JP2010138449A - Precipitation strengthening type dual phase hot rolled steel sheet - Google Patents

Precipitation strengthening type dual phase hot rolled steel sheet Download PDF

Info

Publication number
JP2010138449A
JP2010138449A JP2008315702A JP2008315702A JP2010138449A JP 2010138449 A JP2010138449 A JP 2010138449A JP 2008315702 A JP2008315702 A JP 2008315702A JP 2008315702 A JP2008315702 A JP 2008315702A JP 2010138449 A JP2010138449 A JP 2010138449A
Authority
JP
Japan
Prior art keywords
phase
steel sheet
ferrite
rolled steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008315702A
Other languages
Japanese (ja)
Other versions
JP5386961B2 (en
Inventor
Katsumi Yamada
克美 山田
Tomoharu Ishida
智治 石田
Koichi Nakagawa
功一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008315702A priority Critical patent/JP5386961B2/en
Publication of JP2010138449A publication Critical patent/JP2010138449A/en
Application granted granted Critical
Publication of JP5386961B2 publication Critical patent/JP5386961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot rolled steel sheet having high strength (TS: ≥1,180 MPa) and also having excellent workability. <P>SOLUTION: The hot rolled steel sheet has a composition composed of, by mass, 0.10 to 0.16% C, ≤0.5% Si, 0.5 to 1.8% Mn, ≤0.5% Al and 0.001 to 0.005% N, and further composed of at least one kind selected from 0.14 to 0.2% Ti and 0.25 to 0.40% Nb, and the balance Fe with inevitable impurities, and has a dual phase structure composed of, by volume fraction, 30 to <45% of a tempered bainite phase and a ferrite phase, in which the ferrite phase and tempered bainite phase both contain MX precipitates with an external diameter of <10 nm (wherein: M denotes a metallic element(s); and X denotes carbon or nitrogen). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、強度と延性とを両立させた析出強化型熱延鋼板に関し、特に、1180MPa以上の引張り強度を維持しつつ、複雑形状部品に形成するための優れた加工性が要求される自動車部品の用途に好適な熱延鋼板に関する。   The present invention relates to a precipitation-strengthened hot-rolled steel sheet that achieves both strength and ductility, and in particular, automotive parts that require excellent workability for forming into complex shaped parts while maintaining a tensile strength of 1180 MPa or more. The present invention relates to a hot-rolled steel sheet suitable for use in

燃費の向上や資源節減の観点により自動車部品の軽量化が進むにつれ、その素材となる鋼板には一層の高強度化が要求されつつある。一方、自動車部品、特に自動車足回り部品の形状は複雑化する傾向にあり、その素材となる鋼板は優れた加工性および形状凍結性を有することが必須となる。
そのため、自動車部品用鋼板は優れた強度と加工性とを兼備することが不可欠となるが、両者は一般に相反する関係にあるため、強度と加工性を両立させることは容易ではない。
例えば、複相鋼(DP鋼)ではフェライトを含有することにより高い伸び(高延性)を達成できるものの、複相組織であるために自動車足回り部品の成形時に必要となる伸びフランジ性に乏しい。
一方、フェライトを含有しないベイナイト単相鋼は、伸びフランジ性は良好であるが延性に乏しい。
As the weight of automobile parts progresses from the standpoint of improving fuel efficiency and saving resources, steel sheets that are the raw material are required to have higher strength. On the other hand, the shape of automobile parts, particularly automobile undercarriage parts, tends to be complicated, and it is essential that the steel plate as the material has excellent workability and shape freezing properties.
Therefore, it is indispensable for steel sheets for automobile parts to have both excellent strength and workability. However, since they are generally in a contradictory relationship, it is not easy to achieve both strength and workability.
For example, although double-phase steel (DP steel) can achieve high elongation (high ductility) by containing ferrite, it has a multi-phase structure, so that it has poor stretch flangeability required when molding automobile undercarriage parts.
On the other hand, bainite single-phase steel containing no ferrite has good stretch flangeability but poor ductility.

上記問題を解決するための技術としては、主相を高延性の確保に好適なフェライト単相とし、主たる強化機構として微細析出物による析出強化を用いる技術が知られている。例えば、特許文献1および特許文献2には、TiおよびMoを適量含有する熱延鋼板の製造にあたり、Ar3変態点直上のオーステナイト域で仕上げ圧延を終了し、巻き取り温度を570℃以上700℃以下とすることにより、ほぼフェライト単相である母相に、10nm未満の微細かつ熱的安定性を有する析出物を分散させた、引張り強度が800MPa、更には900MPaを超える、強度と延性或いは伸びフランジ性に優れる熱延鋼板の製造方法が開示されている。上記方法によると、析出強化量を高精度に制御することによって種々の強度レベルの熱延鋼板を、工業的安定性をもって提供することが可能であるとされ、これらの熱延鋼板は既に一部商品化されている。
特開2003−89848号公報 特開2002−322539号公報
As a technique for solving the above problem, a technique is known in which the main phase is a ferrite single phase suitable for ensuring high ductility, and precipitation strengthening by fine precipitates is used as a main strengthening mechanism. For example, in Patent Document 1 and Patent Document 2, in the production of a hot-rolled steel sheet containing appropriate amounts of Ti and Mo, finish rolling is finished in the austenite region immediately above the Ar 3 transformation point, and the winding temperature is 570 ° C. or more and 700 ° C. By making the following, a precipitate with a fine and thermal stability of less than 10 nm is dispersed in the parent phase, which is almost a ferrite single phase, and the tensile strength exceeds 800 MPa, and further exceeds 900 MPa, strength and ductility or elongation. A method for producing a hot-rolled steel sheet having excellent flangeability is disclosed. According to the above method, it is said that it is possible to provide hot rolled steel sheets of various strength levels with industrial stability by controlling the precipitation strengthening amount with high accuracy. It has been commercialized.
JP 2003-89848 A JP 2002-322539 A

しかしながら、上記の技術によってもなお、延性を確保しながら更なる高強度化を図ることは容易ではない。特に、析出物の増量を図る目的で鋼に含有する合金元素を増やせば、近年に見られる合金元素高騰の影響を強く受けるため、熱延鋼板を工業的に安定して製造することが困難となる。   However, even with the above technique, it is not easy to further increase the strength while ensuring ductility. In particular, if the alloying elements contained in the steel are increased for the purpose of increasing the amount of precipitates, it will be strongly affected by the soaring of alloying elements found in recent years, so it is difficult to produce hot-rolled steel sheets industrially and stably. Become.

一方、例えば特許文献3および特許文献4には、焼戻しマルテンサイトや焼戻しベイナイト相を主相とし、第二相として残留オーステナイト相を分散させた複相鋼板において、高強度と伸びフランジ性の両立を図る技術が開示されている。
しかしながら、これらの複相鋼板においては、TRIP効果による優れた均一伸びと、数10%以上の伸びフランジ性が安定して得られるものの、引張り強度は高々800MPa程度に留まっている。
特開2003−73773号公報 特開2005−336526号公報
On the other hand, for example, in Patent Document 3 and Patent Document 4, in a duplex steel sheet in which a tempered martensite or tempered bainite phase is a main phase and a residual austenite phase is dispersed as a second phase, both high strength and stretch flangeability are achieved. Techniques to be disclosed are disclosed.
However, in these duplex steel sheets, excellent uniform elongation due to the TRIP effect and stretch flangeability of several tens of percent or more can be stably obtained, but the tensile strength is at most about 800 MPa.
JP 2003-73773 A JP 2005-336526 A

本発明は、上記現状を鑑みなされたものであり、組織強化と析出強化との適当な組み合わせにより、高価な合金元素を多量に含有することなく、従来のフェライト析出強化型熱延鋼板にみられる課題を解決し、1180MPa以上の強度と優れた延性とを兼備する高強度熱延鋼板を提供することを目的とする。   The present invention has been made in view of the above situation, and can be found in conventional ferrite precipitation strengthened hot-rolled steel sheets without containing a large amount of expensive alloy elements by an appropriate combination of structure strengthening and precipitation strengthening. An object of the present invention is to provide a high-strength hot-rolled steel sheet that solves the problems and has both a strength of 1180 MPa or more and excellent ductility.

