JP2002088447A - High strength galvanized steel sheet having excellent workability and plating property and its production method - Google Patents

High strength galvanized steel sheet having excellent workability and plating property and its production method

Info

Publication number
JP2002088447A
JP2002088447A JP2000318914A JP2000318914A JP2002088447A JP 2002088447 A JP2002088447 A JP 2002088447A JP 2000318914 A JP2000318914 A JP 2000318914A JP 2000318914 A JP2000318914 A JP 2000318914A JP 2002088447 A JP2002088447 A JP 2002088447A
Authority
JP
Japan
Prior art keywords
hot
rolled
steel sheet
sheet
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000318914A
Other languages
Japanese (ja)
Other versions
JP3698046B2 (en
Inventor
Kazunori Osawa
一典 大澤
Takashi Sakata
坂田  敬
Osamu Furukimi
古君  修
Yoshitsugu Suzuki
善継 鈴木
Akitoshi Shinohara
章翁 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000318914A priority Critical patent/JP3698046B2/en
Publication of JP2002088447A publication Critical patent/JP2002088447A/en
Application granted granted Critical
Publication of JP3698046B2 publication Critical patent/JP3698046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high strength galvanized steel sheet having good workability and high strength and capable of obtaining good plating in the case galvanizing is performed by using an equipment such as a continuous galvanizing line. SOLUTION: A slab having a composition containing, by weight, 0.01 to 0.20% C, <=1.0% Si, >1.5 to 3.0% Mn, <=0.10% P, <=0.05% S, <=0.10% Al and <=0.010% N and also containing one or more kinds selected from Ti, Nb and V by 0.010 to 1.0% in total, and the balance Fe with inevitable impurities is hot-rolled, is coiled at 750 to 450 deg.C and as it is or is further cold-rolled, and the obtained hot rolled sheet or cold rolled sheet is heated to >=750 deg.C, and in the process of cooling from the same temperature, galvanizing is performed to control the ferritic structure and bandlike structure of the plated steel sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の内板、外
板などとしての使途に好適な高強度溶融亜鉛めっき鋼板
(高強度合金化溶融亜鉛めっき鋼板を含む)の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength hot-dip galvanized steel sheet (including a high-strength galvannealed steel sheet) suitable for use as an inner plate and an outer plate of an automobile. .

【0002】[0002]

【従来の技術】近年、自動車の安全性、軽量化および低
燃費化、ひいては地球環境の改善の観点から、自動車用
の鋼板として、高強度の溶融亜鉛めっき鋼板を適用する
傾向が増加している。その中で、とくに高強度溶融亜鉛
めっき鋼板を製造するためには、めっき性がよく、かつ
溶融亜鉛めっき浴を通過し、あるいはさらに合金化処理
が施された後で、所望の強度と加工性が得られなければ
ならない。
2. Description of the Related Art In recent years, there has been an increasing tendency to apply a high-strength hot-dip galvanized steel sheet as a steel sheet for automobiles from the viewpoints of safety, weight reduction and fuel efficiency of automobiles, and further improvement of the global environment. . Among them, in order to produce high-strength hot-dip galvanized steel sheets, in particular, the plating properties are good, and after passing through a hot-dip galvanizing bath or further alloying treatment, the desired strength and workability are obtained. Must be obtained.

【0003】一般に、鋼板の強度を増加させるには、M
n、Si、Pなどの固溶強化元素やTi、Nb、Vなどの析出
強化元素を添加している。かかる元素を添加した鋼板を
連続溶融亜鉛めっきライン(CGL)で処理すると、亜
鉛めっき性を劣化させることが知られている。このよう
に合金元素の含有量は、強度とめっき性の面で相反する
作用を及ぼすので、連続溶融亜鉛めっきラインにて、め
っき性がよい高強度溶融亜鉛めっき鋼板を製造すること
は極めて困難なものであった。また、高強度溶融亜鉛め
っき鋼板は、一般に、伸びなどの加工性に関わる特性が
劣るため、加工性のよい溶融亜鉛めっき鋼板を製造する
ことは、さらに困難なことであった。
Generally, to increase the strength of a steel sheet, M
Solid solution strengthening elements such as n, Si and P and precipitation strengthening elements such as Ti, Nb and V are added. It is known that when a steel sheet to which such an element is added is treated in a continuous hot-dip galvanizing line (CGL), the galvanizability is deteriorated. As described above, since the content of the alloying element has an opposing action in terms of strength and plating properties, it is extremely difficult to produce a high-strength galvanized steel sheet having good plating properties in a continuous galvanizing line. Was something. Further, since high strength hot-dip galvanized steel sheets generally have poor properties related to workability such as elongation, it has been even more difficult to produce hot-dip galvanized steel sheets with good workability.

【0004】ところで、従来の加工性を高めた高強度鋼
板としては、フェライト素地にマルテンサイトを主相と
する低温変態相(残留オーステナイトも含む)を含む複
合組織鋼板が知られている。この複合組織鋼板は常温非
時効で降伏比が低く、加工性および加工後の焼付硬化性
が優れており、(α+γ)域温度で加熱後、水冷やガス
冷却などで急冷することにより製造される。
[0004] As a conventional high-strength steel sheet with improved workability, a multi-structure steel sheet containing a low-temperature transformed phase (including retained austenite) containing martensite as a main phase in a ferrite base is known. This composite structure steel sheet is non-ageed at room temperature, has a low yield ratio, and has excellent workability and bake hardenability after processing. It is manufactured by heating at (α + γ) range temperature and then quenching by water cooling or gas cooling. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この複
合組織鋼板を、500 ℃程度の温度で溶融亜鉛めっき、あ
るいはさらに合金化処理した場合に、フェライト素地中
に分散しているマルテンサイトが焼もどしされて、引張
強さ、伸びは低下し、上降伏点が現れて降伏比の上昇、
さらには降伏伸びの発生が起こってしまう。焼もどし軟
化は、Mn、Siなどの合金元素が少ないほど生じやすく、
一方、これら合金元素が多い場合には、溶融亜鉛めっき
性が低下してしまう。結局、複合組織鋼板においても、
めっき工程でマルテンサイトが焼き戻しされるので、そ
の特徴である加工性と高強度を両立させ、かつ良好なめ
っき性を発揮させることは、従来技術の下では困難であ
った。
However, when the composite structure steel sheet is hot-dip galvanized or further alloyed at a temperature of about 500 ° C., the martensite dispersed in the ferrite matrix is tempered. The tensile strength and elongation decrease, the upper yield point appears, and the yield ratio increases,
Furthermore, yield elongation occurs. Tempering softening is more likely to occur as the amount of alloying elements such as Mn and Si decreases,
On the other hand, when there are many of these alloy elements, hot-dip galvanizing property will fall. After all, even in composite structure steel sheets,
Since martensite is tempered in the plating process, it has been difficult under the prior art to achieve both workability and high strength, which are the characteristics of the martensite, and to exhibit good plating properties.

【0006】そこで、本発明は、従来技術が抱えている
上記問題を解決するために、連続溶融亜鉛めっきライン
などの設備を用いて溶融亜鉛めっきしても、良好な加工
性と高強度をともに満たし、しかも良好なめっきが得ら
れる高強度溶融亜鉛めっき鋼板の製造方法を提案するこ
とを目的とする。本発明の具体的目的は、加工性と高強
度を表す指標として、TS:590 MPa 以上、TS×El
の値: 15000 MPa・%以上を満たしつつ、良好なめっき
が得られることにある。
Accordingly, the present invention provides both good workability and high strength even when hot-dip galvanizing using equipment such as a continuous hot-dip galvanizing line in order to solve the above-mentioned problems of the prior art. It is an object of the present invention to propose a method for producing a high-strength hot-dip galvanized steel sheet that satisfies and can provide good plating. A specific object of the present invention is to provide an index indicating workability and high strength as TS: 590 MPa or more, and TS × El.
Value: good plating can be obtained while satisfying 15000 MPa ·% or more.

【0007】[0007]

【課題を解決するための手段】発明者らは、上記課題の
解決に向けて鋭意研究した結果、Mo、Crを添加せずと
も、また、残留オーステナイト相と焼もどしマルテンサ
イト相を含まなくても、加工性およびめっき性に優れた
高強度溶融亜鉛めっき鋼板を製造しうることを知見し、
本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the inventors have found that even if Mo and Cr are not added, a residual austenite phase and a tempered martensite phase are not included. Also found that high-strength hot-dip galvanized steel sheets with excellent workability and plating properties could be manufactured,
The present invention has been completed.

