JP2016085980A - Polyethylene microporous film, manufacturing method thereof, and lithium ion battery - Google Patents

Polyethylene microporous film, manufacturing method thereof, and lithium ion battery Download PDF

Info

Publication number
JP2016085980A
JP2016085980A JP2015209871A JP2015209871A JP2016085980A JP 2016085980 A JP2016085980 A JP 2016085980A JP 2015209871 A JP2015209871 A JP 2015209871A JP 2015209871 A JP2015209871 A JP 2015209871A JP 2016085980 A JP2016085980 A JP 2016085980A
Authority
JP
Japan
Prior art keywords
microporous membrane
battery
average pore
micropores
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015209871A
Other languages
Japanese (ja)
Other versions
JP6225974B2 (en
Inventor
ホンチン ソン
Hongqin Song
ホンチン ソン
ジーチン ハン
Jiqing Han
ジーチン ハン
ヨンシォン ヂャン
Yongsheng Zhang
ヨンシォン ヂャン
チャンフー チィェン
Changfu Qian
チャンフー チィェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINA LUCKY GROUP CORP
Lucky Film Co Ltd
Original Assignee
CHINA LUCKY GROUP CORP
Lucky Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA LUCKY GROUP CORP, Lucky Film Co Ltd filed Critical CHINA LUCKY GROUP CORP
Publication of JP2016085980A publication Critical patent/JP2016085980A/en
Application granted granted Critical
Publication of JP6225974B2 publication Critical patent/JP6225974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery with a microporous film prepared according to the present invention, which has not only an adequate high-speed discharge performance, but also an adequate self discharge performance.SOLUTION: The present invention provides a polyethylene microporous film and its manufacturing method, and a lithium ion battery. The microporous film has front and rear faces; the average pore size of the front face is 100-200 nm, and the average pore size of the rear face is 50-100 nm. The average pore size ratio A:B of the average pore size of the front face and that of the rear face is (1.1-4.0):1. The pore size distribution of each of the front and rear faces is less than 30%. The microporous film is used for a lithium-ion battery. In such a case, the front face is placed closer to a positive electrode of the battery, whereas the rear face is placed closer to the negative electrode of the battery.SELECTED DRAWING: None

Description

本発明はリチウム−イオン電池の技術分野に関し、特に、ポリエチレン微孔性膜、その製造法および該ポリエチレン微孔性膜を使用するリチウム−イオン電池に関する。   The present invention relates to the technical field of lithium-ion batteries, and more particularly, to a polyethylene microporous membrane, a method for producing the same, and a lithium-ion battery using the polyethylene microporous membrane.

ポリエチレン微孔性膜はその両面にミクロ細孔を有する多孔性膜である。該ポリエチレン微孔性膜をリチウム−イオン電池のセパレーターとして使用する場合、そのセパレーターの第一の要件は、電池の電気化学的性質を劣化させないことである。セパレーターのミクロン以下のサイズの適切な細孔直径は、様々な要請、例えば、電池の充電と放電の性能、安全性能、サイクル性能などをかなえるための重要なファクターのひとつである。   A polyethylene microporous membrane is a porous membrane having micropores on both sides. When the polyethylene microporous membrane is used as a lithium-ion battery separator, the first requirement for the separator is that it does not degrade the electrochemical properties of the battery. An appropriate pore diameter of sub-micron size of the separator is one of the important factors for meeting various requirements, for example, battery charging and discharging performance, safety performance, and cycle performance.

電池を何かに利用する場合、リチウム−イオン電池内部の陽極と陰極間の短絡を防止するために、ミクロン以下のサイズの孔径とすることが重要である。かかる特性は電池製造業者が電池の容量を高めるためにより薄いセパレーターを採用する際にますます重要になる。この孔径は電池の性質に直接影響を与える。セパレーターのミクロ細孔が大きなミクロ孔径をもつ場合、電池は高速度での放電の際に、低い抵抗性、良好なサイクル性能および高い容量保持率を示す。しかし、ミクロ細孔の孔径が大きすぎる場合は、活性物質が互いに接触反応して、それが容量を下げ、電池の自己放電プロセスを促進する。また、陽極と陰極が互いに直接接触する傾向があるか、またはリチウム樹枝状結晶によって破壊される傾向があり、そのために短絡を起こすこととなる。セパレーターの孔径が極端に小さい場合には、電池はその電気抵抗が高くなり、サイクル性能が不十分となって、高速放電時の容量保持率が低くなる。利点は、自己放電プロセスが遅く、破壊強度が高く、リチウム樹枝状結晶による破壊を原因とする短絡が防止され、従って、電池の安全性能が改善されることである。さらに、セパレーターのミクロ細孔孔径分布の均一性もまた電池の性質に直接影響する。ミクロ細孔孔径分布が不均一である場合、電池の性質に影響する大きな局部電流が作動中に生じるだろう。それ故、孔径を厳密に制御し、できるだけ均一な細孔を形成することが重要である。   When the battery is used for something, it is important to set the pore size to a size of micron or less in order to prevent a short circuit between the anode and the cathode inside the lithium-ion battery. Such properties become increasingly important as battery manufacturers employ thinner separators to increase battery capacity. This pore size directly affects the battery properties. When the separator micropores have a large micropore diameter, the battery exhibits low resistance, good cycle performance and high capacity retention during discharge at high speed. However, if the pore size of the micropores is too large, the active substances react with each other, which reduces the capacity and promotes the battery self-discharge process. Also, the anode and cathode tend to be in direct contact with each other, or tend to be destroyed by the lithium dendrite, which causes a short circuit. When the pore diameter of the separator is extremely small, the battery has high electrical resistance, insufficient cycle performance, and low capacity retention during high-speed discharge. The advantage is that the self-discharge process is slow, the fracture strength is high, a short circuit caused by the breakdown due to lithium dendrites is prevented, and thus the safety performance of the battery is improved. In addition, the uniformity of the micropore pore size distribution of the separator also directly affects the battery properties. If the micropore pore size distribution is non-uniform, large local currents that affect battery properties will occur during operation. Therefore, it is important to strictly control the pore diameter and form pores that are as uniform as possible.

セパレーターの構成を考慮すると、孔径はガーレー値(Gurley value)により表されるセパレーターの通気性に直接影響する。同じセパレーターの場合、そのガーレー値は内部抵抗をよく反映し得る。セパレーターの孔径が大きい程、多孔度が高くなって、ボイドのねじり度が低くなり、それ故にガーレー値が小さい程、セパレーターの抵抗は低くなる。対照的に、セパレーターの孔径が小さい程、ガーレー値が大きくなり、内部抵抗が大きくなる。良好な電気的性質をもつセパレーターは一般に比較的低い通気性をもつ。   Considering the separator configuration, the pore size directly affects the air permeability of the separator represented by the Gurley value. For the same separator, its Gurley value can well reflect internal resistance. The larger the pore size of the separator, the higher the porosity and the lower the twist of the void. Therefore, the smaller the Gurley value, the lower the resistance of the separator. In contrast, the smaller the pore size of the separator, the greater the Gurley value and the greater the internal resistance. Separators with good electrical properties generally have a relatively low breathability.

さらに、セパレーターの孔径もまたその力学的性質に直接影響する。電池組立および毎日の充電と放電サイクルプロセスの要件にかなうためには、該セパレーターが良好な力学的性質をもつ必要がある。破壊強度は、通常、電池の短絡発生の可能性を評価するために使用されるが、その理由は、電池組立と充電・放電のサイクルプロセスに際して、電極の粗い表面がセパレーターによって破壊されることがあって、それが電池の短絡を招き、また電池の安全性に問題を起こすからである。一般に、大きめの孔径をもつ微孔性膜(セパレーター)は破壊強度が低く、また安全性も低い。一方、より小さい孔径をもつセパレーターは破壊強度がより高く、また安全性が良好である。   In addition, the pore size of the separator also directly affects its mechanical properties. In order to meet the requirements of battery assembly and daily charge and discharge cycle processes, the separator must have good mechanical properties. Fracture strength is typically used to evaluate the possibility of a battery short circuit because the rough surface of the electrode is destroyed by the separator during the battery assembly and charge / discharge cycle process. This causes a short circuit of the battery and causes a problem in the safety of the battery. In general, a microporous membrane (separator) having a larger pore diameter has low fracture strength and low safety. On the other hand, a separator having a smaller pore diameter has higher breaking strength and better safety.

現在のところ、既存のポリオレフィン微孔性膜は、前面と背面の両面に同じ孔径のミクロ細孔をもつ。しかし、かかる微孔性膜がリチウム−イオン電池にて使用される場合、次のような問題がある:孔径が大きい場合、例えば、平均孔径が150nmを超える場合、内部抵抗は低くなり、通気性とサイクル性能は良好となるが、破壊強度と安全性能が低くなり、自己放電率が高くなる;孔径が小さい場合、例えば、平均孔径が70nmより小さい場合、破壊強度と安全性能は良好で、自己放電率も低いが、通気性とサイクル性能は内部抵抗が大きいために不十分となる。   Currently, existing polyolefin microporous membranes have micropores with the same pore diameter on both the front and back surfaces. However, when such a microporous membrane is used in a lithium-ion battery, there are the following problems: When the pore diameter is large, for example, when the average pore diameter exceeds 150 nm, the internal resistance is lowered and the air permeability is reduced. The cycle performance is good, but the fracture strength and safety performance are low, and the self-discharge rate is high; when the pore size is small, for example, when the average pore size is smaller than 70 nm, the fracture strength and safety performance are good, Although the discharge rate is low, the air permeability and cycle performance are insufficient due to the large internal resistance.

上記の欠点を克服するために、本発明の一側面では、すぐれた通気性とすぐれた力学的性質を有する新規のポリエチレン微孔性膜を提供する。   In order to overcome the above disadvantages, one aspect of the present invention provides a novel polyethylene microporous membrane having good breathability and good mechanical properties.

本発明の別の側面では、ポリエチレン微孔性膜の製造法を提供する。   In another aspect of the present invention, a method for producing a polyethylene microporous membrane is provided.

本発明のなおさらなる側面では、本発明によるポリエチレン微孔性膜を用いたリチウム−イオン電池を提供する;この場合のポリエチレン微孔性膜を用いる電池は、良好な高速放電性能のみならず良好な自己放電性能を有する。   In a still further aspect of the present invention, a lithium-ion battery using the polyethylene microporous membrane according to the present invention is provided; the battery using the polyethylene microporous membrane in this case is good not only with good fast discharge performance. Has self-discharge performance.

前面と背面をもつポリエチレンミクロ微孔性膜は、前面のミクロ細孔が背面のミクロ細孔とは異なる平均孔径を持つことを特徴とする;ただし、前面のミクロ細孔の平均孔径は100〜200nmであり、背面のミクロ細孔の平均孔径は50〜100nmである;前面のミクロ細孔の平均孔径と背面のミクロ細孔の平均孔径との比は(1.1〜4.0):1である;また、前面と背面それぞれの孔径分布は30%未満である。   A polyethylene micromicroporous membrane having a front and back surface is characterized in that the front micropores have an average pore size different from that of the back micropores; 200 nm, the mean pore diameter of the back micropores is 50-100 nm; the ratio of the mean pore diameter of the front micropores to the mean pore diameter of the back micropores is (1.1-4.0): In addition, the pore size distribution on each of the front surface and the back surface is less than 30%.

好適な実施態様において、前面のミクロ細孔の平均孔径は120〜180nmである;背面のミクロ細孔の平均孔径は60〜80nmである;前面のミクロ細孔の平均孔径と背面のミクロ細孔の平均孔径との比は(1.5〜3.0):1である;また、前面と背面それぞれの孔径分布は20%未満である。   In a preferred embodiment, the average pore size of the front micropores is 120 to 180 nm; the average pore size of the back micropores is 60 to 80 nm; the average pore size of the front micropores and the back micropores The ratio of the average pore diameter is (1.5 to 3.0): 1; and the pore diameter distribution on each of the front surface and the back surface is less than 20%.

好適な実施態様において、該微孔性膜は、5〜30μmの厚さ、35〜60%の多孔度、50〜350s/100mlの通気性と4〜10N/20μmの破壊強度を有する。   In a preferred embodiment, the microporous membrane has a thickness of 5-30 μm, a porosity of 35-60%, a breathability of 50-350 s / 100 ml and a breaking strength of 4-10 N / 20 μm.

ポリエチレン微孔性膜の製造法は以下の工程からなる:
(1)シート注型:ポリエチレン樹脂と増孔剤とをツインスクリュー押出機に加え、溶融混練を実施し;ダイヘッドから押し出して急速冷却し、厚肉シートに鋳込む工程;
(2)厚肉シートをストレッチャーに導入して同期または非同期二軸性延伸を実施し;ストレッチャーの上部および下部チャンバーにて延伸温度を制御して、ストレッチャーの上部と下部チャンバー間の温度差を1〜10℃に維持し、油含有薄膜を調製する工程;
(3)油含有薄膜を溶媒で抽出して増孔剤を除去し、白色微孔性膜を形成する工程;および
(4)白色微孔性膜をヒートセット処理に付し、その前面と背面に異なる平均孔径を有するポリエチレン微孔性膜を得る工程。
The process for producing a polyethylene microporous membrane consists of the following steps:
(1) Sheet casting: adding polyethylene resin and a pore-increasing agent to a twin screw extruder, performing melt kneading; extruding from a die head, rapidly cooling, and casting into a thick sheet;
(2) A thick sheet is introduced into the stretcher to perform synchronous or asynchronous biaxial stretching; the temperature between the upper and lower chambers of the stretcher is controlled by controlling the stretching temperature in the upper and lower chambers of the stretcher. Maintaining the difference at 1-10 ° C. and preparing an oil-containing thin film;
(3) extracting the oil-containing thin film with a solvent to remove the pore-forming agent and forming a white microporous film; and (4) subjecting the white microporous film to a heat setting treatment, its front and back surfaces. A step of obtaining a polyethylene microporous membrane having different average pore sizes.

本発明によるポリエチレン微孔性膜を含むリチウム−イオン電池は、微孔性膜の前面が電池の陽極に接近しており、微孔性膜の背面が電池の陰極に接近している。   In a lithium-ion battery including a polyethylene microporous membrane according to the present invention, the front surface of the microporous membrane is close to the anode of the battery, and the back surface of the microporous membrane is close to the cathode of the battery.

当該ポリエチレン微孔性膜を含むリチウム−イオン電池は、微孔性膜の前面が電池の陽極に接近しており、微孔性膜の背面が電池の陰極に接近している。   In the lithium-ion battery including the polyethylene microporous membrane, the front surface of the microporous membrane is close to the battery anode, and the back surface of the microporous membrane is close to the battery cathode.

リチウム−イオン電池は、3C速度で放電するときの容量保持率が80%を超え、自己放電30日後の残留容量は90%を超える。   A lithium-ion battery has a capacity retention rate exceeding 80% when discharged at a 3C rate, and a residual capacity after 30 days of self-discharge exceeds 90%.

本発明は先行技術と比較して以下の利点を有する。
1.本発明によるポリエチレン微孔性膜は、その前面と背面に異なる平均孔径を有し、それが微孔性膜の示す良好な通気性と良好な力学的性質を確かなものとする。
The present invention has the following advantages over the prior art.
1. The polyethylene microporous membrane according to the present invention has different average pore sizes on the front and back surfaces, which ensures the good breathability and good mechanical properties exhibited by the microporous membrane.

2.本発明によるポリエチレン微孔性膜の製造法は、実施が簡単容易であり、それを用いることによって単にプロセスの制御パラメータを変化させるだけで、さらなる装置を要せずに高品質の製品を得ることができる。   2. The method for producing a polyethylene microporous membrane according to the present invention is simple and easy to implement, and by using it, it is possible to obtain a high-quality product by simply changing the control parameters of the process and without requiring additional equipment. Can do.

3.本発明によるポリエチレン微孔性膜からなるリチウム−イオン電池においては、微孔性膜の前面が電池の陽極に接近しており、該膜の背面が電池の陰極に接近している。その前面の孔径がより大きいので、内部抵抗が低く、サイクル性能が良好となり、結果として、高速放電での電池の容量保持率が高くなる。一方、背面の孔径はより小さいので、電池の自己放電性能が良好となり、セパレーターの破壊抵抗性が改善され、それによってリチウム樹枝状結晶の破壊による短絡が効果的に防止される;その結果、安全性能が増強される。   3. In a lithium-ion battery comprising a polyethylene microporous membrane according to the present invention, the front surface of the microporous membrane is close to the battery anode, and the back surface of the membrane is close to the battery cathode. Since the hole diameter on the front surface is larger, the internal resistance is low, the cycle performance is good, and as a result, the capacity retention of the battery at high speed discharge is high. On the other hand, since the back hole diameter is smaller, the self-discharge performance of the battery is improved, and the breakdown resistance of the separator is improved, thereby effectively preventing the short circuit due to the destruction of lithium dendrites; Performance is enhanced.

図1は本発明の実施例1によるポリエチレン微孔性膜前面のミクロ構造を示す走査電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph showing the microstructure of the front surface of a polyethylene microporous membrane according to Example 1 of the present invention. 図2は本発明の実施例1によるポリエチレン微孔性膜背面のミクロ構造を示す走査電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph showing the microstructure of the back surface of the polyethylene microporous membrane according to Example 1 of the present invention. 図3は本発明の実施例2によるポリエチレン微孔性膜前面のミクロ構造を示す走査電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph showing the microstructure of the front surface of the polyethylene microporous membrane according to Example 2 of the present invention. 図4は本発明の実施例2によるポリエチレン微孔性膜背面のミクロ構造を示す走査電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph showing the microstructure of the back surface of the polyethylene microporous membrane according to Example 2 of the present invention. 図5は本発明の実施例1によるポリエチレン微孔性膜前面の平均孔径の試験結果を示すグラフである。FIG. 5 is a graph showing the test results of the average pore diameter of the front surface of the polyethylene microporous membrane according to Example 1 of the present invention. 図6は本発明の実施例1によるポリエチレン微孔性膜背面の平均孔径の試験結果を示すグラフである。FIG. 6 is a graph showing the test results of the average pore diameter on the back of the polyethylene microporous membrane according to Example 1 of the present invention.

以下に、本発明につき詳細に説明する。   The present invention will be described in detail below.

1.本発明の非対称構造をもつポリエチレン微孔性膜
本発明のポリエチレン微孔性膜は非対称構造をもつ。特に、その膜の前面は顕微鏡スケールで有意なバックボーン構造をもち、該バックボーンは細いファイバーを介して互いにつながっており、ファイバー内には互いに相互連結した多数の比較的大きなミクロ細孔が存在し、セパレーターに良好な通気性を付与している。対照的に、膜の背面は顕微鏡スケールで均一な繊維構造をもち、その孔径は比較的小さく、それによってセパレーターに十分な力学的性質を与えている。結果として、本発明の微孔性膜のかかる非対称構造は、セパレーターが良好な力学的性質と良好な通気性の両方をもつことを確実なものとしている。当該微孔性膜をリチウム−イオン電池に使用する場合、微孔性膜の前面は電池の陽極に接近している。前面の孔径がより大きいため、電池の内部抵抗性は低く、またその抵抗力が小さいので、結果として、高速放電時に良好なイオン透過性と高容量保持率をもたらす。一方、該膜のより小さい孔径をもつ背面は電池の陰極に接近している。孔径がより小さいために、内部抵抗がより大きくなり、自己放電プロセスの間のLi−イオン移動速度が遅くなる。このことは、電池が良好な自己放電性能を有し、セパレーターの破壊抵抗性を改善することにつながり、それによってリチウム樹枝状結晶の破壊による短絡が有効に防止され、従って、電池の安全性能が増強される。
1. Polyethylene microporous membrane having an asymmetric structure of the present invention The polyethylene microporous membrane of the present invention has an asymmetric structure. In particular, the front of the membrane has a significant backbone structure on a microscopic scale, the backbone is connected to each other through thin fibers, and there are a number of relatively large micropores interconnected within the fiber, Good air permeability is given to the separator. In contrast, the back of the membrane has a uniform fiber structure on a microscopic scale, and its pore size is relatively small, thereby imparting sufficient mechanical properties to the separator. As a result, such an asymmetric structure of the microporous membrane of the present invention ensures that the separator has both good mechanical properties and good breathability. When the microporous membrane is used in a lithium-ion battery, the front surface of the microporous membrane is close to the battery anode. Since the front hole diameter is larger, the internal resistance of the battery is low and its resistance is small, resulting in good ion permeability and high capacity retention during fast discharge. On the other hand, the back of the membrane with a smaller pore size is close to the battery cathode. Due to the smaller pore size, the internal resistance is larger and the Li-ion transfer rate is slower during the self-discharge process. This leads to the battery having good self-discharge performance and improving the breakdown resistance of the separator, thereby effectively preventing a short circuit due to the destruction of the lithium dendrite and thus the safety performance of the battery. Be enhanced.

本発明の微孔性膜は前面により大きな孔径をもち、その平均値は100〜200nmとし得る。かかる平均孔径は良好な通気性を確実なものとする。この平均孔径が200nmを超える場合には、微孔性膜の力学的強度が大きく落ち込み、リチウム樹枝状結晶によって容易に破壊されて短絡を起こし、また電池に安全性の問題を惹き起こすこととなる。対照的に、微孔性膜の背面の孔径はより小さく、その平均値は50〜99nmとし得る。それが良好な力学的性質を保証し、リチウム樹枝状結晶の破壊による短絡を防止し、それによって電池の安全性能を改善する。一方、当該より小さな孔径は自己放電速度を遅くし、良好な自己放電性能をもたらす。背面の平均孔径が50nm未満である場合は、ミクロ微孔性膜の通気性が大きく低下し、内部抵抗は上昇するが、その結果、電池のサイクル性能が低下し、電池の実働性能が著しく劣化することとなる。   The microporous membrane of the present invention has a larger pore diameter on the front surface, and the average value can be 100 to 200 nm. Such average pore size ensures good air permeability. If this average pore diameter exceeds 200 nm, the mechanical strength of the microporous membrane is greatly reduced, it is easily destroyed by lithium dendrites, causing a short circuit, and causing a safety problem for the battery. . In contrast, the pore size on the back of the microporous membrane is smaller, and its average value can be 50-99 nm. It ensures good mechanical properties and prevents short circuit due to lithium dendrite breakdown, thereby improving the safety performance of the battery. On the other hand, the smaller pore size slows the self-discharge rate and provides good self-discharge performance. When the average pore diameter on the back surface is less than 50 nm, the air permeability of the microporous film is greatly reduced and the internal resistance is increased, but as a result, the cycle performance of the battery is lowered, and the working performance of the battery is remarkably deteriorated. Will be.

本発明において、孔径分布はGB/T21650.1−2008/ISO15901−1:2006の基準に従い水銀貫入法により測定する。最大孔径と最小孔径はデータ処理によりシミュレートした関連図形から得られる。本明細書にて使用される孔径分布は、最大孔径もしくは最小孔径と平均孔径との間の差を平均孔径で割ることにより得られるパーセント値であるが、この値は以下の等式により計算される:
孔径分布=(最大孔径−平均孔径)/平均孔径×100%;または
孔径分布=(平均孔径−最小孔径)/平均孔径×100%。
In the present invention, the pore size distribution is measured by a mercury penetration method according to the standard of GB / T21650.1-2008 / ISO15901-1: 2006. The maximum pore size and the minimum pore size are obtained from the related figures simulated by data processing. The pore size distribution used herein is a percentage value obtained by dividing the maximum pore size or the difference between the minimum pore size and the average pore size by the average pore size, which is calculated by the following equation: R:
Pore size distribution = (maximum pore size−average pore size) / average pore size × 100%; or pore size distribution = (average pore size−minimum pore size) / average pore size × 100%.

本発明の微孔性膜の前面および背面のそれぞれは、孔径分布が30%未満、好ましくは20%未満、最も好ましくは10%未満である。該微孔性膜は均一な孔径分布を有するので、電池の動作における電流コンシステンシーが良好であり、良好な電池の性質を維持するために役立つ。孔径分布が30%を超えるか、またはさらにより高い場合には、電池中に非常に大きな電流が局部的に流れ、その結果、電池の安全性能とサイクル性能に影響を与える。   Each of the front and back surfaces of the microporous membrane of the present invention has a pore size distribution of less than 30%, preferably less than 20%, and most preferably less than 10%. Since the microporous membrane has a uniform pore size distribution, it has good current consistency in battery operation and helps maintain good battery properties. If the pore size distribution is greater than 30% or even higher, a very large current flows locally in the battery, resulting in an impact on the safety and cycle performance of the battery.

本発明の微孔性膜は、前面の平均孔径と背面の平均孔径との比が(1.1〜4.0):1であり、この比が該膜に十分な力学的強度と良好な通気性の両方を付与する。2つの面の間の平均孔径の比が1.1:1未満である場合、その間の孔径差は本発明の良好な性能の要件を満足させるために十分でなくなる。しかし、2つの面の間の平均孔径比が4.0:1を超えると、その間の孔径差が大きすぎて、微孔性膜の耐熱性の不均一と崩壊を惹き起し、本発明の目的が達成し得なくなる。   In the microporous membrane of the present invention, the ratio of the average pore diameter on the front surface to the average pore diameter on the back surface is (1.1 to 4.0): 1, and this ratio is sufficient in mechanical strength and good for the membrane. Gives both breathability. If the ratio of average pore sizes between the two faces is less than 1.1: 1, the pore size difference between them will not be sufficient to meet the good performance requirements of the present invention. However, if the average pore size ratio between the two surfaces exceeds 4.0: 1, the pore size difference between them is too large, causing non-uniformity and collapse of the heat resistance of the microporous membrane. The objective cannot be achieved.

本発明の微孔性膜は、5〜30μmの厚さをもつ。膜の厚さが5μm未満であると、電池の製造において外部からのストレスに対する抵抗性が乏しくなり、同様に電池の充電と放電プロセスに際して形成される樹枝状結晶によるセパレーターの破壊が起こり得るため、電池の安全性が確保できない。しかし、膜の厚さが30μmを超えると、膜の透過性が低下し、電池の厚さと重量が増大する。   The microporous membrane of the present invention has a thickness of 5-30 μm. When the thickness of the film is less than 5 μm, resistance to external stress is poor in battery production, and similarly, the separator can be destroyed by dendritic crystals formed during the battery charging and discharging process. Battery safety cannot be ensured. However, if the thickness of the membrane exceeds 30 μm, the permeability of the membrane decreases, and the thickness and weight of the battery increase.

本発明のポリエチレン微孔性膜は、35〜60%の多孔度をもつ。多孔度が35%未満である場合、膜の透過性が不十分となり、また内部抵抗性が上昇して、その結果、電池の性質が劣化することとなる。しかし、多孔度が60%を超えると、細孔が大きすぎる。それ故、膜の力学的強度が低下し、短絡発生の危険性が増すかも知れず、また電池の安定性と安全性能が保証できなくなる。   The polyethylene microporous membrane of the present invention has a porosity of 35-60%. When the porosity is less than 35%, the permeability of the membrane is insufficient, and the internal resistance is increased. As a result, the properties of the battery are deteriorated. However, if the porosity exceeds 60%, the pores are too large. Therefore, the mechanical strength of the membrane may be reduced, the risk of occurrence of a short circuit may be increased, and the stability and safety performance of the battery cannot be guaranteed.

本発明のポリエチレン微孔性膜は、50〜350s/100mlの通気性をもつ。通気性が350s/100mlを超えると、透過性が良くなくなり、膜の電気的性質が劣化する。しかし、通気性が50s/100ml未満であると、膜の細孔が大きすぎて短絡が起こり得るため、電池の安全性能が保証できなくなる。   The polyethylene microporous membrane of the present invention has an air permeability of 50 to 350 s / 100 ml. When the air permeability exceeds 350 s / 100 ml, the permeability is not good, and the electrical properties of the film are deteriorated. However, if the air permeability is less than 50 s / 100 ml, the membrane pores are too large and a short circuit may occur, so the safety performance of the battery cannot be guaranteed.

本発明のポリエチレン微孔性膜は、4〜10N/20μmの破壊強度を有し、電池の製造と使用に際して起こり得る外部からの衝撃に対し、電池に高い抵抗性を持つようにすることで、電池の安全性能を確かなものとする。   The polyethylene microporous membrane of the present invention has a breaking strength of 4 to 10 N / 20 μm, and has high resistance to the battery against external impact that may occur during battery manufacture and use. Ensure the safety performance of the battery.

要約すると、本発明のポリエチレン微孔性膜は、前面と背面が非対称の構造をもち、その場合、前面の細孔がより大きい100〜200nmの平均孔径を有し、他方、背面の細孔がより小さい50〜100nmの平均孔径を有する。前面と背面の間の平均孔径比A:Bは(1.1〜4.0):1であり、前面と背面それぞれの孔径分布は30%未満である。該微孔性膜は、5〜30μmの厚さ、35〜60%の多孔度、50〜350s/100mlの通気性および4〜10N/20μmの破壊強度を有する。   In summary, the polyethylene microporous membrane of the present invention has an asymmetric structure on the front and back, in which case the front pores have a larger average pore diameter of 100-200 nm, while the back pores It has a smaller average pore size of 50-100 nm. The average pore size ratio A: B between the front surface and the back surface is (1.1 to 4.0): 1, and the pore size distribution on each of the front surface and the back surface is less than 30%. The microporous membrane has a thickness of 5-30 μm, a porosity of 35-60%, an air permeability of 50-350 s / 100 ml and a breaking strength of 4-10 N / 20 μm.

2.ポリエチレン微孔性膜の製造法
2.1.原材料と工程パラメータの説明
本発明で使用されるポリエチレン樹脂は特に限定されるものではない。単一の樹脂が主として使用されるが、2種以上の樹脂を組み合わせて使用してもよい。
2. Production method of polyethylene microporous membrane 2.1. Description of raw materials and process parameters The polyethylene resin used in the present invention is not particularly limited. A single resin is mainly used, but two or more resins may be used in combination.

本発明にて使用されるポリエチレン樹脂の重量平均分子量は特に限定されるものではないが、一般に、10,000〜5,000,000、好ましくは100,000〜3,000,000、より好ましくは300,000〜2,000,000である。   The weight average molecular weight of the polyethylene resin used in the present invention is not particularly limited, but is generally 10,000 to 5,000,000, preferably 100,000 to 3,000,000, more preferably 300,000 to 2,000,000.

本発明にて使用される増孔剤は特に限定されるものではないが、主としてポリオレフィン樹脂に細孔を形成し得る溶媒、例えば、流動パラフィン、固形パラフィン、フタル酸ジオクチル、フタル酸ジブチルなどである。該増孔剤は単独でまたはそのタイプの2種以上を組み合わせて使用し得る。流動パラフィンおよびフタル酸ジオクチルが好適である。   The pore-forming agent used in the present invention is not particularly limited, but is mainly a solvent capable of forming pores in the polyolefin resin, for example, liquid paraffin, solid paraffin, dioctyl phthalate, dibutyl phthalate, etc. . The pore-forming agent can be used alone or in combination of two or more of the types. Liquid paraffin and dioctyl phthalate are preferred.

本発明にて使用される抽出剤は特に限定されるものではないが、主としてジクロロメタン、n−ヘプタン、n−デカンまたはエタノールである。これらの中では、ジクロロメタンが好適である。   The extractant used in the present invention is not particularly limited, but is mainly dichloromethane, n-heptane, n-decane or ethanol. Of these, dichloromethane is preferred.

抗酸化剤、橋かけ剤、核生成剤、熱安定化剤、潤滑剤などの添加剤は本発明において特に限定されないが、常套的に使用される添加剤が使用され得る。   Additives such as antioxidants, crosslinking agents, nucleating agents, heat stabilizers, lubricants and the like are not particularly limited in the present invention, but conventionally used additives may be used.

本発明にて使用される二軸性延伸プロセスは特に限定されないが、同期二軸性延伸または非同期二軸性延伸が可能である。   The biaxial stretching process used in the present invention is not particularly limited, and synchronous biaxial stretching or asynchronous biaxial stretching is possible.

本発明のポリエチレン微孔性膜の調製に適用されるプロセスパラメータは、特に限定されるものではない。融解温度、押し出し温度、冷却ロール温度、延伸温度、延伸速度、抽出温度、抽出速度、ヒートセット温度、ヒートセット速度、空気温度、空気流および空気圧など、ポリエチレン微孔性膜の湿式調製プロセスの要件を満足する常套のパラメータが使用され得る。   The process parameters applied to the preparation of the polyethylene microporous membrane of the present invention are not particularly limited. Requirements for wet preparation process of polyethylene microporous membranes including melting temperature, extrusion temperature, chill roll temperature, stretching temperature, stretching speed, extraction temperature, extraction speed, heat set temperature, heat set speed, air temperature, air flow and air pressure Conventional parameters that satisfy can be used.

2.2.ポリエチレン微孔性膜の製造法
ポリエチレン微孔性膜は、実質的に以下の4つの工程:シート注型、延伸、抽出およびヒートセッティングからなる湿式プロセスにより調製される。ここでは延伸工程がポリエチレン分子鎖の方向付けに最も重要な工程であり、微孔性膜生産の中心的工程である。本工程においては、厚いシートが融点以下で、ガラス転移温度以上の高弾性状態で外部から加えられた力により引き伸ばされ、その外力の方向に方向付けられる。それによって、製品の適用性能が変更され、そして改善される。引き伸ばされた油含有薄膜の分子鎖は縦方向と横方向の両方に方向付けられ、増孔剤は方向付けられた分子鎖内に均一に分布して、特別の水−油混合構造を形成する。
2.2. Method for Producing Polyethylene Microporous Membrane The polyethylene microporous membrane is prepared by a wet process which consists essentially of the following four steps: sheet casting, stretching, extraction and heat setting. Here, the stretching process is the most important process for the orientation of polyethylene molecular chains, and is the central process for producing microporous membranes. In this step, a thick sheet is stretched by a force applied from the outside in a highly elastic state having a melting point or lower and a glass transition temperature or higher, and is directed in the direction of the external force. Thereby, the application performance of the product is changed and improved. The stretched oil-containing thin film molecular chains are oriented in both the longitudinal and transverse directions, and the pore-forming agent is evenly distributed within the oriented molecular chains to form a special water-oil mixed structure. .

延伸プロセスに影響を及ぼす主たるファクターは、延伸比、延伸速度および延伸温度などである。同じ装置の場合、延伸比と延伸速度が延伸プロセスの間一定である条件においては、より高温の延伸温度が油含有薄膜上に大きめの細孔を形成し、抽出後の孔径をより大きく形成して、その結果、膜の通気性を良好なものとする。一方、延伸温度が比較的低い場合、油膜上に形成される細孔はより小さくなり、抽出後の孔径がより小さくなって、その結果、膜の力学的性質が良好となる。ストレッチャー内部では、チャンバーが、分割線としての油含有薄膜によって、事実上2つの部分、すなわち、上部チャンバーと下部チャンバーに別けられている。2つの部分が同じ温度をもつ場合、均一のミクロ構造をもつ微孔性膜が、細孔形成条件が同じであるとして形成される。2つの部分の温度が異なるように制御されている場合、すなわち、2つの部分間で温度が異なる場合、異なるミクロ構造をもつ微孔性膜が、細孔形成条件が異なるものとして形成される。   The main factors affecting the stretching process are the stretching ratio, stretching speed and stretching temperature. In the case of the same apparatus, under conditions where the draw ratio and draw speed are constant during the drawing process, a higher drawing temperature will form larger pores on the oil-containing thin film and a larger pore size after extraction. As a result, the air permeability of the membrane is improved. On the other hand, when the stretching temperature is relatively low, the pores formed on the oil film become smaller and the pore diameter after extraction becomes smaller, and as a result, the mechanical properties of the film become better. Inside the stretcher, the chamber is effectively divided into two parts, an upper chamber and a lower chamber, by an oil-containing film as a dividing line. If the two parts have the same temperature, a microporous membrane with a uniform microstructure is formed with the same pore formation conditions. When the temperatures of the two portions are controlled to be different, that is, when the temperatures are different between the two portions, microporous membranes having different microstructures are formed with different pore formation conditions.

本発明においては、上部チャンバーの延伸温度を117〜127℃、好ましくは120〜125℃とし、下部チャンバーの延伸温度を110〜120℃、好ましくは115〜119℃とし得る。上部チャンバーと下部チャンバーの温度差は1〜10℃となるように制御して、2つの面のミクロ構造が異なる微孔性膜を得る。温度差が1℃未満である場合、微孔性膜の2つの面のミクロ構造は、細孔形成条件が類似していために、互いにあまり相違がなく、本発明の目的が達成できない。他方、温度差が10℃より大きい場合、2つの面上のミクロ構造は、細孔形成条件が大きく異なる場合と同様、延伸比と延伸速度が互いに有意に異なり、微孔性膜の耐熱性の不均一化と退化を惹き起こして、本発明の目的を達成することができない。総体としてすぐれた性能を示すポリエチレン微孔性膜を得るための本発明における温度差は、好ましくは2〜8℃、最も好ましくは3〜5℃である。   In the present invention, the stretching temperature of the upper chamber can be 117 to 127 ° C, preferably 120 to 125 ° C, and the stretching temperature of the lower chamber can be 110 to 120 ° C, preferably 115 to 119 ° C. By controlling the temperature difference between the upper chamber and the lower chamber to be 1 to 10 ° C., microporous membranes having different microstructures on the two surfaces are obtained. When the temperature difference is less than 1 ° C., the microstructures of the two surfaces of the microporous membrane are not so different from each other because the pore formation conditions are similar, and the object of the present invention cannot be achieved. On the other hand, when the temperature difference is larger than 10 ° C., the microstructure on the two surfaces is significantly different in stretching ratio and stretching speed from each other as in the case where the pore formation conditions are greatly different, and the heat resistance of the microporous membrane Unevenness and degeneration can be caused and the object of the present invention cannot be achieved. The temperature difference in the present invention for obtaining a polyethylene microporous membrane exhibiting excellent overall performance is preferably 2-8 ° C, most preferably 3-5 ° C.

本発明における延伸比は、10〜50、好ましくは20〜40である。   The draw ratio in the present invention is 10 to 50, preferably 20 to 40.

本発明の製造法により得られるポリエチレン微孔性膜は、前面と背面で非対称の構造を有し、その場合の前面の細孔が大きくてその平均孔径が100〜200nmであり、一方、背面の細孔はより小さくてその平均孔径が50〜100nmである。前面と背面の間の平均孔径比A:Bは(1.1〜4.0):1であり、前面と背面それぞれの孔径分布は30%未満である。該微孔性膜は5〜30μmの厚さ、35〜60%の多孔度、50〜350s/100mlの通気性および4〜10N/20μmの破壊強度を有する。   The polyethylene microporous membrane obtained by the production method of the present invention has an asymmetric structure between the front surface and the back surface, in which the front surface has large pores and an average pore size of 100 to 200 nm, The pores are smaller and their average pore size is 50-100 nm. The average pore size ratio A: B between the front surface and the back surface is (1.1 to 4.0): 1, and the pore size distribution on each of the front surface and the back surface is less than 30%. The microporous membrane has a thickness of 5-30 μm, a porosity of 35-60%, a gas permeability of 50-350 s / 100 ml and a breaking strength of 4-10 N / 20 μm.

3.リチウム−イオン電池の製造法
上記のように調製されたポリエチレン微孔性膜は電池のサイズ必要条件に従ってカットされ、次いでリチウム・リン酸第一鉄/黒鉛電池を製造すると同様に組立てられる;その場合、微孔性膜の前面は電池の陽極に接近させ、背面は電池の陰極に接近させる。
3. Method for Manufacturing a Lithium-Ion Battery The polyethylene microporous membrane prepared as described above is cut according to battery size requirements and then assembled in the same manner as lithium lithium ferrous phosphate / graphite batteries are manufactured; The front of the microporous membrane is brought closer to the battery anode and the back is brought closer to the battery cathode.

当該微孔性膜をリチウム−イオン電池に使用する場合、微孔性膜の前面は電池の陽極に接近させる。前面の孔径がより大きいので、電池の内部抵抗は低くなり、抵抗力が小さくなる;その結果、イオン浸透性が良好となり、電池サイクル性能がすぐれたものとなって、高速放電時の容量保持率が高くなる。一方、膜の背面は電池の陰極に接近している。孔径がより小さいので、内部抵抗がより大きくなり、自己放電プロセスの間のLi−イオン移動速度が遅くなる。このことは、電池に良好な自己放電性能をもたせ、セパレーターの破壊抵抗性を改善し、それによってリチウム樹枝状結晶の破壊による短絡を防止する。   When the microporous membrane is used in a lithium-ion battery, the front surface of the microporous membrane is brought close to the battery anode. Since the front hole diameter is larger, the internal resistance of the battery is lower and the resistance is lower; as a result, the ion permeability is better, the battery cycle performance is better, and the capacity retention rate at high speed discharge Becomes higher. On the other hand, the back of the membrane is close to the cathode of the battery. Since the pore size is smaller, the internal resistance is greater and the Li-ion transfer rate is slower during the self-discharge process. This gives the battery good self-discharge performance and improves the separator's fracture resistance, thereby preventing short circuits due to lithium dendrite destruction.

本発明により調製された微孔性膜を用いるリチウム−イオン電池は、良好な放電性能のみならず、良好な自己放電性能をも有する。   The lithium-ion battery using the microporous membrane prepared according to the present invention has not only good discharge performance but also good self-discharge performance.

以下に実施例を参照しながら本発明をさらに詳細に説明する。
<実施例1>
Hereinafter, the present invention will be described in more detail with reference to examples.
<Example 1>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は500,000であり、流動パラフィンの粘度等級は40であり、ポリエチレン樹脂と流動パラフィンの質量比は1:3であり、融解温度は200℃であり、冷却ロールの温度は30℃であった。   (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the obtained thick sheet, the weight average molecular weight of the polyethylene resin is 500,000, the viscosity grade of liquid paraffin is 40, the mass ratio of polyethylene resin and liquid paraffin is 1: 3, and the melting temperature is 200 ° C. The temperature of the cooling roll was 30 ° C.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を120℃とし、下部チャンバーの延伸温度を115℃とし、上部と下部チャンバー間の温度差を5℃とした。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 120 ° C., and the stretching temperature of the lower chamber was 115 ° C. The temperature difference between the upper and lower chambers was 5 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を125℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 125 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表1に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 1.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表1に示す。
<実施例2>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 1.
<Example 2>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は1,000,000であり、流動パラフィンの粘度等級は50であり、ポリエチレン樹脂と流動パラフィンの質量比は1:4であり、融解温度は200℃であり、冷却ロールの温度は30℃であった。   (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the resulting thick sheet, the weight average molecular weight of the polyethylene resin is 1,000,000, the viscosity grade of liquid paraffin is 50, the mass ratio of polyethylene resin to liquid paraffin is 1: 4, and the melting temperature is It was 200 degreeC and the temperature of the cooling roll was 30 degreeC.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を125℃とし、下部チャンバーの延伸温度を115℃とし、上部と下部チャンバー間の温度差を10℃とした。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 125 ° C and the stretching temperature of the lower chamber was 115 ° C. The temperature difference between the upper and lower chambers was 10 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を128℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 128 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表1に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 1.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表1に示す。
<実施例3>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 1.
<Example 3>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は500,000であり、流動パラフィンの粘度等級は40であり、ポリエチレン樹脂と流動パラフィンの質量比は1:3であり、融解温度は210℃であり、冷却ロールの温度は30℃であった。   (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the obtained thick sheet, the weight average molecular weight of the polyethylene resin is 500,000, the viscosity grade of liquid paraffin is 40, the mass ratio of polyethylene resin and liquid paraffin is 1: 3, and the melting temperature is 210 ° C. The temperature of the cooling roll was 30 ° C.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を120℃とし、下部チャンバーの延伸温度を119℃とし、上部と下部チャンバー間の温度差を1℃とした。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 120 ° C., and the stretching temperature of the lower chamber was 119 ° C. The temperature difference between the upper and lower chambers was 1 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を125℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 125 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表1に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 1.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表1に示す。
<実施例4>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 1.
<Example 4>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は1,000,000であり、流動パラフィンの粘度等級は50であり、ポリエチレン樹脂と流動パラフィンの質量比は1:3であり、融解温度は200℃であり、冷却ロールの温度は30℃であった。 (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the obtained thick sheet, the weight average molecular weight of the polyethylene resin is 1,000,000, the viscosity grade of liquid paraffin is 50, the mass ratio of polyethylene resin and liquid paraffin is 1: 3, and the melting temperature is It was 200 degreeC and the temperature of the cooling roll was 30 degreeC.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を122℃とし、下部チャンバーの延伸温度を119℃とし、上部と下部チャンバー間の温度差を3℃とした。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 122 ° C., and the stretching temperature of the lower chamber was 119 ° C. The temperature difference between the upper and lower chambers was 3 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を128℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 128 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表1に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 1.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表1に示す。
<実施例5>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 1.
<Example 5>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂1の重量平均分子量は2,000,000であり、ポリエチレン樹脂2の重量平均分子量は500,000であった;ポリエチレン樹脂1とポリエチレン樹脂2の質量比は7:3であった;流動パラフィンの粘度等級は70であった;ポリエチレン樹脂混合物と流動パラフィンの質量比は1:4であった;融解温度は220℃であり、冷却ロールの温度は30℃であった。   (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the obtained thick sheet, the weight average molecular weight of polyethylene resin 1 was 2,000,000, and the weight average molecular weight of polyethylene resin 2 was 500,000; the mass ratio of polyethylene resin 1 and polyethylene resin 2 was 7 The viscosity grade of liquid paraffin was 70; the mass ratio of the polyethylene resin mixture and liquid paraffin was 1: 4; the melting temperature was 220 ° C., and the temperature of the chill roll was 30 ° C. there were.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を123℃とし、下部チャンバーの延伸温度を115℃とし、上部と下部チャンバー間の温度差を8℃とした。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 123 ° C., and the stretching temperature of the lower chamber was 115 ° C. The temperature difference between the upper and lower chambers was 8 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を130℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 130 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表1に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 1.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表1に示す。
<比較例1>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 1.
<Comparative Example 1>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は500,000であり、流動パラフィンの粘度等級は40であり、ポリエチレン樹脂と流動パラフィンの質量比は1:3であり、融解温度は200℃であり、冷却ロールの温度は30℃であった。 (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the obtained thick sheet, the weight average molecular weight of the polyethylene resin is 500,000, the viscosity grade of liquid paraffin is 40, the mass ratio of polyethylene resin and liquid paraffin is 1: 3, and the melting temperature is 200 ° C. The temperature of the cooling roll was 30 ° C.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を120℃とし、下部チャンバーの延伸温度を120℃とし、上部と下部チャンバー間の温度差は0℃であった。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 120 ° C., and the stretching temperature of the lower chamber was 120 ° C. The temperature difference between the upper and lower chambers was 0 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を125℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 125 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表2に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 2.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表2に示す。
<比較例2>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 2.
<Comparative Example 2>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は1,000,000であり、流動パラフィンの粘度等級は50であり、ポリエチレン樹脂と流動パラフィンの質量比は1:4であり、融解温度は210℃であり、冷却ロールの温度は30℃であった。   (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the resulting thick sheet, the weight average molecular weight of the polyethylene resin is 1,000,000, the viscosity grade of liquid paraffin is 50, the mass ratio of polyethylene resin to liquid paraffin is 1: 4, and the melting temperature is It was 210 degreeC and the temperature of the cooling roll was 30 degreeC.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を125℃とし、下部チャンバーの延伸温度を125℃とし、上部と下部チャンバー間の温度差は0℃であった。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 125 ° C., and the stretching temperature of the lower chamber was 125 ° C. The temperature difference between the upper and lower chambers was 0 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を128℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 128 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表2に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 2.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表2に示す。
<比較例3>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 2.
<Comparative Example 3>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は500,000であり、流動パラフィンの粘度等級は40であり、ポリエチレン樹脂と流動パラフィンの質量比は1:2であり、融解温度は200℃であり、冷却ロールの温度は30℃であった。   (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the resulting thick sheet, the weight average molecular weight of the polyethylene resin is 500,000, the viscosity grade of liquid paraffin is 40, the mass ratio of polyethylene resin and liquid paraffin is 1: 2, and the melting temperature is 200 ° C. The temperature of the cooling roll was 30 ° C.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を115℃とし、下部チャンバーの延伸温度を115℃とし、上部と下部チャンバー間の温度差は0℃であった。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 115 ° C., and the stretching temperature of the lower chamber was 115 ° C. The temperature difference between the upper and lower chambers was 0 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を125℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 125 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表2に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 2.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表2に示す。
<比較例4>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 2.
<Comparative example 4>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂の重量平均分子量は1,000,000であり、流動パラフィンの粘度等級は50であり、ポリエチレン樹脂と流動パラフィンの質量比は1:3であり、融解温度は210℃であり、冷却ロールの温度は30℃であった。   (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the obtained thick sheet, the weight average molecular weight of the polyethylene resin is 1,000,000, the viscosity grade of liquid paraffin is 50, the mass ratio of polyethylene resin and liquid paraffin is 1: 3, and the melting temperature is It was 210 degreeC and the temperature of the cooling roll was 30 degreeC.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を122℃とし、下部チャンバーの延伸温度を122℃とし、上部と下部チャンバー間の温度差は0℃であった。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 122 ° C., and the stretching temperature of the lower chamber was 122 ° C. The temperature difference between the upper and lower chambers was 0 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色微孔性膜を128℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white microporous membrane was subjected to a heat setting treatment at 128 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表2に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 2.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表2に示す。
<比較例5>
(5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 2.
<Comparative Example 5>

(1)注型シートの押出し:ツインスクリュー押出機にポリエチレン樹脂と流動パラフィンを注入し、ツインスクリュー押出機中で溶融混練して均一溶融物とした。次いで、溶融物をダイヘッドから連続的に押出して急速冷却し、冷却ロールにより成形した。得られた肉厚シートにおけるポリエチレン樹脂1の重量平均分子量は2,000,000であり、ポリエチレン樹脂2の重量平均分子量は500,000であった;ポリエチレン樹脂1とポリエチレン樹脂2の質量比は7:3であった;流動パラフィンの粘度等級は70であった;ポリエチレン樹脂混合物と流動パラフィンの質量比は1:4であった;融解温度は220℃であり、冷却ロールの温度は30℃であった。 (1) Extrusion of cast sheet: Polyethylene resin and liquid paraffin were poured into a twin screw extruder and melt-kneaded in a twin screw extruder to obtain a uniform melt. Subsequently, the melt was continuously extruded from the die head, rapidly cooled, and formed by a cooling roll. In the obtained thick sheet, the weight average molecular weight of polyethylene resin 1 was 2,000,000, and the weight average molecular weight of polyethylene resin 2 was 500,000; the mass ratio of polyethylene resin 1 and polyethylene resin 2 was 7 The viscosity grade of liquid paraffin was 70; the mass ratio of the polyethylene resin mixture and liquid paraffin was 1: 4; the melting temperature was 220 ° C., and the temperature of the chill roll was 30 ° C. there were.

(2)二軸性延伸:肉厚シートを予加熱後のストレッチャー中で引き伸ばし、油含有薄膜を得た;ここでは、上部チャンバーの延伸温度を123℃とし、下部チャンバーの延伸温度を123℃として、上部と下部チャンバー間の温度差を0℃とした。   (2) Biaxial stretching: A thick sheet was stretched in a preheated stretcher to obtain an oil-containing thin film; here, the stretching temperature of the upper chamber was 123 ° C., and the stretching temperature of the lower chamber was 123 ° C. The temperature difference between the upper and lower chambers was 0 ° C.

(3)抽出:油含有薄膜からジクロロメタンで流動パラフィンを抽出し、ミクロ細孔構造をもつ白色薄膜を形成した。   (3) Extraction: Liquid paraffin was extracted from the oil-containing thin film with dichloromethane to form a white thin film having a microporous structure.

(4)ヒートセット:白色ミクロ微孔性膜を130℃で2分間、ヒートセット処理に付し、非対称構造をもつポリエチレン微孔性膜を得た。   (4) Heat setting: The white micro-microporous membrane was subjected to a heat-setting treatment at 130 ° C. for 2 minutes to obtain a polyethylene microporous membrane having an asymmetric structure.

非対称構造をもつポリエチレン微孔性膜を上記の方法に従って調製し、その物理化学的性質を試験した。試験結果を表2に示す。   A polyethylene microporous membrane with an asymmetric structure was prepared according to the method described above and its physicochemical properties were tested. The test results are shown in Table 2.

(5)上記のように調製したポリエチレン微孔性膜を電池サイズの必要条件に従ってカットし、次いで組立てた;その際、微孔性膜の前面を電池の陽極に接近させ、背面は電池の陰極に接近させた。電池の電気的性質を試験し、試験結果を表2に示す。   (5) The polyethylene microporous membrane prepared as above was cut according to battery size requirements and then assembled; with the front of the microporous membrane approaching the battery anode and the back being the battery cathode Approached. The electrical properties of the battery were tested and the test results are shown in Table 2.

本発明の好適な実施態様について、説明することを目的として開示したが、当業者は添付の特許請求の範囲に開示された範囲と精神に反することなく、種々の改変、追加および変換が可能であることを理解すべきである。   While preferred embodiments of the invention have been disclosed for purposes of illustration, various modifications, additions and changes may be made by those skilled in the art without departing from the scope and spirit disclosed in the appended claims. It should be understood.

本発明におけるセパレーターの性質の測定方法は以下のとおりである:
1.平均孔径:GB/T21650.1−2008/ISO15901−1:2006基準による水銀貫入法により測定される。真空条件下に水銀を試験管に注入し、最大圧227.5MPaをもつ高圧ステーションにて分析した。水銀貫入プロセスに際しては圧力を高めながら標品の細孔に水銀を圧入した。生じた電気信号はデータ処理用センサーを介してコンピュータにインプットし、そうすることによって関連図形をシミュレートし、孔径データを計算した。平均孔径は平均化データ処理により得た。
The method for measuring the properties of the separator in the present invention is as follows:
1. Average pore diameter: GB / T21650.1-2008 / ISO15901-1: Measured by mercury penetration method according to 2006 standard. Mercury was injected into the test tube under vacuum conditions and analyzed at a high pressure station with a maximum pressure of 227.5 MPa. During the mercury intrusion process, mercury was injected into the pores of the specimen while increasing the pressure. The resulting electrical signal was input to a computer via a data processing sensor, thereby simulating the associated graphics and calculating the pore size data. The average pore size was obtained by averaging data processing.

2.孔径分布:GB/T21650.1−2008/ISO15901−1:2006基準による水銀貫入法により測定される。最大孔径と最小孔径はデータ処理によりシミュレートした関連図形から得られる。本明細書にて使用される孔径分布は、最大孔径もしくは最小孔径と平均孔径との間の差を平均孔径で割ることにより得られるパーセント値であるが、この値は以下の等式により計算される:
孔径分布=(最大孔径−平均孔径)/平均孔径×100%;または
孔径分布=(平均孔径−最小孔径)/平均孔径×100%。
2. Pore size distribution: Measured by mercury penetration method according to GB / T21650.1-2008 / ISO 15901-1: 2006 standard. The maximum pore size and the minimum pore size are obtained from the related figures simulated by data processing. The pore size distribution used herein is a percentage value obtained by dividing the maximum pore size or the difference between the minimum pore size and the average pore size by the average pore size, which is calculated by the following equation: R:
Pore size distribution = (maximum pore size−average pore size) / average pore size × 100%; or pore size distribution = (average pore size−minimum pore size) / average pore size × 100%.

3.厚さ:MD方向とTD方向のそれぞれにて採用した10ヶ所以上の厚さをそれぞれ1/1000mm机上型隙間ゲージを用いて測定し、その平均値を計算して膜厚を表示した。   3. Thickness: 10 or more thicknesses employed in each of the MD direction and the TD direction were measured using a 1/1000 mm desktop gap gauge, and the average value was calculated to display the film thickness.

4.多孔度:100mm×100mmの四角い標品を微孔性膜から切り取り、その実質量Wを測定した。次いで、多孔度が0%の標品の質量Wを樹脂組成物の密度と厚さに基づき計算し、以下の式により多孔度を決定した:
多孔度=(W−W)/W×100
4). Porosity: A square sample of 100 mm × 100 mm was cut out from the microporous membrane, and its substantial amount W 1 was measured. Subsequently, the mass W 0 of the standard with a porosity of 0% was calculated based on the density and thickness of the resin composition, and the porosity was determined by the following formula:
Porosity = (W 0 −W 1 ) / W 0 × 100

5.通気性:JIS規格P8117に従い、ガーレー(Gurley)通気性計器を用いて、大気圧にて25℃で通気性を測定した。   5. Breathability: Breathability was measured at 25 ° C. at atmospheric pressure using a Gurley breathability meter in accordance with JIS standard P8117.

6.破壊強度:直径1.0mmと曲率半径0.5mmの針先を万能引張機に取り付け、針先を120mm/分の速度でセパレーターに貫通させ、そのときの破壊強度を23℃で測定した。   6). Breaking strength: A needle tip having a diameter of 1.0 mm and a radius of curvature of 0.5 mm was attached to a universal tension machine, and the needle tip was passed through a separator at a speed of 120 mm / min, and the breaking strength at that time was measured at 23 ° C.

7.ミクロ構造:走査電子顕微鏡を用いて膜を観察し、ミクロ構造の写真を撮る。   7). Microstructure: Observe the film using a scanning electron microscope and take a picture of the microstructure.

8.内部抵抗:BT−2000電気化学テスターを用いて電気的性質を試験する。   8). Internal resistance: Electrical properties are tested using a BT-2000 electrochemical tester.

9.高速放電性能:“リチウム−イオン電池の試験用共通仕様書”に記載された方法に従い、標準的な外界条件において、1.0Cの定電流で4.2Vに電池を充電し、次いで3.0Cの電流で3.0Vまで放電した。   9. Fast discharge performance: According to the method described in “Common Test for Lithium-Ion Battery Testing”, the battery is charged to 4.2 V with a constant current of 1.0 C and then 3.0 C under standard ambient conditions. The battery was discharged to 3.0 V with a current of.

10.自己放電性能:標準的な外界条件において、電池を定電流と定電圧で充電して1.0Cの電流で4.2Vとし、次いで、静置の30日後に、“リチウム−イオン電池の試験用共通仕様書”に記載された方法に従い、残留容量を試験した。   10. Self-discharge performance: Under standard ambient conditions, the battery is charged at a constant current and a constant voltage to a current of 1.0 C to 4.2 V, and after 30 days of standing, “for testing lithium-ion batteries Residual capacity was tested according to the method described in “Common Specifications”.

11.サイクル性能:“リチウム−イオン電池の試験用共通仕様書”に記載された方法に従い、標準的な外界条件において、電池を定電流と定電圧で充電して1.0Cの電流で4.2Vとし、1.0Cの電流で3.0Vまで放電した。上記の工程は300回サイクルさせ、残留容量を試験した。   11. Cycle performance: According to the method described in “Common Test for Lithium-Ion Battery Tests”, the battery is charged at a constant current and a constant voltage to 4.2 V at a current of 1.0 C under standard external conditions. The battery was discharged to 3.0 V with a current of 1.0 C. The above process was cycled 300 times to test the residual capacity.

略語:
MD:機械方向;縦方向
TD:横方向

Abbreviations:
MD: machine direction; vertical direction TD: horizontal direction

Claims (6)

前面および背面を有するポリエチレン微孔性膜であって、該微孔性膜の前面のミクロ細孔が背面のミクロ細孔とは異なる平均孔径を有し、その場合の前面のミクロ細孔の平均孔径が100〜200nmであり、背面のミクロ細孔の平均孔径が50〜100nmであり、前面のミクロ細孔の平均孔径と背面のミクロ細孔の平均孔径との比が(1.1〜4.0):1であり、前面と背面それぞれの孔径分布が30%未満であることを特徴とするポリエチレン微孔性膜。   A polyethylene microporous membrane having a front surface and a back surface, wherein the micropores on the front surface of the microporous membrane have an average pore diameter different from the micropores on the back surface, in which case the average of the micropores on the front surface The pore diameter is 100 to 200 nm, the average pore diameter of the back micropores is 50 to 100 nm, and the ratio of the average pore diameter of the front micropores to the average pore diameter of the back micropores is (1.1 to 4). 0.0): 1, a polyethylene microporous membrane characterized in that the pore size distribution on each of the front and back surfaces is less than 30%. 前面のミクロ細孔の平均孔径が120〜180nmであり、背面のミクロ細孔の平均孔径が60〜80nmであり、前面のミクロ細孔の平均孔径と背面のミクロ細孔の平均孔径との比が(1.5〜3.0):1であり、前面と背面それぞれの孔径分布が20%未満であることを特徴とする請求項1に記載のポリエチレン微孔性膜。   The average pore diameter of the front micropores is 120 to 180 nm, the average pore diameter of the back micropores is 60 to 80 nm, and the ratio between the average pore diameter of the front micropores and the average pore diameter of the back micropores The polyethylene microporous membrane according to claim 1, wherein (1.5 to 3.0): 1 and the pore size distribution on each of the front surface and the back surface is less than 20%. 該微孔性膜が5〜30μmの厚さ、35〜60%の多孔度、50〜350s/100mlの通気性および4〜10N/20μmの破壊強度を有することを特徴とする請求項1に記載のポリエチレン微孔性膜。   2. The microporous membrane having a thickness of 5 to 30 [mu] m, a porosity of 35 to 60%, a gas permeability of 50 to 350 s / 100 ml, and a breaking strength of 4 to 10 N / 20 [mu] m. Polyethylene microporous membrane. 以下の工程を含んでなることを特徴とする請求項1ないし3のいずれか1項に記載のポリエチレン微孔性膜の製造方法:
(1)シート注型:ポリエチレン樹脂と増孔剤とをツインスクリュー押出機に加え、溶融混練を実施し;ダイヘッドから押し出して急速冷却し、厚肉シートに鋳込む工程;
(2)厚肉シートをストレッチャーに導入して同期または非同期二軸性延伸を実施し;ストレッチャーの上部および下部チャンバーにて延伸温度を制御して、ストレッチャーの上部と下部チャンバー間の温度差を1〜10℃に維持し、油含有薄膜を調製する工程;
(3)油含有薄膜を溶媒で抽出して増孔剤を除去し、白色微孔性膜を形成する工程;および
(4)白色微孔性膜をヒートセット処理に付し、その前面と背面に異なる平均孔径を有するポリエチレン微孔性膜を得る工程。
The method for producing a polyethylene microporous membrane according to any one of claims 1 to 3, comprising the following steps:
(1) Sheet casting: adding polyethylene resin and a pore-increasing agent to a twin screw extruder, performing melt kneading; extruding from a die head, rapidly cooling, and casting into a thick sheet;
(2) A thick sheet is introduced into the stretcher to perform synchronous or asynchronous biaxial stretching; the temperature between the upper and lower chambers of the stretcher is controlled by controlling the stretching temperature in the upper and lower chambers of the stretcher. Maintaining the difference at 1-10 ° C. and preparing an oil-containing thin film;
(3) extracting the oil-containing thin film with a solvent to remove the pore-forming agent and forming a white microporous film; and (4) subjecting the white microporous film to a heat setting treatment, its front and back surfaces. A step of obtaining a polyethylene microporous membrane having different average pore sizes.
該微孔性膜の前面を電池の陽極に接近させ、微孔性膜の背面を電池の陰極に接近させた請求項1〜3のいずれか1項に記載のポリエチレン微孔性膜を含むことを特徴とするリチウム−イオン電池。   The polyethylene microporous membrane according to any one of claims 1 to 3, comprising the front surface of the microporous membrane approaching the battery anode and the back surface of the microporous membrane approaching the battery cathode. A lithium-ion battery. 3C速度で放電したときの容量保持率が80%を超え、自己放電30日後の残留容量が90%を超えることを特徴とする請求項5に記載のリチウム−イオン電池。   6. The lithium-ion battery according to claim 5, wherein the capacity retention rate when discharged at a 3C rate exceeds 80% and the residual capacity after 30 days of self-discharge exceeds 90%.
JP2015209871A 2014-10-27 2015-10-26 Polyethylene microporous membrane, process for producing the same and lithium-ion battery Active JP6225974B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410586114.9 2014-10-27
CN201410586114.9A CN104362276B (en) 2014-10-27 2014-10-27 A kind of polyethene microporous membrane, preparation method and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2016085980A true JP2016085980A (en) 2016-05-19
JP6225974B2 JP6225974B2 (en) 2017-11-08

Family

ID=52529519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209871A Active JP6225974B2 (en) 2014-10-27 2015-10-26 Polyethylene microporous membrane, process for producing the same and lithium-ion battery

Country Status (3)

Country Link
JP (1) JP6225974B2 (en)
KR (1) KR20160049492A (en)
CN (1) CN104362276B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164055A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Polyolefin microporous membrane
CN110048054A (en) * 2018-01-16 2019-07-23 溧阳月泉电能源有限公司 A kind of production method and system of Rapid Extraction oil-containing substrate
WO2021098110A1 (en) * 2019-11-19 2021-05-27 青岛蓝科途膜材料有限公司 Device and method for preparing high-strength high-modulus polyolefin thin film, and high-strength high-modulus polyolefin thin film

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213506B2 (en) * 2015-03-18 2017-10-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US20170222205A1 (en) * 2016-01-29 2017-08-03 Celgard, Llc Separators, batteries, systems, vehicles, and related methods
CN106356487B (en) * 2016-08-30 2019-03-19 杭州驷拓新材料科技有限公司 A kind of painting cloth diaphragm for high-energy density charged lithium cells
CN107958981B (en) * 2017-06-24 2021-06-08 内蒙古中锂新材料有限公司 Composite diaphragm for lithium ion power battery and preparation method
CN109309183B (en) * 2017-07-27 2021-08-13 微宏动力系统(湖州)有限公司 Aromatic polyamide porous membrane, preparation method and lithium ion secondary battery
US20200139309A1 (en) * 2018-11-01 2020-05-07 Entegris, Inc. Porous polyethylene filter membrane with asymmetric pore structure, and related filters and methods
CN112821009B (en) * 2019-11-15 2022-10-21 珠海恩捷新材料科技有限公司 Lithium battery diaphragm and preparation method of lithium ion battery
CN111040236B (en) * 2019-12-25 2022-06-24 乐凯胶片股份有限公司 Polyethylene microporous membrane and preparation method thereof
CN112886138A (en) * 2021-01-05 2021-06-01 中材锂膜有限公司 Microporous membrane with different micropores on two surfaces and preparation method thereof
JP7280913B2 (en) * 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery and battery module
CN116093545B (en) * 2023-03-15 2023-06-23 中材锂膜(南京)有限公司 Polyolefin microporous membrane and preparation method thereof, battery diaphragm and electrochemical device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020493A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2000260413A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Separator for battery and battery using it
JP2002279956A (en) * 2001-03-16 2002-09-27 Sony Corp Nonaqueous electrolyte battery
JP2003234097A (en) * 2002-02-08 2003-08-22 Japan Vilene Co Ltd Battery and separator therefor
WO2007037289A1 (en) * 2005-09-28 2007-04-05 Tonen Chemical Corporation Process for producing microporous polyethylene film and separator for cell
CN101752540A (en) * 2008-12-15 2010-06-23 比亚迪股份有限公司 Polyimide diaphragm for lithium ion secondary battery and lithium ion battery
JP2013032545A (en) * 2005-08-04 2013-02-14 Toray Battery Separator Film Co Ltd Polyethylene microporous membrane and battery separator
JP2013100487A (en) * 2011-10-14 2013-05-23 Toray Ind Inc Porous film and electricity storage device
WO2014021291A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2932631Y (en) * 2006-04-06 2007-08-08 傅理平 Polymer lithium ion battery diaphragm
CN102198374B (en) * 2011-05-16 2013-07-17 杭州费尔过滤技术有限公司 Asymmetric polyvinylidene fluoride microporous membrane with high intensity and preparation method thereof
WO2013078464A1 (en) * 2011-11-22 2013-05-30 Znano Llc Self-assembled surfactant structures
CN103496239B (en) * 2013-09-29 2014-08-27 佛山华韩卫生材料有限公司 Special WVTR (water vapour transmission rate) breathable film and production process thereof
CN103522550A (en) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 Polyolefin microporous film preparation method for lithium ion battery and microporous film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020493A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2000260413A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Separator for battery and battery using it
JP2002279956A (en) * 2001-03-16 2002-09-27 Sony Corp Nonaqueous electrolyte battery
JP2003234097A (en) * 2002-02-08 2003-08-22 Japan Vilene Co Ltd Battery and separator therefor
JP2013032545A (en) * 2005-08-04 2013-02-14 Toray Battery Separator Film Co Ltd Polyethylene microporous membrane and battery separator
WO2007037289A1 (en) * 2005-09-28 2007-04-05 Tonen Chemical Corporation Process for producing microporous polyethylene film and separator for cell
CN101752540A (en) * 2008-12-15 2010-06-23 比亚迪股份有限公司 Polyimide diaphragm for lithium ion secondary battery and lithium ion battery
JP2013100487A (en) * 2011-10-14 2013-05-23 Toray Ind Inc Porous film and electricity storage device
WO2014021291A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大木道則、外3名編, 化学大辞典, vol. 第1版, JPN6007006233, 20 October 1989 (1989-10-20), JP, pages 1233, ISSN: 0003640841 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164055A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Polyolefin microporous membrane
JPWO2018164055A1 (en) * 2017-03-08 2020-01-09 東レ株式会社 Polyolefin microporous membrane
CN110048054A (en) * 2018-01-16 2019-07-23 溧阳月泉电能源有限公司 A kind of production method and system of Rapid Extraction oil-containing substrate
WO2021098110A1 (en) * 2019-11-19 2021-05-27 青岛蓝科途膜材料有限公司 Device and method for preparing high-strength high-modulus polyolefin thin film, and high-strength high-modulus polyolefin thin film
EP3960421A4 (en) * 2019-11-19 2023-01-25 Qingdao Lanketu Membrane Materials Co., Ltd. Device and method for preparing high-strength high-modulus polyolefin thin film, and high-strength high-modulus polyolefin thin film

Also Published As

Publication number Publication date
CN104362276A (en) 2015-02-18
JP6225974B2 (en) 2017-11-08
CN104362276B (en) 2018-04-17
KR20160049492A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6225974B2 (en) Polyethylene microporous membrane, process for producing the same and lithium-ion battery
KR102432330B1 (en) Polyolefin microporous membrane, manufacturing method thereof, and battery separator
JP5127671B2 (en) Polyolefin microporous membrane with excellent physical properties and high-temperature thermal stability
US9564624B2 (en) Microporous composite film with high thermostable organic/inorganic coating layer
CN103522550A (en) Polyolefin microporous film preparation method for lithium ion battery and microporous film
CN103178227A (en) Polyethylene based composite material microporous diaphragm with hot-pressing adhesive characteristic
KR20130048843A (en) Multi-layered micro-porous polyolefin film having excellent thermal property and method for preparing the same
KR100675572B1 (en) Microporous high density polyethylene film and preparing method thereof
JP2009518497A (en) Polyolefin microporous membrane having excellent melt fracture characteristics and method for producing the same
JP6548430B2 (en) METHOD FOR PRODUCING POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
EP3428996B1 (en) Method for preparing lithium-ion battery separator
CN104327351B (en) A kind of microporous polyethylene film
CN103184013A (en) Polyvinyl composite microporous membrane with thermocompression bonding characteristic
KR20160015006A (en) Manufacturing method with good productivity for preparing porous multilayered polyolefin
JPWO2016024548A1 (en) Microporous membrane made of polyolefin and method for producing the same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5731762B2 (en) Microporous film, method for producing the same, and battery separator
CN110649211A (en) Low-closed-pore high-rupture-membrane polyolefin diaphragm and preparation method thereof
JP2011246658A (en) Propylene-based resin microporous film and process for producing the same
JP2011246659A (en) Propylene-based resin microporous film and process for producing the same
EP4212581A1 (en) Polyolefin micro-porous membrane and preparation method therefor
JP5771043B2 (en) Propylene resin microporous film and method for producing the same, lithium ion battery separator and lithium ion battery
TW201840666A (en) Microporous polyolefin membrane and battery including same
CN115312973A (en) Polyolefin porous membrane and preparation method thereof, battery diaphragm and electrochemical device
JP2018154834A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JPH01318049A (en) Microporous polyolefin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250