本発明者らは、引張り強度1180MPa以上の鋼種に関し、強度と加工性(特に、延性および伸びフランジ性)の両立に必須となる組織形態を適正に制御する方法について、他の強化機構(析出強化、結晶粒微細化強化等)とのバランスを考慮しつつ鋭意検討した。その結果、フェライトを母相とする組織に微細析出物を析出させて高強度化を図ろうとする場合、熱延鋼板製造プロセスの制約上、炭化物による析出強化能を高めるための高炭素化および高合金化に限界があるため、十分な強度が得られないことが判明した。
また、ベイナイト単相では、1180MPa以上の引張り強度を達成することが困難であることも判明した。
The inventors of the present invention have other strengthening mechanisms (precipitation strengthening) with regard to a method for appropriately controlling the structure form essential for both strength and workability (particularly ductility and stretch flangeability) for steel types having a tensile strength of 1180 MPa or more. In addition, the inventors studied diligently in consideration of the balance with crystal grain refinement and the like. As a result, when trying to increase the strength by precipitating fine precipitates in the structure with ferrite as the matrix, high carbon and high strength are required to increase the precipitation strengthening ability of carbides due to restrictions on the hot rolled steel sheet manufacturing process. It was found that sufficient strength could not be obtained due to limitations in alloying.
It was also found that it is difficult to achieve a tensile strength of 1180 MPa or more with the bainite single phase.

このため、本発明者らは、微細析出物を析出させたフェライト相を主相とし、組織強化を図る上で極めて有効なベイナイト相を第二相とする複相組織について検討した。その結果、外径が10nm未満のMX析出物で強化されたフェライトを主相とし、第二相としてベイナイト相を体積分率で30%以上45%未満存在させた後、焼戻し処理を施してベイナイト相を適正な強度に制御することにより、鋼板の強度と延性を所望の範囲に調整し得ることを見出した。   For this reason, the present inventors have studied a multiphase structure in which the ferrite phase on which fine precipitates are precipitated is the main phase and the bainite phase is very effective in strengthening the structure, and the second phase is the second phase. As a result, ferrite reinforced with MX precipitates having an outer diameter of less than 10 nm is the main phase, and the bainite phase is present as the second phase in a volume fraction of 30% to less than 45%, and then subjected to tempering treatment. It has been found that the strength and ductility of the steel sheet can be adjusted to a desired range by controlling the phase to an appropriate strength.

また、上記の如き組織を有する熱延鋼板を工業的に安定して製造する方法についても検討した。
熱延鋼板の組織をフェライト+ベイナイト二相組織とするための従来方法においては、例えば、オーステナイト温度域(A3変態点以上)で仕上げ圧延を終了した後、特定の冷却速度でMs点(マルテンサイト変態開始温度)以上Bs点(ベイナイト変態開始温度)以下に冷却して巻き取る工程を経る。更に、特開2003−171736号公報には、上記ベイナイトを焼戻す方法として、連続焼鈍やめっき工程においてA1変態点以上に加熱する方法が開示されているが、この方法では、焼戻し処理によって第二相であるベイナイト相にセメンタイトの析出およびその粗大化、並びに、転位密度減少による硬度低下(強度低下)が危惧される。
Moreover, the method of manufacturing the hot rolled steel plate which has the above structures stably industrially was also examined.
In the conventional method for the tissue of the hot-rolled steel sheet and ferrite + bainite dual phase structure, for example, after completion of the finish rolling at austenite temperature region (A 3 transformation point or higher), Ms point at a specific cooling rate (Martens A process of cooling to the Bs point (bainite transformation start temperature) and below and winding up is performed. Furthermore, Japanese Patent Application Laid-Open No. 2003-171736 discloses a method of heating the bainite above the A 1 transformation point in a continuous annealing or plating process. There is a concern that cementite precipitates and coarsens in the bainite phase, which is a two-phase, and that hardness decreases (strength decreases) due to a decrease in dislocation density.

しかしながら、本発明者らは、適正な組成範囲に制御した鋼を、オーステナイト温度域で仕上げ圧延を終了した後、オーステナイト相とフェライト相の二相域まで速やかに冷却し、極短時間保持後にベイナイト変態温度域に冷却して巻き取り、更に、従来よりも低温域(550〜650℃)において3時間程度の焼戻し処理を施すことにより、従来危惧されていた強度低下とは逆の現象、すなわち強度上昇効果と延性向上効果が得られることを知見した。   However, the inventors of the present invention, after finishing rolling in the austenite temperature range, the steel controlled to an appropriate composition range, quickly cooled to a two-phase region of an austenite phase and a ferrite phase, and after holding for a very short time, bainite Winding by cooling to the transformation temperature range, and further tempering for about 3 hours at a lower temperature range (550 to 650 ° C) than before, the phenomenon opposite to the conventional strength reduction, namely strength It was found that an increase effect and a ductility improvement effect can be obtained.

一例として、0.05質量%C-0.01質量%Si-1.4質量%Mn-0.10質量%Ti-0.20質量%Moを主要成分とする鋼について、熱延条件を変化させることにより鋼組織がそれぞれフェライト単相組織、ベイナイト単相組織およびマルテンサイト単相組織であるフェライト鋼、ベイナイト鋼およびマルテンサイト鋼の熱延鋼板を用意した。これらを620℃で1時間焼戻した場合における、焼戻し前後での機械的特性の変化について調査した結果を図1に示す。   As an example, for steels containing 0.05 mass% C-0.01 mass% Si-1.4 mass% Mn-0.10 mass% Ti-0.20 mass% Mo as the main component, the steel structure is changed to a ferrite single phase by changing the hot rolling conditions. Ferritic steel, bainite steel and martensitic steel hot-rolled steel sheets having a structure, a bainite single-phase structure and a martensite single-phase structure were prepared. FIG. 1 shows the results of investigating changes in mechanical properties before and after tempering when these were tempered at 620 ° C. for 1 hour.

図1より明らかであるように、上記焼戻し条件の下、フェライト鋼では焼戻し前後においてTS(引張り強度)、EL(破断伸び)共に殆ど変化が観られないのに対し、ベイナイト鋼およびマルテンサイト鋼では、焼戻しによる引張り強度TSの値の上昇効果が認められ、特にベイナイト鋼においてその効果が著しい。更に、マルテンサイト鋼では焼戻し前後においてEL値に全く変化が観られないのに対し、ベイナイト鋼では焼戻し処理を施すことによりEL値に大きな改善が観られる。本現象は、620℃という温度でのベイナイト相中の炭化物形態の変化(M3C→MC)に対応するものであり、MCとM3Cの析出が競合する鋼種系においては、本発明の焼戻し条件下で、最終的にはMC析出が安定であることを示している。
なお、本発明の組成を有する鋼についても同様の現象が確認されている。
As is clear from FIG. 1, under the above tempering conditions, there is almost no change in both TS (tensile strength) and EL (breaking elongation) before and after tempering in ferritic steel, whereas in bainite steel and martensitic steel. The effect of increasing the tensile strength TS by tempering is recognized, and the effect is particularly remarkable in bainitic steel. Further, in martensitic steel, there is no change in the EL value before and after tempering, whereas in bainite steel, the EL value is greatly improved by tempering. This phenomenon corresponds to a change in carbide morphology (M 3 C → MC) in the bainite phase at a temperature of 620 ° C., and in the steel grade system where MC and M 3 C precipitation compete, It shows that MC precipitation is finally stable under tempering conditions.
The same phenomenon has been confirmed for the steel having the composition of the present invention.

熱延鋼板の組織がベイナイト単相組織である場合において焼戻し後に機械的特性の向上効果が確認される理由は、ベイナイト中の微細炭化物が、セメンタイトからより微細なMX析出物に変化するためである。以上の結果より、ベイナイト単相組織の延性はフェライト単相組織には及ばないものの、ベイナイト単相組織に適切な焼戻し処理を施し、その機械的特性を制御することにより、強度−延性バランスに優れた組織が得られることがわかる。   The reason why the effect of improving the mechanical properties after tempering is confirmed when the structure of the hot-rolled steel sheet is a bainite single-phase structure is that fine carbides in bainite change from cementite to finer MX precipitates. . From the above results, although the ductility of the bainite single-phase structure does not reach that of the ferrite single-phase structure, the bainite single-phase structure is subjected to an appropriate tempering treatment and its mechanical properties are controlled to provide an excellent balance between strength and ductility. It can be seen that the obtained organization is obtained.

次に、フェライト相および焼戻しベイナイト相中に存在するMX析出物に関し、優れた強度−延性バランスを有する熱延鋼板を得るために必要となるMX析出物の大きさ・析出状態、およびその製造方法について調査した。先に提示した特許文献1および特許文献2に記載のとおり、仕上げ圧延終了後の冷却工程において、オーステナイト→フェライト変態中にMX析出物を相界面析出させることによりフェライト相中のMX析出物の外径を10nm未満とすることが、フェライト相の強度−延性バランスを確保する上で有効であることは既知である。   Next, regarding the MX precipitates present in the ferrite phase and the tempered bainite phase, the size and precipitation state of the MX precipitates necessary for obtaining a hot-rolled steel sheet having an excellent strength-ductility balance, and the manufacturing method thereof Was investigated. As described in Patent Document 1 and Patent Document 2 presented above, in the cooling step after finish rolling, the MX precipitates in the ferrite phase are deposited by interfacial precipitation during the austenite → ferrite transformation. It is known that the diameter of less than 10 nm is effective in securing the strength-ductility balance of the ferrite phase.

一方、通常ベイナイト相はセメンタイト(Fe3Cの他、Feの一部が他の金属元素に置換したものを含むM3Cの析出物)の析出を伴うが、先述のとおり、ベイナイト相に適切な条件で焼戻し処理を施すことによりM3CはMCへと変化し、強度と延性の向上効果が得られる。ここで、強度と延性の向上効果が確認された焼戻し処理後のベイナイト単相組織について、TEM(透過電子顕微鏡)による組織観察を行った結果、焼戻し処理後のベイナイト単相組織には、母相と一定方位関係を有する整合析出した板状析出物が存在し、その外径はフェライト相中のMX析出物の外径と同じく10nm未満であることが確認された。 On the other hand, the usual bainite phase is accompanied by the precipitation of cementite (M 3 C precipitates including Fe 3 C, part of Fe substituted with other metal elements). When tempering is performed under various conditions, M 3 C changes to MC, and the effect of improving strength and ductility can be obtained. Here, as a result of TEM (transmission electron microscope) observation of the bainite single-phase structure after tempering in which the effect of improving strength and ductility was confirmed, the bainite single-phase structure after tempering was It was confirmed that there was a coherently precipitated plate-like precipitate having a certain orientation relationship with the outer diameter, which was less than 10 nm, the same as the outer diameter of the MX precipitate in the ferrite phase.

そこで、焼戻しベイナイト相とフェライト相とを含む複相組織であって、フェライト相および焼戻しベイナイト相が共に外径10nm未満のMX析出物を含有する熱延鋼板の製造方法について検討した。その結果、適正な組成範囲に制御した鋼を、オーステナイト温度域で仕上げ圧延を終了した後、オーステナイト相とフェライト相の二相域まで速やかに冷却し、極短時間保持後にベイナイト変態温度域に冷却して巻き取り、更に、従来よりも低温域(550〜650℃)において3時間程度の焼戻し処理を施すことにより、所望の複相組織を再現性よく得られることが明らかになった。また、上記方法により得られた熱延鋼板の主相はフェライト相であり、焼戻しベイナイト相の体積分率が30%以上45%未満であることを確認した。   Accordingly, a method for producing a hot-rolled steel sheet which has a multiphase structure including a tempered bainite phase and a ferrite phase, and both the ferrite phase and the tempered bainite phase contains MX precipitates having an outer diameter of less than 10 nm was studied. As a result, after finishing rolling in the austenite temperature range, the steel controlled to an appropriate composition range is quickly cooled to the two-phase range of the austenite phase and the ferrite phase, and then cooled to the bainite transformation temperature range after holding for a very short time. Further, it was revealed that a desired multiphase structure can be obtained with good reproducibility by performing tempering treatment for about 3 hours in a lower temperature range (550 to 650 ° C.) than in the past. Further, it was confirmed that the main phase of the hot-rolled steel sheet obtained by the above method was a ferrite phase, and the volume fraction of the tempered bainite phase was 30% or more and less than 45%.

なお、本発明においてMX析出物とは、金属元素MとしてTi、Nb、V、Mo、W等、XとしてCあるいはNもしくはこれらの両方により構成されるNaCl型の結晶構造を有する析出物であり、析出強化機構に最も有効な析出物はMCである。   In the present invention, the MX precipitate is a precipitate having a NaCl-type crystal structure composed of Ti, Nb, V, Mo, W, etc. as the metal element M, C or N as X, or both. The most effective precipitate for the precipitation strengthening mechanism is MC.

本発明は上記知見に基づきなされたものであり、その要旨構成は次のとおりである。
(1) 質量%で、C:0.10%以上0.16%以下、Si:0.5%以下、Mn:0.5%以上1.8%以下、
Al:0.5%以下およびN:0.001%以上0.005%以下を含有し、更に、Ti:0.14%以上0.2%以下およびNb:0.25%以上0.40%以下の少なくとも一種を含有し、残部Feおよび不可避的不純物からなる組成を有し、体積分率で30%以上45%未満の焼戻しベイナイト相と、フェライト相とを含む複相組織を有し、フェライト相および焼戻しベイナイト相は共に外径が10nm未満のMX析出物(但し、Mは金属元素、Xは炭素または窒素を意味する)を含有することを特徴とする熱延鋼板。
This invention is made | formed based on the said knowledge, The summary structure is as follows.
(1) By mass%, C: 0.10% to 0.16%, Si: 0.5% or less, Mn: 0.5% to 1.8%,
Al: 0.5% or less and N: 0.001% or more and 0.005% or less, and Ti: 0.14% or more and 0.2% or less and Nb: 0.25% or more and 0.40% or less, and the balance Fe and inevitable impurities MX with a volume fraction of 30% or more and less than 45% tempered bainite phase and a ferrite phase, both of which have an outer diameter of less than 10 nm. A hot-rolled steel sheet containing precipitates (wherein M represents a metal element and X represents carbon or nitrogen).

(2) 上記(1)に記載の熱延鋼板において、更にV:0.12%以上0.20%以下、Mo:0.25%以上0.40%以下 およびW:0.50%以上0.80%以下の中から選択される少なくとも一種以上を含有することを特徴とする熱延鋼板。   (2) In the hot-rolled steel sheet described in (1) above, at least one selected from V: 0.12% to 0.20%, Mo: 0.25% to 0.40% and W: 0.50% to 0.80% A hot-rolled steel sheet containing the above.

優れた延性を有する微細析出物を析出させたフェライト相を主相、組織強化を図る上で極めて有効なベイナイト相を第二相とする複相組織熱延鋼板に対し、適切な後熱処理(焼戻し処理)を施すことにより、合金元素量を抑制しつつも1180MPa以上の引張り強度と15%以上の破断伸びを有する、強度−延性バランスが極めて良好な熱延鋼板が得られる。   Appropriate post-heat treatment (tempering) for hot-rolled steel sheets with a multiphase microstructure, in which the ferrite phase on which fine precipitates with excellent ductility are precipitated is the main phase and the bainite phase is the second phase, which is extremely effective in strengthening the structure. By applying the treatment, a hot-rolled steel sheet having a very good strength-ductility balance having a tensile strength of 1180 MPa or more and a breaking elongation of 15% or more while suppressing the amount of alloying elements can be obtained.

以下、本発明の鋼組成の限定理由、および組織分率の限定理由について説明する。また、本発明の鋼組織を得るための焼戻し条件については、鋼組成、熱延条件等によって変動するため一義的に特定することはできないが、一般的な好適条件を開示する。以下、鋼組成に関し、質量%を単に「%」と記す。   Hereinafter, the reason for limiting the steel composition of the present invention and the reason for limiting the structure fraction will be described. Moreover, about the tempering conditions for obtaining the steel structure of this invention, since it changes with steel composition, hot-rolling conditions, etc., it cannot specify uniquely, However, General suitable conditions are disclosed. Hereinafter, with respect to the steel composition, mass% is simply referred to as “%”.

(鋼組成の限定理由)
C:0.10%以上0.16%以下
CはMX析出強化を実現する上で必須の元素である。特に、同時に含有するMX析出物形成元素を全量析出させるためには、これらMX析出物形成元素の合計と原子比で等量以上のCを含有する必要がある。また、フェライトを主相、ベイナイト相を第二相とする本発明においては、広いオーステナイト+フェライト二相域を確保し得るC含有量が必要である。但し、過剰な含有はスラブ再加熱温度域での未固溶MX析出物が増加するとともに、二相域でのMX析出物の粗大化を促進するため、C含有量の上限を0.16%とする。一方、C含有量の下限は、フェライト域においてMXの析出を確保する観点から0.10%とした。
(Reason for limiting steel composition)
C: 0.10% to 0.16%
C is an essential element for realizing MX precipitation strengthening. In particular, in order to deposit the entire amount of MX precipitate forming elements contained at the same time, it is necessary to contain an equivalent amount or more of C in terms of the atomic ratio with the sum of these MX precipitate forming elements. In the present invention in which ferrite is the main phase and the bainite phase is the second phase, a C content capable of ensuring a wide austenite + ferrite two-phase region is required. However, excessive content increases the amount of undissolved MX precipitates in the slab reheating temperature range and promotes coarsening of the MX precipitates in the two-phase region, so the upper limit of C content is 0.16% . On the other hand, the lower limit of the C content was set to 0.10% from the viewpoint of securing the precipitation of MX in the ferrite region.

Si:0.5%以下、Al:0.5%以下
SiおよびAlは製鋼時の脱酸元素として有効である上、フェライト中に固溶して鋼強度を向上させるため、含有することが望ましい。しかしながら、SiおよびAlの含有量がそれぞれ0.5%を超えると、変態温度が上昇し、圧延後の二相域温度を確保することが困難となるため、SiおよびAlの含有量の上限を0.5%とする。
Si: 0.5% or less, Al: 0.5% or less
Si and Al are effective as deoxidizing elements during steelmaking, and are preferably contained because they dissolve in ferrite and improve steel strength. However, if the content of Si and Al exceeds 0.5% respectively, the transformation temperature rises and it becomes difficult to ensure the two-phase region temperature after rolling, so the upper limit of the content of Si and Al is 0.5% And

Mn:0.5%以上1.8%以下
Mnは、固溶強化による母相の強度向上に有効である上、オーステナイト安定化元素として鋼の変態点制御に欠かせない元素である。また、本発明においてMnは、オーステナイト相とフェライト相の二相域を確保する上で極めて重要な元素である。しかしながら、1.8%超の含有はA3変態点の低下を招き、オーステナイトからフェライトへの変態時におけるMXの相界面析出が抑制され、フェライト相の析出強化が不十分となるため、Mn含有量の上限を1.8%とした。
Mn: 0.5% to 1.8%
Mn is effective in improving the strength of the matrix by solid solution strengthening, and is an element indispensable for controlling the transformation point of steel as an austenite stabilizing element. In the present invention, Mn is an extremely important element for securing a two-phase region of an austenite phase and a ferrite phase. However, content 1.8 percent leads to reduction of A 3 transformation point, MX phase interfacial precipitation during transformation to ferrite from austenite is suppressed, since the precipitation strengthening of the ferrite phase becomes insufficient, the Mn content The upper limit was 1.8%.

N:0.001%以上0.005%以下
NもMX析出強化を実現する上で有効な元素であるが、一般にオーステナイト域で安定なMN析出物を形成する傾向が強く、この安定なMN析出物はスラブ加熱温度域でのオーステナイト結晶粒の粗大化を抑制する重要な役割を果たす。これらの効果は、TiやNbなどのMX形成元素を含有する限りにおいてはNを0.001%以上含有すれば十分に得られる。一方、過剰なNの含有は多量のMX形成元素を窒化物として固着してしまい、本発明で活用する極微細MX析出物の析出量を相対的に低下させてしまう。このため、N含有量の上限は一般的な製鋼プロセスで達成可能な0.005%以下程度に抑制する。
N: 0.001% to 0.005%
N is also an element effective in achieving MX precipitation strengthening, but generally has a strong tendency to form stable MN precipitates in the austenite region, and these stable MN precipitates are austenite grains in the slab heating temperature region. It plays an important role in suppressing coarsening. These effects are sufficiently obtained if N is contained in an amount of 0.001% or more as long as it contains MX forming elements such as Ti and Nb. On the other hand, excessive N content fixes a large amount of MX-forming elements as nitrides, and relatively reduces the amount of ultrafine MX precipitates utilized in the present invention. For this reason, the upper limit of the N content is suppressed to about 0.005% or less that can be achieved by a general steelmaking process.

Ti:0.14%以上0.2%以下およびNb:0.25%以上0.40%以下の少なくとも一種
TiはMXの微細析出物により析出強化を達成するのに必須の元素であり、特にオーステナイト域で非常に安定なTiNを形成し、オーステナイト結晶粒の粗大化抑制に有効に働く。Ti含有量の下限は、N含有量に応じて原子比でNと同等以上とすることが必須である。このため、N含有量の上限を0.005%とする本発明鋼種では0.02%程度は必須となる。更に、熱延後の炭化物を主体とするMXを効果的に析出させる場合においては、TiやNbは他のMX形成元素に比して圧倒的に有効な元素であり、特にTiはコスト的にも最も優位な元素である。しかしながら、Cに対して原子比で等量のTiを含有した場合、その非常に強い炭化物形成能のためにスラブ製造段階で粗大なTiCを形成し、スラブ再加熱時の溶体化が困難になる。特に本発明鋼種のように変態組織を利用するC含有量が高い鋼種においては、C含有量の30%程度を固定する程度の原子比でTiを含有することが望ましい。以上の理由により、微細MX析出促進効果が得られる範囲として0.14%以上0.20%以下とした。また、Tiの代わりに、或いは、Tiと共にNbを含有することも可能であり、この場合には上記Tiと同様の理由によりNbの含有量を0.25%以上0.40%以下とする。なお、TiとNbを共に含有する場合には、TiとNbの合計含有量をTi+Nb:0.2%以上0.3%以下とすることが好ましい。
Ti: 0.14% to 0.2% and Nb: 0.25% to 0.40%
Ti is an essential element for achieving precipitation strengthening by the fine precipitates of MX, and forms very stable TiN, particularly in the austenite region, and works effectively in suppressing coarsening of austenite grains. It is essential that the lower limit of the Ti content be equal to or greater than N in terms of atomic ratio depending on the N content. For this reason, about 0.02% is essential for the steel of the present invention in which the upper limit of the N content is 0.005%. Furthermore, in the case of effectively depositing MX mainly composed of carbide after hot rolling, Ti and Nb are overwhelmingly effective elements compared with other MX forming elements, and particularly Ti is cost effective. Is the most dominant element. However, when an equivalent amount of Ti is contained in an atomic ratio with respect to C, coarse TiC is formed in the slab manufacturing stage due to its extremely strong carbide forming ability, and it becomes difficult to form a solution during slab reheating. . In particular, in a steel type having a high C content using a transformation structure such as the steel type of the present invention, it is desirable to contain Ti at an atomic ratio that fixes about 30% of the C content. For these reasons, the range in which the effect of promoting the precipitation of fine MX can be obtained is 0.14% or more and 0.20% or less. Further, Nb can be contained instead of Ti or together with Ti. In this case, the Nb content is set to 0.25% or more and 0.40% or less for the same reason as Ti. When both Ti and Nb are contained, the total content of Ti and Nb is preferably Ti + Nb: 0.2% or more and 0.3% or less.

更に、上記基本成分に加えて、必要に応じて以下の元素を含有することができる。
V:0.12%以上0.20%以下、Mo:0.25%以上0.40%以下およびW:0.50%以上0.80%以下の中から選択される少なくとも一種
MX析出物の形成を促進し、本発明鋼の必須元素であるTiまたはNbに加えて、V、Mo、Wを含有することも、MXの微細析出物による析出強化を図る上で有効である。これらの元素はTiやNbが含有されていない鋼において、単独でのMX析出物形成能は小さいものの、MXの微細析出物の析出総量を高める元素としては極めて有効である。これらの元素もC含有量の30%を固定するのに必要な程度の原子比で含有することが望ましく、各々の含有量は、例えばVの場合0.12%以上0.20%以下、Moの場合0.25%以上0.40%以下およびWの場合0.50%以上0.80%以下である。
Furthermore, in addition to the above basic components, the following elements can be contained as required.
V: 0.12% or more and 0.20% or less, Mo: 0.25% or more and 0.40% or less and W: 0.50% or more and 0.80% or less
In addition to Ti or Nb, which is an essential element of the steel of the present invention, the formation of MX precipitates is promoted, and it is also effective for strengthening precipitation due to MX fine precipitates. . These steels, which do not contain Ti or Nb, have a small ability to form MX precipitates by themselves, but are extremely effective as elements for increasing the total amount of MX fine precipitates. These elements are also desirably contained at an atomic ratio necessary to fix 30% of the C content, and each content is, for example, 0.12% or more and 0.20% or less for V, and 0.25% for Mo. If it is more than 0.40% and W, it is 0.50% or more and 0.80% or less.

(焼戻しベイナイト組織分率の限定理由)
次に、フェライトに対する焼戻しベイナイト相の体積分率を30〜45%に限定した理由について説明する。0.15質量%C-0.3Si質量%-1.5Mn質量%-0.12Ti質量%-0.18V質量%を主要成分とする鋼を、熱間圧延後の中間保持温度を675℃〜780℃の間で変化させ、最終巻き取り温度:880℃、焼戻し条件:600℃×2hで二相組織熱延鋼板とし、この熱延鋼板からL方向(圧延方向)の試験片を作製して機械的特性TSおよび破断伸びELを測定した。焼戻し後ベイナイト相の体積分率については、L断面(試料を圧延方向に平行に切断した断面)の研磨試料を3%硝酸−メタノール溶液でエッチングし、3000倍のSEM(走査型電子顕微鏡)組織写真5視野について焼戻しベイナイト相の面積率の平均値を求め、この面積率から換算した。その結果、図2に示すように、焼戻しベイナイト相の体積分率が高くなると共にTSは上昇し、ELは減少しており、TS≧1180MPa、EL≧15%を満足する熱延鋼板における焼戻しベイナイト相の体積分率は、30〜45%であることが明らかになった。したがって、本発明における熱延鋼板の焼戻しベイナイト組織分率を、体積分率で30〜45%に限定した。
(Reason for limitation of tempered bainite structure fraction)
Next, the reason why the volume fraction of the tempered bainite phase with respect to ferrite is limited to 30 to 45% will be described. 0.15 mass% C-0.3Si mass% -1.5Mn mass% -0.12Ti mass% -0.18V mass% steel, the intermediate holding temperature after hot rolling changed between 675 ℃ and 780 ℃ The final coiling temperature: 880 ° C, tempering conditions: 600 ° C x 2h, a dual-phase hot-rolled steel sheet was produced, and a specimen in the L direction (rolling direction) was prepared from this hot-rolled steel sheet to obtain mechanical properties TS and fracture. The elongation EL was measured. Regarding the volume fraction of the bainite phase after tempering, a polished sample of L section (section obtained by cutting the sample parallel to the rolling direction) was etched with 3% nitric acid-methanol solution, and 3000 times SEM (scanning electron microscope) structure The average value of the area ratio of the tempered bainite phase was determined for the five fields of view of the photograph and was converted from this area ratio. As a result, as shown in FIG. 2, the tempered bainite phase in the hot-rolled steel sheet satisfying TS ≧ 1180 MPa and EL ≧ 15% as TS increases with increasing volume fraction of the tempered bainite phase. The volume fraction of the phase was found to be 30-45%. Therefore, the tempered bainite structure fraction of the hot-rolled steel sheet in the present invention is limited to 30 to 45% in volume fraction.

(焼戻しベイナイト相とフェライト相の双方中におけるMX析出物の限定理由)
本発明においては、フェライト相と焼戻しベイナイト相の双方に、外径10nm未満のMX析出物をともに析出させることが重要である。前述のように、主相はフェライト相であり、フェライト相強化のためには炭化物を主体とするMX析出物の微細分散が好ましいのは従前のとおりであり、本発明においてはプロセス上、熱間仕上げ圧延終了後の冷却工程におけるγ→α変態に伴う相界面析出現象によってこの状態を実現することができる。一方、第2相のベイナイト相はそのままでは、M3Cを含有しており、このままでは十分な強度と伸びを達成できない。しかしながら、ベイナイト相を低温域で適切に焼戻すことにより、既析出のM3Cの全量もしくは一部がより微細なMX析出物に変化し、強度と伸びの向上が初めて図られる。また、TS≧1180MPa、EL≧15%を満足する図2の熱延鋼板について、焼戻しベイナイト相に含まれる析出物をTEM観察したところ、外径が10nm未満のMX析出物が確認された。このため、本発明では鋼を構成する主相フェライト並びに第2相ベイナイト双方に外径10nm未満のMX析出物を存在させることが重要である。
(Reason for limitation of MX precipitates in both tempered bainite phase and ferrite phase)
In the present invention, it is important to precipitate both MX precipitates having an outer diameter of less than 10 nm in both the ferrite phase and the tempered bainite phase. As described above, the main phase is a ferrite phase, and for the strengthening of the ferrite phase, it is preferable to finely disperse MX precipitates mainly composed of carbides. This state can be realized by the phase interface precipitation phenomenon accompanying the γ → α transformation in the cooling step after finishing rolling. On the other hand, the bainite phase of the second phase contains M 3 C as it is, and sufficient strength and elongation cannot be achieved as it is. However, by appropriately tempering the bainite phase at a low temperature, all or part of the precipitated M 3 C changes to finer MX precipitates, and the strength and elongation are improved for the first time. Further, regarding the hot rolled steel sheet of FIG. 2 satisfying TS ≧ 1180 MPa and EL ≧ 15%, the precipitates contained in the tempered bainite phase were observed by TEM, and MX precipitates having an outer diameter of less than 10 nm were confirmed. For this reason, in the present invention, it is important that MX precipitates having an outer diameter of less than 10 nm exist in both the main phase ferrite and the second phase bainite constituting the steel.

なお、本発明において活用するMX析出物は、NaCl型の結晶構造を有し、一般的にフェライトもしくはベイナイト相に対してBaker-Nuttingの方位関係で析出するものであり、その結晶学的な制約により、析出初期には球状ではなく、最大厚み2nm程度の板状もしくは円板状形態を呈する。このため、析出物のサイズを特定する上では、円板直径もしくは、板状の対角線長さを析出物の外径と定義する。   Note that the MX precipitate utilized in the present invention has a NaCl-type crystal structure and generally precipitates in a Baker-Nutting orientation relationship with respect to the ferrite or bainite phase. Thus, at the initial stage of deposition, it is not spherical but has a plate-like or disk-like form with a maximum thickness of about 2 nm. For this reason, in order to specify the size of the precipitate, the disc diameter or the plate-like diagonal length is defined as the outer diameter of the precipitate.

本発明鋼の組織を得るための製造方法(焼戻し条件)としては、一例として以下の方法が挙げられる。先述の成分組成を有する鋼を溶製して鋼片(インゴット、スラブ、薄スラブを含む)とし、オーステナイト単相域で熱間圧延を終了した後、フェライト+オーステナイト二相域まで速やかに冷却し、極短時間保持後にベイナイト変態温度域に冷却する。次いで、ベイナイト組織の強度を調整するための焼戻し温度域に再加熱保持後、空冷によって熱延鋼板とする。また、オーステナイト+フェライト二相域で熱間圧延を終了し、速やかにベイナイト変態温度域に冷却した後、焼戻し処理を施しても良い。   Examples of the production method (tempering conditions) for obtaining the structure of the steel of the present invention include the following methods. Steel having the above-mentioned composition is melted into steel slabs (including ingots, slabs, and thin slabs). After hot rolling is completed in the austenite single-phase region, it is rapidly cooled to the ferrite + austenite two-phase region. Then, after holding for a very short time, cool to the bainite transformation temperature range. Then, after reheating and holding in the tempering temperature range for adjusting the strength of the bainite structure, it is made into a hot-rolled steel sheet by air cooling. Moreover, after ending the hot rolling in the austenite + ferrite two-phase region and quickly cooling to the bainite transformation temperature region, a tempering treatment may be performed.

(鋼片加熱条件)
鋼スラブなどの鋼片は、一旦冷却後に所定温度(スラブ加熱温度)に再加熱してから熱間圧延を施す場合、或いは、鋼片が前記所定温度より低温となる前に直ちに熱間圧延を施す場合の何れであってもよい。また、鋼片が完全に冷却する前に前記所定温度まで短時間加熱して熱間圧延を施してもよい。スラブ加熱温度は炭化物を再固溶させるため(或いは析出成長させないため)、1100〜1200℃程度が好適である。また、未固溶Ti系炭化物を残存させないためには、この温度での保持時間は30分以上とすることが望ましい。
(Slab heating conditions)
When a steel slab such as a steel slab is subjected to hot rolling after being reheated to a predetermined temperature (slab heating temperature) after cooling, or immediately before the steel slab becomes lower than the predetermined temperature, the steel slab is subjected to hot rolling immediately. Any of them may be applied. Further, before the steel slab is completely cooled, it may be hot-rolled by heating to the predetermined temperature for a short time. The slab heating temperature is preferably about 1100 to 1200 ° C. in order to re-dissolve the carbide (or to prevent precipitation growth). In order not to leave undissolved Ti-based carbides, it is desirable that the holding time at this temperature be 30 minutes or longer.

(仕上げ圧延終了温度)
仕上げ圧延終了温度の最適化は、伸びおよび伸びフランジ性の確保と圧延荷重を低減する上で重要であり、本発明においては700℃〜900℃とすることが望ましい。700℃未満では実質的にフェライト単相となり、第二相による組織強化を活用することができない。また、熱延中においてMXの歪誘起析出によってMXが粗大化し易く、フェライト粒の析出強化も不十分となる。一方、圧延温度の上昇に伴い圧延時の荷重が低下して加工性は安定化する。また、オーステナイト単相域またはオーステナイト+フェライト二相域で熱延を終了することで、オーステナイト相からフェライト相への変態時の相界面析出によってMX析出物の微細分散が実現する。更に、仕上げ圧延終了後、速やかにベイナイト変態温度域に過冷することにより未変態オーステナイト領域がベイナイト変態する。但し、一般的な製造ラインで高温の仕上げ圧延温度を確保することは容易でないことから、上限温度をオーステナイト単相域でも低めの900℃とすることが望ましい。
(Finish rolling finish temperature)
Optimization of the finish rolling end temperature is important for securing elongation and stretch flangeability and reducing the rolling load. In the present invention, it is desirable to set the temperature to 700 ° C to 900 ° C. If it is less than 700 ° C, it becomes substantially a ferrite single phase, and the structure strengthening by the second phase cannot be utilized. Further, during hot rolling, MX tends to coarsen due to strain-induced precipitation of MX, and the precipitation strengthening of ferrite grains becomes insufficient. On the other hand, as the rolling temperature rises, the rolling load decreases and the workability is stabilized. Moreover, by finishing the hot rolling in the austenite single phase region or the austenite + ferrite two-phase region, the fine dispersion of the MX precipitate is realized by the phase interface precipitation during the transformation from the austenite phase to the ferrite phase. Furthermore, after finish rolling, the untransformed austenite region undergoes bainite transformation by rapidly cooling to the bainite transformation temperature region. However, since it is not easy to secure a high finish rolling temperature in a general production line, it is desirable that the upper limit temperature is set to 900 ° C., which is low even in an austenite single phase region.

(仕上げ圧延終了後の冷却条件)
本発明では、主相フェライト組織中にMX析出物を微細分散させると共に、本発明の第二相を得るためのベイナイト相を確保することが必須である。そのため、オーステナイト単相域で圧延を終了した場合には、オーステナイト+フェライト二相域まで空冷して極短時間保持後、十分な冷却速度でMs点以上Bs点以下に冷却して未変態オーステナイト領域をベイナイト相とする必要がある。一方、オーステナイト+フェライト二相域で圧延を終了した場合には、速やかに冷却してベイナイト相とすることが重要である。なお、実際の製造性を考慮すると、オーステナイト単相域で熱間仕上げ圧延を終了した後、水量制御によって冷却速度を変化させて所望の二相組織を得ることが望ましい。
(Cooling conditions after finishing rolling)
In the present invention, it is essential to finely disperse MX precipitates in the main phase ferrite structure and to secure a bainite phase for obtaining the second phase of the present invention. Therefore, when rolling is completed in the austenite single-phase region, air-cooled to the austenite + ferrite two-phase region, held for a very short time, then cooled to the Ms point or more and the Bs point or less at a sufficient cooling rate, and the untransformed austenite region Must be the bainite phase. On the other hand, when rolling is completed in the austenite + ferrite two-phase region, it is important to quickly cool to a bainite phase. In consideration of actual manufacturability, it is desirable to obtain a desired two-phase structure by changing the cooling rate by controlling the amount of water after the hot finish rolling is completed in the austenite single phase region.

(焼戻し条件)
主相フェライト+焼戻しベイナイト相の複相組織を実現するためには、仕上げ圧延終了後Bs点以下に過冷された鋼板に適切な条件で焼戻し処理を施す必要があるが、その条件は600〜650℃×3h以内とすることが望ましい。焼戻し温度が600℃未満ではベイナイト組織中でセメンタイトの析出が優先し、本発明の効果を奏するための必須要件、すなわち、焼戻しベイナイト相中に整合析出させるべきMX析出物の形成が困難となる。一方、焼戻し温度が650℃を超えると、フェライト相内の微細なMX析出物が粗大化して強度低下を招く。また、焼戻し時間は焼戻し温度に依存するが、焼戻し温度が下限温度600℃である場合においても、焼戻し温度に3h以上保持することは生産効率の著しい低下を招く。なお、焼戻し処理は、オンラインでの巻き取り処理、または巻き取り後のバッチ焼鈍の何れかで実施すればよい。
(Tempering conditions)
In order to realize a double phase structure of main phase ferrite + tempered bainite phase, it is necessary to temper the steel sheet subcooled below the Bs point after finishing rolling under appropriate conditions. It is desirable to set it within 650 ℃ × 3h. When the tempering temperature is less than 600 ° C., the precipitation of cementite takes priority in the bainite structure, and it is difficult to form an essential requirement for exhibiting the effects of the present invention, that is, the formation of MX precipitates to be consistently precipitated in the tempered bainite phase. On the other hand, when the tempering temperature exceeds 650 ° C., fine MX precipitates in the ferrite phase become coarse and cause a decrease in strength. Further, although the tempering time depends on the tempering temperature, even when the tempering temperature is the lower limit temperature of 600 ° C., maintaining the tempering temperature for 3 hours or more causes a significant reduction in production efficiency. The tempering process may be performed by either an online winding process or batch annealing after winding.

本発明の熱延鋼板には、表面処理や表面被覆処理を施したものも含む。特に、本発明の熱延鋼板は溶融亜鉛系めっき被膜を形成した表面処理鋼板の下地鋼板として好適である。すなわち、本発明の熱延鋼板は良好な加工性を有することから、溶融亜鉛系めっき被膜を形成しても良好な加工性を維持することができる。ここで、溶融亜鉛系めっきとは、亜鉛および亜鉛を主体とした(約80質量%以上の亜鉛を含有する)溶融めっきであり、亜鉛の他にAl、Crなどの合金元素を含んだものも含む。また、溶融亜鉛系めっきを施したままのものも、めっき後に合金化処理を施したものも含む。   The hot-rolled steel sheet of the present invention includes those subjected to surface treatment or surface coating treatment. In particular, the hot-rolled steel sheet of the present invention is suitable as a base steel sheet for a surface-treated steel sheet on which a hot dip galvanized coating film is formed. That is, since the hot-rolled steel sheet of the present invention has good workability, good workability can be maintained even if a hot-dip galvanized coating film is formed. Here, the hot dip galvanized plating is hot dip plating mainly composed of zinc and zinc (containing approximately 80% by mass or more of zinc), and also contains alloy elements such as Al and Cr in addition to zinc. Including. Moreover, the thing with which the hot dip zinc system plating was performed and the thing which performed the alloying process after plating are included.

表1に示す成分組成を有する鋼片を、1100〜1250℃に加熱し、熱間圧延工程によって仕上げ圧延終了温度800℃で板厚3.5mmとする圧延を施した後、730℃まで空冷して5s保持後、380℃まで急冷した。その後、この鋼板を600℃〜650℃の加熱炉に挿入し、1〜3h保持したのち、加熱炉から取り出して空冷した。   A steel slab having the composition shown in Table 1 is heated to 1100 to 1250 ° C., subjected to rolling to a finish rolling finish temperature of 800 ° C. and a plate thickness of 3.5 mm by a hot rolling process, and then air-cooled to 730 ° C. After holding for 5 s, it was rapidly cooled to 380 ° C. Thereafter, the steel sheet was inserted into a heating furnace at 600 ° C. to 650 ° C., held for 1 to 3 hours, and then taken out from the heating furnace and air-cooled.

Figure 2010138449
Figure 2010138449

得られた鋼板を酸洗後、L断面組織の光学顕微鏡観察およびTEMによる析出物観察を行った。TEM観察には鋼板の板厚1/4位置から試料を採取し、電解研磨による薄膜試料を調整し、フェライト内および焼戻しベイナイト内のMX析出物の析出状況を観察した。ベイナイト相の体積分率は、先述のSEM組織写真より求められるベイナイト相の面積率から換算した。   The obtained steel sheet was pickled, and the L cross-sectional structure was observed with an optical microscope and a precipitate was observed with a TEM. For TEM observation, a sample was taken from a position of 1/4 of the thickness of the steel sheet, a thin film sample was prepared by electrolytic polishing, and the precipitation of MX precipitates in ferrite and tempered bainite was observed. The volume fraction of the bainite phase was converted from the area ratio of the bainite phase obtained from the above SEM structure photograph.

また、上記鋼板の機械的特性に関しては、JIS Z 2201板状試験片13A号の規定に従い圧延方向の引張り試験片を作製し、JIS Z 2241 引張り試験方法により引張り強度および破断伸びを測定した。また、フェライト相および焼戻しベイナイト相中への微細MX析出物(外径が10nm未満のMX析出物)の有無については、TEM観察により確認した。具体的には、各試料から電解研磨法により薄膜試料を作製し、フェライト相および焼戻しベイナイト相の[001]晶帯軸入射からの観察により、微細MX析出物の有無を確認した。   Regarding the mechanical properties of the steel sheet, a tensile test piece in the rolling direction was prepared in accordance with the provisions of JIS Z 2201 plate test piece No. 13A, and the tensile strength and elongation at break were measured by a JIS Z 2241 tensile test method. The presence or absence of fine MX precipitates (MX precipitates having an outer diameter of less than 10 nm) in the ferrite phase and the tempered bainite phase was confirmed by TEM observation. Specifically, thin film samples were prepared from each sample by electropolishing, and the presence or absence of fine MX precipitates was confirmed by observation from the [001] zone axis incidence of the ferrite phase and tempered bainite phase.

表2に結果を示す。表2の微細MX析出物の観察結果ついては、観察した視野内に存在する析出物のうちの80%以上が外径10nm未満である場合を「○」とした。   Table 2 shows the results. Regarding the observation results of the fine MX precipitates in Table 2, the case where 80% or more of the precipitates present in the observed field of view are less than 10 nm in outer diameter was indicated as “◯”.

Figure 2010138449
Figure 2010138449

表2に示すとおり、焼戻しベイナイト相分率、MX析出物の外径が適正範囲にある本発明鋼は、1180MPa以上の引張り強度と15%以上の破断伸びとを兼ね備え、強度−延性バランスに優れた機械的特性を有する。   As shown in Table 2, the steel of the present invention in which the tempered bainite phase fraction and the outer diameter of the MX precipitate are within the proper ranges have a tensile strength of 1180 MPa or more and a breaking elongation of 15% or more, and an excellent balance between strength and ductility. Have good mechanical properties.

特に、軽量化、製造コスト低減の観点で、更なる高強度・高成形性鋼板の安定的製造が望まれる中、本発明が提供する析出強化型複相熱延鋼板は、特に自動車分野等において強度と共に成形性が要求される部材用の素材として利用できる。   In particular, from the viewpoint of weight reduction and production cost reduction, while it is desired to stably manufacture a high-strength and high-formability steel sheet, the precipitation-strengthened double-phase hot-rolled steel sheet provided by the present invention is particularly useful in the automotive field and the like. It can be used as a material for members that require formability as well as strength.

(a)及び(b)は、それぞれ焼戻し処理前後におけるフェライト鋼、ベイナイト鋼およびマルテンサイト鋼の引張強さ及び伸びの変化を示す図である。(A) And (b) is a figure which shows the change of the tensile strength and elongation of a ferritic steel, a bainite steel, and a martensitic steel before and after a tempering process, respectively. 主相であるフェライト相に対する焼戻しベイナイト相の体積分率が、鋼の引張り強度TSおよび伸びELに及ぼす影響を示す図である。FIG. 4 is a diagram showing the influence of the volume fraction of the tempered bainite phase relative to the ferrite phase, which is the main phase, on the tensile strength TS and elongation EL of steel. 本発明鋼の加工熱処理プロセスを示す図である。It is a figure which shows the thermomechanical process of this invention steel.

Claims (2)

質量%で、
C:0.10%以上0.16%以下、
Si:0.5%以下、
Mn:0.5%以上1.8%以下、
Al:0.5%以下 および
N:0.001%以上0.005%以下
を含有し、更に、
Ti:0.14%以上0.2%以下およびNb:0.25%以上0.40%以下の少なくとも一種
を含有し、残部がFeおよび不可避的不純物からなる組成を有し、体積分率で30%以上45%未満の焼戻しベイナイト相と、フェライト相とを含む複相組織を有し、フェライト相および焼戻しベイナイト相は共に外径が10nm未満のMX析出物(但し、Mは金属元素、Xは炭素または窒素を意味する)を含有することを特徴とする熱延鋼板。
% By mass
C: 0.10% to 0.16%,
Si: 0.5% or less,
Mn: 0.5% to 1.8%,
Al: 0.5% or less and
N: 0.001% or more and 0.005% or less,
Tempering: Ti: 0.14% or more and 0.2% or less and Nb: 0.25% or more and 0.40% or less, with the balance consisting of Fe and inevitable impurities, with a volume fraction of 30% or more and less than 45% MX precipitates that have a multiphase structure including a bainite phase and a ferrite phase, and both the ferrite phase and the tempered bainite phase have an outer diameter of less than 10 nm (where M is a metal element, and X is carbon or nitrogen) A hot-rolled steel sheet comprising:
請求項1に記載の熱延鋼板において、更に
V:0.12%以上0.20%以下、
Mo:0.25%以上0.40%以下 および
W:0.50%以上0.80%以下
の中から選択される少なくとも一種以上を含有することを特徴とする熱延鋼板。
The hot rolled steel sheet according to claim 1, further comprising:
V: 0.12% to 0.20%,
Mo: 0.25% to 0.40% and
W: A hot-rolled steel sheet containing at least one selected from 0.50% to 0.80%.
JP2008315702A 2008-12-11 2008-12-11 Precipitation strengthened double-phase hot-rolled steel sheet Expired - Fee Related JP5386961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315702A JP5386961B2 (en) 2008-12-11 2008-12-11 Precipitation strengthened double-phase hot-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315702A JP5386961B2 (en) 2008-12-11 2008-12-11 Precipitation strengthened double-phase hot-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2010138449A true JP2010138449A (en) 2010-06-24
JP5386961B2 JP5386961B2 (en) 2014-01-15

Family

ID=42348822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315702A Expired - Fee Related JP5386961B2 (en) 2008-12-11 2008-12-11 Precipitation strengthened double-phase hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP5386961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187302A (en) * 2014-03-12 2015-10-29 新日鐵住金株式会社 Steel sheet and method for manufacturing steel sheet
CN106011647A (en) * 2016-07-21 2016-10-12 唐山钢铁集团有限责任公司 460MPa-level extra-thick plate and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030149A (en) * 1996-07-15 1998-02-03 Kobe Steel Ltd High strength hot rolled steel plate excellent in crushing characteristic, and its production
JP2003171736A (en) * 2001-02-28 2003-06-20 Kobe Steel Ltd High strength steel sheet having excellent workability, and production method therefor
JP2004197114A (en) * 2002-12-16 2004-07-15 Nippon Steel Corp High strength hot-rolled steel plate excellent in stretch flanging property, and its producing method
JP2005060836A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk High-strength steel sheet superior in toughness of weld heat-affected zone, and manufacturing method therefor
JP2007009322A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030149A (en) * 1996-07-15 1998-02-03 Kobe Steel Ltd High strength hot rolled steel plate excellent in crushing characteristic, and its production
JP2003171736A (en) * 2001-02-28 2003-06-20 Kobe Steel Ltd High strength steel sheet having excellent workability, and production method therefor
JP2004197114A (en) * 2002-12-16 2004-07-15 Nippon Steel Corp High strength hot-rolled steel plate excellent in stretch flanging property, and its producing method
JP2005060836A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk High-strength steel sheet superior in toughness of weld heat-affected zone, and manufacturing method therefor
JP2007009322A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187302A (en) * 2014-03-12 2015-10-29 新日鐵住金株式会社 Steel sheet and method for manufacturing steel sheet
CN106011647A (en) * 2016-07-21 2016-10-12 唐山钢铁集团有限责任公司 460MPa-level extra-thick plate and production method thereof

Also Published As

Publication number Publication date
JP5386961B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US11111553B2 (en) High-strength steel sheet and method for producing the same
JP4956998B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5141811B2 (en) High-strength hot-dip galvanized steel sheet excellent in uniform elongation and plating property and method for producing the same
TWI406966B (en) High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
KR102000854B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
US20120175028A1 (en) High strength steel sheet and method for manufacturing the same
WO2017179372A1 (en) High strength steel sheet and manufacturing method therefor
JPWO2011093319A1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2012026419A1 (en) Cold-rolled steel sheet and process for production thereof
KR101986640B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JPWO2009125874A1 (en) High-strength steel sheet and galvanized steel sheet with excellent balance between hole expansibility and ductility and excellent fatigue durability, and methods for producing these steel sheets
JP2011001579A (en) High-strength galvannealed steel sheet excellent in workability and fatigue resistance, and method of producing the same
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP2012229466A (en) High-strength hot-dip galvanized steel sheet excellent in formability and shape fixability, and method of manufacturing the same
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
JP2011052295A (en) High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange
EP3705592A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP7442645B2 (en) High-strength steel plate with excellent workability and its manufacturing method
TWI506147B (en) A high strength hot rolled steel sheet and method for manufacturing the same
JP2011080126A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP5386961B2 (en) Precipitation strengthened double-phase hot-rolled steel sheet
WO2022075072A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Ref document number: 5386961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees