップの対物レンズの開口数をNAとする。ここで、回折格子8のピッチdは、d=b+cである。   In FIG. 3, the thickness of the diffraction grating 8 is a, the width of the convex part of the groove is b, the width of the concave part of the groove is c, the height of the groove is h, the pitch of the diffraction grating 8 is d, and the optical axis of the objective lens 6 The thickness of the protective layer 22 is e, the refractive index of the diffraction grating 8 is n1, the refractive index of the protective layer 22 is n2, the wavelength of the laser from the optical pickup is λ, and the numerical aperture of the objective lens of the optical pickup is NA. . Here, the pitch d of the diffraction grating 8 is d = b + c.

回折格子8の設計は、干渉縞を解析する際の解析精度の向上という観点より、下記式(1)から式(3)の条件下で行うことが最も好ましい。これは、以下の2点を理由とする。1点目は、大きな領域の干渉縞を用いることで精度の高い解析を行うために、0次光と+1次光、0次光と−1次光のそれぞれの重なる面積の大きさが最も大きくなるようにするためである。2点目は、保護層22を透過した光の0次光と+1次光および−1次光の干渉縞のコントラストを高くすることで、0次光と+1次光および−1次光のわずかな位相ズレでも、干渉縞によりはっきりとした明暗が発生させることで感度を高くし、精度の高い解析を行うためである。   The design of the diffraction grating 8 is most preferably performed under the conditions of the following formulas (1) to (3) from the viewpoint of improving analysis accuracy when analyzing interference fringes. This is because of the following two points. The first point is that the overlapping areas of the 0th-order light and the + 1st-order light, and the 0th-order light and the −1st-order light are the largest in order to perform highly accurate analysis by using interference fringes in a large area. This is to ensure that The second point is that by increasing the contrast of the interference fringes of the 0th order light, the + 1st order light, and the −1st order light transmitted through the protective layer 22, the 0th order light, the + 1st order light, and the −1st order light are slightly changed. This is because even with a slight phase shift, a clear brightness and darkness is generated by the interference fringes to increase sensitivity and perform highly accurate analysis.

Figure 2008032588
Figure 2008032588

Figure 2008032588
Figure 2008032588

Figure 2008032588
Figure 2008032588

ただし、mは0、1、2・・・の整数である。   However, m is an integer of 0, 1, 2,.

回折格子8の溝ピッチdは、式(1)よりNAが大きくなるにつれ小さくなることが分かる。たとえば、NAが0.6程度のDVDではd≒1μm程度となり、NA0.85のBDではd≒0.470μm程度の微細形状となる。   From the equation (1), it can be seen that the groove pitch d of the diffraction grating 8 decreases as the NA increases. For example, a DVD with NA of about 0.6 has a fine shape of d≈1 μm, and a BD with a NA of 0.85 has a fine shape of d≈0.470 μm.

回折格子8の溝高さhは、式(2)より回折格子8の屈折率n1と保護層22の屈折率n2の差の大きさに依存し、差が大きくなるほど溝深さhは小さくなる。BDでは溝ピッチが0.47μm程度と非常に微細な形状のため、溝深さが深くなることよって加工が難しくなり加工精度が低下する。そのため、できるだけn1、n2の差が大きくなるように屈折率を設定する。保護層22の球面収差補正は保護層22の厚みeに依存するので、従来のカバーガラスと同等の機能を所有させるためには、従来のカバーガラスの屈折率をn3、厚みをHとすると以下の条件のようすることが最も好ましい。   The groove height h of the diffraction grating 8 depends on the difference between the refractive index n1 of the diffraction grating 8 and the refractive index n2 of the protective layer 22 from the equation (2), and the groove depth h decreases as the difference increases. . BD has a very fine shape with a groove pitch of about 0.47 μm. Therefore, processing becomes difficult and processing accuracy is lowered by increasing the groove depth. Therefore, the refractive index is set so that the difference between n1 and n2 is as large as possible. Since spherical aberration correction of the protective layer 22 depends on the thickness e of the protective layer 22, in order to have the same function as the conventional cover glass, assuming that the refractive index of the conventional cover glass is n3 and the thickness is H, It is most preferable to satisfy the following conditions.

Figure 2008032588
Figure 2008032588

たとえば、回折格子8に石英(屈折率≒1.456)を用い、保護層22に屈折率1.3程度のものを使用すると、溝高さは1.04μm程度になる。回折格子8と保護層22の構成材料が異なる場合は、対物レンズ6の光軸上において、回折格子8の対物レンズ6側の面と集光レンズ11側の面との光学距離と、保護層22の対物レンズ6側の面と集光レンズ11側の面との光学距離とが等しくなるように保護層22を形成する。   For example, if quartz (refractive index≈1.456) is used for the diffraction grating 8 and a protective layer 22 having a refractive index of about 1.3 is used, the groove height is about 1.04 μm. When the constituent materials of the diffraction grating 8 and the protective layer 22 are different, on the optical axis of the objective lens 6, the optical distance between the surface of the diffraction grating 8 on the objective lens 6 side and the surface on the condenser lens 11 side, and the protective layer The protective layer 22 is formed so that the optical distance between the surface on the objective lens 6 side of 22 and the surface on the condenser lens 11 side becomes equal.

集光レンズ11はカバーガラスを透過させて使用する状況下で、球面収差が最も小さくなるなど光学的条件が最良になるように設計されている。そのため、カバーガラスの厚みは集光レンズ11の光学的条件補正の特性に依存する。集光レンズ11に生物用の顕微鏡の対物レンズを用い、カバーガラスに一般によく使用される石英製で厚み170μmのものを使用したとすると、保護層22の厚みは190.4μm程度になる。厚みの範囲は集光レンズ11の球面収差補正の光学特性に依存するが、本装置が数mλ程度の収差量を検査・調整する点を基準に判断すると、集光レンズ出射後の球面収差量が数mλ以内になるように設定することが望ましい。   The condensing lens 11 is designed so that the optical conditions are the best, such as the smallest spherical aberration, under the condition of being transmitted through the cover glass. Therefore, the thickness of the cover glass depends on the optical condition correction characteristics of the condenser lens 11. If an objective lens of a biological microscope is used as the condenser lens 11 and quartz having a thickness of 170 μm, which is generally used for a cover glass, is used, the thickness of the protective layer 22 is about 190.4 μm. The range of thickness depends on the spherical aberration correction optical characteristics of the condensing lens 11, but if this apparatus judges based on the point of inspection and adjustment of the aberration amount of about several mλ, the spherical aberration amount after exiting the condensing lens Is preferably set to be within several mλ.

保護層22に用いる材料は、たとえば光ディスクの製造工程などでも使用されている光学接着剤であれば屈折率を整合しやすく、硬化後の硬度も高く、製造工程でも扱いやすいので厚み条件なども容易に算出することが可能である。   If the material used for the protective layer 22 is, for example, an optical adhesive that is also used in the optical disc manufacturing process, the refractive index is easily matched, the hardness after curing is high, and the thickness is easy to handle because it is easy to handle in the manufacturing process. Can be calculated.

保護層22の回折格子8上への形成方法は、回折格子の石英ウエハ上に光学接着剤をのせ、回折格子のウエハを5000〜8000rpm程度に高速に回転させる事により均一な液膜が形成され、これを硬化させ薄い保護層を形成する、いわゆるスピンコート法を使用することで十分に可能であると考えられる。   The protective layer 22 is formed on the diffraction grating 8 by applying an optical adhesive on the diffraction grating quartz wafer and rotating the diffraction grating wafer at a high speed of about 5000 to 8000 rpm to form a uniform liquid film. It is considered that this is sufficiently possible by using a so-called spin coating method in which this is cured to form a thin protective layer.

以上、説明したように本実施の形態によれば、回折格子8の溝面上に屈折率を調整した保護層22を形成することにより、回折格子8と保護層22を組み合わせた回折格子部の基材厚を倍程度に厚くすることが可能となる。その結果、回折格子部の機械的強度は回折格子単体が保有する機械的強度に比較して向上し、回折格子調整機構7への接着貼り付け時に発生する回折格子8の歪みやたわみを防止することができ、収差検出精度の低下を防ぐことができる。それとともに、他の装置構成部品や対物レンズ6などの接触による回折格子8の破損も防止することができる。さらに、保護層の屈折率、厚みを調整した保護層22を用いることでカバーガラスと同等の球面収差補正を行うことが可能になり、カバーガラス、位置調整機構など省略することができ装置構成を大幅に簡略化することができる。   As described above, according to the present embodiment, by forming the protective layer 22 with the refractive index adjusted on the groove surface of the diffraction grating 8, the diffraction grating portion in which the diffraction grating 8 and the protective layer 22 are combined is formed. It becomes possible to make the base material thickness about twice as thick. As a result, the mechanical strength of the diffraction grating portion is improved as compared with the mechanical strength possessed by the single diffraction grating, and the distortion and deflection of the diffraction grating 8 that occurs when the adhesive is attached to the diffraction grating adjusting mechanism 7 are prevented. This can prevent a decrease in aberration detection accuracy. At the same time, it is possible to prevent the diffraction grating 8 from being damaged by contact with other apparatus components and the objective lens 6. Further, by using the protective layer 22 with the refractive index and thickness of the protective layer adjusted, it is possible to perform spherical aberration correction equivalent to that of the cover glass, and the cover glass, position adjusting mechanism, etc. can be omitted, and the device configuration can be omitted. It can be greatly simplified.

また、回折格子8の格子溝の凹部に保護層22を充填させ、回折格子8の凸部表面とその凸部表面と対向する保護層22の面との距離と、回折格子8の凹部表面とその凹部表面と対向する保護層22の面との距離を等しくすることで、回折格子8の溝面である回折面を完全に保護層22で覆う。それにより、ミクロンオーダーの溝に異物が付着することを防止することができるとともに、保護層22の出射面についた異物はレンズクリーナなどの拭き取り部材などにより軽く接触させるだけで容易に除去することが可能となる。   Further, the concave portion of the grating groove of the diffraction grating 8 is filled with the protective layer 22, and the distance between the convex surface of the diffraction grating 8 and the surface of the protective layer 22 facing the convex surface, and the concave surface of the diffraction grating 8 By making the distance between the surface of the concave portion and the surface of the protective layer 22 facing it equal, the diffraction surface which is the groove surface of the diffraction grating 8 is completely covered with the protective layer 22. As a result, foreign matter can be prevented from adhering to the micron-order grooves, and foreign matter on the exit surface of the protective layer 22 can be easily removed simply by lightly touching it with a wiping member such as a lens cleaner. It becomes possible.

なお、保護層に使用する材質に入射する光に対して半透過特性を有する材質を用いることにより、回折格子へ入射した光の一部を反射させ、光ピックアップの信号特性を検出できるような機能を持たせることも可能である。   In addition, by using a material that has semi-transmission characteristics with respect to the light incident on the material used for the protective layer, it is possible to reflect a part of the light incident on the diffraction grating and detect the signal characteristics of the optical pickup. It is also possible to have

図4は、実施の形態1における回折格子と半反射層と保護層の概略図である。図4で、図1から3、図5から7と同じ符号については説明を省略する。   FIG. 4 is a schematic diagram of the diffraction grating, the semi-reflective layer, and the protective layer in the first embodiment. 4, the description of the same reference numerals as those in FIGS. 1 to 3 and FIGS. 5 to 7 is omitted.

また、本実施の形態では、保護層を単一の材料で書いたが図4に示すように回折格子8と保護層22の間に半反射特性を有する薄膜の半反射層27を形成し、その上に屈折率を調整した保護層を形成した2層構造で機械強度向上、球面収差補正、光ピックアップから出射された光を反射することによる光ピックアップの信号特性検出などの多機能化を測ることも可能であると考えられる。ここで、半反射層27としては、たとえばアルミニウム、金、白金などの材料を用いることが考えられる。   In the present embodiment, the protective layer is written with a single material, but as shown in FIG. 4, a thin semi-reflective layer 27 having a semi-reflective property is formed between the diffraction grating 8 and the protective layer 22, A two-layer structure in which a protective layer with an adjusted refractive index is formed on top of it to improve the mechanical strength, correct spherical aberration, and detect the signal characteristics of the optical pickup by reflecting the light emitted from the optical pickup. It is also considered possible. Here, as the semi-reflective layer 27, for example, a material such as aluminum, gold, or platinum may be used.

また、本実施の形態では、保護層22に用いる材料を光学接着剤としたが、光学接着剤に限らず低屈折率を保有する二酸化ケイ素などの透明金属酸化物薄膜を用いて保護層を形成しても良い。その保護層の形成には、レンズなどの光学部品の表面に光学的薄膜を形成する製造法として知られ、高品質の金属酸化物薄膜が得られるゾルーゲル法など用いれば十分形成できる。金属酸化物薄膜を用いる場合、その厚みにより透過率が低下する可能性があるが、その透過光量の低下を光ピックアップもしくは元のレーザ光源の発光量を調整することにより補正を行えば十分に使用可能である。   In the present embodiment, the material used for the protective layer 22 is an optical adhesive. However, the protective layer is formed using a transparent metal oxide thin film such as silicon dioxide having a low refractive index as well as the optical adhesive. You may do it. The protective layer can be formed satisfactorily by using a sol-gel method or the like, which is known as a manufacturing method for forming an optical thin film on the surface of an optical component such as a lens, and a high-quality metal oxide thin film can be obtained. When using a metal oxide thin film, the transmittance may decrease depending on its thickness, but it is sufficient if the decrease in the amount of transmitted light is corrected by adjusting the light emission amount of the optical pickup or the original laser light source. Is possible.

本発明のレンズ測定装置は、回折格子上に屈折率と厚さを調整した保護層を形成することによって、光情報記録装置に搭載される光ピックアップの対物レンズやDSCなどのレンズの測定装置として適用できる。   The lens measuring apparatus of the present invention is a measuring apparatus for an objective lens of an optical pickup or a lens such as a DSC mounted on an optical information recording apparatus by forming a protective layer having an adjusted refractive index and thickness on a diffraction grating. Applicable.

実施の形態1におけるレンズ測定装置の概略図Schematic diagram of lens measuring apparatus in Embodiment 1 実施の形態1における集光レンズに入射する0次光と±1次光の概略図Schematic diagram of 0th order light and ± 1st order light incident on condensing lens in Embodiment 1 実施の形態1における回折格子と保護層の寸法図Dimensional diagram of diffraction grating and protective layer in Embodiment 1 実施の形態1における回折格子と半反射層と保護層の概略図Schematic diagram of diffraction grating, semi-reflective layer, and protective layer in Embodiment 1 特許文献1のレンズ計測方法を示す図The figure which shows the lens measuring method of patent document 1 特許文献2の被覆板を備えた回折格子を示す図The figure which shows the diffraction grating provided with the coating plate of patent document 2 特許文献2の被覆層を備えた回折格子を示す図The figure which shows the diffraction grating provided with the coating layer of patent document 2

符号の説明Explanation of symbols

1 光ピックアップ
2 光源
3 レンズ
4 ミラー
5 ホルダ
6 対物レンズ
7 回折格子調整機構
8 回折格子
11 集光レンズ
12 結像レンズ
13 撮像素子
14 処理装置
15 表示装置
16 対物レンズ調整機構
22 保護層
DESCRIPTION OF SYMBOLS 1 Optical pick-up 2 Light source 3 Lens 4 Mirror 5 Holder 6 Objective lens 7 Diffraction grating adjustment mechanism 8 Diffraction grating 11 Condensing lens 12 Imaging lens 13 Imaging element 14 Processing apparatus 15 Display apparatus 16 Objective lens adjustment mechanism 22 Protective layer

Claims (3)

レンズに光を出射する光源と、
前記光源から出射され前記レンズを透過した光から異なる次数の回折光を形成する回折格子と、
前記回折格子の前記レンズと反対側の回折面に形成された保護層と、
互いに干渉した前記異なる次数の回折光を受光する受光装置と、
前記受光した干渉像から前記レンズの収差を計測する計測装置と、を有し、
前記レンズの光軸上において、前記保護層の前記回折面と反対側の面が平坦であり、且つ前記回折格子の前記レンズ側の面と前記計測装置側の面との光学距離と、前記保護層の前記レンズ側の面と前記計測装置側の面との光学距離とが等しいこと
を特徴とするレンズ測定装置。
A light source that emits light to the lens;
A diffraction grating that forms diffracted light of different orders from light emitted from the light source and transmitted through the lens;
A protective layer formed on the diffraction surface of the diffraction grating opposite to the lens;
A light receiving device that receives the diffracted lights of different orders that interfere with each other;
A measuring device that measures the aberration of the lens from the received interference image,
On the optical axis of the lens, the surface of the protective layer opposite to the diffraction surface is flat, and the optical distance between the lens-side surface of the diffraction grating and the surface of the measurement device, and the protection An optical distance between the lens-side surface of the layer and the measuring device-side surface is equal.
回折格子の回折面において、凹部表面と前記凹部表面に対向する保護層の面との距離と、凸部表面と前記凸部表面に対向する保護層の面との距離とが等しいこと
を特徴とする請求項1記載のレンズ測定装置。
In the diffraction surface of the diffraction grating, the distance between the concave surface and the surface of the protective layer facing the concave surface is equal to the distance between the convex surface and the surface of the protective layer facing the convex surface. The lens measuring device according to claim 1.
保護層の屈折率が回折格子の屈折率よりも低く、且つレンズの光軸上において前記保護層の厚さが前記回折格子の厚さよりも厚いこと
を特徴とする請求項1または2記載のレンズ測定装置。
3. The lens according to claim 1, wherein the refractive index of the protective layer is lower than the refractive index of the diffraction grating, and the thickness of the protective layer is thicker than the thickness of the diffraction grating on the optical axis of the lens. measuring device.
JP2006207524A 2006-07-31 2006-07-31 Lens-measuring device Pending JP2008032588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207524A JP2008032588A (en) 2006-07-31 2006-07-31 Lens-measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207524A JP2008032588A (en) 2006-07-31 2006-07-31 Lens-measuring device

Publications (1)

Publication Number Publication Date
JP2008032588A true JP2008032588A (en) 2008-02-14

Family

ID=39122168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207524A Pending JP2008032588A (en) 2006-07-31 2006-07-31 Lens-measuring device

Country Status (1)

Country Link
JP (1) JP2008032588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218624A (en) * 2009-03-17 2010-09-30 Fujifilm Corp Method of inspecting objective lens for optical recording medium
JP2010244648A (en) * 2009-04-09 2010-10-28 Fujifilm Corp Parallel flat plate for inspection, inspection method of objective lens for optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218624A (en) * 2009-03-17 2010-09-30 Fujifilm Corp Method of inspecting objective lens for optical recording medium
JP2010244648A (en) * 2009-04-09 2010-10-28 Fujifilm Corp Parallel flat plate for inspection, inspection method of objective lens for optical recording medium

Similar Documents

Publication Publication Date Title
JP4905193B2 (en) Concave diffraction mirror and spectroscopic device using the same
JPH07140381A (en) Method for correcting coma aberration
JP5540614B2 (en) Optical element eccentricity adjustment method, eccentricity measurement method, and lens processing method using an autocollimator
JPWO2006118221A1 (en) Objective lens tilt adjusting method, optical pickup manufacturing method, objective lens tilt adjusting apparatus, optical pickup component, optical pickup, and optical information recording / reproducing apparatus
EP1494225A2 (en) Optical system, optical pickup device, recording or/and reproducing apparatus
JP2008032588A (en) Lens-measuring device
JP3667149B2 (en) Lens evaluation method, lens evaluation device, and lens adjustment device
JP4609257B2 (en) Interface position measuring method and position measuring apparatus
JP2010244648A (en) Parallel flat plate for inspection, inspection method of objective lens for optical recording medium
JPH09120557A (en) Optical pickup device
US6373578B1 (en) Lens inspection system
JP4947889B2 (en) Optical system and optical apparatus
US20100034072A1 (en) Fresnel member having variable sag for multiple wavelength optical system
JP2007033098A (en) Lens measuring method and lens measuring instrument
JP4830837B2 (en) Lens measuring device
US7920455B2 (en) Complex optical element and optical pickup
JP2004341469A (en) Method of producing prism and method of producing optical system
JP4618202B2 (en) Lens inspection device
JP2000214048A (en) Lens aberration measuring instrument and lens tilt adjusting device using same
JP2002090605A (en) Lens-adjusting device and lens-adjusting method
JP2007205905A (en) Method of measuring and manufacturing lens, and optical pick up
CN111352304B (en) Focusing and leveling device, photoetching equipment and focusing and leveling method
US8149487B2 (en) Optical apparatus
JPH11203711A (en) Optical system having large numerical aperture and optical information recording and reproducing device using same
JP2005345363A (en) Measuring device of optical equipment and its measuring method