【0008】すなわち、本発明は、以下の構成を要旨と
するものである。(1) 質量%で、 C:0.01〜0.20%、 Si:1.0 %以下、 Mn:1.5 超〜3.0 %、 P:0.10%以下、 S:0.05%以下、 Al:0.10%以下、 N:0.010 %以下を含み、かつ Ti、NbおよびVから選ばれるいずれか1種または2種以
上を合計で、0.010 〜1.0 %含有し、残部はFeおよび不
可避的不純物の組成からなるとともに、フェライト相の
面積率が50%以上、かつフェライト相の平均結晶粒径が
10μm以下であって、第2相からなるバンド状組織の厚
みが、Tb/T≦0.005 (ただし、Tb:バンド状組織
の板厚方向平均厚み、T:鋼板板厚)の関係を満たす金
属組織を有することを特徴とする加工性およびめっき性
に優れた高強度溶融亜鉛めっき鋼板。
That is, the present invention has the following configuration as a gist. (1) In mass%, C: 0.01 to 0.20%, Si: 1.0% or less, Mn: more than 1.5 to 3.0%, P: 0.10% or less, S: 0.05% or less, Al: 0.10% or less, N: 0.010% It contains the following and contains one or more selected from Ti, Nb and V in a total amount of 0.010 to 1.0%, with the balance being composed of Fe and unavoidable impurities and the area ratio of the ferrite phase. Is 50% or more and the average crystal grain size of the ferrite phase is
A metal structure having a thickness of 10 μm or less and a band-like structure composed of the second phase satisfying a relationship of Tb / T ≦ 0.005 (where, Tb: average thickness of the band-like structure in the thickness direction, T: steel plate thickness). A high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, characterized by having:

【0009】(2) 上記 (1)において、鋼組成がさらにC
uおよびNiのうちの1種または2種を合計で3.0 %以下
含有する組成からなることを特徴とする加工性およびめ
っき性に優れた高強度溶融亜鉛めっき鋼板。
(2) In the above (1), the steel composition further contains C
A high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, characterized by comprising a composition containing one or two of u and Ni in a total of 3.0% or less.

【0010】(3) 上記 (1)または (2)において、鋼組
成がさらにCaおよびREM のうちの1種または2種を合計
で0.001 〜0.01%含有する組成からなることを特徴とす
る加工性およびめっき性に優れた高強度溶融亜鉛めっき
鋼板。
(3) The workability according to (1) or (2), wherein the steel composition further comprises one or two of Ca and REM in a total content of 0.001 to 0.01%. High strength hot-dip galvanized steel sheet with excellent plating properties.

【0011】(4) 上記 (1)〜 (3)のいずれか1つに記
載の鋼組成からなるスラブを、熱間圧延して、750 〜45
0 ℃で巻き取り、次いで、そのまま或いはさらに冷間圧
延を行い、得られた熱延板または冷延板を、750 ℃以上
に加熱し、この温度からの冷却途中で溶融亜鉛めっきを
行うことを特徴とする加工性およびめっき性に優れた高
強度溶融亜鉛めっき鋼板の製造方法。
(4) A slab comprising the steel composition described in any one of (1) to (3) above is hot-rolled to 750 to 45
Winding at 0 ° C, and then performing cold rolling as it is or further, heating the obtained hot rolled sheet or cold rolled sheet to 750 ° C or more, and performing hot dip galvanizing during cooling from this temperature. A method for producing a high-strength hot-dip galvanized steel sheet with excellent workability and plating properties.

【0012】(5) 上記 (1)〜 (3)のいずれか1つに記
載の鋼組成からなるスラブを、熱間圧延して、750 〜45
0 ℃で巻き取り、次いで、そのまま或いはさらに冷間圧
延を行い、得られた熱延板または冷延板を、750 ℃以上
に加熱し、この温度からの冷却途中で溶融亜鉛めっきを
行い、次いで合金化処理を行うことを特徴とする加工性
およびめっき性に優れた高強度溶融亜鉛めっき鋼板の製
造方法。
(5) A slab having the steel composition described in any one of (1) to (3) above is hot-rolled to 750 to 45
Winding at 0 ° C., and then performing cold rolling as it is or further, heating the obtained hot-rolled sheet or cold-rolled sheet to 750 ° C. or more, performing hot-dip galvanizing during cooling from this temperature, A method for producing a high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, characterized by performing an alloying treatment.

【0013】(6) 上記 (1)〜 (3)のいずれか1つに記
載の鋼組成からなるスラブを、熱間圧延して、750 〜45
0 ℃で巻き取り、次いで、そのまま或いはさらに冷間圧
延を行い、得られた熱延板または冷延板を、一旦750 ℃
以上に加熱し、冷却してから、さらに700 ℃以上に加熱
して、この温度からの冷却途中で溶融亜鉛めっきを行う
ことを特徴とする加工性およびめっき性に優れた高強度
溶融亜鉛めっき鋼板の製造方法。
(6) A slab comprising the steel composition described in any one of (1) to (3) above is hot-rolled to 750 to 45
It is wound at 0 ° C. and then cold-rolled as it is or further, and the obtained hot-rolled sheet or cold-rolled sheet is once heated to 750 ° C.
High-strength hot-dip galvanized steel sheet with excellent workability and plating properties, characterized in that it is heated to above, cooled, and further heated to 700 ° C or more, and hot-dip galvanized during cooling from this temperature. Manufacturing method.

【0014】(7) 上記 (1)〜 (3)のいずれか1つに記
載の鋼組成からなるスラブを、熱間圧延して、750 〜45
0 ℃で巻き取り、次いで、そのまま或いはさらに冷間圧
延を行い、得られた熱延板または冷延板を、一旦750 ℃
以上に加熱し、冷却してから、さらに700 ℃以上に加熱
して、この温度からの冷却途中で溶融亜鉛めっきを行
い、次いで合金化処理を行うことを特徴とする加工性お
よびめっき性に優れた高強度溶融亜鉛めっき鋼板の製造
方法。
(7) A slab having the steel composition described in any one of (1) to (3) above is hot-rolled to 750 to 45
It is wound at 0 ° C. and then cold-rolled as it is or further, and the obtained hot-rolled sheet or cold-rolled sheet is once heated to 750 ° C.
Heating and cooling to above, further heating to 700 ° C or higher, hot-dip galvanizing in the middle of cooling from this temperature, and then performing alloying treatment Manufacturing method of high-strength hot-dip galvanized steel sheet.

【0015】[0015]

【発明の実施の形態】これらの発明では、以下の (a)
(b)の効果が相乗的に発揮され、Mn、Siを大量に添加す
ることなく、かつ強化元素として、Mo、Crを添加せずと
も、また、組織的に残留オーステナイト相と焼もどしマ
ルテンサイト相を含まなくても、冷却前のγ粒を微細に
することができ、このため、α相→γ相へのC、Mnの濃
化が促進され、γ相を有効にマルテンサイト化し、加工
性およびめっき性に優れた高強度溶融亜鉛めっき鋼板を
製造可能とするものである。 (a) Ti、NbおよびVから選ばれるいずれか1種または
2種以上の添加で生成する、TiC、NbC、VCなどの炭
化物による結晶粒界移動のピン止め作用により、α(フ
ェライト)結晶粒を10μm以下に微細化できる。この
ため、これをさらにめっき前の工程で加熱するときに、
α(フェライト)+γ(オーステナイト)の2相域中で
生成、成長するγ粒、あるいはγ(オーステナイト)単
相域でのγ粒の粗大化が抑制される効果。 (b) 加熱前から存在し、C、Mnを多量に含有した第2
相からなるバンド状組織の厚みが、Tb/T≦0.005
(ただし、Tb:バンド状組織の板厚方向平均厚み、
T:鋼板板厚)の関係を満たすように分散させる加熱の
効果。 本発明においては、こうした相乗効果によって、めっき
性に有害なCrをほとんど含有させる必要がないのでめっ
き性が極めて良好であり、また、Moを添加していないの
で、加熱前に存在するバンド状組織の厚みが比較的薄
く、めっき性の観点から不利な1回CGL(溶融亜鉛め
っき)法のときに、さほどの高温加熱を施さなくても加
工性の良好な高強度溶融亜鉛めっき鋼板を製造できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In these inventions, the following (a)
The effect of (b) is exhibited synergistically, without adding a large amount of Mn and Si, and without adding Mo or Cr as a strengthening element, and also systematically retaining the retained austenite phase and tempered martensite. Even if no phase is contained, the γ grains before cooling can be made finer, which promotes the concentration of C and Mn from the α phase to the γ phase, effectively transforms the γ phase into martensite, and This makes it possible to produce a high-strength hot-dip galvanized steel sheet having excellent properties and plating properties. (a) α (ferrite) crystal grains due to the pinning action of crystal grain boundary movement by carbides such as TiC, NbC, and VC generated by the addition of one or more selected from Ti, Nb, and V Can be reduced to 10 μm or less. For this reason, when this is further heated in a process before plating,
The effect of suppressing γ grains generated and grown in the two-phase region of α (ferrite) + γ (austenite) or coarsening of γ particles in the single-phase region of γ (austenite). (b) The second which exists before heating and contains a large amount of C and Mn
When the thickness of the band-like structure composed of phases is Tb / T ≦ 0.005
(However, Tb: average thickness in the thickness direction of the band-like structure,
(T: steel plate thickness). In the present invention, due to such a synergistic effect, it is not necessary to substantially contain Cr harmful to the plating property, so that the plating property is extremely good, and since Mo is not added, the band-like structure existing before heating is not present. In the case of the single CGL (hot-dip galvanizing) method, which has a relatively small thickness and is disadvantageous from the viewpoint of plating properties, it is possible to produce a high-strength hot-dip galvanized steel sheet having good workability without applying much high-temperature heating. .

【0016】次に、本発明の基になった実験結果につい
て説明する。 (実験1)化学組成が0.08%C−0.01%Si−1.9 %Mn−
0.011 %P−0.002 %S−0.04%Al−0.0022%N−0.02
%Ti−0.05%Nbで厚み30mmのシートバーを、1200℃に
加熱し、5パスで厚さ2.8 mmの熱延板とした。その
後、巻取り温度(CT)相当処理として 400℃, 650 ℃
で各1hrの熱処理を行った。次いで、酸洗後、冷間圧延
して1.4 mmの冷延板とし、 700℃〜850 ℃に1分間加
熱保持し、10℃/sの速度で 500℃まで冷却して、溶融
亜鉛めっき後、40s間保持後、10℃/sの速度で 550℃
まで加熱して合金化処理し、ただちに10℃/sの速度で
室温まで冷却した。その後、圧下率1.0 %の調質圧延を
行った。得られた溶融亜鉛めっき鋼板について、JIS
5号引張試験片により引張特性(TS、YS、El)を
調査するとともに、めっき性を調べた。めっき性は次の
基準で評価した。 ○:不めっき欠陥なし(めっき性良好) △:不めっき欠陥一部発生(めっき性やや良好) ×:不めっき欠陥多数発生(めっき性不良) 得られた結果を図1に示す。図1から、巻取り温度が65
0 ℃で、めっき前の加熱温度が750 ℃以上であるとき、
TS:590 MPa 以上、El:25%以上を達成できること
がわかる。
Next, the experimental results based on the present invention will be described. (Experiment 1) Chemical composition is 0.08% C-0.01% Si-1.9% Mn-
0.011% P-0.002% S-0.04% Al-0.0022% N-0.02
A 30 mm thick sheet bar of% Ti-0.05% Nb was heated to 1200 [deg.] C. to form a hot rolled sheet of 2.8 mm thick in five passes. Then, 400 ° C, 650 ° C as processing equivalent to winding temperature (CT)
For 1 hour each. Then, after pickling, cold-rolled to a 1.4 mm cold-rolled sheet, heated and maintained at 700 ° C to 850 ° C for 1 minute, cooled to 500 ° C at a rate of 10 ° C / s, and hot-dip galvanized. After holding for 40s, 550 ℃ at 10 ℃ / s
Until the alloying treatment, and immediately cooled to room temperature at a rate of 10 ° C./s. Thereafter, temper rolling at a reduction of 1.0% was performed. The obtained hot-dip galvanized steel sheet was subjected to JIS
The tensile properties (TS, YS, El) were examined using a No. 5 tensile test piece, and the plating properties were examined. Plating properties were evaluated according to the following criteria. :: No non-plating defect (good plating property) Δ: Partial occurrence of non-plating defect (slightly good plating property) ×: Many occurrence of non-plating defect (poor plating property) The results obtained are shown in FIG. From FIG. 1, the winding temperature is 65
At 0 ° C, when the heating temperature before plating is 750 ° C or more,
It can be seen that TS: 590 MPa or more and El: 25% or more can be achieved.

【0017】(実験2)実験1と同じ成分でCT相当処
理を 400℃〜700 ℃に変化させた板厚1.6 mmの冷延板を
用い、750 ℃に1分間保持(1回目加熱)を行い、10℃
/sの速度で室温まで冷却して、酸洗後、750 ℃に1分
間保持(2回目加熱)し、10℃/sの速度で 500℃まで
冷却して、溶融亜鉛めっきし、40s間保持後、10℃/s
で 550℃まで加熱して合金化処理し、ただちに10℃/s
の速度で室温まで冷却した。その後、圧下率1.0 %の調
質圧延を行った。得られた溶融亜鉛めっき鋼板につい
て、実験1と同様にして、引張特性とめっき性を調べ
た。その結果、2回の加熱(1回目加熱と2回目加熱)
を行った場合(図2の○)には、図2に示すように、引
張特性、めっき性ともに、1回の加熱だけの実験1と同
様の実験(図2の●)の場合よりもさらに改善できるこ
とがわかる。
(Experiment 2) Using a cold-rolled sheet having a thickness of 1.6 mm with the same components as in Experiment 1 and a CT equivalent treatment changed from 400 ° C. to 700 ° C., and kept at 750 ° C. for 1 minute (first heating). , 10 ℃
/ S cooled to room temperature, pickled, held at 750 ° C for 1 minute (second heating), cooled to 10 ° C / s to 500 ° C, hot-dip galvanized, and held for 40s After, 10 ℃ / s
To 550 ° C for alloying treatment and immediately 10 ° C / s
At room temperature. Thereafter, temper rolling at a reduction of 1.0% was performed. With respect to the obtained hot-dip galvanized steel sheet, the tensile properties and the plating properties were examined in the same manner as in Experiment 1. As a result, heating twice (first heating and second heating)
2 (o in FIG. 2), as shown in FIG. 2, both the tensile properties and the plating properties are further higher than those in the experiment (● in FIG. 2) similar to Experiment 1 in which only one heating was performed. It can be seen that it can be improved.

【0018】上記各実験から、高Mn含有量により高強度
化した場合であっても、高温巻取り、めっき前の高温加
熱あるいは2回の加熱処理により、めっき性や機械特性
が改善されることがわかった。このような効果が得られ
る理由として、以下のようなことが考えられる。すなわ
ち、高温巻取り、2回の加熱処理は、鋼板直下に内部酸
化層を生成し、これがめっき性に有害なMnの鋼板表面へ
の濃化を抑制すること、また、一度高温加熱して生成し
ためっき性に有害なMnの表面濃化層が、2回目加熱の前
に酸洗で除去されること、めっき前の高温加熱は、C、
Mn濃度の高いバンド組織を溶解・分散し、マルテンサイ
トなどの第2相の生成に有利に作用すること等が考えら
れる。
From the above experiments, it is found that even when the strength is increased by the high Mn content, the plating properties and mechanical properties can be improved by high-temperature winding, high-temperature heating before plating, or two heat treatments. I understood. The following are conceivable reasons for obtaining such an effect. In other words, high-temperature winding and two heat treatments produce an internal oxide layer directly below the steel sheet, which suppresses the concentration of Mn, which is harmful to the plating property, on the steel sheet surface. Mn surface concentrated layer that is harmful to plating properties is removed by pickling before the second heating, high-temperature heating before plating is C,
It is conceivable that the band structure having a high Mn concentration is dissolved / dispersed, which advantageously acts on the formation of the second phase such as martensite.

【0019】次に、本発明において成分組成および製造
条件を上記範囲に限定した理由について説明する。 (成
分組成は質量%で表す) C:0.01〜0.20% Cは鋼の重要な基本成分の一つであり、とくに本発明で
は、Ti、NbおよびVの炭化物を析出して強度上昇に寄与
するほか、低温で生成するベイナイト相、マルテンサイ
ト相を通じて強度の向上に寄与する元素である。C量
が、0.01%未満では、上記析出物はもちろん、ベイナイ
ト相、マルテンサイト相も生成しにくく、一方、0.20%
超ではスポット溶接性が劣化することから、その含有範
囲を0.01〜0.20%とする。なお、好ましいC量は0.03〜
0.15%である。
Next, the reasons for limiting the component composition and the production conditions in the present invention to the above ranges will be described. (The component composition is represented by mass%) C: 0.01 to 0.20% C is one of the important basic components of steel. In particular, in the present invention, carbides of Ti, Nb, and V are precipitated to contribute to an increase in strength. In addition, it is an element that contributes to improvement in strength through a bainite phase and a martensite phase generated at a low temperature. If the C content is less than 0.01%, not only the precipitates described above but also the bainite phase and the martensite phase are hardly formed, while the C content is 0.20%.
If the content is too high, the spot weldability deteriorates, so the content range is set to 0.01 to 0.20%. The preferred C amount is 0.03 to
0.15%.

【0020】Si:1.0 %以下 Siはα相中の固溶C量を減少させることにより、伸びな
どの加工性を向上させる元素であるが、1.0 %超のSi量
の含有はスポット溶接性およびめっき性を損ねるので上
限を1.0 %とする。なお、好ましいSi量は0.5 %以下で
ある。また、Si量を0.005 %未満まで低下させるにはコ
ストの上昇を伴うので、下限は0.005 %とするのが望ま
しい。
Si: 1.0% or less Si is an element that improves the workability such as elongation by reducing the amount of solid solution C in the α phase. Since the plating property is impaired, the upper limit is made 1.0%. The preferred amount of Si is 0.5% or less. Since lowering the Si content to less than 0.005% involves an increase in cost, the lower limit is preferably set to 0.005%.

【0021】Mn:1.5 超〜3.0 % Mnは本発明における重要成分の一つであり、複合組織に
おいては変態を抑制し、γ相を安定化させる元素であ
る。しかし、1.5 %以下の含有ではその効果がなく、一
方、3.0 %超えるとスポット溶接性およびめっき性を著
しく損なう。よって、Mnは1.5 超〜3.0 %、好ましくは
1.6 〜2.5 %の範囲で含有させる。
Mn: more than 1.5 to 3.0% Mn is one of the important components in the present invention, and is an element that suppresses transformation in a composite structure and stabilizes the γ phase. However, when the content is less than 1.5%, the effect is not obtained. On the other hand, when the content exceeds 3.0%, the spot weldability and the plating property are significantly impaired. Therefore, Mn is more than 1.5 to 3.0%, preferably
It is contained in the range of 1.6 to 2.5%.

【0022】P:0.10%以下 Pは高強度化を安価に達成するうえで有効な元素である
が、0.1 %を超えて含有するとスポット溶接性を著しく
損なうので上限を0.10%とする。なお、P量は0.05%以
下に抑えるのが望ましい。また、P量を0.001 %未満ま
で低下させるにはコストの上昇を伴うので、下限は0.00
1 %に止めるのが望ましい。
P: 0.10% or less P is an effective element for achieving high strength at low cost, but if it exceeds 0.1%, the spot weldability is significantly impaired, so the upper limit is made 0.10%. It is desirable that the P content be suppressed to 0.05% or less. Since lowering the P content to less than 0.001% involves an increase in cost, the lower limit is 0.00%.
It is desirable to keep it to 1%.

【0023】S:0.05%以下 Sは熱延時の熱間割れを引き起こす原因になるほか、ス
ポット溶接部のナゲット内破断を誘発するので、極力低
減するのが望ましい。よって、本発明では上限を0.05%
以下とする。なお、0.010 %以下に抑制するのがより好
ましい。また、S量を0.0005%未満まで低下させるには
コストの上昇を伴うので、下限は0.0005%に止めるのが
望ましい。
S: 0.05% or less S causes hot cracking at the time of hot rolling and also induces breakage in the nugget of the spot welded portion. Therefore, it is desirable to reduce S as much as possible. Therefore, in the present invention, the upper limit is 0.05%
The following is assumed. It is more preferable to suppress the content to 0.010% or less. Since lowering the S content to less than 0.0005% involves an increase in cost, the lower limit is desirably set to 0.0005%.

【0024】Al:0.10%以下 Alは製鋼段階での脱酸剤として、また時効劣化を引き起
こすNをAlNとして固定する有効な元素である。しか
し、0.10%超えて含有すると製造コストの上昇を招くの
で、Al量は0.10%以下に抑える必要がある。なお、好ま
しい含有量は0.050 %以下である。また、Al量が0.005
%未満では脱酸が不十分になりやすいので、下限は0.00
5 %とするのが望ましい。
Al: 0.10% or less Al is an effective element as a deoxidizing agent at the steel making stage and fixing N which causes aging deterioration as AlN. However, if the content exceeds 0.10%, the production cost increases, so the Al content must be suppressed to 0.10% or less. The preferred content is 0.050% or less. In addition, the amount of Al is 0.005
%, The deoxidation tends to be insufficient, so the lower limit is 0.00
5% is desirable.

【0025】N:0.010 %以下 Nは時効劣化をもたらすほか、降伏点(降伏比)の上
昇、降伏伸びの発生を招くことから、0.010 %以下に抑
制する必要がある。なお、好ましいN量は0.0050%以下
である。また、N量を0.0005%未満まで低下させるには
コストの上昇を伴うので、下限は0.0005%に止めるのが
望ましい。
N: 0.010% or less N not only causes aging deterioration but also increases the yield point (yield ratio) and yield elongation, so it is necessary to suppress it to 0.010% or less. Note that a preferable N amount is 0.0050% or less. In addition, since lowering the N content to less than 0.0005% involves an increase in cost, the lower limit is preferably limited to 0.0005%.

【0026】Ti、NbおよびV:合計で0.01〜1.0 % Ti、NbおよびVは炭化物を形成し、鋼を高強度化するの
に有効な元素であり、1種または2種以上を合計で0.01
〜1.0 %を含有させる。これらの元素は合計量で0.01%
以上の含有で上記効果が得られるが、1.0 %を超えて含
有するとコスト上の不利を招くほか、微細析出物が多く
なりすぎて、冷延後の回復・再結晶を抑制し、延性(伸
び)を低下させる。よって、これらの元素は合計量で0.
01〜1.0%、好ましくは0.010 〜0.20%の範囲で含有さ
せる。
Ti, Nb, and V: 0.01 to 1.0% in total Ti, Nb, and V are elements that form carbides and are effective in increasing the strength of steel.
1.01.0%. These elements are 0.01% in total
The above effect can be obtained with the above content. However, if the content exceeds 1.0%, disadvantages in cost are caused, and the amount of fine precipitates becomes too large, so that recovery and recrystallization after cold rolling is suppressed, and ductility (elongation) is suppressed. ). Therefore, these elements are 0.
It is contained in the range of 01 to 1.0%, preferably 0.010 to 0.20%.

【0027】Cu、Ni:合計で3.0 %以下 Cu、Niはマルテンサイトなどの第2相を形成し、鋼を高
強度化するのに有用な元素であり、必要に応じて添加す
る。しかしながら、合計量で3.0 %を超えて含有する
と、コスト高となるだけでなく、降伏点を低下させるの
で、高降伏比が求められるときには不利となる。このた
め、Cu、Niの含有量は合計で3.0 %以下の範囲で含有さ
せる。なお、好ましい含有範囲は、合計量で0.010 〜3.
0 %の範囲である。
Cu, Ni: not more than 3.0% in total Cu and Ni are elements that form a second phase such as martensite and are useful elements for increasing the strength of steel, and are added as necessary. However, if the total content exceeds 3.0%, not only is the cost increased, but also the yield point is lowered, which is disadvantageous when a high yield ratio is required. For this reason, the contents of Cu and Ni are set in a range of 3.0% or less in total. The preferred content range is 0.010 to 3.
It is in the range of 0%.

【0028】Ca、REM :合計で0.001 〜0.01% Ca、REM は、介在物および硫化物の形態を制御し、穴拡
げ性を改善する効果を有するので、合計で0.001 %以上
含有させるのが好ましい。しかし、合計で0.01%を超え
て含有しても効果が飽和しコスト高を招く。このため、
CaおよびREM の含有量は合計で0.001 〜0.01%とする。
なお、より好ましい含有範囲は、合計量で0.002 〜0.00
5 %である。
Ca, REM: 0.001 to 0.01% in total Ca and REM have the effect of controlling the morphology of inclusions and sulfides and improving the hole-expanding property. Therefore, it is preferable to contain 0.001% or more in total. . However, even if the content exceeds 0.01% in total, the effect is saturated and the cost is increased. For this reason,
The total content of Ca and REM should be 0.001-0.01%.
A more preferable content range is 0.002 to 0.00 in total.
5%.

【0029】フェライト相:面積率で50%以上 本発明は高度な加工性が要求される自動車用鋼板を対象
としており、フェライト相が面積率で50%未満では必要
な延性、伸びフランジ性を確保することが困難となる。
なお、さらに良好な延性が要求される場合には、面積率
で75%以上のフェライト分率とすることが望ましい。フ
ェライトとしては、いわゆるフェライトのみでなく、炭
化物の析出を含まないベイニティックフェライト、アシ
キュラーフェライトも含むものとする。フェライト相の
観察方法および評価方法は、鋼板の断面が観察面になる
ように樹脂に埋め込み「純水100 mlに対してピロ亜硫酸
ナトリウム1gを添加した水溶液」と「エタノール100
mlに対してピクリン酸4gを添加した液」を1:1の割
合で混合した液中に、室温で120 秒間浸漬してエッチン
グし、フェライト相(黒色部)と第2相(白色部)とに
分離し、倍率1000倍の画像解析装置にて、フェライトの
面積率を求めた。
Ferrite phase: 50% or more in area ratio The present invention is directed to a steel sheet for automobiles requiring high workability, and secures necessary ductility and stretch flangeability when the ferrite phase is less than 50% in area ratio. It will be difficult to do.
In the case where better ductility is required, it is desirable that the ferrite fraction be 75% or more in terms of area ratio. The ferrite includes not only so-called ferrite but also bainitic ferrite and acicular ferrite which do not include precipitation of carbide. The observation method and evaluation method of the ferrite phase are as follows: embedded in resin so that the cross section of the steel sheet becomes the observation surface; "aqueous solution obtained by adding 1 g of sodium pyrosulfite to 100 ml of pure water";
A solution obtained by mixing 4 g of picric acid with respect to 1 ml in a 1: 1 ratio was immersed in a solution at room temperature for 120 seconds and etched to obtain a ferrite phase (black portion) and a second phase (white portion). And the area ratio of ferrite was determined using an image analyzer with a magnification of 1000 times.

【0030】フェライト相の平均結晶粒径:10μm(0.0
1mm)以下 焼鈍でα+γの2相域に加熱した際に、フェライト粒径
が10μm超の大きさでは、フェライト粒界から生成する
オーステナイト粒は自ずと大きくなってしまう。当然、
この大きなオーステナイト粒は冷却中に比較的大きなマ
ルテンサイトやベーナイトなどの第2相に変態し、割れ
の起点となって穴拡げ性を低下させてしまう。よって、
本発明では、第2相を微細化し、穴拡げ性の向上をはか
るためにフェライト粒径を10μm以下とした。ここで、
平均結晶粒径は断面組織写真からASTMに規定された
求積法により算出した値と、同じく切断法により求めた
公称粒径(例えば、梅本ら:熱処理24(1984)334 に解
説あり)のより大きい方を採用する。また、本発明では
第2相の種類(マルテンサイト、ベーナイト、パーライ
ト、セメンタイトなど)については特に限定する必要が
ない。
Average grain size of ferrite phase: 10 μm (0.0
1 mm) or less When heating to the α + γ two-phase region by annealing, if the ferrite grain size is more than 10 μm, the austenite grains generated from the ferrite grain boundary naturally increase. Of course,
These large austenite grains are transformed into a relatively large second phase such as martensite or bainite during cooling, and serve as crack initiation points to reduce hole expandability. Therefore,
In the present invention, the grain size of the ferrite is set to 10 μm or less in order to make the second phase finer and improve hole expandability. here,
The average crystal grain size is calculated from the value calculated by the quadrature method specified in ASTM from the photograph of the cross-sectional structure and the nominal grain size similarly obtained by the cutting method (for example, Umemoto et al., Described in Heat Treatment 24 (1984) 334). Adopt the larger one. In the present invention, the type of the second phase (martensite, bainite, pearlite, cementite, etc.) does not need to be particularly limited.

【0031】バンド状組織:Tb/T≦0.005 の厚み バンド状組織は、C、Mn量の多い鋼において、主にスラ
ブの冷却段階で結晶粒界に沿って凝集したC、Mnの濃化
層が、熱延時あるいはその後の冷却時に引き延ばされ
て、圧延方向、板幅方向に列状、層状をなして形成した
第2相群からなるものである。これらバンド状組織の平
均厚みTbと板厚Tの比Tb/Tを0.005以下とする理
由は、本発明のようにMn含有量が多い場合、熱延板の組
織中にC、Mnを主成分とするバンド状の第2相組織が厚
くなり、フェライト素地中に硬質なマルテンサイトを均
一に分散させた高強度鋼板を製造しにくくなるからであ
る。よって、効率よく高強度鋼板を製造するためには、
バンド状の第2相中に濃化しているC、Mnを分散してお
く必要があり、その目安となるのがバンド状組織の平均
厚みTbと板厚Tの比であり、Tb/T≦0.005 であれ
ば良好な結果が得られるからである。 バンド状組織の平均厚み:Tbは、鋼板の断面が観察面
になるように樹脂に埋め込み、3%ナイタール液中に室
温で15秒間浸漬してエッチングし、倍率1000倍の画像
解析装置にて、列状、層状の第2相組織20点について
それぞれの厚みを測定し、20点の平均値から求めた。
Band-like structure: Thickness of Tb / T ≦ 0.005 The band-like structure is a concentrated layer of C and Mn in a steel having a large amount of C and Mn, mainly agglomerated along crystal grain boundaries in a cooling step of the slab. Are formed by forming a second phase group which is stretched at the time of hot rolling or subsequent cooling and formed in a row or a layer in the rolling direction and the sheet width direction. The reason that the ratio Tb / T between the average thickness Tb and the plate thickness T of these band-like structures is 0.005 or less is that when the Mn content is large as in the present invention, C and Mn are mainly contained in the structure of the hot-rolled sheet. This is because it becomes difficult to produce a high-strength steel sheet in which hard martensite is uniformly dispersed in a ferrite base material. Therefore, in order to efficiently manufacture high-strength steel sheets,
It is necessary to disperse C and Mn concentrated in the band-like second phase, and the standard is the ratio of the average thickness Tb of the band-like structure to the plate thickness T, and Tb / T ≦ If it is 0.005, good results can be obtained. Average thickness of band-like structure: Tb is embedded in a resin such that the cross section of the steel plate becomes an observation surface, immersed in a 3% nital solution at room temperature for 15 seconds, etched, and image-analyzed at a magnification of 1000 times by The thickness of each of the row-shaped and layered second phase structures was measured at 20 points, and the thickness was determined from the average value of the 20 points.

【0032】次に、本発明における製造条件について述
べる。以上に述べた成分組成からなる鋼スラブを常法に
したがい熱間圧延し、750 〜450 ℃で巻き取る。巻取温
度が450 ℃未満では、TiC, NbCなどの炭化物が生成し
にくく、強度不足になりやすい。また、鋼板の表面直下
に内部酸化層を形成しにくく、鋼板表面でのMn濃化を抑
制できなくなるからである。一方、750 ℃を超えて巻き
取ると、スケール厚みが厚くなり酸洗効率が悪くなる
他、コイル長手方向の先端部、中央部、後端部、および
コイル幅方向のエッジ部、中央部の間で材質変動が大き
くなるからである。なお、好ましい巻取温度は700 〜55
0 ℃である。
Next, the manufacturing conditions in the present invention will be described. A steel slab having the above-described composition is hot-rolled in a conventional manner and wound at 750 to 450 ° C. If the winding temperature is lower than 450 ° C., carbides such as TiC and NbC are hardly generated, and the strength tends to be insufficient. Further, it is difficult to form an internal oxide layer immediately below the surface of the steel sheet, and it is not possible to suppress Mn concentration on the steel sheet surface. On the other hand, if it is wound above 750 ° C, the scale thickness becomes thicker and the pickling efficiency becomes worse, and the tip, center and rear ends in the longitudinal direction of the coil, and the edges and the center in the coil width direction are removed. This is because the material variation becomes large. The preferred winding temperature is 700 to 55
0 ° C.

【0033】この熱延板を必要により酸洗して脱スケー
ルを行い、熱延のまま、或いはさらに冷間圧延した後、
連続溶融亜鉛めっきラインにて750 ℃以上に加熱、冷却
し、冷却途中で溶融亜鉛めっきを行う。また、2回の加
熱を行う場合には、先ずはじめに連続焼鈍設備等で750
℃以上に加熱(1回目加熱)、冷却したのち、次に連続
溶融亜鉛めっきラインにて700℃以上に加熱(2回目加
熱)、冷却し、冷却途中、好ましくは600 〜 420℃で溶
融亜鉛めっきを行う。
The hot-rolled sheet is descaled by pickling if necessary, and hot-rolled or after further cold-rolled,
Heat and cool to 750 ° C or higher in a continuous hot-dip galvanizing line. Hot-dip galvanizing is performed during cooling. In the case where heating is performed twice, first of all, 750 in a continuous annealing facility or the like.
After heating to 1 ° C or higher (first heating) and cooling, then heating in a continuous hot-dip galvanizing line to 700 ° C or higher (second heating), cooling, and during hot-dip galvanizing, preferably at 600 to 420 ° C I do.

【0034】めっき前に、一旦、750 ℃以上の温度域
(好ましくは、750 〜900 ℃)に加熱して冷却すること
によって、バンド状組織中に濃化しているMn等を分散さ
せ、効率よくフェライト+マルテンサイトの複合組織を
形成させて、加工性の向上をはかることが可能になる。
すなわち、本発明のようにMn含有量が多い場合、熱延板
中にはバンド状をなした第2相組織が形成されやすく、
γ相中のMn等の濃度が低下して複合組織形成に不利にな
る。そこで、このバンド状組織の厚みを薄くし、細かく
分散させておけば、連続溶融亜鉛めっきラインのめっき
過程、あるいはさらに合金化処理過程などで500 ℃近傍
に保持された場合に、γ相中のMn等の濃化量が増すの
で、フェライト素地中にマルテンサイト相を好適に分散
させることが可能になるのである。
Prior to plating, Mn and the like concentrated in the band-like structure are dispersed by heating once to a temperature range of 750 ° C. or more (preferably 750 to 900 ° C.) and cooled, thereby improving the efficiency. By forming a composite structure of ferrite and martensite, it is possible to improve workability.
That is, when the Mn content is high as in the present invention, a band-shaped second phase structure is easily formed in the hot-rolled sheet,
The concentration of Mn or the like in the γ phase decreases, which is disadvantageous for forming a complex structure. Therefore, if the thickness of the band-like structure is reduced and finely dispersed, the temperature in the γ phase during the continuous hot-dip galvanizing line plating process or at around 500 ° C during the alloying process is reduced. Since the amount of enrichment of Mn or the like increases, the martensite phase can be suitably dispersed in the ferrite base.

【0035】また、2回の加熱を行う場合の2回目加熱
は700 ℃以上で行う。2回目加熱は必然的に連続溶融亜
鉛めっきラインで行うことになる。2回目加熱温度が70
0 ℃に満たないと、連続溶融亜鉛めっきラインにおいて
鋼板表面が還元されず、めっき不良を生じやすくなる。
この2回目加熱温度は、好ましくは750 〜800 ℃の範囲
がよい。なお、2回の加熱を行う場合には、1回目加熱
で生成したMn等の表面濃化層を除去し、その後のめっき
性を高めるために酸洗するのが望ましい。以上の加熱工
程を経てから、溶融亜鉛めっきを行い、場合によって
は、溶融亜鉛めっきを行った後、引き続き合金化処理を
行ってもよい。
When the second heating is performed, the second heating is performed at 700 ° C. or more. The second heating is necessarily performed in a continuous hot-dip galvanizing line. The second heating temperature is 70
If the temperature is lower than 0 ° C., the surface of the steel sheet is not reduced in the continuous hot-dip galvanizing line, and plating defects are likely to occur.
The second heating temperature is preferably in the range of 750 to 800 ° C. In the case where heating is performed twice, it is preferable to remove a surface-concentrated layer of Mn or the like generated in the first heating and then to perform pickling in order to enhance plating properties thereafter. After the above-mentioned heating step, hot-dip galvanizing is performed, and in some cases, alloying may be performed after hot-dip galvanizing.

【0036】実施例1 表1に示す化学組成で、厚さ300 mmの連続鋳造スラブ
を、1200℃に加熱し、3パスの粗圧延後、7スタンドの
仕上げ圧延機で厚さ2.5 mmの熱延板として巻き取っ
た。酸洗後、熱延板のまま、または熱延板をさらに板厚
1.2 mmに冷延後、 (1)連続焼鈍ラインでの1回目加熱
−酸洗−連続溶融亜鉛めっきラインでの2回目加熱−亜
鉛めっき、または (2)連続溶融亜鉛めっきラインでの加
熱−亜鉛めっき、の工程でめっきし、さらに一部分から
採取したサンプルについては合金化処理した。これらの
製造条件を表2および表3に示す。
[0036]Example 1  300mm thick continuous cast slab with the chemical composition shown in Table 1.
Is heated to 1200 ° C and after 3 passes of rough rolling, 7 stands
Winding as a hot-rolled sheet with a thickness of 2.5 mm with a finishing mill
Was. After pickling, leave the hot rolled sheet as it is or
After cold rolling to 1.2 mm, (1) First heating in continuous annealing line
-Pickling-Second heating in continuous hot-dip galvanizing line-
Lead plating or (2)
Hot-zinc plating
The sample collected was alloyed. these
The manufacturing conditions are shown in Tables 2 and 3.

【0037】[0037]

【表1】 [Table 1]

【0038】なお、加熱後のCGL条件としては、加熱
〜めっきまでの鋼板の平均冷却速度を10℃/sとし、め
っき浴(浴組成:0.15%Al−Zn、浴温: 470℃)に浸漬
(浸漬時間:1秒間)したのち、ガスワイピングにより
60g/mの目付量に調整した。その後、490 ℃まで
加熱し、20秒間保持したのち、平均冷却速度を20℃/
sで200 ℃まで冷却した。得られた鋼板を供試材とし
て、機械的特性、めっき性、スポット溶接性などについ
て調査した。その結果を表2および表3に併せて示す。
CGL conditions after heating were as follows: the average cooling rate of the steel sheet from heating to plating was 10 ° C./s, and the steel sheet was immersed in a plating bath (bath composition: 0.15% Al—Zn, bath temperature: 470 ° C.). (Immersion time: 1 second), and then adjusted to a basis weight of 60 g / m 2 by gas wiping. Thereafter, the mixture is heated to 490 ° C. and maintained for 20 seconds.
s to 200 ° C. Using the obtained steel sheet as a test material, mechanical properties, plating properties, spot weldability, and the like were investigated. The results are shown in Tables 2 and 3.

【0039】ここで、機械的特性、めっき性、合金化処
理性、スポット溶接性は以下の方法で評価した。 ・機械的特性(引張試験、穴拡げ試験により調査) 鋼板より圧延直角方向に採取したJIS Z 2204
に規定の5号試験片を用い、JIS Z 2241に規
定の方法で降伏強さ(YS)、引張強さ(TS)、破断
伸び(El)、降伏伸び(YEl)を測定した。伸びフ
ランジ性は、JFS T 1001に規定の方法によ
り、穴拡げ率(λ)を測定した。 ・めっき性 良好:不めっき欠陥なし やや良好:不めっき欠陥一部発生 不良:不めっき欠陥多数発生 ・合金化処理性 良好:合金化ムラの全くないもの やや良好:わずかに合金化ムラのあるもの 不良:合金化ムラの著しいもの ・スポット溶接性 スポット溶接は、溶接電極:ドーム型先端径6φ、電極
加圧力:3.10 kN 、溶接電流:7kA、加圧時間:25 cy
c、セットアップ時間:3 cyc 、溶接時間:13 cyc、保
持時間:25 cycの溶接条件で行った。溶接後、JIS
Z 3136の引張剪断試験による引張荷重(TSS)
と、JIS Z 3137の十字型引張試験による引張
荷重(CTS)を負荷し、板厚1.2 mmの場合の基準引
張剪断荷重である8787N以上で、かつ延性比(CTS/
TSS)が0.25以上のものを「優」、これらに値を満た
さないものを「劣」として評価した。
The mechanical properties, plating properties, alloying properties, and spot weldability were evaluated by the following methods.・ Mechanical properties (investigated by tensile test and hole expansion test) JIS Z 2204 sampled from steel plate in the direction perpendicular to the rolling direction
, The yield strength (YS), tensile strength (TS), elongation at break (El), and yield elongation (YEl) were measured using the No. 5 test piece specified in JIS Z 2241. The stretch flangeability was measured by measuring the hole expansion ratio (λ) by the method specified in JFS T1001. -Good plating: No non-plating defects Slightly good: Some non-plating defects occurred Bad: Many non-plating defects occurred-Good alloying treatment: Good with no alloying unevenness Good: Good with slight alloying unevenness Poor: Extremely uneven alloying ・ Spot weldability For spot welding, welding electrode: Dome tip diameter 6φ, electrode pressing force: 3.10 kN, welding current: 7 kA, pressurization time: 25 cy
c, setup time: 3 cyc, welding time: 13 cyc, holding time: 25 cyc. After welding, JIS
Tensile load (TSS) by tensile shear test of Z 3136
And a tensile load (CTS) by a cross-shaped tensile test according to JIS Z 3137, a tensile shear load of 8787 N or more, which is a standard tensile shear load for a sheet thickness of 1.2 mm, and a ductility ratio (CTS /
Those having a TSS) of 0.25 or more were evaluated as “excellent”, and those not satisfying these values were evaluated as “poor”.

【0040】表1〜表3から、発明例は、TS:590 〜
690MPaレベルで、El:25%以上の引張特性を有し、T
S×Elの値: 15000 MPa・%以上でTS×Elバラン
スも良好であり、めっき性、合金化処理性、スポット溶
接性についてもとくに問題がないことがわかった。
From Tables 1 to 3, the invention examples show that TS: 590 to
At 690 MPa level, it has a tensile property of El: 25% or more.
When the value of S × El was 15,000 MPa ·% or more, the TS × El balance was good, and it was found that there was no problem with plating properties, alloying properties, and spot weldability.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】実施例2 表4に示す化学組成で、厚さ300 mmの連続鋳造スラブ
を、1200℃に加熱し、3パスの粗圧延後、7スタンドの
仕上げ圧延機で厚さ3.0 mmの熱延板として表5に示す
温度で巻き取った。酸洗後、熱延板のまま、または熱延
板をさらに板厚1.2 mmに冷延後、 (1)連続焼鈍ライン
での1回目加熱−酸洗−連続溶融亜鉛めっきラインでの
2回目加熱−亜鉛めっき、または (2)連続溶融亜鉛めっ
きラインでの加熱−亜鉛めっき、の工程でめっきし、さ
らに一部分から採取したサンプルを合金化処理した。こ
れらの製造条件を表5に示す。なお、加熱後のCGL条
件としては、加熱〜めっきまでの鋼板の平均冷却速度を
10℃/sとし、めっき浴(浴組成:0.15%Al−Zn、浴
温: 470℃)に浸漬(浸漬時間:1秒間)したのち、ガ
スワイピングにより60g/mの目付量に調整した。
その後、490 ℃まで加熱し、20秒間保持したのち、平
均冷却速度を20℃/sで200 ℃まで冷却した。得られた
鋼板を供試材として、機械的特性、めっき性、スポット
溶接性などについて同様にして調査した。その結果を表
5に併せて示す。その結果、発明例は、TS×Elバラ
ンスが良好であり、高強度であるにもかかわらず、めっ
き性、合金化処理性、スポット溶接性について何ら問題
がないことがわかった。
[0043]Example 2  300mm thick continuous cast slab with the chemical composition shown in Table 4.
Is heated to 1200 ° C and after 3 passes of rough rolling, 7 stands
The results are shown in Table 5 as a 3.0 mm thick hot rolled sheet by a finishing mill.
Wound at temperature. After pickling, hot rolled sheet or hot rolled
After further rolling the sheet to a thickness of 1.2 mm, (1) Continuous annealing line
First heating in the oven-pickling-continuous galvanizing line
Second heating-galvanizing or (2) continuous hot-dip galvanizing
Plating in the process of heating-zinc plating
Further, a sample taken from a portion was alloyed. This
Table 5 shows these manufacturing conditions. In addition, the CGL strip after heating
The average cooling rate of the steel sheet from heating to plating
10 ° C / s, plating bath (bath composition: 0.15% Al-Zn, bath
Temperature: 470 ° C) (immersion time: 1 second)
60g / m by swiping2Was adjusted to the basis weight.
Then, heat to 490 ° C and hold for 20 seconds.
Cooling was performed at a uniform cooling rate of 20 ° C / s to 200 ° C. Got
Using steel sheet as a test material, mechanical properties, plating properties, spot
Weldability was examined in the same manner. The result is displayed
5 is also shown. As a result, the invention example shows that the TS × El
Good strength and high strength,
Problems with workability, alloying processability, spot weldability
It turned out there was no.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】実施例3表6に示す化学組成で、厚さ300
mmの連続鋳造スラブを、1200℃に加熱し、3パスの粗
圧延後、7スタンドの仕上げ圧延機で厚さ3.0 mmの熱
延板として表7に示す温度で巻き取った。酸洗ののち、
板厚1.2 mmに冷延し、連続焼鈍ラインでの1回目加熱
−酸洗−連続溶融亜鉛めっきラインでの2回目加熱−亜
鉛めっきの工程でめっきし、さらに合金化処理を行っ
た。これらの製造条件を表7に示す。なお、加熱後のC
GL条件としては、加熱〜めっきまでの鋼板の平均冷却
速度を10℃/sとし、めっき浴(浴組成:0.15%Al−Z
n、浴温: 470℃)に浸漬(浸漬時間:1秒間)したの
ち、ガスワイピングにより60g/mの目付量に調整
した。その後、490 ℃まで加熱し、20秒間保持したの
ち、平均冷却速度を20℃/sで200 ℃まで冷却した。得
られた鋼板を供試材として、機械的特性、めっき性、ス
ポット溶接性などについて同様にして調査した。その結
果を表7に併せて示す。その結果、発明例は、TS×E
lバランスが良好であり、高強度であるにもかかわら
ず、めっき性、合金化処理性、スポット溶接性について
何ら問題がないことがわかった。
Example 3 The chemical composition shown in Table 6 was used, and the thickness was 300
The continuous cast slab having a thickness of 3 mm was heated to 1200 ° C., subjected to three passes of rough rolling, and wound up as a hot-rolled sheet having a thickness of 3.0 mm at a temperature shown in Table 7 by a finishing mill having seven stands. After pickling,
The sheet was cold-rolled to a thickness of 1.2 mm, plated in a process of first heating in a continuous annealing line, pickling, second heating in a continuous hot-dip galvanizing line, and galvanizing, followed by alloying. Table 7 shows the manufacturing conditions. In addition, C after heating
The GL conditions were as follows: the average cooling rate of the steel sheet from heating to plating was 10 ° C./s, and the plating bath (bath composition: 0.15% Al-Z
n, bath temperature: 470 ° C.) (immersion time: 1 second), and then adjusted to a basis weight of 60 g / m 2 by gas wiping. Thereafter, the mixture was heated to 490 ° C. and maintained for 20 seconds, and then cooled to 200 ° C. at an average cooling rate of 20 ° C./s. Using the obtained steel sheet as a test material, mechanical properties, plating properties, spot weldability, and the like were similarly examined. The results are shown in Table 7. As a result, the invention example is TS × E
It was found that there was no problem in plating properties, alloying treatment properties, and spot weldability, despite good l balance and high strength.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【発明の効果】以上説明したように本発明によれば、め
っき性に何ら問題のない、降伏比が低く、TS×Elバ
ランスが良好な高強度溶融亜鉛めっき鋼板(高強度合金
化溶融亜鉛めっき鋼板を含む)を提供することが可能に
なる。したがって、この発明は、自動車の軽量化、低燃
費化を可能とするので、地球環境の改善にも大きく貢献
する。なお、本発明は、めっきなしの熱延鋼板や冷延鋼
板、また電気亜鉛めっき鋼板にも適用することができ、
同様な効果が期待できる。
As described above, according to the present invention, a high-strength hot-dip galvanized steel sheet (high-strength galvannealed steel sheet) having no problem in plating properties, having a low yield ratio and a good TS × El balance. (Including steel plate). Therefore, the present invention makes it possible to reduce the weight and fuel consumption of an automobile, and greatly contributes to the improvement of the global environment. Incidentally, the present invention can be applied to hot-rolled steel sheets and cold-rolled steel sheets without plating, and also to electrogalvanized steel sheets,
Similar effects can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】引張強さ(TS)、降伏強さ(YS)、伸び
(El)及びめっき性に及ぼす連続溶融亜鉛めっきライ
ンにおける加熱温度の影響を示すグラフである。
FIG. 1 is a graph showing the effect of heating temperature in a continuous galvanizing line on tensile strength (TS), yield strength (YS), elongation (El), and plating properties.

【図2】引張強さ(TS)、降伏強さ(YS)、伸び
(El)及びめっき性に及ぼす巻取温度および2回の加
熱有無の影響を示すグラフである。
FIG. 2 is a graph showing the influence of the winding temperature and the presence or absence of two heating operations on tensile strength (TS), yield strength (YS), elongation (El), and plating properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 鈴木 善継 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 篠原 章翁 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K037 EA01 EA05 EA06 EA09 EA13 EA15 EA16 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA36 EB05 EB07 EB08 EB09 EB11 FE01 FE02 FE03 FF02 FH01 FJ05 FK02 GA05 GA07 JA06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Pref. (No address) Inside Mizushima Steel Works, Kawasaki Steel Corporation (72) Inventor Akino Shinohara 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture EA09 EA13 EA15 EA16 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA36 EB05 EB07 EB08 EB09 EB11 FE01 FE02 FE03 FF02 FH01 FJ05 FK02 GA05 GA07 JA06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.01〜0.20%、 Si:1.0 %以下、 Mn:1.5 超〜3.0 %、 P:0.10%以下、 S:0.05%以下、 Al:0.10%以下、 N:0.010 %以下 を含み、かつ Ti、NbおよびVから選ばれるいずれか1種または2種以
上を合計で、0.010 〜1.0 %含有し、残部はFeおよび不
可避的不純物の組成からなるとともに、フェライト相の
面積率が50%以上、かつフェライト相の平均結晶粒径が
10μm以下であって、第2相からなるバンド状組織の厚
みが、Tb/T≦0.005 (ただし、Tb:バンド状組織
の板厚方向平均厚み、T:鋼板板厚)の関係を満たす金
属組織を有することを特徴とする加工性およびめっき性
に優れた高強度溶融亜鉛めっき鋼板。
1. Mass%, C: 0.01 to 0.20%, Si: 1.0% or less, Mn: more than 1.5 to 3.0%, P: 0.10% or less, S: 0.05% or less, Al: 0.10% or less, N: 0.010% or less, and one or two or more selected from Ti, Nb and V in a total content of 0.010 to 1.0%, with the balance being composed of Fe and unavoidable impurities. The area ratio is 50% or more, and the average crystal grain size of the ferrite phase is
A metal structure having a thickness of 10 μm or less and a band-like structure composed of the second phase satisfying a relationship of Tb / T ≦ 0.005 (where, Tb: average thickness of the band-like structure in the thickness direction, T: steel plate thickness). A high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, characterized by having:
【請求項2】 請求項1において、鋼組成がさらにCuお
よびNiのうちの1種または2種を合計で3.0 %以下含有
する組成からなることを特徴とする加工性およびめっき
性に優れた高強度溶融亜鉛めっき鋼板。
2. The steel according to claim 1, wherein the steel composition further comprises one or more of Cu and Ni containing 3.0% or less in total. High-strength galvanized steel sheet.
【請求項3】 請求項1または2において、鋼組成がさ
らにCaおよびREM のうちの1種または2種を合計で0.00
1 〜0.01%含有する組成からなることを特徴とする加工
性およびめっき性に優れた高強度溶融亜鉛めっき鋼板。
3. The steel composition according to claim 1, wherein the steel composition further comprises one or two of Ca and REM in a total amount of 0.001.
A high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, characterized by having a composition containing 1 to 0.01%.
【請求項4】 請求項1〜3のいずれか1項に記載の鋼
組成からなるスラブを、熱間圧延して、750 〜450 ℃で
巻き取り、次いで、そのまま或いはさらに冷間圧延を行
い、得られた熱延板または冷延板を、750 ℃以上に加熱
し、この温度からの冷却途中で溶融亜鉛めっきを行うこ
とを特徴とする加工性およびめっき性に優れた高強度溶
融亜鉛めっき鋼板の製造方法。
4. A slab comprising the steel composition according to any one of claims 1 to 3, which is hot-rolled and wound at 750 to 450 ° C., and then subjected to cold rolling as it is, High-strength hot-dip galvanized steel sheet with excellent workability and plating properties, characterized in that the obtained hot-rolled sheet or cold-rolled sheet is heated to 750 ° C or higher and hot-dip galvanized while cooling from this temperature. Manufacturing method.
【請求項5】 請求項1〜3のいずれか1項に記載の鋼
組成からなるスラブを、熱間圧延して、750 〜450 ℃で
巻き取り、次いで、そのまま或いはさらに冷間圧延を行
い、得られた熱延板または冷延板を、750 ℃以上に加熱
し、この温度からの冷却途中で溶融亜鉛めっきを行い、
次いで合金化処理を行うことを特徴とする加工性および
めっき性に優れた高強度溶融亜鉛めっき鋼板の製造方
法。
5. A slab comprising the steel composition according to any one of claims 1 to 3, which is hot-rolled, wound at 750 to 450 ° C., and then cold-rolled as it is, The obtained hot rolled sheet or cold rolled sheet is heated to 750 ° C. or higher, and hot-dip galvanized while cooling from this temperature.
A method for producing a high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, which is followed by alloying.
【請求項6】 請求項1〜3のいずれか1項に記載の鋼
組成からなるスラブを、熱間圧延して、750 〜450 ℃で
巻き取り、次いで、そのまま或いはさらに冷間圧延を行
い、得られた熱延板または冷延板を、一旦750 ℃以上に
加熱し、冷却してから、さらに700 ℃以上に加熱して、
この温度からの冷却途中で溶融亜鉛めっきを行うことを
特徴とする加工性およびめっき性に優れた高強度溶融亜
鉛めっき鋼板の製造方法。
6. A slab comprising the steel composition according to any one of claims 1 to 3, which is hot-rolled and wound at 750 to 450 ° C., and then cold-rolled as it is. The obtained hot rolled sheet or cold rolled sheet is once heated to 750 ° C or higher, cooled, and further heated to 700 ° C or higher,
A method for producing a high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, wherein hot-dip galvanizing is performed during cooling from this temperature.
【請求項7】 請求項1〜3のいずれか1項に記載の鋼
組成からなるスラブを、熱間圧延して、750 〜450 ℃で
巻き取り、次いで、そのまま或いはさらに冷間圧延を行
い、得られた熱延板または冷延板を、一旦750 ℃以上に
加熱し、冷却してから、さらに700 ℃以上に加熱して、
この温度からの冷却途中で溶融亜鉛めっきを行い、次い
で合金化処理を行うことを特徴とする加工性およびめっ
き性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
7. A slab comprising the steel composition according to any one of claims 1 to 3, which is hot-rolled, wound at 750 to 450 ° C., and then subjected to cold rolling as it is, The obtained hot rolled sheet or cold rolled sheet is once heated to 750 ° C or higher, cooled, and further heated to 700 ° C or higher,
A method for producing a high-strength hot-dip galvanized steel sheet having excellent workability and plating properties, wherein hot-dip galvanizing is performed during cooling from this temperature, followed by alloying treatment.
JP2000318914A 1999-10-22 2000-10-19 High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same Expired - Fee Related JP3698046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318914A JP3698046B2 (en) 1999-10-22 2000-10-19 High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30073999 1999-10-22
JP11-300739 1999-10-22
JP2000-211028 2000-07-12
JP2000211028 2000-07-12
JP2000318914A JP3698046B2 (en) 1999-10-22 2000-10-19 High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002088447A true JP2002088447A (en) 2002-03-27
JP3698046B2 JP3698046B2 (en) 2005-09-21

Family

ID=27338411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318914A Expired - Fee Related JP3698046B2 (en) 1999-10-22 2000-10-19 High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same

Country Status (1)

Country Link
JP (1) JP3698046B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035905A (en) * 2002-06-28 2004-02-05 Jfe Steel Kk Ultrahigh strength cold rolled steel sheet with excellent formability, and its manufacturing method
JP2004197114A (en) * 2002-12-16 2004-07-15 Nippon Steel Corp High strength hot-rolled steel plate excellent in stretch flanging property, and its producing method
JP2004285434A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Production method of hot-dip galvanized steel sheet excellent in stretch-flange formability
JP2005307246A (en) * 2004-04-19 2005-11-04 Nippon Steel Corp High-tensile-strength steel with composite structure of fine crystal grain
JP2007231352A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Precipitation hardening high strength steel sheet and its production method
JP2008214764A (en) * 2002-03-29 2008-09-18 Jfe Steel Kk Cold rolled sheet having superfine grain structure
JP2008231448A (en) * 2007-03-16 2008-10-02 Nippon Steel Corp Steel sheet for hot dip galvannealing and hot dip galvannealed steel sheet
JP2009524741A (en) * 2006-01-26 2009-07-02 アルヴェーディ、ジョヴァンニ Hot rolled low alloy steel sheet for finished product by cold pressing and shearing
KR100947203B1 (en) * 2002-03-29 2010-03-11 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same
JP2010521584A (en) * 2007-03-14 2010-06-24 アルセロールミタル・フランス Equipmentless hot forming or quenching steel with improved ductility
JP2011236482A (en) * 2010-05-12 2011-11-24 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet and method for manufacturing the same
JP2012082499A (en) * 2010-10-14 2012-04-26 Sumitomo Metal Ind Ltd Hot-dipped steel sheet and method for producing the same
WO2016193268A1 (en) * 2015-06-03 2016-12-08 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardenening of components
WO2018199328A1 (en) 2017-04-28 2018-11-01 新日鐵住金株式会社 High strength steel sheet and method for manufacturing same
KR20180130576A (en) 2016-08-08 2018-12-07 신닛테츠스미킨 카부시키카이샤 Steel plate
WO2019187031A1 (en) 2018-03-30 2019-10-03 日本製鉄株式会社 High-strength steel sheet having excellent ductility and hole expansion property
CN115074639A (en) * 2021-03-15 2022-09-20 上海梅山钢铁股份有限公司 Hot-rolled steel plate for automobile beam with tensile strength of 600MPa

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214764A (en) * 2002-03-29 2008-09-18 Jfe Steel Kk Cold rolled sheet having superfine grain structure
KR100949694B1 (en) * 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same
KR100947203B1 (en) * 2002-03-29 2010-03-11 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same
JP2008231579A (en) * 2002-03-29 2008-10-02 Jfe Steel Kk Cold-rolled steel sheet having ultrafine grain structure
JP2004035905A (en) * 2002-06-28 2004-02-05 Jfe Steel Kk Ultrahigh strength cold rolled steel sheet with excellent formability, and its manufacturing method
JP2004197114A (en) * 2002-12-16 2004-07-15 Nippon Steel Corp High strength hot-rolled steel plate excellent in stretch flanging property, and its producing method
JP2004285434A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Production method of hot-dip galvanized steel sheet excellent in stretch-flange formability
JP4569071B2 (en) * 2003-03-24 2010-10-27 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet with excellent stretch flangeability
JP2005307246A (en) * 2004-04-19 2005-11-04 Nippon Steel Corp High-tensile-strength steel with composite structure of fine crystal grain
JP2009524741A (en) * 2006-01-26 2009-07-02 アルヴェーディ、ジョヴァンニ Hot rolled low alloy steel sheet for finished product by cold pressing and shearing
JP2007231352A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Precipitation hardening high strength steel sheet and its production method
JP4736853B2 (en) * 2006-02-28 2011-07-27 Jfeスチール株式会社 Precipitation strengthened high strength steel sheet and method for producing the same
JP2010521584A (en) * 2007-03-14 2010-06-24 アルセロールミタル・フランス Equipmentless hot forming or quenching steel with improved ductility
JP2008231448A (en) * 2007-03-16 2008-10-02 Nippon Steel Corp Steel sheet for hot dip galvannealing and hot dip galvannealed steel sheet
JP2011236482A (en) * 2010-05-12 2011-11-24 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet and method for manufacturing the same
JP2012082499A (en) * 2010-10-14 2012-04-26 Sumitomo Metal Ind Ltd Hot-dipped steel sheet and method for producing the same
WO2016193268A1 (en) * 2015-06-03 2016-12-08 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardenening of components
RU2684659C1 (en) * 2015-06-03 2019-04-11 Зальцгиттер Флахшталь Гмбх Strain-hardening component from galvanized steel, method for its production and method for production of a steel strip suitable for strain hardening of components
KR20180130576A (en) 2016-08-08 2018-12-07 신닛테츠스미킨 카부시키카이샤 Steel plate
US11365465B2 (en) 2016-08-08 2022-06-21 Nippon Steel Corporation Steel sheet
WO2018199328A1 (en) 2017-04-28 2018-11-01 新日鐵住金株式会社 High strength steel sheet and method for manufacturing same
KR20190105048A (en) 2017-04-28 2019-09-11 닛폰세이테츠 가부시키가이샤 High strength steel sheet and its manufacturing method
WO2019187031A1 (en) 2018-03-30 2019-10-03 日本製鉄株式会社 High-strength steel sheet having excellent ductility and hole expansion property
KR20200124748A (en) 2018-03-30 2020-11-03 닛폰세이테츠 가부시키가이샤 High strength steel plate with excellent ductility and hole expandability
CN115074639A (en) * 2021-03-15 2022-09-20 上海梅山钢铁股份有限公司 Hot-rolled steel plate for automobile beam with tensile strength of 600MPa

Also Published As

Publication number Publication date
JP3698046B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
KR100572179B1 (en) Hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
JP6631760B1 (en) High strength galvanized steel sheet and high strength members
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP5454745B2 (en) High strength steel plate and manufacturing method thereof
EP2589677B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
EP3889282B1 (en) High-strength steel sheet and method for producing the same
JP2010065272A (en) High-strength steel sheet and method for manufacturing the same
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
JP2019099922A (en) High strength galvanized steel sheet
JP6597889B2 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP3698046B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same
KR102245008B1 (en) High-strength steel sheet and its manufacturing method
CN114207169B (en) Steel sheet and method for producing same
JP2022510873A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
JP7276618B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4436275B2 (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them
JP2004292869A (en) High strength hot dip galvannealed steel sheet having excellent press formability, and production method therefor
JP3687400B2 (en) Manufacturing method of high strength thin steel sheet with excellent workability and plating properties
JP7311808B2 (en) Steel plate and its manufacturing method
JP6947326B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP2004244675A (en) Hot-dip galvanized high strength steel sheet with excellent bore expandabilty, and its manufacturing method
WO2020195279A1 (en) Steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3698046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees