JP2002088189A - Method for producing porous film - Google Patents

Method for producing porous film

Info

Publication number
JP2002088189A
JP2002088189A JP2000278853A JP2000278853A JP2002088189A JP 2002088189 A JP2002088189 A JP 2002088189A JP 2000278853 A JP2000278853 A JP 2000278853A JP 2000278853 A JP2000278853 A JP 2000278853A JP 2002088189 A JP2002088189 A JP 2002088189A
Authority
JP
Japan
Prior art keywords
sheet
porous film
resin composition
polyolefin resin
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000278853A
Other languages
Japanese (ja)
Inventor
Shinichi Oizumi
新一 大泉
Hajime Yanagida
一 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000278853A priority Critical patent/JP2002088189A/en
Publication of JP2002088189A publication Critical patent/JP2002088189A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous film with uniform structure having high mechanical strength, large specific surface area and large pore volume, also excellent in ion permeability and high-speed charge/discharge characteristics. SOLUTION: This method for producing a porous film comprises the following process: a resin composition comprising a polyolefin resin and a solvent is kneaded in a molten state, the resulting molten kneaded product is formed into a sheet, which, in turn, is subjected to rolling treatment followed by desolvation treatment; wherein the resin composition is characterized by having been agitated by an agitator in advance. Batteries each having the porous film obtained above are also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質フィルムの
製造方法に関する。さらに詳しくは、電池の正極負極間
に配置されてこれらを隔離させる電池用セパレーター等
として好適に用いられる多孔質フィルムの製造方法に関
する。
The present invention relates to a method for producing a porous film. More specifically, the present invention relates to a method for producing a porous film which is preferably used as a battery separator or the like which is arranged between a positive electrode and a negative electrode of a battery to isolate them.

【0002】[0002]

【従来の技術】従来、種々のタイプの電池が実用に供さ
れているが、近年、電子機器のコードレス化等に対応す
るために、軽量で、高起電力及び高エネルギーを得るこ
とができ、しかも自己放電が少ないリチウム電池が注目
を集めている。例えば、リチウム二次電池は、携帯電話
やノートブックパソコン用として、多量に用いられてお
り、更に、今後、電気自動車用バッテリーとして期待さ
れている。
2. Description of the Related Art Conventionally, various types of batteries have been put to practical use. In recent years, in order to cope with a cordless electronic device, a lightweight, high electromotive force and high energy can be obtained. In addition, lithium batteries with low self-discharge have attracted attention. For example, lithium secondary batteries are widely used for mobile phones and notebook personal computers, and are expected to be used as batteries for electric vehicles in the future.

【0003】このようなリチウム電池の負極材料として
は、金属リチウムを始め、リチウム合金やリチウムイオ
ンを吸蔵放出できる炭素材料のような層間化合物を挙げ
る事ができる。他方、正極材料としては、コバルト、ニ
ッケル、マンガン、鉄等の遷移金属の酸化物やこれら遷
移金属とリチウムとの複合酸化物を挙げることができ
る。
As such a negative electrode material of a lithium battery, there can be mentioned an intercalation compound such as lithium metal, a lithium alloy and a carbon material capable of inserting and extracting lithium ions. On the other hand, examples of the positive electrode material include oxides of transition metals such as cobalt, nickel, manganese, and iron, and composite oxides of these transition metals and lithium.

【0004】一般に、このようなリチウム電池において
は、上述したような正極と負極との間に、それら電極間
の短絡を防止するためにセパレーターが設けられてい
る。このようなセパレーターとしては、通常、正極負極
間のイオンの透過性を確保するために、多数の微細孔を
有する多孔質フィルムが用いられている。
Generally, in such a lithium battery, a separator is provided between the positive electrode and the negative electrode as described above in order to prevent a short circuit between the electrodes. As such a separator, a porous film having a large number of micropores is usually used in order to secure the permeability of ions between the positive electrode and the negative electrode.

【0005】このような電池用セパレーターとして、従
来、超高分子量ポリオレフィン樹脂を、必要に応じてそ
の他のポリオレフィン樹脂と共に、適宜の溶媒中、加熱
して溶解し、これをゲル状のシートに成形し、このシー
トを延伸処理し、この延伸の前後に脱溶媒処理を行っ
て、シート中に残存する溶媒を除去することによって、
多孔質フィルムを製造する方法が種々提案されている。
Conventionally, as such a battery separator, an ultra-high molecular weight polyolefin resin, together with other polyolefin resins, if necessary, is dissolved by heating in an appropriate solvent, and then formed into a gel-like sheet. By stretching the sheet, performing a desolvation treatment before and after the stretching to remove the solvent remaining in the sheet,
Various methods for producing a porous film have been proposed.

【0006】例えば、特開平7−228718号公報に
は、重量平均分子量が1×106 以上の超高分子量ポリ
オレフィン樹脂を少なくとも10重量%有するポリオレ
フィン樹脂組成物からなり、フィブリル繊維の平均径が
0.01〜0.2μm、貫通孔の平均径が0.01〜
0.1μm、空孔率が35〜95%、比表面積が20〜
400m2 /g、膜厚に対する貫通経路の比率である曲
路率が膜厚の1.5〜2.5倍である多孔質フィルムが
記載されている。
For example, Japanese Patent Application Laid-Open No. 7-228718 discloses that a polyolefin resin composition having at least 10% by weight of an ultrahigh molecular weight polyolefin resin having a weight average molecular weight of 1 × 10 6 or more, wherein the average diameter of fibril fibers is 0%. 0.01-0.2 μm, average diameter of through-holes 0.01-0.2
0.1 μm, porosity 35-95%, specific surface area 20-
A porous film having a curvature of 400 m 2 / g and a ratio of a through path to a film thickness of 1.5 to 2.5 times the film thickness is described.

【0007】しかし、超高分子量ポリオレフィン樹脂を
用いて得られる多孔質フィルムを上記用途のセパレータ
ーとして実用的に用いるには、フィルムが一層の高強
度、高比表面積及び高細孔容積を有すると共に、電解液
保液性に優れ、更に、イオン透過性、高速充放電特性に
一層優れることが強く要望されている。また、これらの
特性がフィルム全域にわたり均一であることが必要条件
となる。
However, in order to use a porous film obtained using an ultrahigh molecular weight polyolefin resin practically as a separator for the above-mentioned applications, the film must have a higher strength, a higher specific surface area and a higher pore volume. There is a strong demand for excellent electrolyte retention properties, and further excellent ion permeability and high-speed charge / discharge characteristics. It is also a requirement that these characteristics be uniform over the entire area of the film.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、高強
度、高比表面積及び高細孔容積を有し、かつイオン透過
性及び高速充放電特性にも優れ、フィルム構造が均一な
多孔質フィルムの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a porous film having a high strength, a high specific surface area and a high pore volume, excellent ion permeability and high-speed charge / discharge characteristics, and a uniform film structure. It is to provide a method for producing a film.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、ポリオ
レフィン樹脂及び溶媒を含有する樹脂組成物を溶融混練
し、得られた溶融混練物をシート状に成形し、該シート
状成形物の圧延処理と脱溶媒処理を行う工程を有する多
孔質フィルムの製造方法において、予め攪拌機により攪
拌した樹脂組成物を溶融混練に供することを特徴とする
多孔質フィルムの製造方法に関する。
The gist of the present invention is to melt-knead a resin composition containing a polyolefin resin and a solvent, form the obtained melt-kneaded material into a sheet, and roll the sheet-like formed material. The present invention relates to a method for producing a porous film, comprising a step of performing a treatment and a desolvation treatment, wherein the method comprises subjecting a resin composition previously stirred by a stirrer to melt kneading.

【0010】[0010]

【発明の実施の形態】本発明に用いられるポリオレフィ
ン樹脂は、超高分子量ポリオレフィンを含有することが
好ましい。超高分子量ポリオレフィン樹脂としては、エ
チレン、プロピレン、1−ブテン、4−メチルー1−ペ
ンテン、1−ヘキセン等の単独重合体、共重合体及びこ
れらの混合物等が挙げられ、これらの中では、得られる
多孔質フィルムの高強度の観点から、超高分子量ポリエ
チレン樹脂が好ましく用いられる。
DETAILED DESCRIPTION OF THE INVENTION The polyolefin resin used in the present invention preferably contains an ultrahigh molecular weight polyolefin. Examples of the ultrahigh molecular weight polyolefin resin include homopolymers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene, copolymers, and mixtures thereof. From the viewpoint of high strength of the resulting porous film, an ultrahigh molecular weight polyethylene resin is preferably used.

【0011】超高分子量ポリオレフィンの重量平均分子
量は、5×105 以上、好ましくは5×105 〜20×
106 、より好ましくは1×106 〜15×106 が望
ましい。
The ultrahigh molecular weight polyolefin has a weight average molecular weight of 5 × 10 5 or more, preferably 5 × 10 5 to 20 ×
10 6 , more preferably 1 × 10 6 to 15 × 10 6 is desirable.

【0012】超高分子量ポリオレフィン樹脂の含有量
は、ポリオレフィン樹脂中に、好ましくは5〜100重
量%、より好ましくは8〜100重量%である。
The content of the ultrahigh molecular weight polyolefin resin is preferably 5 to 100% by weight, more preferably 8 to 100% by weight in the polyolefin resin.

【0013】超高分子量ポリオレフィン樹脂以外にポリ
オレフィン樹脂に含有されてもよい樹脂としては、エチ
レン、プロピレン、1−ブテン、4−メチル−1−ペン
テン、1−ヘキセン等の単独重合体、共重合体及びこれ
らの混合物が挙げられ、これらの中では、得られる多孔
質フィルムの高強度化の観点から、高密度ポリエチレン
樹脂が好ましい。これらの樹脂の重量平均分子量は、好
ましくは1×104 以上5×105 未満、より好ましく
は1×104 〜3×105 である。
The resin which may be contained in the polyolefin resin in addition to the ultrahigh molecular weight polyolefin resin includes homopolymers and copolymers of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. And a mixture thereof. Among them, a high-density polyethylene resin is preferable from the viewpoint of increasing the strength of the obtained porous film. The weight average molecular weight of these resins is preferably 1 × 10 4 or more and less than 5 × 10 5 , more preferably 1 × 10 4 to 3 × 10 5 .

【0014】本発明に用いることのできる溶媒として
は、ポリオレフィン樹脂の溶解性に優れたものであれ
ば、特に限定されないが、凝固点が−10℃以下のもの
が好ましく用いられる。このような溶媒の好ましい具体
例として、例えば、デカン、デカリン、流動パラフィン
等の脂肪族又は脂環式炭化水素、沸点がこれらに対応す
る鉱油留分等が挙げられ、なかでも、流動パラフィン等
の不揮発性溶媒が好ましく、凝固点が−45〜−10
℃、40℃での動粘度が65cst以下の不揮発性溶媒
がより好ましい。
The solvent that can be used in the present invention is not particularly limited as long as it is excellent in the solubility of the polyolefin resin, but those having a freezing point of -10 ° C. or lower are preferably used. Preferred specific examples of such a solvent include, for example, aliphatic or alicyclic hydrocarbons such as decane, decalin, and liquid paraffin, and mineral oil fractions whose boiling points correspond to these, among which, among others, liquid paraffin and the like. Non-volatile solvents are preferred, and have a freezing point of -45 to -10.
A non-volatile solvent having a kinematic viscosity at 65 ° C or lower at 40 ° C or lower is more preferable.

【0015】ポリオレフィン樹脂及び溶媒の混合割合
は、ポリオレフィン樹脂の種類、溶解性、混練温度等に
より異なるため、一概には決定できないが、得られるス
ラリー状の樹脂組成物を溶融混練してシート状に成形で
きる程度であれば特に限定されない。例えば、ポリオレ
フィン樹脂が樹脂組成物の5〜30重量%であることが
好ましく、8〜20重量%であることがより好ましい。
ポリオレフィン樹脂の混合割合が5重量%以上である
と、得られる多孔質フィルムの強度を向上させることが
でき、またポリオレフィン樹脂の混合割合が30重量%
以下であると、ポリオレフィン樹脂を十分に溶媒に溶解
させて、伸び切り状態近くまで混練することができるた
め、ポリマー鎖の十分な絡み合いを得る事ができる。
The mixing ratio of the polyolefin resin and the solvent varies depending on the type, solubility, kneading temperature and the like of the polyolefin resin, and cannot be unconditionally determined. However, the resulting slurry-like resin composition is melt-kneaded into a sheet. There is no particular limitation as long as it can be molded. For example, the polyolefin resin is preferably 5 to 30% by weight of the resin composition, and more preferably 8 to 20% by weight.
When the mixing ratio of the polyolefin resin is 5% by weight or more, the strength of the obtained porous film can be improved, and the mixing ratio of the polyolefin resin is 30% by weight.
When the content is below, the polyolefin resin can be sufficiently dissolved in the solvent and kneaded to near the stretched state, so that sufficient entanglement of the polymer chains can be obtained.

【0016】なお、前記樹脂組成物には、必要に応じ
て、酸化防止剤、紫外線吸収剤、染料、造核剤、顔料、
帯電防止剤等の添加物を、本発明の目的を損なわない範
囲で添加する事ができる。
The resin composition may contain, if necessary, an antioxidant, an ultraviolet absorber, a dye, a nucleating agent, a pigment,
Additives such as antistatic agents can be added within a range that does not impair the purpose of the present invention.

【0017】本発明は、予め攪拌機により攪拌した樹脂
組成物を溶融混練に供することに大きな特徴を有する。
予め攪拌機により攪拌した樹脂組成物を溶融混練に供す
ることは、ポリオレフィン樹脂の沈降抑制及び樹脂組成
物分散性向上の観点より好ましい。
The present invention has a great feature in that a resin composition previously stirred by a stirrer is subjected to melt-kneading.
It is preferable to subject the resin composition, which has been previously stirred with a stirrer, to melt-kneading, from the viewpoint of suppressing sedimentation of the polyolefin resin and improving the dispersibility of the resin composition.

【0018】本発明において、樹脂組成物を攪拌する攪
拌機は特に限定されないが、ポリオレフィン樹脂の沈降
を抑制する目的で低速バタフライブレードと樹脂組成物
投入初期での塊状物をほぐす目的で高速タービンブレー
ドとを有する攪拌機を好適に用いることができる。ここ
で、低速とは、10〜500rpmの回転数が好まし
く、高速とは、500〜3000rpmの回転数が好ま
しい。
In the present invention, the stirrer for stirring the resin composition is not particularly limited. However, a low-speed butterfly blade is used for suppressing the sedimentation of the polyolefin resin, and a high-speed turbine blade is used for loosening the lump at the initial stage of charging the resin composition. Can be suitably used. Here, the low speed is preferably a rotation speed of 10 to 500 rpm, and the high speed is preferably a rotation speed of 500 to 3000 rpm.

【0019】攪拌時の樹脂組成物の温度は20〜100
℃が好ましく、30〜80℃がより好ましい。樹脂組成
物の温度が20℃以上であると、混練時にポリオレフィ
ン樹脂の未溶融ゲルが発生しにくくなり、混練の処理量
を多くできる。また、100℃以下であると、攪拌時に
ポリオレフィン樹脂が溶解して攪拌機タンクに付着する
ことがなく、安定供給ができる。
The temperature of the resin composition during stirring is 20 to 100.
C. is preferable, and 30 to 80 C. is more preferable. When the temperature of the resin composition is 20 ° C. or higher, unmelted gel of the polyolefin resin is less likely to be generated during kneading, and the amount of kneading can be increased. When the temperature is 100 ° C. or lower, the polyolefin resin does not dissolve during stirring and does not adhere to the stirrer tank, so that stable supply can be achieved.

【0020】本発明では、攪拌機のタンクからポンプを
介し、溶融混練機に一定流量供給するのが好ましい。ポ
ンプは、樹脂組成物の組成に基づいて、流量安定性、液
漏れ性等を考慮したものであればその方法は特に限定さ
れない。
In the present invention, it is preferable to supply a constant flow rate from the tank of the stirrer to the melt kneader via a pump. The method of the pump is not particularly limited as long as it is based on the composition of the resin composition, taking into account the flow rate stability, liquid leakage, and the like.

【0021】樹脂組成物の溶融混練は、ポリオレフィン
樹脂のポリマー鎖の十分な絡み合いを得るために、樹脂
組成物に十分な剪断力を作用させて行う事が好ましい。
従って、本発明における樹脂組成物の溶融混練には、通
常、混合物に強い剪断力を与えることができるニーダや
二軸混練り機が好ましく用いられる。
The melt-kneading of the resin composition is preferably performed by applying a sufficient shearing force to the resin composition in order to obtain sufficient entanglement of the polymer chains of the polyolefin resin.
Therefore, for melt-kneading the resin composition in the present invention, usually, a kneader or a twin-screw kneader capable of giving a strong shearing force to the mixture is preferably used.

【0022】樹脂組成物を溶融混練する際の温度は、適
当な温度条件下であればよく、特に限定されないが、1
15〜185℃が好ましい。溶融混練の際の温度は、樹
脂組成物を十分に混練して、ポリオレフィン樹脂のポリ
マー鎖の十分な絡み合いを得るために、115℃以上が
好ましく、適度な粘度で、樹脂組成物に十分なせん断力
を作用させるために、185℃以下が好ましい。
The temperature at which the resin composition is melt-kneaded may be any suitable temperature condition, and is not particularly limited.
15-185 ° C is preferred. The temperature at the time of melt-kneading is preferably 115 ° C. or higher, in order to sufficiently knead the resin composition and obtain sufficient entanglement of the polymer chains of the polyolefin resin, at an appropriate viscosity, and with sufficient shearing for the resin composition. In order to exert a force, the temperature is preferably 185 ° C. or less.

【0023】次いで、得られた溶融混練物をシート状に
成形する。溶融混練物をシート状に成形する方法は、特
に限定されず、例えば、冷却された金属板に挟み込み急
冷して急冷結晶化によりシート状成形物にしてもよく、
フィッシュテールダイ、Tダイなどを取り付けた押し出
し機などを用いてシート状に成形した後、冷却して結晶
化させてもよい。溶融混練物の冷却には、従来より用い
られている冷却ロール等を特に限定する事なく用いる事
ができるが、本発明では、シート状成形物の表面層のみ
ならず、中心部までポリオレフィン樹脂を微細に結晶化
させるために、サイジングダイスを用いる事が好まし
い。
Next, the obtained melt-kneaded material is formed into a sheet. The method of forming the melt-kneaded material into a sheet shape is not particularly limited, for example, may be sandwiched between cooled metal plates and rapidly cooled to form a sheet-shaped molded product by rapid crystallization.
After forming into a sheet shape using an extruder equipped with a fish tail die, a T die, or the like, it may be cooled and crystallized. For cooling the melt-kneaded product, a cooling roll or the like conventionally used can be used without particular limitation.In the present invention, not only the surface layer of the sheet-like molded product, but also the polyolefin resin up to the central portion. In order to crystallize finely, it is preferable to use a sizing die.

【0024】なお、本発明では、得られるシート状成形
物の表面層のみならず、中心部までポリオレフィン樹脂
を微細に結晶化させて、細く、かつ均一なフィブリルか
らなる曲路率の大きい多孔質膜構造を有する多孔質フィ
ルムを得るためには、溶融混練物を、好ましくは−15
℃以下、より好ましくは−20℃以下に急冷して、シー
ト状に成形することが望ましい。これは、溶液状態、す
なわち、溶融混練物からシート状に成形する際の冷却速
度が遅い場合は、溶融混練より引き延ばされ、絡み合っ
ているフィブリルが毛球状に戻って、太い繊維を形成す
るためである。しかしながら、通常、ゲル状のシート状
成形物は、熱伝導性が大きくないため、表面層に比べて
中心に近い部分ほど冷却されにくい。しかし、冷却され
たサイジングダイスを用いた場合には、金属による熱伝
導の効果で、溶融混合物の冷却ムラを抑えることがで
き、かつ精度の高い空間を所定の圧力で通過することと
あいまって、得られるシート状成形物の形状安定性を飛
躍的に向上させることができる。
In the present invention, the polyolefin resin is finely crystallized not only to the surface layer of the obtained sheet-like molded product but also to the center, and is formed of fine and uniform fibrils having a large curvature ratio. In order to obtain a porous film having a membrane structure, the melt-kneaded product is preferably -15
It is desirable to rapidly cool to not more than ℃, more preferably not more than -20 ℃ to form a sheet. This is a solution state, that is, if the cooling rate at the time of forming a sheet from the melt-kneaded material is slow, it is stretched from the melt-kneading, the entangled fibrils return to hair spheres, forming thick fibers. That's why. However, since the gel-like sheet-shaped molded product generally does not have high thermal conductivity, the portion closer to the center than the surface layer is less likely to be cooled. However, when a cooled sizing die is used, due to the effect of heat conduction by the metal, it is possible to suppress the cooling unevenness of the molten mixture, and in addition to passing the space with high precision at a predetermined pressure, The shape stability of the obtained sheet-like molded product can be dramatically improved.

【0025】このようにして得られるシート状成形物の
厚みは、通常、0.5〜20mmが好ましい。
The thickness of the sheet-like molded product thus obtained is usually preferably 0.5 to 20 mm.

【0026】このようにして得られたシート状成形物
は、溶融混練により引き伸ばされ、絡み合っているフィ
ブリル繊維が毛球状に戻って、太い繊維を形成し、シー
ト状成形物に大きな貫通孔が形成されるのを防止するた
めに、直ちに後述する圧延処理に供するか、又は用いた
溶媒の凝固点以下の温度で保存して、ポリオレフィン樹
脂の結晶構造を維持することが好ましい。
The sheet-like molded product thus obtained is stretched by melt-kneading, and the entangled fibril fibers return to a spherical shape to form a thick fiber, and a large through hole is formed in the sheet-like molded product. In order to prevent the polyolefin resin from being subjected to the rolling treatment described later, it is preferable to maintain the crystal structure of the polyolefin resin by keeping it at a temperature lower than the freezing point of the solvent used.

【0027】次に、圧延処理を行う。圧延処理を行うた
めの方法としては、特に限定されるものではないが、シ
ート状成形物のベルトプレス機による圧延処理を行うこ
とが好ましい。ここでいうベルトプレス機とは、ベルト
間にサンプルを挟み圧延する構造を有するものを意味す
る。このようなベルトプレス機は、ベルトを駆動ドラム
により一定のスピードで移動できるため、連続した圧延
処理が可能である。
Next, a rolling process is performed. The method for performing the rolling process is not particularly limited, but it is preferable to perform the rolling process on the sheet-like molded product using a belt press. The belt press as used herein means one having a structure in which a sample is sandwiched between belts and rolled. In such a belt press machine, the belt can be moved at a constant speed by the driving drum, so that a continuous rolling process is possible.

【0028】圧延処理に用いられるベルトプレス機は、
前記構造を有するものであれば特に限定されないが、例
えば、加圧にプレスを用いた液圧式ダブルベルトプレス
機、加圧ロールを用いた加圧ロール式ダブルベルトプレ
ス機、ベルト把持型ベルトプレス機、ロートキュアー等
が挙げられるが、これらの中ではギャップ調整の融通性
から加圧ロール式ダブルベルトプレス機が好ましい。
The belt press used for the rolling process is as follows:
Although it is not particularly limited as long as it has the above structure, for example, a hydraulic double belt press using a press for pressurization, a pressure roll double belt press using a press roll, a belt gripping type belt press And a roto-cure, and among these, a pressure roll type double belt press is preferable from the flexibility of gap adjustment.

【0029】圧延処理は、加熱圧延と冷却圧延を連続し
て行うことが好ましい。加熱圧延と冷却圧延は、加熱ベ
ルトプレス機と冷却ベルトプレス機を分離させて2台の
ベルトプレス機を用いて行ってもよく、1台のベルトプ
レス機内でシート状成形物と接触する加圧手段の接触部
の温度を適宜調整して行ってもよいが、加熱ベルトプレ
ス機と冷却ベルトプレス機を分離させて用いた方が、各
々のベルトプレス機の温度の影響を受けなくなるので任
意に圧延速度を変えることが可能になりライン速度のア
ップが望めるため、好ましい。例えば、ロール式の場
合、所定の温度に加熱された加圧ロール(加熱ロール)
で加熱圧延し、次いで所定の温度に冷却された加圧ロー
ル(冷却ロール)で冷却圧延を行う。
In the rolling process, it is preferable to perform heating rolling and cooling rolling continuously. The heating rolling and the cooling rolling may be performed using two belt presses by separating the heating belt press and the cooling belt press, and pressurization in contact with the sheet-like molded product in one belt press. The temperature of the contact portion of the means may be adjusted appropriately, but it is possible to use the heating belt press machine and the cooling belt press machine separately, since it is not affected by the temperature of each belt press machine. This is preferable because the rolling speed can be changed and the line speed can be increased. For example, in the case of a roll type, a pressure roll (heated roll) heated to a predetermined temperature
, And then cold-rolled by a pressure roll (cooling roll) cooled to a predetermined temperature.

【0030】さらに、2台のベルトプレス機を用いる場
合は、加熱ベルトプレス機と冷却ベルトプレス機のライ
ン速に差をつけることも可能である。加熱ベルトプレス
機ライン速と冷却ベルトプレス機ライン速に差をつける
ことにより、機械軸流れ方向(MD方向)の延伸効果が
得られるだけでなく、MD方向の圧延倍率を制御するこ
とができ、この速度差そのものがMD方向の圧延倍率と
なる。また、両ベルトプレス機間でのシート状成形物の
ネッキングを抑制するために、加熱ベルトプレス機と冷
却ベルトプレス機間の距離をできるだけ小さくとること
が好ましい。
Further, when two belt presses are used, it is possible to make a difference in the line speed between the heating belt press and the cooling belt press. By making a difference between the heating belt press line speed and the cooling belt press line speed, not only the stretching effect in the machine axial flow direction (MD direction) can be obtained, but also the rolling ratio in the MD direction can be controlled. This speed difference itself is the rolling ratio in the MD direction. Further, in order to suppress necking of the sheet-like molded product between the two belt presses, it is preferable to minimize the distance between the heating belt press and the cooling belt press.

【0031】また、本発明によれば、加熱ベルトプレス
機前に繰出し装置を設け、繰出し速度と加熱ベルトプレ
ス機ライン速に差をつけることも可能である。このとき
のライン速/繰出し速の比が2.5〜3.5の範囲であ
ることが望ましい。2.5以上であると圧延倍率が高く
なり、圧延後のサンプルの巾方向(TD方向)への配向
が抑えられる。逆に3.5以下であると機械軸方向(M
D方向)への配向が抑えられる。このように異方性が生
じないように制御することにより、より強度が向上す
る。加熱ベルトプレス機ライン速と繰出し機スピードに
差をつけることは、シートプレス時の蛇行を抑える効果
も期待でき、歩留まりを上げることが可能になる。
Further, according to the present invention, it is possible to provide a feeding device in front of the heating belt press machine, and make a difference between the feeding speed and the heating belt press machine line speed. At this time, it is desirable that the ratio of the line speed / delivery speed is in the range of 2.5 to 3.5. When the ratio is 2.5 or more, the rolling ratio increases, and the orientation of the sample after rolling in the width direction (TD direction) is suppressed. Conversely, if it is less than 3.5, the machine axis direction (M
(D direction) is suppressed. By controlling so that anisotropy does not occur, the strength is further improved. Making the difference between the line speed of the heating belt press machine and the speed of the feeding machine can be expected to have an effect of suppressing meandering during sheet pressing, and can increase the yield.

【0032】加熱圧延の際の温度は、好ましくはポリオ
レフィン樹脂の融点−30℃以上、ポリオレフィン樹脂
の融点−10℃以下の温度、より好ましくは、ポリオレ
フィン樹脂の融点−20℃以上、ポリオレフィン樹脂の
融点−15℃以下の温度である。即ち、圧延による薄膜
化を容易に行うために、ポリオレフィン樹脂の融点−3
0℃以上の温度が好ましく、得られた多孔質フィルムを
電池用セパレーターとして使用する際の強度及び厚みの
均一性を確保するために、ポリオレフィン樹脂の融点−
10℃以下の温度が好ましい。なお、本明細書におい
て、ポリオレフィン樹脂の融点とは、DSC測定におけ
る昇温過程での吸熱ピーク値温度を言う。
The temperature at the time of hot rolling is preferably a temperature not lower than the melting point of the polyolefin resin −30 ° C. and not higher than the melting point of the polyolefin resin −10 ° C., more preferably a temperature not lower than the melting point of the polyolefin resin −20 ° C. The temperature is below -15 ° C. That is, in order to easily form a thin film by rolling, the melting point of the polyolefin resin is −3.
A temperature of 0 ° C. or higher is preferable, and in order to ensure strength and thickness uniformity when using the obtained porous film as a battery separator, the melting point of the polyolefin resin −
Temperatures below 10 ° C. are preferred. In addition, in this specification, the melting point of the polyolefin resin refers to an endothermic peak value temperature in a temperature rising process in DSC measurement.

【0033】冷却圧延の際の温度は、好ましくは40℃
以下、より好ましくは10〜20℃である。即ち、圧延
状態を保持して、加熱圧延後のシート状成形物の弾性回
復を防止して、シートの厚みを均一にするために、40
℃以下が好ましい。
The temperature during the cold rolling is preferably 40 ° C.
Hereinafter, the temperature is more preferably 10 to 20 ° C. That is, in order to maintain the rolling state, prevent the elastic recovery of the sheet-like molded product after the hot rolling, and make the sheet thickness uniform,
C. or less is preferred.

【0034】なお、圧延処理の際の圧延倍率を大きくす
る方法として、加圧ロールのギャップを調整する方法が
挙げられるが、急激に圧延倍率が大きくなるように設定
すると、シート状成形物がベルト間で滑ってしまい噛み
込みが不十分となり圧延されなくなる。
As a method of increasing the rolling ratio in the rolling process, there is a method of adjusting the gap between the pressure rolls. However, if the rolling ratio is set to be rapidly increased, the sheet-like molded product is belt-like. It slips between them and the biting becomes insufficient, so that rolling cannot be performed.

【0035】加圧ロール組み数は、特に限定されない
が、通常、10〜30個程度であることが好ましい。ま
た、加圧ロールの噛み込み角度は特に限定されないが、
0〜1°が好ましく、0〜0.5°がより好ましい。な
お、ここで言う噛み込み角度とは、シート状成形物の進
行水平方向に対するベルト面の角度を意味し、該ベルト
面とはシート状成形物が噛み込み圧延される領域を示
す。
The number of pressure roll sets is not particularly limited, but is usually preferably about 10 to 30. Also, the bite angle of the pressure roll is not particularly limited,
0 to 1 ° is preferable, and 0 to 0.5 ° is more preferable. Here, the biting angle means an angle of a belt surface with respect to a traveling horizontal direction of the sheet-like molded product, and the belt surface indicates a region where the sheet-like molded product is bitten and rolled.

【0036】加熱圧延の際は、シート状成形物の潤滑な
噛み込みを考慮して、噛み込み角度を持ったベルト間で
加熱圧延し、冷却圧延では目標とされる圧延倍率となる
ように噛み込み角度を0°にしてギャップを一定にする
ことが好ましい。
At the time of hot rolling, heat rolling is performed between belts having a biting angle in consideration of lubricating biting of the sheet-like molded product. It is preferable that the gap angle is 0 ° and the gap is constant.

【0037】また、ベルト面とシート状成形物の摩擦係
数を高くして噛み込みを良好にするために、ベルト面表
面粗度を制御したり、紙などの給油性のあるシートでシ
ート状成形物を挟んでサンドイッチ状にして圧延する方
法もとることも可能である。
Further, in order to increase the coefficient of friction between the belt surface and the sheet-like molded product and improve the biting, the surface roughness of the belt surface is controlled, or the sheet-like molded material such as paper is used. It is also possible to adopt a method in which the material is sandwiched and rolled.

【0038】なお、プレスによる圧延は一種の固相加工
であり、樹脂組成物を高粘度状悪で加工するため、樹脂
内部に分子摩擦が生ずる剪断流動は脆性破壊の原因にな
り、均一な圧延が困難になる。理想的な二軸伸長を達成
するために、流動抵抗を極力小さくし均一な栓流(フラ
グフロー)で流動させることが必要である。そのため
に、樹脂組成物とベルト界面に潤滑剤を介在させてもよ
いが、本発明にあるようにポリオレフィン樹脂と溶媒か
らなる樹脂組成物であれば、圧延処理時に溶媒が組成物
とベルト面間に染み出してきて潤滑剤の役目をする。そ
の挙動を期待する意味でも、ポリオレフィン樹脂と溶媒
との樹脂組成物において、溶媒が70重量%以上である
のが好ましい。
Rolling by pressing is a kind of solid-phase processing. Since a resin composition is processed with high viscosity, a shear flow in which molecular friction occurs inside the resin causes brittle fracture, and uniform rolling is performed. Becomes difficult. In order to achieve ideal biaxial elongation, it is necessary to make the flow resistance as small as possible and to flow with a uniform plug flow (flag flow). For this purpose, a lubricant may be interposed between the resin composition and the belt interface. However, if the resin composition is composed of a polyolefin resin and a solvent as in the present invention, the solvent is applied between the composition and the belt surface during rolling. Oozes out and acts as a lubricant. From the viewpoint of expecting the behavior, the solvent is preferably 70% by weight or more in the resin composition of the polyolefin resin and the solvent.

【0039】圧延処理前後に、延伸処理を行ってもよ
い。延伸処理の方法は特に限定されるものではなく、通
常のテンター法、ロール法、インフレーション法又はこ
れらの方法の組み合わせであってもよい。また、一軸延
伸、二軸延伸等いずれの方法をも適用することができ、
二軸延伸の場合は、縦横同時延伸又は逐次延伸のいずれ
でもよいが、縦横同時延伸が好ましい。延伸処理時の温
度は、ポリオレフィンの融点+5℃以下の温度が好まし
い。その他の延伸処理条件は、通常用いられる公知の条
件を採用することができる。
A stretching process may be performed before and after the rolling process. The method of the stretching treatment is not particularly limited, and may be an ordinary tenter method, a roll method, an inflation method, or a combination of these methods. In addition, any method such as uniaxial stretching and biaxial stretching can be applied,
In the case of biaxial stretching, either vertical or horizontal simultaneous stretching or sequential stretching may be used, but vertical and horizontal simultaneous stretching is preferred. The temperature during the stretching treatment is preferably a temperature equal to or lower than the melting point of the polyolefin + 5 ° C. As other stretching treatment conditions, commonly used known conditions can be adopted.

【0040】次に、前記シート状成形物の脱溶媒処理を
行う。
Next, the sheet-like molded product is subjected to a desolvation treatment.

【0041】脱溶媒処理は、シート状成形物から溶媒を
除去して多孔質構造を形成させる工程であり、例えば、
シート状成形物を溶剤で洗浄して溶媒を除去することに
より行う事ができる。溶剤は、樹脂組成物の調整に用い
た溶媒に応じて適宜選択する事ができるが、具体的に
は、ペンタン、ヘキサン、ヘプタン、デカン等の炭化水
素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジ
エチルエーテル、ジオキサン等のエーテル類、アルコー
ル類等の易揮発性溶剤が挙げられ、これらは単独で又は
二種以上を混合して用いる事ができる。かかる溶剤を用
いた脱溶媒処理の方法は、特に限定されず、例えば、シ
ート状成形物を溶剤中に浸漬して溶媒を抽出する方法、
溶剤をシート状成形物にシャワーする方法等が挙げられ
る。
The desolvation treatment is a step of forming a porous structure by removing a solvent from a sheet-like molded product.
It can be carried out by washing the sheet-like molded product with a solvent to remove the solvent. The solvent can be appropriately selected according to the solvent used for the adjustment of the resin composition.Specifically, hydrocarbons such as pentane, hexane, heptane and decane, chlorination of methylene chloride, carbon tetrachloride and the like are used. Examples include volatile solvents such as hydrocarbons, ethers such as diethyl ether and dioxane, and alcohols, and these can be used alone or in combination of two or more. The method of desolvation treatment using such a solvent is not particularly limited, for example, a method of immersing a sheet-like molded product in a solvent to extract the solvent,
A method in which a solvent is showered on a sheet-like molded product is exemplified.

【0042】脱溶媒処理は、圧延前に行ってもよい。例
えば、シート状成形物を脱溶媒処理してから圧延処理に
供してもよく、また、圧延処理してから脱溶媒処理を行
ってもよい。あるいは、圧延処理前に脱溶媒処理を行
い、圧延処理後に再度脱溶媒処理を行って残存溶媒を除
去する態様であっても良い。
The solvent removal treatment may be performed before rolling. For example, the sheet-shaped molded product may be subjected to a desolvation treatment and then subjected to a rolling treatment, or may be subjected to a rolling treatment and then subjected to a desolvation treatment. Alternatively, the solvent may be removed before the rolling, and the solvent may be removed again after the rolling to remove the residual solvent.

【0043】本発明では、このようにして得られた多孔
質フィルムに、必要に応じてさらにフィルムの熱収縮を
防止するためのヒートセット処理等を施して、形状固定
してもよい。
In the present invention, the porous film thus obtained may be subjected to a heat setting treatment or the like for preventing heat shrinkage of the film, if necessary, to fix the shape.

【0044】このようにして得られる多孔質フィルムの
厚さは1〜60μm、好ましくは、5〜45μmである
ことが望ましく、BET比表面積が150m2 /g以
上、細孔容積が0.5cm3 /g以上、貫通孔の平均孔
径が0.03μm以下、最大孔径が0.1μm以下であ
ることが、それぞれ好ましい。なお、細孔容積及び孔径
はBJH法により測定する事ができる。
The porous film thus obtained preferably has a thickness of 1 to 60 μm, preferably 5 to 45 μm, a BET specific surface area of 150 m 2 / g or more and a pore volume of 0.5 cm 3. / G, the average diameter of the through holes is preferably 0.03 μm or less, and the maximum diameter is preferably 0.1 μm or less. In addition, the pore volume and the pore diameter can be measured by the BJH method.

【0045】また、多孔質フィルムの空孔率は35%〜
75%、通気度は100〜800秒/100cc、針貫
通強度は400gf/25μm以上であることが、それ
ぞれ好ましい。
The porosity of the porous film is 35% or less.
Preferably, it is 75%, the air permeability is 100 to 800 seconds / 100 cc, and the needle penetration strength is 400 gf / 25 μm or more.

【0046】本発明により得られる多孔質フィルムは、
高強度、高比表面積及び高細孔容積を有し、更に、膜を
貫通する孔の経路、即ち貫通経路が長いにもかかわら
ず、イオン透過性に優れ、高速充放電特性にも優れる。
The porous film obtained according to the present invention comprises
It has high strength, high specific surface area and high pore volume, and is excellent in ion permeability and high-speed charge / discharge characteristics despite the long path of pores penetrating the membrane, that is, long penetration path.

【0047】また、グローブボックス中でガラスの中に
正極にコバルト酸リチウム電極、負極にカーボン電極を
用い、その間に電解液を含浸させた上記多孔質フィルム
をクッション材となる不織布(電解液含浸品)と共に挟
み込み、充放電特性を調べたところ、高電流密度で高放
電効率を示し、短時間での大出力が可能である。
In a glove box, a non-woven fabric (electrolyte-impregnated product) is formed by using the above-mentioned porous film in which a lithium cobalt oxide electrode is used as a positive electrode and a carbon electrode is used as a negative electrode in a glass, and an electrolyte is impregnated between the electrodes. ), The charge and discharge characteristics were examined. As a result, a high discharge efficiency was exhibited at a high current density, and a large output was possible in a short time.

【0048】更に、本発明により得られた多孔質フィル
ムは、通気性は良好なものの、比表面積が高く、細いフ
ィブリルが高密度に配置して、平均孔径も小さく、孔径
分布も均一であり、過充電試験におけるデンドライトに
よる短絡も生じ難い。従って、種々の電池、特に電気自
動車用バッテリーにおいて、安定性と耐久性に優れる高
性能セパレーターとして好適に用いる事ができる。
Further, the porous film obtained by the present invention has good air permeability, but has a high specific surface area, fine fibrils are arranged at a high density, the average pore size is small, and the pore size distribution is uniform. Short circuit due to dendrite in the overcharge test hardly occurs. Therefore, it can be suitably used as a high-performance separator having excellent stability and durability in various batteries, particularly batteries for electric vehicles.

【0049】[0049]

【実施例】以下、実施例及び比較例を挙げてさらに詳細
に説明するが、本発明はこれら実施例により何ら限定さ
れるものではない。なお、各種特性については下記要領
にて測定を行う。
The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, various characteristics are measured in the following manner.

【0050】(融点)セイコー電子工業社製の示差走査
熱量計「DSC−200」を使用し、室温から200℃
まで10℃/minの割合で昇温させ、この昇温過程で
の吸熱ピーク値を融点とする。
(Melting point) Using a differential scanning calorimeter “DSC-200” manufactured by Seiko Denshi Kogyo KK, the temperature was changed from room temperature to 200 ° C.
The temperature is raised at a rate of 10 ° C./min up to this point, and the endothermic peak value during this temperature raising process is defined as the melting point.

【0051】(重量平均分子量)ウォーターズ社製のゲ
ル浸透クロマトグラフ「GPC−150C」を用い、溶
媒にo−ジクロロベンゼンを、また、カラムとして昭和
電工(株)製の「Shodex−80M」を用いて13
5℃で測定する。データ処理は、TRC社製データ処理
システムを用いて行う。分子量はポリスチレンを基準と
して算出する。
(Weight average molecular weight) A gel permeation chromatograph "GPC-150C" manufactured by Waters Co., Ltd. was used, o-dichlorobenzene was used as a solvent, and "Shodex-80M" manufactured by Showa Denko KK was used as a column. 13
Measure at 5 ° C. Data processing is performed using a data processing system manufactured by TRC. The molecular weight is calculated based on polystyrene.

【0052】(フィルムの厚み)1/10000シック
ネスゲージ及び多孔質フィルムの断面の1万倍走査電子
顕微鏡写真から測定する。
(Film Thickness) Measured from a 1 / 10,000 thickness gauge and a 10,000 × scanning electron micrograph of the cross section of the porous film.

【0053】(空孔率)水銀ポロシメータ(オートスキ
ャン33、ユアサアイオニクス)を使用し、細孔容積
(ml/g)を求め、ポリオレフィン樹脂の密度を0.
95(g/ml)とし、以下の式に基づき算出する。
(Porosity) Using a mercury porosimeter (Autoscan 33, Yuasa Ionics), the pore volume (ml / g) was determined, and the density of the polyolefin resin was determined to be 0.1%.
95 (g / ml) is calculated based on the following equation.

【0054】[0054]

【数1】 (Equation 1)

【0055】(BET比表面積)(株)島津製作所製の
窒素の脱吸着方式による比表面積・細孔分布測定器「A
SAP2010」を用いてBET比表面積を測定する。
(BET Specific Surface Area) A specific surface area / pore distribution measuring device “A” manufactured by Shimadzu Corporation using a nitrogen desorption method.
The BET specific surface area is measured using “SAP2010”.

【0056】(貫通孔の平均孔径及び最大孔径)(株)
島津製作所製の窒素の脱吸着方式による比表面積・細孔
分布測定器「ASAP2010」を用いて、BJH法に
て孔径の分布を測定し、これより平均孔径と最大孔径を
求める。
(Average pore diameter and maximum pore diameter of through-holes)
The pore size distribution is measured by the BJH method using a specific surface area / pore distribution measuring device “ASAP2010” manufactured by Shimadzu Corporation using a nitrogen desorption method, and the average pore size and the maximum pore size are determined from this.

【0057】(通気度)JIS P8117に準拠して
測定する。
(Air permeability) Measured according to JIS P8117.

【0058】(針貫通強度)カトーテック(株)製のハ
ンディー圧縮試験機「KES−G5」を用いて行う。針
は直径1.0mm、先端形状0.5mmのものを使用
し、ホルダー径11.3mm、押し込み速度2mm/秒
にて測定し、フィルムが破れるまでの最大荷重を針貫通
強度とする。値は全て25μmに換算する。
(Needle Penetration Strength) A handy compression tester “KES-G5” manufactured by Kato Tech Co., Ltd. is used. A needle having a diameter of 1.0 mm and a tip shape of 0.5 mm is measured at a holder diameter of 11.3 mm and a pushing speed of 2 mm / sec. The maximum load until the film breaks is defined as the needle penetration strength. All values are converted to 25 μm.

【0059】実施例1 重量平均分子量2×106 の超高分子量ポリエチレン樹
脂(融点134℃)15重量部と流動パラフィン(凝固
点−15℃、40℃における動粘度59cst)85重
量部とを、低速バタフライブレード(150rpm)と
高速タービンブレード(1500rpm)とを有する攪
拌機(井上製作所製)により温度20℃で30分間攪拌
して均一なスラリー状にし、これを二軸押し出し機(シ
リンダー径:40mm、L/D=42)に供給し、16
0℃の温度に加熱し、溶融混練して、超高分子量ポリエ
チレン樹脂と溶媒との溶融混練物を得た。次いで、二軸
押し出し機の先端に取り付けられたフィッシュテールダ
イを用いて、160℃で混練物をシート状に押出した直
後、−15℃に冷却されたサイジングダイスを通し急冷
結晶化させて、シート状成形物を得た。
Example 1 15 parts by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2 × 10 6 (melting point 134 ° C.) and 85 parts by weight of liquid paraffin (solidification point −15 ° C., kinematic viscosity at 40 ° C. 59 cst) were mixed at a low speed. The mixture was stirred at a temperature of 20 ° C. for 30 minutes with a stirrer (manufactured by Inoue Seisakusho) having a butterfly blade (150 rpm) and a high-speed turbine blade (1500 rpm) to form a uniform slurry, and this was extruded into a twin-screw extruder (cylinder diameter: 40 mm, L / D = 42) and 16
The mixture was heated to a temperature of 0 ° C. and melt-kneaded to obtain a melt-kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Then, immediately after extruding the kneaded material into a sheet at 160 ° C. using a fishtail die attached to the tip of a twin-screw extruder, quenched and crystallized through a sizing die cooled to −15 ° C. A shaped product was obtained.

【0060】次いで、このシート状成形物(厚み:1m
m)を、噛み込み角度が1°に設定された加熱加圧ロー
ル式ダブルベルトプレス機を用い、約120℃で加熱圧
延し、シート状成形物を厚さ100μmまで圧延した
後、冷却加圧ロール式ダブルベルトプレス機を用い、3
0℃で冷却圧延を行った(圧延倍率:100倍)。次い
で、ヘプタンに浸漬して脱溶媒し、このようにして得ら
れた多孔質フィルムを更に130℃で10秒間ヒートセ
ットして、厚み25μmの多孔質フィルムを得た。
Next, the sheet-like molded product (thickness: 1 m)
m) was heated and rolled at about 120 ° C. using a heating and pressing roll type double belt press machine in which the bite angle was set to 1 °, and the sheet-like molded product was rolled to a thickness of 100 μm, and then cooled and pressed. Using a roll type double belt press machine, 3
Cold rolling was performed at 0 ° C. (rolling magnification: 100 times). Next, it was immersed in heptane to remove the solvent, and the porous film thus obtained was further heat-set at 130 ° C. for 10 seconds to obtain a porous film having a thickness of 25 μm.

【0061】実施例2 攪拌時の温度を60℃とした以外は実施例1と同様にし
て、シート状成形物と厚み25μmの多孔質フィルムを
得た。
Example 2 A sheet-like molded product and a porous film having a thickness of 25 μm were obtained in the same manner as in Example 1 except that the stirring temperature was 60 ° C.

【0062】実施例3 攪拌時の温度を100℃とした以外は実施例1と同様に
して、シート状成形物と厚み25μmの多孔質フィルム
を得た。
Example 3 A sheet-like molded product and a 25 μm-thick porous film were obtained in the same manner as in Example 1 except that the stirring temperature was changed to 100 ° C.

【0063】比較例1 攪拌を攪拌機を用いず、人間の手で行った以外は実施例
1と同様にして、シート状成形物と厚み25μmの多孔
質フィルムを得た。
Comparative Example 1 A sheet-like molded product and a porous film having a thickness of 25 μm were obtained in the same manner as in Example 1 except that stirring was performed by a human hand without using a stirrer.

【0064】実施例及び比較例において得られたシート
状成形物における溶融混練時のポリオレフィン樹脂の未
溶融物を目視にて確認した。また、未溶融物が発生する
までの最大処理量を5kg/hr間隔で確認した。結果
を表1に示す。
The unmelted polyolefin resin at the time of melt-kneading in the sheet-like molded products obtained in Examples and Comparative Examples was visually confirmed. In addition, the maximum throughput before the generation of unmelted material was confirmed at intervals of 5 kg / hr. Table 1 shows the results.

【0065】[0065]

【表1】 [Table 1]

【0066】実施例及び比較例において得られた多孔質
フィルムのBET比表面積、平均孔径、最大孔径、空孔
率、通気度及び針貫通強度を表2に示す。
Table 2 shows the BET specific surface area, average pore size, maximum pore size, porosity, air permeability, and needle penetration strength of the porous films obtained in Examples and Comparative Examples.

【0067】[0067]

【表2】 [Table 2]

【0068】以上の結果より、実施例1〜3のシート状
成形物にはポリオレフィン樹脂の未溶融物は確認されな
いことが分かる。また、得られた多孔質フィルムは高強
度、高比表面積及び高細孔容積を有し、かつイオン透過
性及び高速充放電特性にも優れ、均一な特性及び厚みを
持っていることを確認した。
From the above results, it can be seen that unmelted polyolefin resin is not confirmed in the sheet-shaped molded products of Examples 1 to 3. In addition, it was confirmed that the obtained porous film had high strength, high specific surface area and high pore volume, was excellent in ion permeability and high-speed charge / discharge characteristics, and had uniform characteristics and thickness. .

【0069】[0069]

【発明の効果】本発明により、高強度、高比表面積及び
高細孔容積を有し、かつイオン透過性及び高速充放電特
性にも優れ、フィルム構造が均一な多孔質フィルムの製
造方法を提供することが可能になった。
According to the present invention, there is provided a method for producing a porous film having high strength, high specific surface area and high pore volume, excellent ion permeability and high-speed charge / discharge characteristics, and a uniform film structure. It became possible to do.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:04 B29K 105:04 C08L 23:00 C08L 23:00 Fターム(参考) 4F074 AA16 BA35 BA39 BA40 BA45 BA73 BA75 CB43 CC03X CC04X CC05X CC22X CC29Y CC32X CC45 DA49 4F201 AA03 AA06 AG01 AG20 AH33 AR06 BA01 BK02 BK07 BK15 BQ07 BQ45 5H021 BB02 BB04 BB13 BB19 CC00 EE04 HH06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B29K 105: 04 B29K 105: 04 C08L 23:00 C08L 23:00 F-term (Reference) 4F074 AA16 BA35 BA39 BA40 BA45 BA73 BA75 CB43 CC03X CC04X CC05X CC22X CC29Y CC32X CC45 DA49 4F201 AA03 AA06 AG01 AG20 AH33 AR06 BA01 BK02 BK07 BK15 BQ07 BQ45 5H021 BB02 BB04 BB13 BB19 CC00 EE04 HH06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン樹脂及び溶媒を含有する
樹脂組成物を溶融混練し、得られた溶融混練物をシート
状に成形し、該シート状成形物の圧延処理と脱溶媒処理
を行う工程を有する多孔質フィルムの製造方法におい
て、予め攪拌機により攪拌した樹脂組成物を溶融混練に
供することを特徴とする多孔質フィルムの製造方法。
1. A process comprising melt-kneading a resin composition containing a polyolefin resin and a solvent, forming the obtained melt-kneaded product into a sheet, and performing a rolling treatment and a desolvation treatment of the sheet-like molded product. A method for producing a porous film, which comprises subjecting a resin composition previously stirred by a stirrer to melt kneading.
【請求項2】 樹脂組成物の温度を20〜100℃の範
囲に調整して攪拌を行う請求項1記載の製造方法。
2. The method according to claim 1, wherein the temperature of the resin composition is adjusted to 20 to 100 ° C. and stirring is performed.
【請求項3】 樹脂組成物の攪拌に、低速バタフライブ
レードと高速タービンブレードとを有する攪拌機を用い
る請求項1又は2記載の製造方法。
3. The method according to claim 1, wherein a stirrer having a low-speed butterfly blade and a high-speed turbine blade is used for stirring the resin composition.
【請求項4】 請求項1〜3いずれか記載の製造方法に
より得られた多孔質フィルムを有する電池。
4. A battery having a porous film obtained by the production method according to claim 1.
JP2000278853A 2000-09-13 2000-09-13 Method for producing porous film Pending JP2002088189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278853A JP2002088189A (en) 2000-09-13 2000-09-13 Method for producing porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278853A JP2002088189A (en) 2000-09-13 2000-09-13 Method for producing porous film

Publications (1)

Publication Number Publication Date
JP2002088189A true JP2002088189A (en) 2002-03-27

Family

ID=18763951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278853A Pending JP2002088189A (en) 2000-09-13 2000-09-13 Method for producing porous film

Country Status (1)

Country Link
JP (1) JP2002088189A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107848A (en) * 2015-11-30 2017-06-15 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
WO2020067161A1 (en) 2018-09-25 2020-04-02 旭化成株式会社 High-strength separator
CN112259911A (en) * 2020-09-30 2021-01-22 上海恩捷新材料科技有限公司 Electrochemical device, novel non-woven fabric ceramic diaphragm and preparation method thereof
WO2021210590A1 (en) 2020-04-13 2021-10-21 旭化成株式会社 Method for producing separator for power storage device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107848A (en) * 2015-11-30 2017-06-15 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
WO2020067161A1 (en) 2018-09-25 2020-04-02 旭化成株式会社 High-strength separator
KR20200108476A (en) 2018-09-25 2020-09-18 아사히 가세이 가부시키가이샤 High strength separator
JP2022058637A (en) * 2018-09-25 2022-04-12 旭化成株式会社 High intensity separator
KR20220084445A (en) 2018-09-25 2022-06-21 아사히 가세이 가부시키가이샤 High-strength separator
JP7351943B2 (en) 2018-09-25 2023-09-27 旭化成株式会社 high strength separator
WO2021210590A1 (en) 2020-04-13 2021-10-21 旭化成株式会社 Method for producing separator for power storage device
KR20220029698A (en) 2020-04-13 2022-03-08 아사히 가세이 가부시키가이샤 Manufacturing method of separator for electrical storage device
EP4243181A2 (en) 2020-04-13 2023-09-13 Asahi Kasei Kabushiki Kaisha Method for producing separator for power storage device
EP4243182A2 (en) 2020-04-13 2023-09-13 Asahi Kasei Kabushiki Kaisha Method for producing separator for power storage device
CN112259911A (en) * 2020-09-30 2021-01-22 上海恩捷新材料科技有限公司 Electrochemical device, novel non-woven fabric ceramic diaphragm and preparation method thereof
CN112259911B (en) * 2020-09-30 2021-08-06 上海恩捷新材料科技有限公司 Electrochemical device, non-woven fabric ceramic diaphragm and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3886124B2 (en) Method for producing porous film
JP2011500881A5 (en)
JP2016085980A (en) Polyethylene microporous film, manufacturing method thereof, and lithium ion battery
JP4177929B2 (en) Porous film and method for producing the same
JP4312302B2 (en) Method for producing porous film
JP4008516B2 (en) Polyolefin porous membrane, method for producing the same, and battery separator using the same
JP5274081B2 (en) Polyolefin microporous membrane
JP2002088189A (en) Method for producing porous film
JP6598911B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP4577857B2 (en) Method for producing porous film
JP2000072908A (en) Porous film and its production and use
JP2000109586A (en) Production of porous film
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP2015136809A (en) Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery
JP2002060532A (en) Method for producing porous film
JP3982943B2 (en) Method for producing porous film
JP4017307B2 (en) Method for producing porous film
JP4092029B2 (en) Method for producing porous film
JP4641206B2 (en) Method for producing porous film
JP2004307711A (en) Preparation process of highly porous film
JP4101962B2 (en) Method for producing porous film
JP2001001410A (en) Manufacture of porous film
JP3856268B2 (en) Method for producing porous film
JP2001011223A (en) Preparation of porous film
JP2003026847A (en) Porous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804