JP2004197114A - High strength hot-rolled steel plate excellent in stretch flanging property, and its producing method - Google Patents

High strength hot-rolled steel plate excellent in stretch flanging property, and its producing method Download PDF

Info

Publication number
JP2004197114A
JP2004197114A JP2002363349A JP2002363349A JP2004197114A JP 2004197114 A JP2004197114 A JP 2004197114A JP 2002363349 A JP2002363349 A JP 2002363349A JP 2002363349 A JP2002363349 A JP 2002363349A JP 2004197114 A JP2004197114 A JP 2004197114A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
strength hot
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002363349A
Other languages
Japanese (ja)
Other versions
JP3896075B2 (en
Inventor
Hiroyuki Tanahashi
浩之 棚橋
Takehide Senuma
武秀 瀬沼
Satoshi Akamatsu
聡 赤松
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002363349A priority Critical patent/JP3896075B2/en
Publication of JP2004197114A publication Critical patent/JP2004197114A/en
Application granted granted Critical
Publication of JP3896075B2 publication Critical patent/JP3896075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength hot-rolled steel plate excellent in stretch flanging property. <P>SOLUTION: This high strength hot-rolled steel plate is contained by mass% of 0.02-0.10% C, ≤0.2% Si, 0.5-2.5% Mn, ≤0.1% P, ≤0.01% S, ≤0.01% N, 0.005-2.0% Al, ≤0.005% Ti, 0.1-0.6% Nb and if necessary, 0.8-2.0% Cu, 0.4-1.0% Ni, 0.05-0.3% Mo, 0.025-0.15% V, and the balance Fe with inevitable impurities. Further, this steel plate has one or more micro-structures among polygonal ferrite, bainitic ferrite and bainite. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、伸びフランジ性に優れた高強度熱延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
自動車部品のうち、特に足回り系と呼ばれるフレーム類やアーム類などには高強度熱延鋼板が広く用いられている。こうした用途に用いられる鋼板に求められる特性には、高い延性とともに穴広げ試験値などで代表される伸びフランジ性の高さがある。この2つの特性は同一強度の鋼板では相反するものであり、一方の特性を大きく損ねることなく他方の特性を高めるための鋼板開発が進められている。そうした鋼板の例として、特許文献1や特許文献2をあげることが出来る。特許文献1には所定の化学成分を有し、ベイニティック・フェライトを主たるミクロ組織とすることで、引張強度が500N/mm2 級以上で伸びフランジ性に優れた熱延鋼板を得るための技術が開示されている。一方、特許文献2には、所定の化学成分を有し、フェライト単相のミクロ組織とすることで、引張強度が600N/mm2 級以上で伸びフランジ性に優れた熱延鋼板を得るための技術が開示されている。
【0003】
【引用文献】
(1)特許文献1(特開平6−172924号公報)
(2)特許文献2(特開平7−70696号公報)
【0004】
【発明が解決しようとする課題】
本発明者らも、こうした先行技術を参考に優れた伸びフランジ性を有する鋼板とその製造方法について研究を行っていた。その過程で、上記の先行技術に基づいた鋼板は確かに優れた伸びフランジ性を示す部分もあるものの、一部に特性が劣る部位が含まれる場合のあることが明らかになった。実験室規模の小型の熱延板では顕著ではないが、商業規模の熱延コイルでは特性の持つ分布範囲が大きいことがわかった。
【0005】
こうした問題は、鋼板使用者を取り巻く経済状況が好況である場合には不可避な特性のバラツキとして許容されるものであったが、今日においては避けて通れない問題であると認識されつつある。なぜなら、バラツキを考慮し、特性の下限値に対して十分なゆとりを持たせて来た部品設計は見直されつつあり、特性値の上限までを可能な限り活用しようとする姿勢が主流となりつつあるからである。こうした状況下では鋼板の特性値が高いことのみでは十分ではなく、むしろ、その絶対値の高さよりもバラツキの小ささの方が重視されるようになったが、こうした点に着目した例は見当たらない。
【0006】
【課題を解決するための手段】
このような状況に鑑み、本発明者らは、一定水準以上の伸びフランジ性を有し、かつバラツキの小さい鋼板であって、更に製造条件の変動に対する感受性も小さい鋼板を開発するべく鋭意研究を進め、これらを可能ならしめる化学成分や製造方法を明らかにして本発明を完成させた。
その要旨は以下の通りである。すなわち
(1)質量%にて、C:0.02〜0.10%、Si:0.2%以下、Mn:0.5〜2.5%、P:0.1%以下、S:0.01%以下、N:0.01%以下、Al:0.005〜2.0%、Ti:0.005%以下、Nb:0.1〜0.6%を含有し、残部がFeおよび不可避不純物からなり、ポリゴナル・フェライト、ベイニティック・フェライトおよびベーナイトのうちの1つまたは2つ以上のミクロ組織を有することを特徴とする伸びフランジ性に優れた高強度熱延鋼板。
【0007】
(2)質量%で、更に、Cu:0.8〜2.0%、Ni:0.4〜1.0%
を含有することを特徴とする上記(1)記載の伸びフランジ性に優れた高強度熱延鋼板。
(3)質量%で、更に、Mo:0.05〜0.3%、V:0.025〜0.15%のうちの1種以上を含有することを特徴とする上記(1)または(2)記載の伸びフランジ性に優れた高強度熱延鋼板。
【0008】
(4)上記(1)ないし(3)の何れか1項に記載の鋼板を製造する方法であって、それらに記載の化学成分を有する鋼材を1200℃以上に加熱し、(Ar3点−50)℃以上の温度で圧延を完了し、10〜50℃/秒の平均冷却速度で冷却して巻き取る工程において、巻き取り温度Tc(℃)を、0.1≦[Nb]≦0.35においては、616−415×[Nb]<Tc<703−103×[Nb]とし、0.35<[Nb]≦0.6においては368+290×[Nb]<Tc<703−103×[Nb]を満たす範囲にすることを特徴とする伸びフランジ性に優れた高強度熱延鋼板の製造方法、である。ただし、[Nb]はNb量(質量%)である。
【0009】
【発明の実施の形態】
まず本発明を完成するに至った実験について説明する。
本発明者らは、質量%にて、C:0.02〜0.1%、Si:0(無添加)〜0.5%、Mn:0.5〜2.5%、P:0.01〜0.1%、S:0.001〜0.01%、N:0.003〜0.01%、Al:0.005〜2%を含有し残部がFeである鋼片を溶製し、これらを熱延して帯鋼(熱延コイル)を製造した。熱延に当たっては、圧延終了温度Tf(℃)と圧延後の冷却速度CR (℃/秒)および巻き取り温度Tc(℃)を変化させた。製造した帯鋼を酸洗すると共に、帯鋼の先端部、中央部、末尾部から鋼板を採取した。そしてそれら3つの部位の鋼板の各々について、幅方向の、両端部および中央部から特性評価用の試験片とミクロ組織調査試料の採取を行った。
【0010】
試験片は、強度延性評価用の引張り試験片(JIS5号、引張り方向を圧延方向と垂直となるように採取)と穴広げ値測定用の試験片(150mm×150mm)であり、各5体を作製した。これらの試験片を用いて強度(引張り強さ)σB(MPa)、延性(伸び)δ(%)、穴広げ値λ(%)を調査した。引張り試験は、インストロン型試験機を使用してJIS Z 2241に準拠した方法で行った。穴広げ値λの測定は、日本鉄鋼連盟規格JFS T1001に準拠して行い、クリアランスは12%とした。
【0011】
得られた特性値を、同一部位から採取した5点、幅方向の部位3箇所、および帯鋼上の位置3箇所について整理し、特性値の分布(バラツキ)と鋼板の化学成分の関係、および熱延条件(Tf、CR、Tc)との関係について検討した。その結果、同一部位5点間のバラツキは化学成分や熱延条件に依らず全ての鋼板において極めて僅かであり、最大値と最小値の差は単純平均値に対して2%以内であった。このため、5点の単純平均値で評価して実用上差し支えないものと判断し、その値(単純平均値)を使って幅方向の3箇所間、および帯鋼上の3箇所間のバラツキについて検討した。その結果、バラツキの程度は化学成分や熱延条件に依存して変動し、最も大きなものでは、幅方向3箇所間で約16%、帯鋼上の3箇所間で約20%にも及ぶものもあった。
【0012】
こうした結果を、まず化学成分と突き合わせて分析したところ、構成元素中のSi量との間に比較的強い相関が認められ、特に0.2%以下になると急激にバラツキが減少することを見出した。
そこで次に、Siを0.05〜0.2%とし、C、Mn、P、S、N、Alの量は上記のままとした上で、TiとNbを添加した場合についての実験を行った。Tiは0(無添加)〜0.25%、Nbは0.1〜0.6%の範囲で検討した。先行技術においても述べられているように、TiとNbはCと炭化物を形成することによってセメンタイトの生成を抑制するので、λの向上が期待できるが、バラツキに対する影響は明らかでないので上記と同様の方法で検討を行った。その結果、Nb量はバラツキに対してほとんど影響を与えないのに対して、Ti量は強い相関を持ち、0.005%以下にする事でバラツキを急激に小さく出来ることが明かとなった。
【0013】
以上の結果を踏まえて、C:0.02〜0.10%、Si:0.2%、Mn:1.5%、P:0.02%、S:0.001%、Nb:0.1〜0.6%を含有する鋼片に対して更にCuとNiおよびMoとVの添加の影響を検討したが、これらの元素はバラツキには影響を与えなかった。
以上の検討から化学成分としては、C:0.02〜0.10%、Si:0.2%以下、Mn:0.5〜2.5%、P:0.1%以下、S:0.01%以下、Ti:0.005%以下、Nb:0.1〜0.6%を含有し、必要に応じてCu:0.8〜2.0%、Ni:0.4〜1.0%、Mo:0.05〜0.3%、V:0.025〜0.15%を含有し、残部がFe、および、不可避不純物とすることがバラツキを最も少なくする上で有効であることが明かとなったので、この成分の鋼板に絞って、熱延条件とバラツキとの関係を検討した。圧延終了温度Tf、圧延後の冷却速度CR、巻き取り温度Tcを変化させれば当然ミクロ組織が変化し、それに伴って強度σB、延性δ、および穴広げ値λの絶対値も変化するが、そのバラツキの程度は不明であるので調査した。
【0014】
その結果、圧延終了温度Tfと圧延後の冷却速度CRがバラツキに及ぼす影響は僅かであるが、巻き取り温度Tcはバラツキの程度に影響を与え、特にNb量の変化に応じてバラツキを小さくする上で望ましい巻き取り温度Tcの範囲が特定の範囲を取ることが明かとなった。
以上述べてきた検討の詳細は実施例にて説明するが、本発明はこうした基礎実験の上に立脚し、更に鋭意研究を重ねた結果なされたものであり、所定の伸びフランジ性をバラツキ少なく示す熱延鋼板とその製造方法を提供するものである。なお、「バラツキの少ない」ことこそ、今日鋼板使用者から求められている特徴であるとの考えから、バラツキが少なく、かつ、伸びフランジ性に優れた高強度熱延鋼板を、単に、伸びフランジ性に優れた高強度熱延鋼板と表記した。
【0015】
以下に本発明の限定理由を述べる。まず化学成分の限定理由について述べる。成分の標記は全て質量%である。
Cは、鋼板の強度を確保するために必須の元素であり、高強度鋼板を得るためには少なくとも0.02%が必要である。しかし、過剰に含まれると、セメンタイトやマルテンサイトなど伸びフランジ性に好ましくない相の生成が避けられなくなるので0.10%以下とする。
【0016】
Si量は、本発明で最も重要な条件の一つであり、バラツキの抑制のためには0.2%以下にする必要がある。0%とすることが最も好ましい。Si量がバラツキに強く影響する理由は必ずしも明らかではないが、同元素はフェライト中のCの固溶限を変動させ、その結果、圧延後の冷却過程で生成する可能性があるポリゴナル・フェライト、ベイニティック・フェライト、ベーナイト、およびパーライトの中からの相の選択とその構成分率の決定に強く影響し、結果的に穴広げ値λのバラツキに関係するものと思われる。Si量が0.2%以下の範囲では、上記のC固溶限の変動は極めて僅かとなると推定されるので、バラツキの抑制に有効に働くものと考えられる。
【0017】
Mnは、鋼板の高強度化に有効な元素であり、0.5%以上は含有させるべきであるが、2.5%を越えて含有させると延性が劣化するため上限を2.5%とする。
Pは、固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので0.1%以下にする必要がある。
Sは、MnSなどの介在物を形成して伸びフランジ性を劣化させるので出来るだけ抑制すべきであるが0.01%以下であれば許容される。
【0018】
Nは、窒化物を形成して延性や伸びフランジ性を低下させる。従って出来るだけ抑制すべきであるが0.01%以下であれば許容される。
Alは、脱酸剤として使用されるもので、適切な清浄度を得るためには0.005%は必要であるが、過剰に含有されていると延性や伸びフランジ性を劣化させるので2.0%を上限とする。
【0019】
TiおよびNbは、C、SおよびNを析出物として固定することによって鋼板の加工性を向上させる(いわゆるscavenging効果)働きをする。一方、必要以上に添加された場合には、それらは固溶Tiや固溶Nbとして鋼中に存在し、再結晶を温度を上昇させ熱間加工組織が残存し易くなり延性を損ねるので添加量には細心の注意が必要である。特にTiはNbに比べてCと容易に結合する傾向が強いので僅かな濃度の揺らぎが鋼中に残存するC量を大きく変化させ、その結果穴広げ値λのバラツキに強く影響するものと推測される。そのため0.005%以下に抑制する必要があり、0%(無添加)も本発明に含まれる。
【0020】
一方、Nbは、Tiと比べてCとの結合力が緩やかであることで、濃度の揺らぎによるC量の変動を誘発し難いものと推定される。そこで、Cを固定する効果が明瞭に認められる0.1%以上を添加し、加工組織の残存が特性に影響を及ぼし始める0.6%超の添加を避ける必要がある。
Cuは、固溶強化元素または析出強化元素として鋼板の高強度化に利用できる。またその添加によって疲労強度を一層向上させることができる。その効果は0.8%以上を添加しないと発現せず、一方、2.0%を越えて含有されていると熱延後の鋼板表面性状を悪化させるので2.0%を上限とする。
【0021】
Niは、上記Cuによる熱延表面性状悪化を緩和する効果があり、Cuの半分程度を目安に添加することが望ましい。従ってその下限は0.4%である。一方、1.0%を超えて添加してもその効果は飽和し、コストの上昇につながるだけなので、1.0%を上限とする。
MoおよびVはともに炭化物を形成して強度を高める働きをするとともに、Nbと複合した炭窒化物を形成して溶接の熱影響による鋼板の軟化を抑制する効果も期待出来る。こうした効果はそれぞれ0.05%および0.025%以上で発現し、一方、それぞれ0.3%および0.15%を越えて含有されると硬質相を形成して穴広げ値λの劣化を招くので、これらを上限とする必要がある。
なお、本発明において上記以外の成分はFeとなるが、スクラップなどの溶解原料から混入する不可避的不純物は許容される。
【0022】
次に、鋼板の組織について説明する。
優れた伸びフランジ性を得るには、ポリゴナル・フェライト、ベイニティック・フェライトおよびベーナイトの中から選択した1つまたは2つ以上のミクロ組織を有する鋼板とすることが必要である。これら以外の残部組織として、パーライト、残留オーステナイト、マルテンサイトの1つ又は2つ以上は極力なくすべきであり、少なくとも面積率で3%以下にすることが望ましい。一方、ポリゴナル・フェライト、ベイニティック・フェライトおよびベーナイトの3相のうちであれば、どのような組み合わせ(単一も含む)や構成比(面積比)でもよく、要求される強度、延性、伸びフランジ性に基づいて設計することが出来る。例えば、特に高延性を主眼とし、加えて高伸びフランジ性が要求されるような用途においては、ポリゴナル・フェライトを主相、あるいは単一相とし、析出物を活用して必要な強度を確保する方法が選択出来る。これに対して、出来るだけ構成元素を削減して低価格な鋼板であることが最も重視されるような用途においてはベーナイトを主相、あるいは単一相とする方法が選択出来る。
【0023】
最後に加熱、圧延、冷却および巻き取りの各条件について述べる。
加熱温度は鋼中の炭窒化物を一旦固溶させるため1200℃以上とすることが必要である。これらを固溶させておくことにより、圧延後の冷却過程で炭窒化物を微細に分散させて鋼板の高強度化が達成出来る。
一方、加熱温度が1300℃を超えるとスラブ表面の酸化が著しくなり、特に粒界が選択的に酸化されたことに起因すると思われる楔状の表面欠陥がデスケーリング後に残り、それが圧延後の表面品位を損ねるので上限は1300℃、好ましくは1250℃以下とすることが望ましい。
【0024】
圧延終了温度Tfは鋼板の組織制御上重要である。Ar3点+50℃未満では表層部の結晶粒径が粗大となって板厚方向の材質が安定せず特性上好ましくない。一方、Ar3点+100℃超では、圧延終了後のオーステナイト粒径が粗大になり、冷却中に生成する相の構成とその分率が不安定で操業が難しくなるのでこの温度を上限とすることが望ましい。
【0025】
圧延後の冷却速度CRは10〜50℃/秒とする必要がある。圧延後の冷却速度CRをコントロールすることによってポリゴナル・フェライト、ベイニティック・フェライト、およびベーナイトのうちから選択した1つまたは2つ以上の構成組織とその分率を持った鋼板を得ることが出来る。圧延後の冷却速度CRが10℃/秒未満では伸びフランジ性に好ましくないパーライトの生成が抑制出来ず、一方50℃/秒超では、特に帯鋼の幅方向の冷却むらに起因する材質バラツキが懸念されるので圧延後の冷却速度CRは上記の範囲に限定される必要がある。
【0026】
巻き取り温度Tc(℃)の範囲は本発明の鋼板を得る上で最も重要な条件の1つである。特にNb量との間に一定の関係がある場合に極めてバラツキの少ない鋼板が得られる。その関係は実施例の中で述べるように[Nb]をNb量(質量%)とすると、0.1≦[Nb]≦0.35においては、616−415×[Nb]<Tc<703−103×[Nb]とし、0.35<[Nb]≦0.6においては368+290×[Nb]<Tc<703−103×[Nb]を満たす範囲とすることである。なぜこの関係を満足するとバラツキが小さくなるかは現在のところ明確には出来ていないが、恐らく、NbCの析出現象が何らかの形で関与しているものと推察している。上記の関係式は、後述する実施例により、Nb量別に強度σB、延性δおよび穴広げ値λの何れもバラツキが4%以内となる範囲を求めたものである。
【0027】
【実施例】
以下、本発明の実施例を比較例とともに説明する。
(実施例1)
表1に化学成分を示す鋼のスラブを表4中から選択した条件にて熱間圧延し、厚さ3.6mmの帯鋼を得た。このようにして得られた帯鋼の前記の9箇所(帯鋼先端部、中央部、末尾部、各々の幅方向両端部と中央部)の強度σB、延性δおよび穴広げ値λを調べた。9箇所の特性値の最大値と最小値の差をそれらの単純平均値で除した値(Δ)も併せて求めた。結果を鋼と条件の組み合わせ毎に表5に示す。また断面組織を観察して構成する組織を調べた。組織は鏡面研磨後、ナイタール液で現出させ、表面から板厚の1/4相当内部位置を400倍で観察し、下記の技術文献1を参考に存在する組織を同定した。その結果、認められた相は、ポリゴナル・フェライト、ベイニティック・フェライトおよびベーナイトの3相のみであり、その他の相は認められなかった。
【0028】
【技術文献1】
「鋼のベーナイト写真集−1」(平成4年6月29日、(社)日本鉄鋼協会発行、例えば21頁・Fig.2.9)
表5から明らかなように、本発明を用いれば、強度、延性、および穴広げ性に優れ、何れのバラツキも4%以下の鋼板を得ることができた。
【0029】
【表1】

Figure 2004197114
【0030】
(実施例2)
表2に化学成分を示す鋼のスラブを表4中から選択した条件にて熱間圧延し、厚さ3.4mmの熱延板を得た。このようにして得られた帯鋼の強度σB、延性δ、穴広げ値λ、および各々のΔを上記実施例1と同様に調べた。その結果を鋼と条件の組み合わせ毎に表6に示す。また構成する相の同定も上記実施例1と同様に行ったが、ポリゴナル・フェライト、ベイニティック・フェライトおよびベーナイトの3相以外の相は認められなかった。
表6から明らかなように、Siを0.2%以下としてもTi、Nbを添加するとバラツキは大きくなるが、本発明のようにTiを0.005%以下とすれば、強度、延性、および穴広げ性に優れ、何れのバラツキも4%以下と小さい鋼板を得ることができた。
【0031】
【表2】
Figure 2004197114
【0032】
(実施例3)
表3に化学成分を示す鋼のスラブを表4中から選択した条件にて熱間圧延し、厚さ3.2mmの熱延板を得た。このようにして得られた帯鋼の強度σB、延性δ、穴広げ値λ、および各々のΔを上記実施例1と同様に調べた。その結果を強度σB、延性δ、および穴広げ値λのいずれのΔも4%以下であるものと、それ以外に分け、Nb量を横軸に、巻き取り温度Tc(℃)を縦軸にして図1に示す。白丸(〇)は図中にI、II、およびIIIで示す直線で囲まれた領域であり、3本の直線は同図より下記のように求められた。
【0033】
すなわち、(I):Tc=703−103×[Nb]
(II):Tc=616−415×[Nb]
(III):Tc=368+290×[Nb]
である。ただしNb量を[Nb]と表記した。
以上より、巻き取り温度Tcを、0.1≦[Nb]≦0.35においては、616−415×[Nb]<Tc<703−103×[Nb]とし、0.35<[Nb]≦0.6においては368+290×[Nb]<Tc<703−103×[Nb]を満たす範囲にすることによって強度、延性、および穴広げ性に優れバラツキも4%以下と小さい鋼板を得ることができることが示された。
【0034】
【表3】
Figure 2004197114
【0035】
【表4】
Figure 2004197114
【0036】
【表5】
Figure 2004197114
【0037】
【表6】
Figure 2004197114
【0038】
【発明の効果】
以上述べたように、本発明の方法によれば、伸びフランジ性に優れた高強度熱延鋼板を得ることが出来る。
【図面の簡単な説明】
【図1】鋼板の強度、延性、伸びフランジ性のバラツキをNb量を横軸に、巻き取り温度を縦軸にして表したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength hot-rolled steel sheet excellent in stretch flangeability and a method for producing the same.
[0002]
[Prior art]
Among automotive parts, high-strength hot-rolled steel sheets are widely used especially for frames and arms called suspension systems. The characteristics required for the steel sheet used for such applications include high ductility and high stretch flangeability represented by the hole expansion test value. These two properties are contradictory with steel plates of the same strength, and steel plates are being developed to enhance the other property without significantly damaging one property. As an example of such a steel plate, Patent Literature 1 and Patent Literature 2 can be cited. Patent Document 1 has a predetermined chemical component, and by using bainitic ferrite as the main microstructure, it is possible to obtain a hot-rolled steel sheet having a tensile strength of 500 N / mm 2 class or more and excellent stretch flangeability. Technology is disclosed. On the other hand, Patent Document 2 discloses a hot-rolled steel sheet having a predetermined chemical component and having a ferrite single-phase microstructure and a tensile strength of 600 N / mm 2 or more and excellent stretch flangeability. Technology is disclosed.
[0003]
[Cited document]
(1) Patent Document 1 (Japanese Patent Laid-Open No. 6-172924)
(2) Patent Document 2 (Japanese Patent Laid-Open No. 7-70696)
[0004]
[Problems to be solved by the invention]
The present inventors have also studied a steel sheet having excellent stretch flangeability and a manufacturing method thereof with reference to such prior art. In the process, it has been clarified that the steel sheet based on the above-described prior art may include a portion having inferior properties, although there is a portion that exhibits excellent stretch flangeability. Although it is not remarkable in the laboratory-scale small hot-rolled sheet, it has been found that the distribution range of the characteristic is large in the commercial-scale hot-rolled coil.
[0005]
Such a problem has been accepted as an inevitable variation in characteristics when the economic situation surrounding steel plate users is booming, but is now recognized as an inevitable problem. This is because part design that has given enough room to the lower limit of the characteristics in consideration of variation is being reviewed, and the attitude to try to utilize the upper limit of the characteristic value as much as possible is becoming mainstream. Because. Under such circumstances, it is not sufficient that the characteristic value of the steel sheet is high. Rather, the smaller variation is more important than the height of the absolute value, but there are no examples that focus on this point. Absent.
[0006]
[Means for Solving the Problems]
In view of such a situation, the present inventors have intensively studied to develop a steel plate that has a stretch flangeability of a certain level or more and that has a small variation and that is also less sensitive to fluctuations in manufacturing conditions. The present invention was completed by clarifying chemical components and manufacturing methods that make these possible.
The summary is as follows. That is, (1) in mass%, C: 0.02 to 0.10%, Si: 0.2% or less, Mn: 0.5 to 2.5%, P: 0.1% or less, S: 0 0.01% or less, N: 0.01% or less, Al: 0.005 to 2.0%, Ti: 0.005% or less, Nb: 0.1 to 0.6%, with the balance being Fe and A high-strength hot-rolled steel sheet excellent in stretch flangeability, which is made of inevitable impurities and has one or more microstructures of polygonal ferrite, bainitic ferrite and bainite.
[0007]
(2) By mass%, Cu: 0.8 to 2.0%, Ni: 0.4 to 1.0%
A high-strength hot-rolled steel sheet having excellent stretch flangeability as described in (1) above.
(3) The above (1) or (1) characterized by further containing at least one of Mo: 0.05 to 0.3% and V: 0.025 to 0.15% by mass%. 2) A high-strength hot-rolled steel sheet having excellent stretch flangeability as described.
[0008]
(4) A method for producing the steel sheet according to any one of (1) to (3) above, wherein a steel material having the chemical components described therein is heated to 1200 ° C. or higher (Ar 3 point − 50) In the step of completing the rolling at a temperature equal to or higher than 0 ° C. and cooling and winding at an average cooling rate of 10 to 50 ° C./second, the winding temperature Tc (° C.) is set to 0.1 ≦ [Nb] ≦ 0. 35, 616−415 × [Nb] <Tc <703−103 × [Nb], and in 0.35 <[Nb] ≦ 0.6, 368 + 290 × [Nb] <Tc <703−103 × [Nb] ] In a range satisfying the above, a method for producing a high-strength hot-rolled steel sheet excellent in stretch flangeability. However, [Nb] is the amount of Nb (mass%).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, the experiment that led to the completion of the present invention will be described.
The present inventors, in mass%, C: 0.02 to 0.1%, Si: 0 (no addition) to 0.5%, Mn: 0.5 to 2.5%, P: 0.00. Steel slab containing 01 to 0.1%, S: 0.001 to 0.01%, N: 0.003 to 0.01%, Al: 0.005 to 2% and the balance being Fe These were hot-rolled to produce a steel strip (hot-rolled coil). In hot rolling, the rolling end temperature Tf (° C.), the cooling rate C R (° C./second) after rolling, and the winding temperature Tc (° C.) were changed. While the produced steel strip was pickled, steel plates were collected from the front end, the center and the end of the steel strip. And about each of these three site | part steel plates, the test piece for characteristic evaluation and the micro structure | tissue investigation sample were extract | collected from the both ends and center part of the width direction.
[0010]
The test pieces are tensile test pieces for evaluating strength ductility (JIS No. 5, sampled so that the tensile direction is perpendicular to the rolling direction) and test pieces for measuring the hole expansion value (150 mm × 150 mm). Produced. Using these test pieces, the strength (tensile strength) σ B (MPa), the ductility (elongation) δ (%), and the hole expansion value λ (%) were investigated. The tensile test was performed by a method based on JIS Z 2241 using an Instron type testing machine. The hole expansion value λ was measured in accordance with Japan Iron and Steel Federation Standard JFS T1001, and the clearance was 12%.
[0011]
The obtained characteristic values are arranged for five points collected from the same part, three parts in the width direction, and three positions on the steel strip, and the relationship between the distribution of characteristic values (variation) and the chemical composition of the steel sheet, and The relationship with hot rolling conditions (Tf, C R , Tc) was examined. As a result, the variation between 5 points in the same part was extremely small in all the steel plates regardless of the chemical composition and hot rolling conditions, and the difference between the maximum value and the minimum value was within 2% of the simple average value. For this reason, it is judged that there is no problem in practical evaluation by evaluating with a simple average value of 5 points, and using this value (simple average value), the variation between three places in the width direction and between three places on the strip steel investigated. As a result, the degree of variation varies depending on the chemical composition and hot-rolling conditions, with the largest being about 16% between three locations in the width direction and about 20% between three locations on the strip. There was also.
[0012]
When these results were first analyzed by comparing with chemical components, a relatively strong correlation was observed with the amount of Si in the constituent elements, and it was found that the variation rapidly decreased especially at 0.2% or less. .
Then, next, an experiment was conducted for the case where Si was added to 0.05 to 0.2%, the amounts of C, Mn, P, S, N, and Al were kept as described above, and Ti and Nb were added. It was. Ti was examined in the range of 0 (no addition) to 0.25%, and Nb in the range of 0.1 to 0.6%. As described in the prior art, Ti and Nb suppress the formation of cementite by forming carbides with C, so that an improvement in λ can be expected, but the effect on the variation is not clear, so the same as above The method was examined. As a result, it was found that the Nb amount has little influence on the variation, whereas the Ti amount has a strong correlation, and the variation can be rapidly reduced by making it 0.005% or less.
[0013]
Based on the above results, C: 0.02 to 0.10%, Si: 0.2%, Mn: 1.5%, P: 0.02%, S: 0.001%, Nb: 0.0. The effect of addition of Cu and Ni and Mo and V was further examined on the steel slab containing 1 to 0.6%, but these elements did not affect the variation.
From the above examination, as chemical components, C: 0.02 to 0.10%, Si: 0.2% or less, Mn: 0.5 to 2.5%, P: 0.1% or less, S: 0 .01% or less, Ti: 0.005% or less, Nb: 0.1-0.6%, Cu: 0.8-2.0%, Ni: 0.4-1. 0%, Mo: 0.05 to 0.3%, V: 0.025 to 0.15%, the balance being Fe and unavoidable impurities is effective in minimizing variation As a result, the relationship between hot rolling conditions and variation was investigated by focusing on steel sheets of this component. If the rolling end temperature Tf, the cooling rate C R after rolling, and the winding temperature Tc are changed, the microstructure naturally changes, and the absolute values of the strength σ B , ductility δ, and hole expansion value λ also change accordingly. However, the degree of variation was unknown, so we investigated.
[0014]
As a result, the cooling rate C R after rolling and the rolling end temperature Tf impact on the variation is slight, the coiling temperature Tc affects the degree of dispersion, reduce variation in particular according to the change in the Nb content It has become clear that the range of the desired winding temperature Tc takes a specific range.
Although the details of the examination described above will be described in the examples, the present invention is based on such basic experiments and is a result of further earnest research, and shows a predetermined stretch flangeability with less variation. A hot-rolled steel sheet and a manufacturing method thereof are provided. In view of the fact that “less variation” is a feature demanded by steel sheet users today, a high-strength hot-rolled steel plate with little variation and excellent stretch flangeability is simply obtained by stretching flanges. It was described as a high-strength hot-rolled steel sheet with excellent properties.
[0015]
The reasons for limiting the present invention will be described below. First, the reasons for limiting chemical components will be described. All component labels are weight percent.
C is an essential element for ensuring the strength of the steel sheet, and at least 0.02% is necessary to obtain a high-strength steel sheet. However, if it is contained excessively, the formation of a phase undesirable for stretch flangeability such as cementite and martensite cannot be avoided, so the content is made 0.10% or less.
[0016]
The amount of Si is one of the most important conditions in the present invention, and needs to be 0.2% or less in order to suppress variation. Most preferably, 0%. The reason why the amount of Si strongly affects the variation is not necessarily clear, but this element fluctuates the solid solubility limit of C in the ferrite, and as a result, polygonal ferrite that may be generated in the cooling process after rolling, It seems to have a strong influence on the selection of the phase from bainitic ferrite, bainite and pearlite and the determination of its constituent fraction, and as a result, is related to the variation of the hole expansion value λ. When the Si amount is in the range of 0.2% or less, it is presumed that the variation in the C solid solubility limit is extremely small, and therefore, it is considered to work effectively for suppressing variation.
[0017]
Mn is an element effective for increasing the strength of a steel sheet and should be contained in an amount of 0.5% or more. However, if it exceeds 2.5%, the ductility deteriorates, so the upper limit is 2.5%. To do.
P is effective as a solid solution strengthening element, but it is necessary to make it 0.1% or less because there is concern about deterioration of workability due to segregation.
S should be suppressed as much as possible because it forms inclusions such as MnS and deteriorates the stretch flangeability. However, it should be 0.01% or less.
[0018]
N forms nitrides and reduces ductility and stretch flangeability. Therefore, it should be suppressed as much as possible, but is acceptable if it is 0.01% or less.
Al is used as a deoxidizer, and 0.005% is necessary to obtain an appropriate cleanliness. However, if it is excessively contained, ductility and stretch flangeability deteriorate. The upper limit is 0%.
[0019]
Ti and Nb work to improve the workability of the steel sheet (so-called scavenging effect) by fixing C, S and N as precipitates. On the other hand, when added more than necessary, they are present in the steel as solute Ti or solute Nb, and the temperature of recrystallization is increased, and the hot-worked structure tends to remain and the ductility is impaired. Careful attention is required. In particular, Ti has a strong tendency to bind to C more easily than Nb, so that slight fluctuations in the concentration greatly change the amount of C remaining in the steel, and as a result, it is assumed that the variation in the hole expansion value λ is strongly affected. Is done. Therefore, it is necessary to suppress to 0.005% or less, and 0% (no addition) is also included in the present invention.
[0020]
On the other hand, it is estimated that Nb is less likely to induce fluctuations in the amount of C due to concentration fluctuations because of its milder binding force with C than Ti. Therefore, it is necessary to add 0.1% or more in which the effect of fixing C is clearly recognized, and to avoid addition exceeding 0.6% where the remaining of the processed structure starts to affect the characteristics.
Cu can be used as a solid solution strengthening element or a precipitation strengthening element for increasing the strength of steel sheets. Further, the fatigue strength can be further improved by the addition thereof. The effect is not manifested unless 0.8% or more is added. On the other hand, if it exceeds 2.0%, the steel sheet surface properties after hot rolling deteriorate, so 2.0% is made the upper limit.
[0021]
Ni has an effect of relieving the deterioration of hot rolled surface properties caused by Cu, and it is desirable to add about half of Cu as a guide. Therefore, the lower limit is 0.4%. On the other hand, even if added over 1.0%, the effect is saturated and only leads to an increase in cost, so 1.0% is made the upper limit.
Both Mo and V function to form carbides and increase the strength, and also to form carbonitrides combined with Nb to suppress the softening of the steel sheet due to the heat effect of welding. These effects are manifested at 0.05% and 0.025% or more, respectively. On the other hand, when the content exceeds 0.3% and 0.15%, respectively, a hard phase is formed to reduce the hole expansion value λ. Therefore, it is necessary to set these as the upper limit.
In the present invention, components other than those described above are Fe, but inevitable impurities mixed from melting raw materials such as scrap are allowed.
[0022]
Next, the structure of the steel plate will be described.
In order to obtain excellent stretch flangeability, a steel sheet having one or more microstructures selected from polygonal ferrite, bainitic ferrite and bainite is required. As the remaining structure other than these, one or more of pearlite, retained austenite, and martensite should be eliminated as much as possible, and it is desirable that the area ratio is 3% or less. On the other hand, any combination (including single) or composition ratio (area ratio) of the three phases of polygonal ferrite, bainitic ferrite and bainite may be used, and the required strength, ductility, and elongation. It can be designed based on flangeability. For example, especially in applications where high ductility is the main focus and high stretch flangeability is required, polygonal ferrite is used as the main phase or single phase, and the required strength is secured by utilizing precipitates. You can choose the method. On the other hand, for applications in which it is most important to reduce the number of constituent elements as much as possible and to use a low-priced steel sheet, a method in which bainite is the main phase or a single phase can be selected.
[0023]
Finally, each condition of heating, rolling, cooling and winding will be described.
The heating temperature is required to be 1200 ° C. or higher in order to temporarily dissolve carbonitride in the steel. By dissolving these in a solid solution, the strength of the steel sheet can be increased by finely dispersing carbonitride in the cooling process after rolling.
On the other hand, when the heating temperature exceeds 1300 ° C., oxidation of the slab surface becomes remarkable, and in particular, wedge-shaped surface defects that appear to be caused by selective oxidation of grain boundaries remain after descaling, which is the surface after rolling. Since the quality is impaired, the upper limit is 1300 ° C., preferably 1250 ° C. or less.
[0024]
The rolling end temperature Tf is important for the structure control of the steel sheet. If it is less than Ar 3 point + 50 ° C., the crystal grain size of the surface layer is coarse, and the material in the thickness direction is not stable, which is not preferable in terms of characteristics. On the other hand, if the Ar 3 point is higher than + 100 ° C., the austenite grain size after the rolling becomes coarse, and the composition and the fraction of the phase generated during cooling become unstable, making it difficult to operate. Is desirable.
[0025]
Cooling rate C R after rolling is required to be 10 to 50 ° C. / sec. Polygonal ferrite by controlling the cooling rate C R after rolling, to obtain bainitic ferrite, and the one or more configuration tissues and steel plate with its fraction selected from among the bainite I can do it. Cooling rate C R after rolling is not possible to suppress the generation of undesirable pearlite in stretch flangeability is less than 10 ° C. / sec, whereas at the 50 ° C. / sec greater than the material dispersion in particular due to the uneven cooling in the width direction of the steel strip there are cooling rate C R after rolling so is a concern that needs to be limited to the above range.
[0026]
The range of the coiling temperature Tc (° C.) is one of the most important conditions for obtaining the steel sheet of the present invention. In particular, when there is a certain relationship with the amount of Nb, a steel sheet with very little variation can be obtained. As will be described in the examples, when [Nb] is the amount of Nb (mass%), 616−415 × [Nb] <Tc <703—when 0.1 ≦ [Nb] ≦ 0.35. 103 × [Nb], and when 0.35 <[Nb] ≦ 0.6, the range satisfies 368 + 290 × [Nb] <Tc <703−103 × [Nb]. The reason why the variation becomes small when this relationship is satisfied is not clear at present, but it is presumed that the precipitation phenomenon of NbC is probably involved in some way. In the above relational expression, the range in which the variations of the strength σ B , the ductility δ, and the hole expansion value λ are within 4% for each Nb amount is obtained according to an example described later.
[0027]
【Example】
Examples of the present invention will be described below together with comparative examples.
Example 1
A steel slab having chemical components shown in Table 1 was hot-rolled under the conditions selected from Table 4 to obtain a steel strip having a thickness of 3.6 mm. The strength σ B , ductility δ, and hole expansion value λ of the above-mentioned nine steel strips thus obtained (the steel strip tip, center, tail, each widthwise both ends and center) were examined. It was. A value (Δ) obtained by dividing the difference between the maximum value and the minimum value of the nine characteristic values by their simple average value was also obtained. The results are shown in Table 5 for each combination of steel and conditions. Further, the structure formed by observing the cross-sectional structure was examined. The structure was mirror-polished and then revealed with a nital solution, and the internal position corresponding to 1/4 of the plate thickness was observed from the surface at 400 times, and the existing structure was identified with reference to the following technical document 1. As a result, the only recognized phases were polygonal ferrite, bainitic ferrite, and bainite, and no other phases were observed.
[0028]
[Technical Reference 1]
“Steel Bainite Photobook-1” (June 29, 1992, published by Japan Iron and Steel Institute, for example, page 21, FIG. 2.9)
As is apparent from Table 5, when the present invention was used, a steel sheet having excellent strength, ductility, and hole expandability, and a variation of 4% or less could be obtained.
[0029]
[Table 1]
Figure 2004197114
[0030]
(Example 2)
A steel slab having chemical components shown in Table 2 was hot-rolled under the conditions selected from Table 4 to obtain a hot-rolled sheet having a thickness of 3.4 mm. The strength σ B , ductility δ, hole expansion value λ, and Δ of each of the obtained steel strips were examined in the same manner as in Example 1. The results are shown in Table 6 for each combination of steel and conditions. In addition, although the constituent phases were identified in the same manner as in Example 1, no phases other than the three phases of polygonal ferrite, bainitic ferrite and bainite were found.
As can be seen from Table 6, when Ti and Nb are added even if Si is 0.2% or less, the variation increases. However, if Ti is 0.005% or less as in the present invention, the strength, ductility, and A steel plate having excellent hole-expandability and a small variation of 4% or less in any variation could be obtained.
[0031]
[Table 2]
Figure 2004197114
[0032]
(Example 3)
A steel slab having chemical components shown in Table 3 was hot-rolled under the conditions selected from Table 4 to obtain a hot-rolled sheet having a thickness of 3.2 mm. The strength σ B , ductility δ, hole expansion value λ, and Δ of each of the obtained steel strips were examined in the same manner as in Example 1. The results are divided into those where the strength σ B , ductility δ, and hole expansion value λ are all 4% or less, and other cases, with the Nb amount on the horizontal axis and the winding temperature Tc (° C.) on the vertical axis. As shown in FIG. White circles (◯) are regions surrounded by straight lines indicated by I, II, and III in the figure, and three straight lines were obtained from the figure as follows.
[0033]
That is, (I): Tc = 703-103 × [Nb]
(II): Tc = 616-415 × [Nb]
(III): Tc = 368 + 290 × [Nb]
It is. However, the amount of Nb was expressed as [Nb].
From the above, when the winding temperature Tc is 0.1 ≦ [Nb] ≦ 0.35, 616−415 × [Nb] <Tc <703−103 × [Nb] and 0.35 <[Nb] ≦ In 0.6, by making the range satisfying 368 + 290 × [Nb] <Tc <703−103 × [Nb], it is possible to obtain a steel sheet having excellent strength, ductility, and hole expansibility and small variation of 4% or less. It has been shown.
[0034]
[Table 3]
Figure 2004197114
[0035]
[Table 4]
Figure 2004197114
[0036]
[Table 5]
Figure 2004197114
[0037]
[Table 6]
Figure 2004197114
[0038]
【The invention's effect】
As described above, according to the method of the present invention, a high-strength hot-rolled steel sheet excellent in stretch flangeability can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing variations in strength, ductility, and stretch flangeability of steel sheets, with the Nb amount on the horizontal axis and the winding temperature on the vertical axis.

Claims (4)

質量%にて、
C:0.02〜0.10%、
Si:0.2%以下、
Mn:0.5〜2.5%、
P:0.1%以下、
S:0.01%以下、
N:0.01%以下、
Al:0.005〜2.0%、
Ti:0.005%以下、
Nb:0.1〜0.6%
を含有し、残部がFeおよび不可避不純物からなり、ポリゴナル・フェライト、ベイニティック・フェライトおよびベーナイトのうちの1つまたは2つ以上のミクロ組織を有することを特徴とする伸びフランジ性に優れた高強度熱延鋼板。
In mass%
C: 0.02-0.10%,
Si: 0.2% or less,
Mn: 0.5 to 2.5%
P: 0.1% or less,
S: 0.01% or less,
N: 0.01% or less,
Al: 0.005 to 2.0%,
Ti: 0.005% or less,
Nb: 0.1 to 0.6%
And the balance consists of Fe and inevitable impurities, and has one or more microstructures of polygonal ferrite, bainitic ferrite and bainite, and is excellent in stretch flangeability Strength hot-rolled steel sheet.
質量%で、更に
Cu:0.8〜2.0%、
Ni:0.4〜1.0%
を含有することを特徴とする請求項1記載の伸びフランジ性に優れた高強度熱延鋼板。
% By mass, further Cu: 0.8-2.0%,
Ni: 0.4-1.0%
The high-strength hot-rolled steel sheet having excellent stretch flangeability according to claim 1.
質量%で、更に
Mo:0.05〜0.3%、
V:0.025〜0.15%
のうちの1種以上を含有することを特徴とする請求項1または2記載の伸びフランジ性に優れた高強度熱延鋼板。
% By mass, Mo: 0.05 to 0.3%,
V: 0.025 to 0.15%
The high-strength hot-rolled steel sheet excellent in stretch flangeability according to claim 1 or 2, characterized by containing at least one of the above.
請求項1ないし3の何れか1項に記載の鋼板を製造する方法であって、請求項1ないし3の何れか1項に記載の化学成分を有する鋼材を1200℃以上に加熱し、(Ar3点−50)℃以上の温度で圧延を完了し、10〜50℃/秒の平均冷却速度で冷却して巻き取る工程において、巻き取り温度Tc(℃)を、0.1≦[Nb]≦0.35においては、616−415×[Nb]<Tc<703−103×[Nb]とし、0.35<[Nb]≦0.6においては368+290×[Nb]<Tc<703−103×[Nb]を満たす範囲にすることを特徴とする伸びフランジ性に優れた高強度熱延鋼板の製造方法。
ただし、[Nb]はNb量(質量%)である。
A method for producing a steel sheet according to any one of claims 1 to 3, wherein the steel material having the chemical component according to any one of claims 1 to 3 is heated to 1200 ° C or higher, and (Ar In the step of completing rolling at a temperature of 3 points-50) ° C. or higher and cooling at an average cooling rate of 10-50 ° C./second and winding up, the winding temperature Tc (° C.) is set to 0.1 ≦ [Nb] When ≦ 0.35, 616−415 × [Nb] <Tc <703−103 × [Nb], and when 0.35 <[Nb] ≦ 0.6, 368 + 290 × [Nb] <Tc <703−103 X A method for producing a high-strength hot-rolled steel sheet excellent in stretch flangeability, characterized by being in a range satisfying [Nb].
However, [Nb] is the amount of Nb (mass%).
JP2002363349A 2002-12-16 2002-12-16 Manufacturing method of high-strength hot-rolled steel sheet with excellent stretch flangeability Expired - Fee Related JP3896075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363349A JP3896075B2 (en) 2002-12-16 2002-12-16 Manufacturing method of high-strength hot-rolled steel sheet with excellent stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363349A JP3896075B2 (en) 2002-12-16 2002-12-16 Manufacturing method of high-strength hot-rolled steel sheet with excellent stretch flangeability

Publications (2)

Publication Number Publication Date
JP2004197114A true JP2004197114A (en) 2004-07-15
JP3896075B2 JP3896075B2 (en) 2007-03-22

Family

ID=32761518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363349A Expired - Fee Related JP3896075B2 (en) 2002-12-16 2002-12-16 Manufacturing method of high-strength hot-rolled steel sheet with excellent stretch flangeability

Country Status (1)

Country Link
JP (1) JP3896075B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138449A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Precipitation strengthening type dual phase hot rolled steel sheet
KR101109953B1 (en) 2008-09-29 2012-02-24 현대제철 주식회사 High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR101130013B1 (en) * 2009-03-26 2012-03-26 현대제철 주식회사 High strenth hot rolled steel sheet, and method for manufacturing the same
EP3147381A1 (en) * 2015-09-22 2017-03-29 Tata Steel IJmuiden B.V. A hot-rolled high-strength roll-formable steel sheet with excellent stretch-flange formability and a method of producing said steel
WO2022070621A1 (en) * 2020-09-29 2022-04-07 日本製鉄株式会社 Hot rolled steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277717A (en) * 1990-03-27 1991-12-09 Sumitomo Metal Ind Ltd Manufacture of hot-rolled steel plate and method for heat-treating processed product thereof
JPH0499125A (en) * 1990-08-03 1992-03-31 Kawasaki Steel Corp Production of hot rolled high tensile steel sheet for automobile
JPH05222484A (en) * 1992-02-10 1993-08-31 Kawasaki Steel Corp Hot rolled steel strip with low yield ratio for construction use excellent in refractoriness and toughness and its production
JPH111747A (en) * 1997-06-06 1999-01-06 Kawasaki Steel Corp High tensile strength hot rolled steel plate having superfine grain and excellent in ductility, toughness, fatigue resistance, and balance between strength and elongation, and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2002088447A (en) * 1999-10-22 2002-03-27 Kawasaki Steel Corp High strength galvanized steel sheet having excellent workability and plating property and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277717A (en) * 1990-03-27 1991-12-09 Sumitomo Metal Ind Ltd Manufacture of hot-rolled steel plate and method for heat-treating processed product thereof
JPH0499125A (en) * 1990-08-03 1992-03-31 Kawasaki Steel Corp Production of hot rolled high tensile steel sheet for automobile
JPH05222484A (en) * 1992-02-10 1993-08-31 Kawasaki Steel Corp Hot rolled steel strip with low yield ratio for construction use excellent in refractoriness and toughness and its production
JPH111747A (en) * 1997-06-06 1999-01-06 Kawasaki Steel Corp High tensile strength hot rolled steel plate having superfine grain and excellent in ductility, toughness, fatigue resistance, and balance between strength and elongation, and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2002088447A (en) * 1999-10-22 2002-03-27 Kawasaki Steel Corp High strength galvanized steel sheet having excellent workability and plating property and its production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109953B1 (en) 2008-09-29 2012-02-24 현대제철 주식회사 High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
JP2010138449A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Precipitation strengthening type dual phase hot rolled steel sheet
KR101130013B1 (en) * 2009-03-26 2012-03-26 현대제철 주식회사 High strenth hot rolled steel sheet, and method for manufacturing the same
EP3147381A1 (en) * 2015-09-22 2017-03-29 Tata Steel IJmuiden B.V. A hot-rolled high-strength roll-formable steel sheet with excellent stretch-flange formability and a method of producing said steel
WO2017050790A1 (en) * 2015-09-22 2017-03-30 Tata Steel Ijmuiden B.V. A hot-rolled high-strength roll-formable steel sheet with excellent stretch-flange formability and a method of producing said steel
CN108350542A (en) * 2015-09-22 2018-07-31 塔塔钢铁艾默伊登有限责任公司 The method that hot-rolled high-strength with excellent stretch flange formability can be rolled into shape steel sheets and manufacture the steel
JP2018532045A (en) * 2015-09-22 2018-11-01 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv High-strength hot-rolled steel sheet capable of roll forming having excellent stretch flangeability, and method for producing the steel
CN108350542B (en) * 2015-09-22 2020-03-10 塔塔钢铁艾默伊登有限责任公司 Hot-rolled high-strength rollable profiled steel sheet with excellent stretch-flange formability and method for manufacturing the steel
US10870901B2 (en) 2015-09-22 2020-12-22 Tata Steel Ijmuiden B.V. Hot-rolled high-strength roll-formable steel sheet with excellent stretch-flange formability and a method of producing said steel
WO2022070621A1 (en) * 2020-09-29 2022-04-07 日本製鉄株式会社 Hot rolled steel sheet
EP4223893A4 (en) * 2020-09-29 2024-03-06 Nippon Steel Corp Hot rolled steel sheet

Also Published As

Publication number Publication date
JP3896075B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
KR102267129B1 (en) Nb-containing ferritic stainless hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless cold-rolled stainless steel sheet and manufacturing method thereof
US20090277547A1 (en) High-strength steel sheets and processes for production of the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP4575893B2 (en) High strength steel plate with excellent balance of strength and ductility
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
EP1191114A1 (en) High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
KR101624439B1 (en) High-strength steel sheet and method for producing the same
JP5798740B2 (en) High-strength cold-rolled steel sheet with excellent formability and manufacturing method
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP2005298924A (en) High strength hot rolled steel sheet having excellent stamping workability and its production method
JP2006183130A (en) High-rigidity/high-strength thin steel sheet and manufacturing method therefor
EP2781615A1 (en) Thin steel sheet and process for producing same
JP5304435B2 (en) Hot-rolled steel sheet with excellent hole-expandability and manufacturing method thereof
JP2010156032A (en) High-strength cold-rolled steel sheet superior in balance of elongation and formability for extension flange
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP5842748B2 (en) Cold rolled steel sheet and method for producing the same
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP4112993B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP3896075B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent stretch flangeability
JP2006233309A (en) High-tensile-strength hot-rolled steel plate with superior bake-hardenability and formability, and manufacturing method therefor
JP4259132B2 (en) High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them
JP2005314793A (en) High-rigidity high-strength thin steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R151 Written notification of patent or utility model registration

Ref document number: 3896075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees