JP2002079383A - Method of joining and joining tool - Google Patents

Method of joining and joining tool

Info

Publication number
JP2002079383A
JP2002079383A JP2000266932A JP2000266932A JP2002079383A JP 2002079383 A JP2002079383 A JP 2002079383A JP 2000266932 A JP2000266932 A JP 2000266932A JP 2000266932 A JP2000266932 A JP 2000266932A JP 2002079383 A JP2002079383 A JP 2002079383A
Authority
JP
Japan
Prior art keywords
joining
probe
pair
tool
metal members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000266932A
Other languages
Japanese (ja)
Other versions
JP3864684B2 (en
Inventor
Hisashi Hori
久司 堀
Shinya Makita
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2000266932A priority Critical patent/JP3864684B2/en
Publication of JP2002079383A publication Critical patent/JP2002079383A/en
Application granted granted Critical
Publication of JP3864684B2 publication Critical patent/JP3864684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of joining by which a sound joined part having no defect or near the surface of metal is surely available when metallic members whose melting points are different from each other are joined with a friction stir welding, and a joining tool used for the method. SOLUTION: The method for joining includes a process where an aluminum alloy member 1 and an oxygen-free copper 2 which have different melting points are lapped, a process where a joining tool 10, which has a cylindrical main body 11 and a projected probe 12 on the bottom face 11a of the main body, is located near the surface of the aluminum alloy member 1 whose melting point is lower, and a backing member 6, whose thermal conductivity is lower than that of the oxygen-free copper 2, is located near the back face of the oxygen-free copper 2 whose melting point is higher, and on the opposite side from the joining tool 10, and a process where a friction stir welding of the aluminum alloy member 1 and the oxygen-free copper 2 is performed along their lapped part 4 by making the joining tool 10 enter the vicinity of the lapped part 4 of the aluminum alloy member 1 and the oxygen-free copper 2 while rotating the tool 10, and moving the tool in the longitudinal direction of the lapped part 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、互いに融点が異な
る2つの金属部材を重ね合わせた状態で摩擦攪拌接合す
る接合方法およびこれに用いる接合ツールに関する。
尚、本明細書において、アルミニウムにはアルミニウム
合金も含まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining method for performing friction stir welding in a state where two metal members having different melting points are superimposed on each other, and a joining tool used therefor.
In this specification, aluminum includes an aluminum alloy.

【0002】[0002]

【従来の技術】融点が異なる2つの金属部材、例えばア
ルミニウム部材と銅部材との接合において、TIGやM
IG溶接などによる直接溶融法を用いると、接合部に金
属間化合物を生成し易い。これを避けるため、上記接合
には、摩擦圧接、爆発圧接、あるいはロウ付けなどの方
法が用いられている。しかし、アルミニウム部材と銅部
材との接合に摩擦圧接を用いた場合、被接合部材の断面
形状が、棒材や管材などに限定されてしまう。また、爆
発圧接を用いた場合にも、被接合部材の断面形状が制限
されると共に、コスト高になる。更に、ロウ付けを用い
た場合、接合部における品質の安定性を欠くと共に、高
温に加熱された場合に得られた接合製品が変形し易くな
る、という問題があった。
2. Description of the Related Art In joining two metal members having different melting points, for example, an aluminum member and a copper member, TIG or MIG is required.
When a direct melting method such as IG welding is used, an intermetallic compound is easily generated at the joint. To avoid this, a method such as friction welding, explosive welding, or brazing is used for the joining. However, when friction welding is used to join the aluminum member and the copper member, the cross-sectional shape of the member to be joined is limited to a bar or a tube. Also, when explosive pressure welding is used, the cross-sectional shape of the members to be joined is limited and the cost is increased. Furthermore, when brazing is used, there is a problem that the quality of the joint at the joint is not stable, and the joint product obtained when heated to a high temperature is easily deformed.

【0003】以上の問題を解決して、互いに融点が異な
るアルミニウム部材とその他の金属部材とを接合するた
め、摩擦攪拌接合を用いることが提案されている。例え
ば、アルミニウム部材と異種金属部材とを重ね合わせた
接合部に、高速回転するプローブを接触させその摩擦熱
により軟化させて摩擦攪拌接合する際、上記両部材のう
ち強度の高い部材側からプローブを接触させる接合方法
が提案されている(特開平10−137952号公報参
照)。しかし、この接合方法では、プローブの重合部付近
への挿入が困難であると共に、係るプローブを含む接合
ツールの寿命も短くなるため、工程管理が煩雑で且つコ
スト高になるという問題があった。
[0003] In order to solve the above problems and to join an aluminum member and another metal member having different melting points to each other, it has been proposed to use friction stir welding. For example, when a high-speed rotating probe is brought into contact with a joined portion where an aluminum member and a dissimilar metal member are superimposed and softened by frictional heat to perform friction stir welding, a probe is used from the stronger member side of the two members. There has been proposed a joining method of bringing the two into contact with each other (see Japanese Patent Application Laid-Open No. Hei 10-137952). However, in this joining method, it is difficult to insert the probe into the vicinity of the overlapping portion, and the life of the joining tool including the probe is shortened, so that there is a problem that the process management is complicated and the cost is increased.

【0004】また、図6(A)に示すように、アルミニウ
ム部材31と銅部材32とを重ね合わせた重合部33付
近に、接合ツール34の回転する円柱形の回転子36に
おける底面37の中心から垂下するプローブ38を挿入
し、両部材31,32を摩擦熱により軟化して攪拌する
ことにより接合するに際し、上記プローブ38を軟質の
アルミニウム部材31側から挿入する、という接合方法
も提案されている(特開平10−328855号公報参
照)。この接合方法によれば、軟質のアルミニウム部材3
1の可塑化が容易なため、プローブ38の挿入も容易と
なり、両部材31,32の金属同士の攪拌もスムーズに
行えるため、重合部33付近に欠陥が発生せず接合強度
が向上する、という利点を有する。
Further, as shown in FIG. 6A, a center of a bottom surface 37 of a rotating cylindrical rotor 36 of a joining tool 34 is provided near an overlapping portion 33 where an aluminum member 31 and a copper member 32 are overlapped. A joining method has been proposed in which a probe 38 is inserted from the soft aluminum member 31 side when a probe 38 is inserted from the soft aluminum member 31 when the two members 31 and 32 are joined by softening and agitating by frictional heat and stirring. (See Japanese Patent Application Laid-Open No. 10-328855). According to this joining method, the soft aluminum member 3
Since the plasticization of 1 is easy, the insertion of the probe 38 is also easy, and the agitation between the metals of the two members 31 and 32 can be smoothly performed. Therefore, no defect is generated in the vicinity of the overlapping portion 33 and the joining strength is improved. Has advantages.

【0005】しかしながら、プローブ38を含む接合ツ
ール34や接合条件の選定如何によっては、接合部に欠
陥を生じることがある。即ち、図6(A)に示すように、
上記部材31,32への入熱は、これらとプローブ38
および底面(ショルダ)37との摩擦に起因するが、その
多くは上記底面37との摩擦による。このため、重合部
33付近における入熱量は、底面37寄りで多くなり、
プローブ38の先端側で少なくなる。このため、軟質の
アルミニウム部材31側からプローブ38を挿入した場
合、プローブ38の先端付近に位置する硬質の銅部材3
2への入熱量が少なくなる。この結果、図6(B)に示す
ように、銅部材32中において銅材料の流動不足が生じ
るため、接合部Wにおけるプローブ38の先端付近の位
置に内部欠陥(空洞)K1を生じる、という問題がある。
一方、プローブ38および回転子36の回転数を上げ
て、プローブ38の先端寄りの位置における入熱量を増
やそうとすると、アルミニウム部材31側への入熱量が
一層増加し且つアルミニウム部材31の流動抵抗が著し
く低下する。この結果、図6(C)に示すように、前記底
面37の付近からアルミニウム部材31の一部が外部に
漏れ出すことにより表面欠陥K2を生じる、という問題
がある。
[0005] However, depending on the selection of the welding tool 34 including the probe 38 and the welding conditions, a defect may occur in the welded portion. That is, as shown in FIG.
The heat input to the members 31 and 32 is
And friction with the bottom surface (shoulder) 37, but most of the friction is due to the friction with the bottom surface 37. Therefore, the amount of heat input in the vicinity of the overlapping section 33 increases near the bottom surface 37,
It decreases on the tip side of the probe 38. For this reason, when the probe 38 is inserted from the soft aluminum member 31 side, the hard copper member 3 located near the tip of the probe 38
The amount of heat input to 2 is reduced. As a result, as shown in FIG. 6B, insufficient flow of the copper material occurs in the copper member 32, so that an internal defect (cavity) K1 occurs at a position near the tip of the probe 38 at the joint W. There is.
On the other hand, if the number of rotations of the probe 38 and the rotor 36 is increased to increase the amount of heat input at a position near the tip of the probe 38, the amount of heat input to the aluminum member 31 further increases and the flow resistance of the aluminum member 31 decreases. It decreases significantly. As a result, as shown in FIG. 6C, there is a problem that a part of the aluminum member 31 leaks to the outside from the vicinity of the bottom surface 37, thereby causing a surface defect K2.

【0006】[0006]

【発明が解決すべき課題】本発明は、以上に説明した従
来の技術における問題点を解決し、融点が互いに異なる
金属部材同士を摩擦攪拌接合するに際し、内部や表面付
近に欠陥のない健全な接合部を確実に得られる接合方法
およびこれに用いる接合ツールを提供する、ことを課題
とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the prior art and, when friction stir welding is performed on metal members having different melting points from each other, a sound member having no defect inside or near the surface. An object of the present invention is to provide a joining method capable of reliably obtaining a joining portion and a joining tool used for the joining method.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、接合ツールにおけるプローブ先端寄り付
近における温度低下を防いだり、プローブ先端寄りの付
近における入熱量を増やすこと等に着想して成されたも
のである。即ち、本発明の第1の接合方法は、融点が互
いに異なる一対の金属部材を重ね合わせる工程と、上記
一対の金属部材のうち、低融点側の金属部材の表面付近
に円柱形の本体とその底面に突設したプローブとを有す
る接合ツールを配置し、且つ高融点側の金属部材におけ
る上記接合ツールと対向する裏面付近に裏当材を配置す
る工程と、上記接合ツールを回転させつつ上記一対の金
属部材の重合部付近に進入させ且つ係る重合部の長手方
向に沿って移動させることにより、上記一対の金属部材
をその重合部に沿って摩擦攪拌接合する工程と、を含
む、ことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is conceived to prevent a temperature drop near a probe tip in a joining tool and to increase a heat input near a probe tip. It was made. That is, the first joining method of the present invention includes a step of superposing a pair of metal members having different melting points from each other, and forming a cylindrical main body near the surface of the low melting point side metal member of the pair of metal members. Arranging a joining tool having a probe protruding from the bottom surface, and arranging a backing material near a back surface of the metal member on the high melting point side facing the joining tool; and rotating the joining tool while rotating the joining tool. A step of moving the pair of metal members along the overlapping portion by friction stir welding by moving the metal member into the vicinity of the overlapping portion of the metal member and moving along the longitudinal direction of the overlapping portion. And

【0008】これによれば、接合ツールにおける本体よ
りも細径のプローブ先端付近のみに接触する高融点側の
金属部材における摩擦熱が裏面側へ逃げる事態を阻止
し、高融点側の金属部材の流動・攪拌部分における温度
低下を抑制できる。このため、係る高融点側の金属部材
における流動不足が解消される。従って、低・高融点の
2つの金属部材における重合部付近において、両部材の
金属が互いに塑性流動しつつ攪拌されるため、内部欠陥
および表面欠陥のない健全な接合部を形成する摩擦攪拌
接合を行うことができる。
According to this, it is possible to prevent the frictional heat of the metal member on the high melting point contacting only near the tip of the probe having a diameter smaller than that of the main body of the joining tool from escaping to the back side, and to prevent the metal member on the high melting point from being removed. It is possible to suppress a temperature drop in the flowing / stirring portion. For this reason, the insufficient flow in the metal member on the high melting point side is eliminated. Therefore, in the vicinity of the overlapping portion between the two metal members having low and high melting points, the metals of both members are stirred while plastically flowing with each other, so that friction stir welding that forms a sound joint without internal defects and surface defects is performed. It can be carried out.

【0009】尚、前記摩擦攪拌接合は、固相状態で2つ
の金属部材を軟化させて接合する方法であり、接合部に
は金属間化合物を生成せず、且つ接合部の付近に熱的影
響部も生じない。そこで、上記のように、2つの金属部
材を低融点側および高融点側としたのは、それぞれの融
点に応じて軟化点(軟化温度域)も同様な関係になること
に着眼したためである。それ故、低融点側と高融点側と
は、同じ加熱温度における軟質側と硬質側、低強度側と
高強度側、または高硬度側と低硬度側と表現することも
可能である。また、上記接合ツールには、上記2つの金
属部材よりも更に高融点で且つ硬質の金属または合金か
ら成形されたものが用いられる。更に、上記裏当材に
は、高融点側の金属部材よりも熱伝導率が低い素材から
なり、且つ耐熱性を有するセラミックや金属材が用いら
れる。
The friction stir welding is a method in which two metal members are softened and joined in a solid state, so that an intermetallic compound is not generated at the joint and a thermal influence is generated near the joint. There are no parts. Therefore, the reason why the two metal members are set to the low melting point side and the high melting point side as described above is to focus on the fact that the softening point (softening temperature range) has a similar relationship according to the respective melting points. Therefore, the low melting point side and the high melting point side can be expressed as a soft side and a hard side at the same heating temperature, a low strength side and a high strength side, or a high hardness side and a low hardness side. In addition, a tool formed from a hard metal or alloy having a higher melting point than the two metal members is used as the joining tool. Further, the backing material is made of a material having a lower thermal conductivity than the metal member on the high melting point side, and a ceramic or metal material having heat resistance is used.

【0010】また、前記裏当材は、高融点側の金属部材
よりも低い熱伝導率のものであるか、あるいは加熱手段
を有するものである、接合方法も含まれる。これによれ
ば、プローブの先端付近と摩擦して発熱する高融点側の
金属部材における摩擦熱が該金属部材の裏面側から放出
される事態を防止でき、高融点側の金属部材における温
度低下を抑制する。あるいは、上記放熱を防ぐと共に裏
面側から積極的に加熱することで、高融点側の金属部材
の重合部付近における温度降下を防止することができ
る。尚、裏当材には例えばセラミック材のような耐熱性
で且つ低熱伝導材が用いられ、加熱手段には例えばヒー
タ線などが用いられる。
[0010] In addition, a bonding method is also included in which the backing material has a lower thermal conductivity than the metal member on the high melting point side or has a heating means. According to this, it is possible to prevent a situation in which frictional heat in the metal member on the high melting point side that generates heat by friction with the vicinity of the tip of the probe is released from the back surface side of the metal member, and the temperature of the metal member on the high melting point side is reduced. Suppress. Alternatively, by preventing the above-described heat radiation and actively heating from the back surface side, it is possible to prevent a temperature drop near the overlapping portion of the metal member on the high melting point side. Note that a heat-resistant and low-thermal-conductivity material such as a ceramic material is used for the backing material, and a heater wire or the like is used for the heating means.

【0011】本発明の第2の接合方法は、円柱形の本体
とその底面にプローブとを有し、このプローブの先端部
に凹凸部を有する接合ツールを用いる接合方法であっ
て、融点が互いに異なる一対の金属部材を重ね合わせる
工程と、この一対の金属部材のうち、低融点側の金属部
材の表面付近に上記接合ツールを配置する工程と、上記
接合ツールを回転させつつ上記一対の金属部材の重合部
付近に進入させ且つ係る重合部の長手方向に沿って移動
させることにより、上記一対の金属部材をその重合部に
沿って摩擦攪拌接合する工程と、を含む、ことを特徴と
する。
A second joining method according to the present invention is a joining method using a joining tool having a cylindrical main body and a probe on the bottom surface thereof and having an uneven portion at the tip of the probe. A step of superposing a pair of different metal members, a step of arranging the joining tool near the surface of the metal member on the low melting point side of the pair of metal members, and a step of rotating the joining tool. And a step of moving the pair of metal members along the overlapping portion by friction stir welding by entering the vicinity of the overlapping portion and moving along the longitudinal direction of the overlapping portion.

【0012】これによれば、接合ツールのプローブ先端
付近のみに接触する高融点側の金属部材における摩擦熱
が、プローブ先端部の上記凹凸部による接触面積の増大
に応じて増加する。このため、高融点側の金属部材にお
ける流動不足が解消されるので、両金属部材の重合部付
近において内部欠陥がなく、且つ低融点側の金属部材の
表面にも表面欠陥のない健全な接合部を得ることが可能
となる。尚、上記凹凸部は、プローブの先端面に多数の
突起を格子状に突設した形態、先端面に単数または複数
の凸条を突設した形態、あるいは先端面に同心円状に複
数のリング凸条を設けた形態が含まれる。また、プロー
ブの先端面寄りの周面に対し、その軸方向に沿った多数
の凹溝または凹みを突設した形態も含まれる。更に、以
上の凹凸部を有するプローブを含む接合ツールと共に、
前記裏当材(加熱手段を含む)を併用しつつ摩擦攪拌接合
すると一層効果的な接合が可能となる。
[0012] According to this, the frictional heat of the metal member on the high melting point side which comes into contact with only the vicinity of the probe tip of the welding tool increases in accordance with the increase of the contact area due to the uneven portion at the probe tip. For this reason, the lack of flow in the metal member on the high melting point side is eliminated, so that there is no internal defect near the overlapped portion of both metal members and there is no sound defect on the surface of the metal member on the low melting point side. Can be obtained. In addition, the above-mentioned uneven portion has a form in which a large number of protrusions are protruded in a lattice shape on the distal end face of the probe, a form in which one or more convex ridges are protruded on the distal end face, or a plurality of ring convexes concentrically on the distal end face. Includes forms with provisions. Also, a form in which a number of concave grooves or dents are protruded from the peripheral surface near the distal end surface of the probe along the axial direction thereof is included. Furthermore, together with a joining tool including a probe having the above uneven portion,
If friction stir welding is performed while using the backing material (including the heating means), more effective welding can be achieved.

【0013】本発明の第3の接合方法は、少なくとも円
柱形の本体における外周部を含む第1部分と、少なくと
もプローブ先端部を含む第2部分とからなり、第1部分
と第2部分とが同軸心で且つ個別に回転する接合ツール
を用いる接合方法であって、融点が互いに異なる一対の
金属部材を重ね合わせる工程と、この一対の金属部材の
うち、低融点側の金属部材の表面付近に上記接合ツール
を配置する工程と、この接合ツールをその第2部分の回
転数を第1部分の回転数よりも大きくした回転を伴いつ
つ上記一対の金属部材の重合部付近に進入させ、且つ係
る重合部の長手方向に沿って移動させることにより、上
記一対の金属部材をその重合部に沿って摩擦攪拌接合す
る工程と、を含む、ことを特徴とする。
A third joining method according to the present invention comprises at least a first portion including an outer peripheral portion of a cylindrical main body and a second portion including at least a probe tip, and the first portion and the second portion are separated from each other. A joining method using a joining tool that rotates coaxially and individually, wherein a step of superposing a pair of metal members having different melting points from each other, and a step near the surface of the metal member on the low melting point side of the pair of metal members. Arranging the joining tool, and causing the joining tool to enter the vicinity of the overlapping portion of the pair of metal members while rotating the second tool at a rotation speed higher than the rotation speed of the first portion; And moving the pair of metal members along the overlapped portion by friction stir welding by moving the overlapped portion along the longitudinal direction of the overlapped portion.

【0014】また、より具体的な第3の接合方法は、前
記第1部分が円柱形の本体およびその底面に突設したプ
ローブ基端部を含み、且つ前記第2部分がプローブの先
端部を含むと共に、互いに同軸心で且つ個別に回転する
第1・第2部分からなる接合ツールを用いる接合方法で
あって、融点が互いに異なる一対の金属部材を重ね合わ
せる工程と、この一対の金属部材のうち、低融点側の金
属部材の表面付近に上記接合ツールを配置する工程と、
上記接合ツールをその本体側の第1部分の回転数よりも
プローブ先端部側の第2部分の回転数を大きくした回転
を伴って上記一対の金属部材の重合部付近に進入させ且
つ係る重合部の長手方向に沿って移動させることによ
り、上記一対の金属部材をその重合部に沿って摩擦攪拌
接合する工程と、を含む、ことを特徴とする。
In a more specific third joining method, the first portion includes a cylindrical main body and a probe base end protruding from the bottom surface thereof, and the second portion includes a probe tip end. A joining method that includes a joining tool including first and second portions that are coaxial with each other and that are individually rotated, including a step of superposing a pair of metal members having different melting points from each other; Of which, a step of disposing the joining tool near the surface of the metal member on the low melting point side,
The joining tool is caused to enter the vicinity of the overlapping portion of the pair of metal members with a rotation in which the rotation speed of the second portion on the probe tip side is higher than the rotation speed of the first portion on the main body side, and the overlapping portion And moving the pair of metal members along the overlapping portion by friction stir welding by moving the pair of metal members along the longitudinal direction.

【0015】これらによれば、接合ツールにおける第2
部分の回転数が大きいため、当該部分のプローブまたは
その先端付近と接触する高融点側の金属部材における流
動不足が解消される。このため、第1部分が接触する低
温側の金属部材における発熱量に近付けるか同様にする
ことができる。従って、2つの金属部材の重合部に跨っ
て内部欠陥や表面欠陥のない健全な接合部を確実に形成
することができる。
According to these, the second in the joining tool
Since the rotation speed of the portion is large, insufficient flow of the metal member on the high melting point side in contact with the probe or the vicinity of the tip of the portion is eliminated. For this reason, it is possible to approach or make similar to the heat value of the metal member on the low temperature side with which the first portion contacts. Therefore, it is possible to reliably form a sound joint having no internal defect or surface defect over the overlapped portion of the two metal members.

【0016】更に、第3の接合方法に用いる1つの接合
ツールは、円柱形の本体またはこの本体の外周部を含む
第1部分と、係る本体の中心部を同軸心で貫通する回転
軸とこの回転軸の先端に位置し且つ上記本体の底面から
突出するプローブとを含む第2部分と、上記第1部分と
第2部分との間に配置した軸受と、を含む、ことを特徴
とする。加えて、第3の接合方法に用いるもう1つの接
合ツールは、円柱形の本体とその底面に突設したプロー
ブ基端部とを含む第1部分と、プローブ先端部と上記第
1部分の本体およびプローブ基端部の軸心を貫通する回
転軸とを含む第2部分と、上記第1部分と第2部分との
間に配置した軸受とを含む、ことを特徴とする。これら
によれば、接合ツールにおけるプローブまたはプローブ
先端部を含む第2部分を、本体側の第1部分または本体
およびプローブ基端部からなる第1部分よりも高速回転
させることができる。このため、第2部分によって高融
点側の金属部材における流動不足が容易に解消される。
従って、前述した2つの金属部材の重合部に跨って内部
欠陥がなく且つ表面欠陥もない健全な接合部を確実に形
成させることが可能となる。
Further, one joining tool used in the third joining method includes a cylindrical main body or a first portion including an outer peripheral portion of the main body, a rotating shaft which coaxially penetrates the center of the main body, and a rotating shaft. A second portion including a probe located at a tip of a rotating shaft and protruding from a bottom surface of the main body, and a bearing disposed between the first portion and the second portion are provided. In addition, another joining tool used in the third joining method includes a first portion including a cylindrical main body and a probe base end protruding from the bottom surface thereof, a probe distal end portion, and a main body of the first portion. And a second portion including a rotating shaft penetrating the axis of the probe base end portion, and a bearing disposed between the first portion and the second portion. According to these, the second portion including the probe or the probe tip of the joining tool can be rotated at a higher speed than the first portion on the main body side or the first portion including the main body and the probe base end. For this reason, the insufficient flow of the metal member on the high melting point side is easily eliminated by the second portion.
Therefore, it is possible to reliably form a sound joint having no internal defect and no surface defect over the overlapped portion of the two metal members.

【0017】[0017]

【発明の実施の形態および実施例】以下において本発明
の実施に好適な形態や実施例を図面などと共に説明す
る。図1は、本発明の第1の接合方法に関し、図1
(A),(a)に示すように、アルミニウム合金材(低融点
側の金属部材)1と無酸素銅(高融点側の金属部材)2と
を重ね合わせ且つ拘束して、重合部4を形成する。アル
ミニウム合金材1の表面付近には、例えば高速度鋼から
なる円柱形の本体11とその底面11aの中心部から同
軸心で突設されたプローブ12とを含む接合ツール10
が配置される。図1(a)に示すように、接合ツール10
の本体11とプローブ12の軸心は、アルミニウム合金
材1の表面に対する垂線よりも約5°傾けた姿勢で配置
される。係る接合ツール10は、500〜15000r
pmの回転数で回転され、且つその軸心に沿って1〜3
0kNの押し込み力を加えられつつ上記重合部4に向け
て挿入されると共に、図1(a)で右側に50mm〜2メ
ートル/分の移動速度で送られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments and embodiments of the present invention will be described below with reference to the drawings. FIG. 1 relates to a first joining method of the present invention.
As shown in (A) and (a), an aluminum alloy material (low melting point side metal member) 1 and an oxygen-free copper (high melting point side metal member) 2 are overlapped and restrained, and Form. In the vicinity of the surface of the aluminum alloy material 1, a joining tool 10 including a cylindrical main body 11 made of, for example, high-speed steel and a probe 12 projecting coaxially from the center of a bottom surface 11a thereof.
Is arranged. As shown in FIG.
The axes of the main body 11 and the probe 12 are arranged at an angle of about 5 ° with respect to a perpendicular to the surface of the aluminum alloy material 1. Such a joining tool 10 is 500 to 15000r.
pm, and along its axis 1 to 3
It is inserted toward the overlapping portion 4 while applying a pushing force of 0 kN, and is sent to the right side in FIG. 1A at a moving speed of 50 mm to 2 meters / minute.

【0018】図1(A),(a)に示すように、無酸素銅2
における接合ツール10と対向する裏面付近には、断面
矩形の裏当材6が重合部4に沿って配置される。この裏
当材6は、無酸素銅2よりも熱伝導率が低い鋼材または
セラミックからなる。図1(B),(b)に示すように、回
転する接合ツール10をアルミニウム合金材1側から挿
入し、そのプローブ12を重合部4を通過させて無酸素
銅2中に進入させると共に、図1(b)中の直線の矢印で
示すように、重合部4に沿って右方向に移動させる。こ
の間に、アルミニウム合金材1は、接合ツール10にお
ける本体11の底面11aとプローブ12の基端部付近
とに接触し摩擦発熱して塑性・流動化する。また、無酸
素銅2は、接合ツール10のプローブ12の先端部付近
と接触して摩擦発熱して塑性・流動化する。
As shown in FIGS. 1A and 1A, oxygen-free copper 2
A backing material 6 having a rectangular cross section is disposed along the overlapped portion 4 near the back surface facing the joining tool 10 in FIG. The backing material 6 is made of steel or ceramic having a lower thermal conductivity than the oxygen-free copper 2. As shown in FIGS. 1 (B) and 1 (b), a rotating joining tool 10 is inserted from the aluminum alloy material 1 side, and the probe 12 is passed through the overlapping portion 4 and enters the oxygen-free copper 2. As shown by a straight arrow in FIG. 1B, it is moved rightward along the overlapping portion 4. During this time, the aluminum alloy material 1 comes into contact with the bottom surface 11a of the main body 11 of the welding tool 10 and the vicinity of the base end of the probe 12, and generates heat due to friction and is plasticized and fluidized. Further, the oxygen-free copper 2 comes into contact with the vicinity of the tip of the probe 12 of the welding tool 10 and generates heat due to friction and becomes plastic and fluid.

【0019】そして、アルミニウム合金材1と無酸素銅
2は、互いに攪拌されると共に、接合ツール10が離れ
るに従って両金属が混合状態で固化した接合部Wが形成
される。この際、裏当材6は、無酸素銅2において発生
した熱がその裏面側から放熱される事態を防ぐため、接
合ツール10のプローブ12の先端部付近における無酸
素銅2の温度降下を抑制する。この結果、重合部4付近
におけるアルミニウム合金材1と無酸素銅2との発熱量
の差が小さくなり、無酸素銅2の流動不足が解消される
ため、内部欠陥(空洞)のない健全な接合部Wを得ること
ができる。従って、接合ツール10の移動に伴って、重
合部4に沿った健全な接合部Wが形成され、アルミニウ
ム合金材1と無酸素銅2とを強固に重ね合わせて接合し
た各種の接合製品(例えば、トランス端子用の導電性接
合体)を得ることができる。
Then, the aluminum alloy material 1 and the oxygen-free copper 2 are agitated with each other, and a joining portion W is formed in which both metals are solidified in a mixed state as the joining tool 10 is separated. At this time, the backing material 6 suppresses the temperature drop of the oxygen-free copper 2 in the vicinity of the tip of the probe 12 of the bonding tool 10 in order to prevent the heat generated in the oxygen-free copper 2 from being radiated from the back side. I do. As a result, the difference in calorific value between the aluminum alloy material 1 and the oxygen-free copper 2 in the vicinity of the overlapping portion 4 is reduced, and insufficient flow of the oxygen-free copper 2 is eliminated, so that sound bonding without internal defects (cavities) is achieved. A part W can be obtained. Accordingly, with the movement of the joining tool 10, a sound joining portion W is formed along the overlapping portion 4, and various joining products (for example, various joining products in which the aluminum alloy material 1 and the oxygen-free copper 2 are strongly overlapped and joined together (for example, And a conductive joined body for a transformer terminal).

【0020】[0020]

【実施例1,2】ここで第1の接合方法の具他的な実施
例を比較例と共に説明する。JIS:A6063からな
り長さ200mm×幅100mm×厚さ5mmのアルミ
ニウム合金材1と同じサイズの無酸素銅2とを3組用意
した。また、高速度鋼から成形され、直径20mmの本
体11と、直径9mmで長さ6mmのプローブ12とを
含む接合ツール10を用意した。前記図1(A),(a)に
示したように、各組のアルミニウム合金材1と無酸素銅
2とを重ね合わせて重合部4を各組別に形成し、各組の
無酸素銅2の裏面側に3種類の素材からなり、長さ20
0mm×幅100mm×厚さ10mmの共通のサイズを
有する裏当材6を各組別に配置した。このうち、裏当材
6の素材がケイ酸を主成分とするセラミックからなるも
のを実施例1、普通鋼の鋼材からなるものを実施例2、
無酸素銅からなるものを比較例1とした。
Embodiments 1 and 2 Here, specific embodiments of the first joining method will be described together with comparative examples. Three sets of an aluminum alloy material 1 made of JIS: A6063 and having a length of 200 mm × a width of 100 mm × a thickness of 5 mm and an oxygen-free copper 2 having the same size were prepared. Further, a joining tool 10 prepared from a high-speed steel and including a main body 11 having a diameter of 20 mm and a probe 12 having a diameter of 9 mm and a length of 6 mm was prepared. As shown in FIGS. 1 (A) and 1 (a), each set of the aluminum alloy material 1 and the oxygen-free copper 2 are overlapped to form a superposed portion 4 for each set. Made of three types of materials on the back side of
A backing material 6 having a common size of 0 mm x width 100 mm x thickness 10 mm was arranged for each group. Among them, the material of the backing material 6 is made of a ceramic mainly composed of silicic acid in Example 1, and the material made of a steel material of ordinary steel in Example 2,
One made of oxygen-free copper was used as Comparative Example 1.

【0021】各例のアルミニウム合金材1の表面側か
ら、前記図1(B),(b)に示したように、移動方向と反
対側に5°傾けた接合ツール10を、回転数700rp
m、押し込み圧力12.5kN、移動速度200mm/
分の同じ条件で挿入し、重合部4に沿って移動させた。
各例において、無酸素銅2における接合時の発熱温度を
熱電対により測定すると共に、得られた各例の接合部W
を切断し、露出した断面を目視することにより欠陥の有
無を調べた。それらの結果を表1に示した。
As shown in FIGS. 1 (B) and 1 (b), the joining tool 10 inclined from the surface side of the aluminum alloy material 1 of each example by 5 ° in the direction opposite to the moving direction is rotated at 700 rpm.
m, pushing pressure 12.5kN, moving speed 200mm /
, And moved along the polymerization section 4.
In each example, the heat generation temperature at the time of joining in the oxygen-free copper 2 was measured with a thermocouple, and the obtained joint W of each example was obtained.
Was cut, and the exposed cross section was visually inspected for defects. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果によれば、無酸素銅2における
発熱温度は、実施例1で450℃、実施例2で420℃
であったのに対し、比較例1では330℃にすぎず、各
例の裏当材6の熱伝導率の高さと反対になった。係る温
度に応じて、実施例1の接合部Wには内部欠陥がなく、
実施例2でも微細な内部欠陥に留まったのに対し、比較
例1では約0.2mmの粗大な内部欠陥が発見された。
この結果により、実施例1,2では、第1の接合方法を
用い且つ裏当材6に高融点側の無酸素銅2よりも低い熱
伝導率の素材を用いたため、接合ツール10のプローブ
12先端付近における温度降下が阻止され、内部欠陥を
生じないか、微細なものに留めたことが判明した。以上
の実施例1,2により、第1の接合方法の優位性が理解
される。
According to the results shown in Table 1, the exothermic temperatures of the oxygen-free copper 2 were 450 ° C. in Example 1 and 420 ° C. in Example 2.
On the other hand, in Comparative Example 1, the temperature was only 330 ° C., which was opposite to the high thermal conductivity of the backing material 6 in each example. According to the temperature, the joint W of Example 1 has no internal defect,
In Example 2, only small internal defects were found, whereas in Comparative Example 1, coarse internal defects of about 0.2 mm were found.
According to this result, in Examples 1 and 2, the first bonding method was used and the backing material 6 was made of a material having a lower thermal conductivity than the oxygen-free copper 2 on the high melting point side. It was found that the temperature drop near the tip was prevented, and no internal defects were generated or they were kept fine. The advantages of the first bonding method can be understood from the first and second embodiments.

【0024】図2は、第1の接合方法の応用形態に関
し、図2(A),(a)に示すように、アルミニウム合金材
(低融点側の金属部材)1と無酸素銅(高融点側の金属部
材)2とを重ね合わせ且つ拘束して、重合部4を形成す
る。アルミニウム合金材1の表面付近には、前記同様の
素材からなり且つ前記同様の本体11およびプローブ1
2を含む接合ツール10が前記同様に傾斜して配置され
る。図2(A),(a)に示すように、無酸素銅2における
接合ツール10と対向する裏面付近には、断面矩形の裏
当材8が重合部4に沿って配置される。この裏当材8
も、無酸素銅2よりも熱伝導率が低い鋼材またはセラミ
ックからなり、その内部には複数のヒータ線(加熱手段)
9が内臓されている。図2(B),(b)に示すように、予
めヒータ線9に通電して裏当材8を加熱した状態で、回
転する接合ツール10をアルミニウム合金材1側から挿
入し、そのプローブ12の先端寄りを重合部4を通過さ
せて無酸素銅2に進入させると共に、図2(b)中の直線
の矢印で示すように、重合部4に沿って右側に移動させ
る。
FIG. 2 shows an application of the first joining method. As shown in FIGS. 2A and 2A, an aluminum alloy material is used.
The overlapping portion 4 is formed by overlapping and restraining the (low melting point side metal member) 1 and the oxygen-free copper (high melting point side metal member) 2. In the vicinity of the surface of the aluminum alloy material 1, the same main body 11 and probe 1
The joining tool 10 including the two is inclined and arranged like the above. As shown in FIGS. 2A and 2A, a backing material 8 having a rectangular cross section is disposed along the overlapping portion 4 near the back surface of the oxygen-free copper 2 facing the joining tool 10. This backing material 8
Also made of steel or ceramic having a lower thermal conductivity than oxygen-free copper 2, and a plurality of heater wires (heating means) inside thereof.
9 are built-in. As shown in FIGS. 2 (B) and 2 (b), the rotating welding tool 10 is inserted from the side of the aluminum alloy material 1 in a state where the heater wire 9 is energized in advance and the backing material 8 is heated. Is passed through the overlapping portion 4 to enter the oxygen-free copper 2 and is moved to the right along the overlapping portion 4 as shown by a straight arrow in FIG. 2B.

【0025】以上の間に、アルミニウム合金材1は、接
合ツール10における本体11の底面11aとプローブ
12の基端部とに接触して摩擦発熱して塑性・流動化す
ると共に、無酸素銅2も、接合ツール10のプローブ1
2の先端付近と接触して摩擦発熱して塑性・流動化す
る。その結果、アルミニウム合金材1と無酸素銅2は、
互いに攪拌され、接合ツール10が離れるに従って両金
属材料が混合状態で固化した接合部Wが形成される。こ
の際、裏当材8は、無酸素銅2における摩擦熱が裏面側
から放熱される事態を防ぐと共に、内臓した各ヒータ線
9により無酸素銅2を更に加熱する。このため、接合ツ
ール10のプローブ12の先端部付近における無酸素銅
2の温度降下を一層確実に抑制する。この結果、無酸素
銅2の流動不足が解消されるので、内部欠陥(空洞)のな
い健全な接合部Wを得ることができる。従って、接合ツ
ール10の移動に伴って重合部4に沿って健全な接合部
Wが形成され、アルミニウム合金部材1と無酸素銅2と
を強固に重ね合わせて接合した接合製品を得ることがで
きる。
During the above, the aluminum alloy material 1 is brought into contact with the bottom surface 11a of the main body 11 of the welding tool 10 and the base end of the probe 12 to generate frictional heat and to be plasticized and fluidized. Also, the probe 1 of the joining tool 10
It comes into contact with the vicinity of the tip of No. 2 and generates heat due to friction and becomes plastic and fluid. As a result, the aluminum alloy material 1 and the oxygen-free copper 2
The two metal materials are mixed and solidified in a mixed state as the joining tool 10 is separated, and a joint W is formed. At this time, the backing material 8 prevents the frictional heat in the oxygen-free copper 2 from being radiated from the back side, and further heats the oxygen-free copper 2 by the built-in heater wires 9. For this reason, the temperature drop of the oxygen-free copper 2 in the vicinity of the tip of the probe 12 of the joining tool 10 is more reliably suppressed. As a result, the lack of flow of the oxygen-free copper 2 is eliminated, and a sound joint W without internal defects (cavities) can be obtained. Accordingly, a sound joining portion W is formed along the overlapping portion 4 with the movement of the joining tool 10, and a joined product in which the aluminum alloy member 1 and the oxygen-free copper 2 are strongly overlapped and joined can be obtained. .

【0026】[0026]

【実施例3〜6】ここで第1の接合方法の応用形態の具
他的な実施例を比較例と共に説明する。 JIS:A6063からなり長さ200mm×幅100
mm×厚さ5mmのアルミニウム合金材1と同じサイズ
の無酸素銅2とを5組用意した。また、高速度鋼から成
形され、直径20mmの本体11と、直径9mmで長さ
6mmのプローブ12とを含む接合ツール10を用意し
た。図2(A),(a)に示したように、各組のアルミニウ
ム合金材1と無酸素銅2とを重ね合わせて、重合部4を
各組別に形成し、各組の無酸素銅2の裏面側に同じ無酸
素銅からなり、長さ200mm×幅100mm×厚さ1
0mmの共通のサイズを有する裏当材8を各組別に配置
した。各組の裏当材8には、同じ配線のヒータ線9が内
臓されている。そして、ヒータ線9に通電し、裏当材8
の表面温度が100℃、200℃、400℃、500℃
に個別に加熱された組をそれぞれ実施例3,4,5,6
とし、ヒータ線9に通電しなかった組を比較例2とし
た。
Embodiments 3 to 6 Here, specific embodiments of application forms of the first joining method will be described together with comparative examples. JIS: Made of A6063, length 200mm x width 100
Five sets of oxygen-free copper 2 having the same size as an aluminum alloy material 1 having a size of 5 mm × 5 mm were prepared. Further, a joining tool 10 prepared from a high-speed steel and including a main body 11 having a diameter of 20 mm and a probe 12 having a diameter of 9 mm and a length of 6 mm was prepared. As shown in FIGS. 2 (A) and 2 (a), each set of the aluminum alloy material 1 and the oxygen-free copper 2 are overlapped to form a superposed portion 4 for each set. Made of the same oxygen-free copper on the back side of the product, length 200 mm x width 100 mm x thickness 1
A backing material 8 having a common size of 0 mm was arranged for each set. The backing material 8 of each set includes a heater wire 9 having the same wiring. Then, the heater wire 9 is energized and the backing material 8
Surface temperature of 100 ° C, 200 ° C, 400 ° C, 500 ° C
Each of the sets individually heated was used in Examples 3, 4, 5, and 6, respectively.
A set in which the heater wire 9 was not energized was designated as Comparative Example 2.

【0027】各例のアルミニウム合金材1の表面側か
ら、前記図2(B),(b)に示したように、移動方向と反
対側に5°傾けた接合ツール10を、回転数700rp
m、押し込み圧力12.5kN、移動速度200mm/
分の同じ条件で挿入し、重合部4に沿って移動させた。
各例において、無酸素銅2における接合時の発熱温度を
熱電対により測定すると共に、得られた各例の接合部W
を切断し、露出した断面を目視により観察して欠陥の有
無を調べた。それらの結果を表2に示した。
As shown in FIGS. 2 (B) and 2 (b), the joining tool 10 inclined from the surface side of the aluminum alloy material 1 of each example by 5 ° in the direction opposite to the moving direction is rotated at 700 rpm.
m, pushing pressure 12.5kN, moving speed 200mm /
, And moved along the polymerization section 4.
In each example, the heat generation temperature at the time of joining in the oxygen-free copper 2 was measured with a thermocouple, and the obtained joint W of each example was obtained.
Was cut, and the exposed cross section was visually observed to check for defects. Table 2 shows the results.

【0028】[0028]

【表2】 [Table 2]

【0029】表2の結果によれば、実施例3〜6では裏
当材8の温度にほぼ比例して無酸素銅2の温度も高くな
り、且つ無酸素銅2の温度が420℃の実施例4と47
0℃の実施例5では、接合部Wに内部欠陥を生じていな
かった。また、無酸素銅2の温度が350℃とやや低い
実施例3は、微細な内部欠陥に留まり、無酸素銅2の温
度が520℃とやや高い実施例6では、接合部Wの表面
に微細に凹んだ表面欠陥が観察された。これらから、実
施例3は加熱不足により、プローブ12先端付近におけ
る無酸素銅2の温度低下を十分に防げず流動不足を僅か
に生じ、逆に実施例6では過加熱により、内部欠陥は阻
止できたが、接合部Wの表面における流動抵抗がやや低
下しため、微細な表面欠陥を招いたものと推定される。
一方、裏当材8を加熱しなかった比較例2では、約0.
2mmの粗大な内部欠陥(空洞)が発見された。即ち、比
較例2は、前記比較例1と同様に無酸素銅2中において
流動不足が生じたため、粗大な内部欠陥が生じたものと
推定される。以上の実施例3〜6によっても、第1の接
合方法の優位性が理解されよう。
According to the results shown in Table 2, in Examples 3 to 6, the temperature of the oxygen-free copper 2 was increased almost in proportion to the temperature of the backing material 8 and the temperature of the oxygen-free copper 2 was 420 ° C. Examples 4 and 47
In Example 5 at 0 ° C., no internal defect occurred in the joint W. Further, in Example 3 in which the temperature of oxygen-free copper 2 was slightly lower at 350 ° C., only minute internal defects were found, and in Example 6 in which the temperature of oxygen-free copper 2 was slightly higher at 520 ° C. A concave surface defect was observed. From these results, in Example 3, due to insufficient heating, the temperature of the oxygen-free copper 2 near the tip of the probe 12 could not be sufficiently prevented from lowering, and the flow was slightly insufficient. In Example 6, internal defects could be prevented by overheating. However, it is presumed that the flow resistance on the surface of the joint W was slightly reduced, resulting in minute surface defects.
On the other hand, in Comparative Example 2 in which the backing material 8 was not heated, about 0.
A coarse internal defect (cavity) of 2 mm was found. That is, in Comparative Example 2, it is estimated that coarse internal defects occurred due to insufficient flow in the oxygen-free copper 2 as in Comparative Example 1. The advantages of the first joining method can be understood from the above Examples 3 to 6.

【0030】図3は、第2の接合方法に関し、図3
(A),(B)に示すように、この方法に用いる接合ツール
10は、高速度鋼からなる円筒形の本体11とその底面
11aの中心部から突出するプローブ12を含み、該プ
ローブ12の先端面(先端部)12aに、径方向に沿った
一対の十字形を呈する凸条(凹凸部)14を突設してい
る。前記図1(A),(a)のように、アルミニウム合金材
(低融点側の金属部材)1と無酸素銅(高融点側の金属部
材)2とを重ね合わせて拘束し、重合部4を形成する。
また、アルミニウム合金材1の表面付近には、本体11
およびプローブ12を含み且つ上記一対の凸条14,1
4を有する上記接合ツール10を、前記同様に傾斜して
配置する。但し、前記裏当材6は使用しない。次いで、
前記図1(B),(b)に示したように、回転する接合ツー
ル10をアルミニウム合金材1側から挿入し、そのプロ
ーブ12の先端面12aを重合部4を通過させて無酸素
銅2中に進入させると共に、図1(b)中の直線の矢印で
示したように、重合部4に沿って右方向に移動させる。
FIG. 3 relates to the second joining method.
As shown in FIGS. 1A and 1B, a joining tool 10 used in this method includes a cylindrical main body 11 made of high-speed steel and a probe 12 protruding from the center of a bottom surface 11a thereof. A pair of ridges (irregular portions) 14 having a pair of cross shapes extending in the radial direction are protruded from the distal end surface (distal end portion) 12a. As shown in FIGS. 1A and 1A, an aluminum alloy material
(Low melting point side metal member) 1 and oxygen-free copper (high melting point side metal member) 2 are overlapped and restrained to form a superposed portion 4.
In the vicinity of the surface of the aluminum alloy material 1, a main body 11 is provided.
And a pair of ridges 14, 1 including the probe 12 and
The joining tool 10 having the above-mentioned 4 is arranged in an inclined manner as described above. However, the backing material 6 is not used. Then
As shown in FIGS. 1 (B) and 1 (b), a rotating joining tool 10 is inserted from the aluminum alloy material 1 side, and the tip surface 12a of the probe 12 is passed through the overlapping portion 4 so that the oxygen-free copper 2 While moving inward, it is moved rightward along the overlapping portion 4 as shown by a straight arrow in FIG.

【0031】以上の間に、アルミニウム合金材1は、接
合ツール10における本体11の底面11aとプローブ
12の基端部付近とに接触して摩擦発熱して塑性・流動
化すると共に、無酸素銅2も、接合ツール10のプロー
ブ12の先端部および一対の凸条14,14に接触して
摩擦発熱することにより、塑性・流動化する。その結
果、アルミニウム合金材1と無酸素銅2は、互いに攪拌
され、接合ツール10が離れるに従って両金属が混合状
態で固化した接合部Wが形成される。この際、無酸素銅
2は、プローブ12の凸条14にも摩擦接触し、その接
触面積の増加分に応じて発熱量が増加するため、流動不
足を解消することができる。この結果、内部欠陥(空洞)
のない健全な接合部Wを重合部4に沿って形成できる。
During the above, the aluminum alloy material 1 is brought into contact with the bottom surface 11a of the main body 11 of the joining tool 10 and the vicinity of the base end of the probe 12 to generate heat by friction and to be plasticized and fluidized. 2 is also plasticized and fluidized by contacting the tip of the probe 12 of the welding tool 10 and the pair of ridges 14 and 14 to generate frictional heat. As a result, the aluminum alloy material 1 and the oxygen-free copper 2 are agitated with each other, and a joining portion W is formed in which both metals are solidified in a mixed state as the joining tool 10 is separated. At this time, the oxygen-free copper 2 also comes into frictional contact with the ridge 14 of the probe 12, and the amount of heat generated increases in accordance with the increase in the contact area, so that insufficient flow can be eliminated. As a result, internal defects (cavities)
A sound joining portion W without any gap can be formed along the overlapping portion 4.

【0032】また、図3(C),(c)に示すように、プロ
ーブ12の先端面12aに細かな立方体の突起(凹凸部)
16を格子状に多数突設した形態や、図3(D),(d)に
示すように、プローブ12の先端面12aにリング凸条
(凹凸部)17,18,19を同心円状に突設した形態よ
っても、上記十字形で一対の凸条14と同様の作用・効
果を得ることができる。更に、図3(E),(e),(F)に
示すように、接合ツール10のプローブ12における先
端面12a寄りの周面(先端部)にその軸方向に沿った凹
溝(凹凸部)13を複数形成した形態でも、上記凸条14
と同様の作用・効果を得ることができる。尚、上記凹溝
13に替えて多数の凹みを散点状に形成したり、あるい
は、プローブ12周面の凹溝13や凹みと共に、その先
端面12aに凸条14、突起16、またはリング凸条1
7,18,19などを併設することも可能である。
As shown in FIGS. 3C and 3C, a small cubic projection (uneven portion) is formed on the distal end surface 12a of the probe 12.
As shown in FIGS. 3 (D) and 3 (d), a ring ridge is formed on the distal end surface 12a of the probe 12. As shown in FIGS.
(Concavo-convex portions) Even when the concentric projections 17, 18, and 19 are provided, the same operation and effect as the pair of ridges 14 can be obtained. Further, as shown in FIGS. 3 (E), 3 (e) and 3 (F), a concave groove (concavo-convex portion) along the axial direction is formed on a peripheral surface (tip portion) of the probe 12 of the joining tool 10 near the distal end surface 12a. ) 13 may be formed in the form of the ridges 14.
The same operation and effect as described above can be obtained. In addition, a large number of dents may be formed in the form of scattered spots in place of the above-mentioned concave groove 13, or the convex groove 14, the protrusion 16, or the ring convex may be formed on the distal end surface 12 a together with the concave groove 13 or the concave on the probe 12 peripheral surface. Article 1
It is also possible to add 7, 18, 19 and the like.

【0033】[0033]

【実施例7〜9】ここで第2の接合方法の具他的な実施
例を比較例と共に説明する。 JIS:A6063からなり長さ200mm×幅100
mm×厚さ5mmのアルミニウム合金材1と同じサイズ
の無酸素銅2とを4組用意した。また、高速度鋼から成
形され、直径20mmの本体11と、直径9mmで長さ
6mmのプローブ12とを含む接合ツール10を4組用
意した。このうち、プローブ12の先端面12aに、図
3(C),(c)に示した一辺1mmで高さ1mmの突起1
6を格子状に多数突設したものを実施例7とし、図3
(B)に示した幅2mmで高さ1mmの凸条14を十字形
に突設したツール10を実施例8とした。更に、図3
(D),(d)に示したように、幅と高さがそれぞれ1mm
で、半径方向(厚み方向)の中央における直径が2mm、
5mm、8mmのリング凸条17,18,19とを突設
したツール10を実施例9とした。一方、平坦な先端面
12aのみのプローブ12を有する接合ツール10を比
較例3とした。
Embodiments 7 to 9 Here, specific embodiments of the second joining method will be described together with comparative examples. JIS: Made of A6063, length 200mm x width 100
Four sets of an aluminum alloy material 1 having a size of 5 mm and a thickness of 5 mm and oxygen-free copper 2 having the same size were prepared. In addition, four sets of joining tools 10 prepared from a high-speed steel and including a main body 11 having a diameter of 20 mm and a probe 12 having a diameter of 9 mm and a length of 6 mm were prepared. Of these, the protrusion 1 having a side of 1 mm and a height of 1 mm shown in FIGS.
Example 6 is shown in FIG.
Example 8 shows a tool 10 shown in (B) in which a ridge 14 having a width of 2 mm and a height of 1 mm is projected in a cross shape. Further, FIG.
As shown in (D) and (d), the width and height are each 1 mm.
In, the diameter at the center in the radial direction (thickness direction) is 2 mm,
Example 9 was a tool 10 in which 5 mm and 8 mm ring ridges 17, 18, and 19 were protruded. On the other hand, the joining tool 10 having the probe 12 having only the flat tip surface 12a was used as Comparative Example 3.

【0034】前記図1(A),(a)に示したように、4組
のアルミニウム合金材1と無酸素銅2とを重ね合わせ且
つ拘束して、重合部4を各組別に形成し、各例の接合ツ
ール10を前記同様に個別に配置した。各組のアルミニ
ウム合金材1の表面側から、移動方向と反対側に5°傾
けた各例の接合ツール10を、回転数700rpm、押
し込み圧力12.5kN、および移動速度200mm/
分の同じ条件で挿入し、前記図1(B),(b)に示したよ
うに、重合部4に沿って移動させた。実施例7〜9また
は比較例3の接合ツール10を用いて、得られた実施例
7〜9と比較例3の接合部Wをそれぞれ切断し、露出し
た断面を目視により観察して欠陥の有無を調べた。それ
らの結果を表3に示した。
As shown in FIGS. 1A and 1A, four sets of the aluminum alloy material 1 and the oxygen-free copper 2 are overlapped and constrained to form a polymerized portion 4 for each set. The joining tools 10 of each example were individually arranged in the same manner as described above. The joining tool 10 of each example, which was inclined by 5 ° from the surface side of each set of the aluminum alloy material 1 to the opposite side to the moving direction, was rotated at 700 rpm, a pushing pressure of 12.5 kN, and a moving speed of 200 mm /
1B, and were moved along the overlapping portion 4 as shown in FIGS. 1B and 1B. Using the joining tool 10 of Examples 7 to 9 or Comparative Example 3, the obtained joints W of Examples 7 to 9 and Comparative Example 3 were respectively cut, and the exposed cross section was visually observed to check for defects. Was examined. Table 3 shows the results.

【0035】[0035]

【表3】 [Table 3]

【0036】表3の結果によれば、実施例7〜9では、
それぞれの接合部Wに内部欠陥が生じていなかったのに
対し、比較例3の接合部Wには約0.2mmの粗大な内
部欠陥(空洞)が発見された。即ち、実施例7〜9では、
前記凸条14等の凹凸部により無酸素銅2が十分に流動
化したのに対し、比較例3は、前記比較例1,2と同様
に、無酸素銅2中において流動不足が生じたため、粗大
な内部欠陥が生じたものと推定される。以上の実施例7
〜9によれば、第2の接合方法の優位性が容易に理解さ
れる。
According to the results shown in Table 3, in Examples 7 to 9,
While no internal defect occurred in each joint W, a coarse internal defect (cavity) of about 0.2 mm was found in the joint W of Comparative Example 3. That is, in Examples 7 to 9,
While the oxygen-free copper 2 was sufficiently fluidized by the concave and convex portions such as the ridges 14 and the like, Comparative Example 3 suffered from insufficient flow in the oxygen-free copper 2 as in Comparative Examples 1 and 2, It is presumed that coarse internal defects occurred. Example 7 above
According to Nos. To 9, the superiority of the second joining method is easily understood.

【0037】図4は、第3の接合方法とこれに用いる接
合ツール20に関する。前記請求項7に相当する接合ツ
ール20は、図4(A),(B)に示すように、例えば高速
度鋼からなり、円柱形の本体21とその底面21aの中
心部に突設したプローブ基端部22とを含む第1部分2
0aと、この基端部22と同軸心のプローブ先端部24
と上記本体21およびプローブ基端部22の軸心孔23
を貫通する回転軸26とを含む第2部分20bと、係る
第1部分20aと第2部分20bとの間に配置した複数
の軸受28と、を含む。第1部分20aと第2部分20
bとは、モータなどの専用の駆動源に対し個別に接続さ
れている。尚、第1・第2部分20a,20b間の外端
部寄りには、耐熱性のシール材29が配置される。
FIG. 4 relates to a third joining method and a joining tool 20 used for the third joining method. As shown in FIGS. 4 (A) and 4 (B), a welding tool 20 according to claim 7 is made of, for example, high-speed steel and has a cylindrical main body 21 and a probe protruding from the center of the bottom surface 21a. First part 2 including base end 22
0a and a probe distal end 24 coaxial with the proximal end 22.
And the axial hole 23 of the main body 21 and the probe base end 22.
And a plurality of bearings 28 disposed between the first portion 20a and the second portion 20b. First part 20a and second part 20
b is individually connected to a dedicated drive source such as a motor. Note that a heat-resistant sealing material 29 is disposed near the outer end between the first and second portions 20a and 20b.

【0038】図4(C),(D)に示すように、アルミニウ
ム合金材(低融点側の金属部材)1と無酸素銅(高融点側
の金属部材)2とを重ね合わせて拘束し、重合部4を形
成する。また、アルミニウム合金材1の表面付近には、
上記接合ツール20を前記同様に傾斜して配置する。こ
の際、第2部分20bを第1部分20aよりも大きな回
転数によって回転しつつ、接合ツール20に1〜30k
Nの押し込み力を加え且つ上記重合部4付近に向けて挿
入すると共に、係る接合ツール20を図4(D)で右方向
に50mm〜2メートル/分の移動速度で移動させる。
As shown in FIGS. 4C and 4D, an aluminum alloy material (low melting point metal member) 1 and an oxygen-free copper (high melting point metal member) 2 are overlapped and restrained. A polymerization section 4 is formed. In addition, near the surface of the aluminum alloy material 1,
The joining tool 20 is disposed obliquely as described above. At this time, while the second portion 20b is being rotated at a higher rotation speed than the first portion 20a,
While applying a pushing force of N and inserting it toward the vicinity of the overlapping portion 4, the joining tool 20 is moved rightward in FIG. 4D at a moving speed of 50 mm to 2 meters / minute.

【0039】以上の間に、アルミニウム合金材1は、第
1部分20aにおける本体21の底面21aとプローブ
基端部22とに接触して摩擦発熱して塑性・流動化する
と共に、無酸素銅2も、第2部分20bのプローブ先端
部24と接触して摩擦発熱して塑性・流動化する。その
結果、アルミニウム合金材1と無酸素銅2とは、互いに
攪拌され、接合ツール20が離れるに従って両金属が混
合状態で固化した接合部Wが形成される。一方、無酸素
銅2は、第2部分20bのプローブ先端部24に摩擦接
触し、その回転数の増加分に応じて発熱量が増加するた
め、流動不足を解消することができる。これにより、内
部欠陥(空洞)のない健全な接合部Wを重合部4に沿って
形成可能となる。
During the above, the aluminum alloy material 1 is brought into contact with the bottom surface 21a of the main body 21 in the first portion 20a and the probe base end portion 22 to generate frictional heat and to be plasticized and fluidized. Also, it comes into contact with the probe tip portion 24 of the second portion 20b and generates heat due to friction, causing plasticity and fluidization. As a result, the aluminum alloy material 1 and the oxygen-free copper 2 are agitated with each other, and a joining portion W is formed in which both metals are solidified in a mixed state as the joining tool 20 is separated. On the other hand, the oxygen-free copper 2 comes into frictional contact with the probe tip 24 of the second portion 20b, and the calorific value increases in accordance with the increase in the number of revolutions, so that the insufficient flow can be eliminated. This makes it possible to form a sound joint W without internal defects (cavities) along the overlapped portion 4.

【0040】[0040]

【実施例10〜12】ここで第3の接合方法の具他的な
実施例を比較例と共に説明する。 JIS:A6063からなり長さ200mm×幅100
mm×厚さ5mmのアルミニウム合金材1と同じサイズ
の無酸素銅2とを4組用意した。また、高速度鋼から成
形され、直径20mmの本体21および直径9mmで長
さ3mmのプローブ基端部22からなる第1部分20a
と、同じ直径と長さのプローブ先端部24および回転軸
26からなるを第2部分20bとを含む接合ツール20
を用意した。更に、図1に示した前記接合ツール10を
別途用意した。前記図4(C),(D)に示したように、各
組のアルミニウム合金材1と無酸素銅2とを重ね合わせ
且つ拘束して、重合部4を形成すると共に、アルミニウ
ム合金材1の表面付近には、上記接合ツール20と接合
ツール10とを個別に且つ前記同様に傾斜して配置し
た。
Examples 10 to 12 Here, specific examples of the third joining method will be described together with comparative examples. JIS: Made of A6063, length 200mm x width 100
Four sets of an aluminum alloy material 1 having a size of 5 mm and a thickness of 5 mm and oxygen-free copper 2 having the same size were prepared. Also, a first portion 20a formed of high-speed steel and having a main body 21 having a diameter of 20 mm and a probe base end 22 having a diameter of 9 mm and a length of 3 mm.
And a second part 20b comprising a probe tip 24 and a rotating shaft 26 of the same diameter and length.
Was prepared. Further, the joining tool 10 shown in FIG. 1 was separately prepared. As shown in FIGS. 4 (C) and 4 (D), each set of the aluminum alloy material 1 and the oxygen-free copper 2 are overlapped and restrained to form the overlapped portion 4 and the aluminum alloy material 1 The joining tool 20 and the joining tool 10 were individually arranged near the surface and inclined in the same manner as described above.

【0041】3組のアルミニウム合金材1の表面側か
ら、移動方向と反対側に5°傾けた接合ツール20の第
1・2部分20a,20bを表4の回転数で個別に回転
させると共に、押し込み圧力12.5kN、および移動
速度200mm/分の同じ条件で挿入し、前記図4
(C),(D)に示したように、重合部4に沿って移動させ
た。これらにより得られた接合部Wを実施例10〜12
とした。一方、図1の前記接合ツール10を用い、その
回転数を上記第1部分20aと同じとしたほかは上記同
様の条件にして、残った1組のアルミニウム合金材1の
表面側から挿入し、且つ重合部4に沿って移動させるこ
とにより、得られた接合部Wを比較例4とした。実施例
10〜12と比較例4の各接合部Wを切断し、露出した
断面を目視により観察して欠陥の有無を調べた。それら
の結果を表4に示した。
The first and second portions 20a and 20b of the welding tool 20 which are inclined from the surface side of the three sets of aluminum alloy materials 1 by 5 ° in the direction opposite to the moving direction are individually rotated at the rotation speeds shown in Table 4, Inserting under the same conditions of a pushing pressure of 12.5 kN and a moving speed of 200 mm / min.
As shown in (C) and (D), it was moved along the overlapping section 4. The joints W obtained by these methods were used in Examples 10 to 12
And On the other hand, using the joining tool 10 of FIG. 1 and inserting the remaining aluminum alloy material 1 from the front side under the same conditions as above except that the rotation speed is the same as that of the first portion 20a, In addition, by moving along the overlapping portion 4, the obtained joint W was used as Comparative Example 4. Each joint W of Examples 10 to 12 and Comparative Example 4 was cut, and the exposed cross section was visually observed to check for defects. Table 4 shows the results.

【0042】[0042]

【表4】 [Table 4]

【0043】表4の結果によれば、実施例10〜12の
接合部Wには、内部欠陥が生じなかったのに対し、比較
例4の接合部Wには、約0.2mmの粗大な内部欠陥
(空洞)が発見された。即ち、実施例10〜12では、接
合ツール20における回転数の大きい第2部分20bに
より、無酸素銅2中でも塑性流動が十分に行われ、流動
不足を生じなかった。これに対し、比較例4では単一の
プローブ12がアルミニウム材1中と無酸素銅2中とに
おいて、同じ回転数で回転してこれらを攪拌したため、
無酸素銅2中で流動不足を生じたものと推定される。以
上の実施例10〜12によって、第3の接合方法の優位
性が容易に理解されよう。
According to the results shown in Table 4, the joints W of Examples 10 to 12 did not have internal defects, whereas the joints W of Comparative Example 4 had a coarse size of about 0.2 mm. Internal defects
(Cavity) was discovered. That is, in Examples 10 to 12, the second portion 20b of the welding tool 20 having a large number of rotations caused sufficient plastic flow even in the oxygen-free copper 2 and did not cause insufficient flow. On the other hand, in Comparative Example 4, the single probe 12 was rotated at the same rotational speed in the aluminum material 1 and the oxygen-free copper 2 to stir them.
It is presumed that insufficient flow occurred in the oxygen-free copper 2. The advantages of the third joining method can be easily understood from Examples 10 to 12 described above.

【0044】図5(A),(B)は、異なる形態の接合ツー
ル(前記請求項6に相当)20′を示す。図示のように、
接合ツール20′は、円柱形の本体21を含む第1部分
20aと、この本体21の軸心孔23を貫通する回転軸
26およびその先端に位置するプローブ25とを含む第
2部分20bと、係る第1部分20aと第2部分20b
との間に配置した複数の軸受28と、を含む。第1・第
2部分20a,20bは、モータなどの専用の駆動源に
対し個別に接続され、且つ第1・第2部分20a,20
b間の外端部寄りには、耐熱性のシール材29が配置さ
れている。以上のような接合ツール20′を用いても、
プローブ25を含む第2部分20bの回転数を本体21
の第1部分20aよりも大きくすることにより、前記図
4(C),(D)に示したように、摩擦による入熱量が増加
して、高融点側の銅部材2において塑性・流動化が確実
に行われる。一方、第1部分20aの回転数を小さくす
るので、その本体21の底面21aに接触する低融点側
のアルミニウム合金材1は、過度の摩擦発熱による溶融
化を防ぐことができる。従って、接合ツール20′によ
っても健全な接合部Wを形成することが可能である。
FIGS. 5A and 5B show a joining tool (corresponding to claim 6) 20 'having a different configuration. As shown,
The joining tool 20 ′ includes a first portion 20 a including a cylindrical main body 21, a second portion 20 b including a rotating shaft 26 penetrating through an axial hole 23 of the main body 21 and a probe 25 located at the tip thereof. Such a first portion 20a and a second portion 20b
And a plurality of bearings 28 disposed between them. The first and second parts 20a and 20b are individually connected to a dedicated driving source such as a motor, and are connected to the first and second parts 20a and 20b.
A heat-resistant sealing material 29 is arranged near the outer end between the points b. Even when using the joining tool 20 'as described above,
The rotation speed of the second portion 20b including the probe 25 is
As shown in FIGS. 4C and 4D, the amount of heat input due to friction increases, and plasticity and fluidization of the copper member 2 on the high melting point side are increased as shown in FIGS. It is done reliably. On the other hand, since the rotation speed of the first portion 20a is reduced, the aluminum alloy material 1 on the low melting point side in contact with the bottom surface 21a of the main body 21 can be prevented from melting due to excessive frictional heat generation. Therefore, a sound joining portion W can be formed by the joining tool 20 '.

【0045】また、図5(C)は、更に異なる形態の接合
ツール(前記請求項6に相当)20″の断面を示す。接合
ツール20″は、図5(C)に示すように、円柱形の本体
21の外周部を含む第1部分20aと、本体21の軸心
孔23を貫通する太径の回転軸26およびその底面27
の中心部から同軸心に突出するプローブ25を含む第2
部分20bと、係る第1部分20aと第2部分20bと
の間に配置した複数の軸受28と、を含む。これら第1
・第2部分20a,20bも、モータなどの専用の駆動
源に対し個別に接続され、且つ第1・第2部分20a,
20b間の外端部寄りには、耐熱性のシール材29が配
置される。以上のような接合ツール20″を用いても、
接合ツール20′と同じく前記接合ツール20における
作用・効果を同様に得ることが可能である。
FIG. 5 (C) shows a cross section of a welding tool (corresponding to claim 6) 20 "having a different form. The welding tool 20" has a cylindrical shape as shown in FIG. 5 (C). A first portion 20a including an outer peripheral portion of a main body 21, a large-diameter rotary shaft 26 penetrating through an axial hole 23 of the main body 21, and a bottom surface 27 thereof.
Including a probe 25 protruding coaxially from the center of the second
It includes a portion 20b and a plurality of bearings 28 disposed between the first portion 20a and the second portion 20b. These first
The second parts 20a and 20b are also individually connected to a dedicated driving source such as a motor, and the first and second parts 20a and 20b
A heat-resistant sealing material 29 is arranged near the outer end between the portions 20b. Even if the above joining tool 20 ″ is used,
Like the welding tool 20 ', the operation and effect of the welding tool 20 can be obtained similarly.

【0046】本発明は、以上において説明した各形態お
よび実施例に限定されない。例えば、本発明における低
融点側と高融点側の金属部材は、両者の間における融点
または軟化点の差が100℃以上であるか、または、同
じ加熱温度における引張強さなどの強度の差が100N
以上であるか、あるいは硬度の差が30Hv以上であれ
ば、異種金属やそれらの合金間の組合せは基より、同種
金属の合金系同士でも適用可能である。また、低融点側
と高融点側の一対の金属部材における重ね合わせ部に
は、両部材の段部同士の間または雄・雌嵌合部も含ま
れ、且つ平面視で直線形に限らず、中間で屈曲する重合
部やカーブする重合部も含まれる。更に、前記裏当材8
に設ける加熱手段は、前記ヒータ線9に限らず、放熱パ
イプやヒートパイプ、あるいはバーナーを内臓したラジ
アントチューブなども適用可能である。また、前記接合
ツール10のプローブ12の先端部に設ける凹凸部に
は、周面に刻設したネジ山や、先端面12aに突設する
渦巻き形の凸条も含まれる。
The present invention is not limited to the embodiments and examples described above. For example, the metal member on the low melting point side and the high melting point side in the present invention has a difference in melting point or softening point of 100 ° C. or more, or a difference in strength such as tensile strength at the same heating temperature. 100N
If the difference is not less than 30 Hv, or the difference between the hardness is 30 Hv or more, the combination of different metals and their alloys can be applied to the alloys of the same kind of metal rather than the base. In addition, the superposed portion of the pair of metal members on the low melting point side and the high melting point side includes between the step portions of both members or a male-female fitting portion, and is not limited to a linear shape in plan view, An overlapping portion that is bent in the middle or an overlapping portion that curves is also included. Further, the backing material 8
Is not limited to the heater wire 9, but a radiant pipe, a heat pipe, a radiant tube having a built-in burner, or the like can be applied. The uneven portion provided at the distal end of the probe 12 of the joining tool 10 also includes a screw thread engraved on the peripheral surface and a spiral ridge protruding from the distal end surface 12a.

【0047】[0047]

【発明の効果】以上にて説明した本発明の第1の接合方
法(請求項1)によれば、接合ツールにおけるプローブ先
端付近のみに接触する高融点側の金属部材における摩擦
熱が裏面側へ逃げる事態を阻止し、高融点側の金属部材
の流動・攪拌部における温度低下を抑制できる。このた
め、高融点側の金属部材における流動不足が解消される
ので、低・高融点の2つの金属部材における重合部付近
において、両者の金属が互いに塑性・流動しつつ攪拌さ
れる。従って、内部欠陥および表面欠陥のない健全な接
合部を形成する摩擦攪拌接合を行うことができる。ま
た、第2の接合方法(請求項3)によれば、接合ツールの
プローブ先端付近のみに接触する高融点側の金属部材に
おける摩擦熱が、プローブ先端部の凹凸部による接触面
積の増大に応じて増加する。このため、高融点側の金属
部材における流動不足が解消されるので、両金属部材の
重合部付近において内部欠陥がなく、且つ低融点側の金
属部材の表面にも表面欠陥のない健全な接合部を得られ
る。
According to the first joining method of the present invention described above (claim 1), the frictional heat of the metal member on the high melting point side which comes into contact with only the vicinity of the probe tip in the joining tool is directed to the back side. Escape is prevented, and a decrease in temperature in the flow / stirring portion of the metal member on the high melting point side can be suppressed. For this reason, the shortage of flow in the metal member on the high melting point side is eliminated, and in the vicinity of the overlapping portion between the two metal members having low and high melting points, the two metals are stirred while being plastically flowing with each other. Therefore, it is possible to perform friction stir welding that forms a sound joint without internal defects and surface defects. Further, according to the second joining method (claim 3), the frictional heat of the metal member on the high melting point side which comes into contact with only the vicinity of the probe tip of the joining tool increases in accordance with the increase in the contact area due to the unevenness of the probe tip. Increase. For this reason, the lack of flow in the metal member on the high melting point side is eliminated, so that there is no internal defect near the overlapped portion of both metal members and there is no sound defect on the surface of the metal member on the low melting point side. Can be obtained.

【0048】更に、第3の接合方法(請求項4,5)によ
れば、接合ツールにおける第2部分の回転数が大きいた
め、当該部分のプローブまたはその先端付近と接触する
高融点側の金属部材における流動不足が解消される。こ
のため、2つの金属部材の重合部に跨って内部欠陥がな
く且つ表面欠陥もない健全な接合部を確実に形成するこ
とができる。加えて、第3の接合方法に用いる接合ツー
ル(請求項6,7)によれば、接合ツールにおけるプロー
ブまたはプローブ先端部の第2部分を、本体やプローブ
基端部の第1部分よりも確実に高速回転させることがで
きるため、前記2つの金属部材の重合部に跨って内部欠
陥がなく且つ表面欠陥もない健全な接合部を確実に形成
させることが可能となる。
Further, according to the third joining method (claims 4 and 5), since the rotation speed of the second portion in the joining tool is high, the metal on the high melting point side in contact with the probe of the portion or the vicinity of the tip thereof. Insufficient flow in the member is eliminated. For this reason, it is possible to reliably form a sound joint having no internal defect and no surface defect over the overlapped portion of the two metal members. In addition, according to the joining tool used in the third joining method (claims 6 and 7), the probe or the second portion of the probe distal end in the joining tool is more reliable than the first portion of the main body or the probe proximal end. Because of the high speed rotation, it is possible to reliably form a sound joint having no internal defect and no surface defect over the overlapped portion of the two metal members.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A),(B)は本発明における第1の接合方法の
概略を示す正面図、(a),(b)はこれらの側面図。
FIGS. 1A and 1B are front views schematically showing a first joining method according to the present invention, and FIGS. 1A and 1B are side views thereof.

【図2】(A),(B)は本発明における第1の接合方法の
応用形態の概略を示す正面図、(a),(b)はこれらの側
面図。
FIGS. 2A and 2B are front views schematically showing an application form of a first joining method according to the present invention, and FIGS. 2A and 2B are side views of these.

【図3】(A),(B)は本発明における第2の接合方法に
用いる接合ツールの側面図または斜視図、(C),(D)は
異なる形態の凹凸部を示す底面図、(c)は(C)の形態の
側面図、(d)は(D)中のd−d線に沿った視角における
断面図、(E),(F)は更に異なる形態の接合ツールを示
す側面図または斜視図、(e)は(E)中のe−e線に沿っ
た視角における断面図。
FIGS. 3A and 3B are side views or perspective views of a welding tool used in a second welding method according to the present invention; FIGS. 3C and 3D are bottom views showing uneven portions having different shapes; (c) is a side view of the form of (C), (d) is a cross-sectional view at a viewing angle along the line dd in (D), and (E) and (F) show side views of a joining tool having further different forms. The figure or a perspective view, (e) is sectional drawing in the viewing angle along ee line in (E).

【図4】(A),(B)は本発明における第3の接合方法に
用いる接合ツールの側面図または断面図、(C),(D)は
第3の接合方法を示す概略図。
FIGS. 4A and 4B are side views or cross-sectional views of a welding tool used in a third welding method according to the present invention, and FIGS. 4C and 4D are schematic views showing the third welding method.

【図5】(A),(B)は第3の接合方法に用いる異なる形
態の接合ツールの側面図または断面図、(C)は更に異な
る形態の接合ツールの断面図。
FIGS. 5A and 5B are side views or cross-sectional views of different types of welding tools used in a third welding method, and FIG. 5C is a cross-sectional view of a different welding tool.

【図6】(A)は従来の摩擦攪拌接合を示す概略図、
(B),(C)はこれにより得られた接合部付近を示す断面
図。
FIG. 6A is a schematic view showing a conventional friction stir welding.
(B), (C) is sectional drawing which shows the vicinity of the joining part obtained by this.

【符号の説明】[Explanation of symbols]

1………………………………アルミニウム合金材(低融
点側の金属部材) 2………………………………無酸素銅(高融点側の金属
部材) 4………………………………重合部 6,8…………………………裏当材 9………………………………ヒータ線(加熱手段) 10,20,20′,20″…接合ツール 11,21……………………本体 11a,21a………………底面 12,25……………………プローブ 12a…………………………先端面 13……………………………凹溝(凹凸部) 14……………………………凸条(凹凸部) 16……………………………突起(凹凸部) 17,18,19……………リング凸条(凹凸部) 20a…………………………第1部分 20b…………………………第2部分 22……………………………プローブ基端部 24……………………………プローブ先端部 26……………………………回転軸 28……………………………軸受け
1 ... Aluminum alloy material (low melting point metal member) 2 ... Oxygen free copper (high melting point metal member) 4 ... ............ Overlapping part 6, 8 ...... Backing material 9 ...... Heater wire (heating means) 10, 20, 20 ', 20 "joining tool 11, 21 ... body 11a, 21a ... bottom surface 12, 25 ... probe 12a ... …………………………………………………………………………………………………………………………………………………………. ...... Projections (irregularities) 17, 18, 19 ... Ring ridges (irregularities) 20a ...... First part 20b ............ ... Second part 22.............. ........................... probe tip 26 ................................. rotary shaft 28 ................................. bearing

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】融点が互いに異なる一対の金属部材を重ね
合わせる工程と、 上記一対の金属部材のうち、低融点側の金属部材の表面
付近に円柱形の本体とその底面に突設したプローブとを
有する接合ツールを配置し、且つ高融点側の金属部材に
おける上記接合ツールと対向する裏面付近に裏当材を配
置する工程と、 上記接合ツールを回転させつつ上記一対の金属部材の重
合部付近に進入させ且つ係る重合部の長手方向に沿って
移動させることにより、上記一対の金属部材をその重合
部に沿って摩擦攪拌接合する工程と、を含む、 ことを特徴とする接合方法。
1. A step of superposing a pair of metal members having different melting points from each other; and a cylindrical main body near the surface of the metal member on the low melting point side of the pair of metal members, and a probe protruding from the bottom surface thereof. Arranging a joining tool having the above, and arranging a backing material near the back surface of the metal member on the high melting point side facing the joining tool; and near the overlapping portion of the pair of metal members while rotating the joining tool. And welding the pair of metal members along the overlapping portion by friction stir welding by moving the pair of metal members along a longitudinal direction of the overlapping portion.
【請求項2】前記裏当材は、高融点側の金属部材よりも
低い熱伝導率のものであるか、あるいは加熱手段を有す
るものである、 ことを特徴とする請求項1に記載の接合方法。
2. The joint according to claim 1, wherein the backing material has a lower thermal conductivity than the metal member on the high melting point side, or has a heating means. Method.
【請求項3】円柱形の本体とその底面にプローブとを有
し、このプローブの先端部に凹凸部を有する接合ツール
を用いる接合方法であって、 融点が互いに異なる一対の金属部材を重ね合わせる工程
と、 上記一対の金属部材のうち、低融点側の金属部材の表面
付近に上記接合ツールを配置する工程と、 上記接合ツールを回転させつつ上記一対の金属部材の重
合部付近に進入させ且つ係る重合部の長手方向に沿って
移動させることにより、上記一対の金属部材をその重合
部に沿って摩擦攪拌接合する工程と、を含む、 ことを特徴とする接合方法。
3. A joining method using a joining tool having a cylindrical main body and a probe on a bottom surface thereof and having an uneven portion at the tip of the probe, wherein a pair of metal members having different melting points are overlapped. A step of arranging the joining tool near the surface of the metal member on the low melting point side of the pair of metal members; and causing the joining tool to approach the overlapping portion of the pair of metal members while rotating the joining tool; A step of moving the pair of metal members along the overlapping portion by friction stir welding by moving the overlapping portion along the longitudinal direction.
【請求項4】少なくとも円柱形の本体における外周部を
含む第1部分と、少なくともプローブ先端部を含む第2
部分とからなり、第1部分と第2部分とが同軸心で且つ
個別に回転する接合ツールを用いる接合方法であって、 融点が互いに異なる一対の金属部材を重ね合わせる工程
と、 上記一対の金属部材のうち、低融点側の金属部材の表面
付近に上記接合ツールを配置する工程と、 上記接合ツールをその第2部分の回転数を第1部分の回
転数よりも大きくした回転を伴いつつ上記一対の金属部
材の重合部付近に進入させ、且つ係る重合部の長手方向
に沿って移動させることにより、上記一対の金属部材を
その重合部に沿って摩擦攪拌接合する工程と、を含む、 ことを特徴とする接合方法。
4. A first portion including at least an outer peripheral portion of a cylindrical main body, and a second portion including at least a probe tip.
A joining method comprising using a joining tool comprising a first part and a second part, wherein the first part and the second part are coaxial and individually rotate, and a step of superposing a pair of metal members having different melting points from each other; Arranging the welding tool near the surface of the metal member on the low melting point side of the member, and rotating the welding tool with the rotation speed of the second portion thereof being higher than the rotation speed of the first portion. Causing the pair of metal members to enter the vicinity of the overlapped portion of the pair of metal members and to move along the longitudinal direction of the overlapped portion to thereby frictionally stir the pair of metal members along the overlapped portion. The joining method characterized by the above-mentioned.
【請求項5】前記第1部分が円柱形の本体およびその底
面に突設したプローブ基端部を含み、且つ前記第2部分
がプローブの先端部を含むと共に、互いに同軸心で且つ
個別に回転する第1・第2部分からなる接合ツールを用
いる接合方法であって、 融点が互いに異なる一対の金属部材を重ね合わせる工程
と、 上記一対の金属部材のうち、低融点側の金属部材の表面
付近に上記接合ツールを配置する工程と、 上記接合ツールをその本体側の第1部分の回転数よりも
プローブ先端部側の第2部分の回転数を大きくした回転
を伴って上記一対の金属部材の重合部付近に進入させ且
つ係る重合部の長手方向に沿って移動させることによ
り、上記一対の金属部材をその重合部に沿って摩擦攪拌
接合する工程と、を含む、 ことを特徴とする請求項4に記載の接合方法。
5. The probe according to claim 1, wherein the first portion includes a cylindrical main body and a probe base end protruding from the bottom surface thereof, and the second portion includes a probe tip end, and coaxially and individually rotates with each other. A joining method using a joining tool including first and second portions, wherein a step of superposing a pair of metal members having different melting points from each other; Disposing the welding tool on the probe, and rotating the welding tool with the rotation speed of the second portion closer to the probe tip than the rotation speed of the first portion on the body side of the pair of metal members. Causing the pair of metal members to undergo friction stir welding along the overlapped portion by entering near the overlapped portion and moving along the longitudinal direction of the overlapped portion. Noted in 4 Mounting method.
【請求項6】請求項4に記載の接合方法に用いる接合ツ
ールであって、 円柱形の本体またはこの本体の外周部を含む第1部分
と、 上記本体の中心部を同軸心で貫通する回転軸とこの回転
軸の先端に位置し且つ上記本体の底面から突出するプロ
ーブとを含む第2部分と、 上記第1部分と第2部分との間に配置した軸受と、を含
む、 ことを特徴とする接合ツール。
6. A joining tool for use in the joining method according to claim 4, wherein the first portion includes a cylindrical main body or an outer peripheral portion of the main body, and a rotation penetrating coaxially through a central portion of the main body. A second portion including a shaft, a probe located at a tip of the rotating shaft and protruding from a bottom surface of the main body, and a bearing disposed between the first portion and the second portion. And joining tools.
【請求項7】請求項5に記載の接合方法に用いる接合ツ
ールであって、 円柱形の本体とその底面に突設したプローブ基端部とを
含む第1部分と、 プローブ先端部と上記第1部分の本体およびプローブ基
端部の軸心を貫通する回転軸とを含む第2部分と、 上記第1部分と第2部分との間に配置した軸受と、を含
む、 ことを特徴とする接合ツール。
7. A joining tool used in the joining method according to claim 5, wherein the first portion includes a cylindrical main body and a probe base end protruding from a bottom surface thereof; A second part including a main body of one part and a rotating shaft penetrating an axis of a base end portion of the probe; and a bearing disposed between the first part and the second part. Joining tools.
JP2000266932A 2000-09-04 2000-09-04 Joining method Expired - Fee Related JP3864684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266932A JP3864684B2 (en) 2000-09-04 2000-09-04 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266932A JP3864684B2 (en) 2000-09-04 2000-09-04 Joining method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006164147A Division JP4453682B2 (en) 2006-06-14 2006-06-14 Joining method and joining tool

Publications (2)

Publication Number Publication Date
JP2002079383A true JP2002079383A (en) 2002-03-19
JP3864684B2 JP3864684B2 (en) 2007-01-10

Family

ID=18753937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266932A Expired - Fee Related JP3864684B2 (en) 2000-09-04 2000-09-04 Joining method

Country Status (1)

Country Link
JP (1) JP3864684B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103758A (en) * 2002-09-09 2004-04-02 Matsushita Electric Ind Co Ltd Method for manufacturing heat sink for electronic component and heat sink for electronic component produced by using same
US6913186B2 (en) 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
JP2006212651A (en) * 2005-02-02 2006-08-17 Sumitomo Light Metal Ind Ltd Friction stir spot welding method, and rotary tool for friction stir spot welding used for it
EP1716959A3 (en) * 2005-04-28 2006-12-06 Hydro Aluminium Deutschland GmbH Process of and devices for friction stir welding of at least two Workpieces of different materials with a slidable pin and current passing through the workpieces
JP2006341279A (en) * 2005-06-09 2006-12-21 Sumitomo Light Metal Ind Ltd Method for joining edge face in superimposed material
JP2007007729A (en) * 2005-06-27 2007-01-18 Gkss Forschungszentrum Geesthacht Gmbh Apparatus for friction stir welding
US7392771B2 (en) 2003-01-28 2008-07-01 Honda Motor Co., Ltd. Cylinder block and cylinder sleeve, method of producing cylinder block and cylinder sleeve by friction stir welding, and friction stir welding method
WO2008090633A1 (en) * 2007-01-22 2008-07-31 Susumu Hioki Friction stir welding apparatus and method of welding
JP2010005687A (en) * 2008-06-30 2010-01-14 Mitsui Mining & Smelting Co Ltd Composite material and method for manufacturing the same
JP2011115857A (en) * 2011-02-07 2011-06-16 Kawasaki Heavy Ind Ltd Friction stir welding device
JP2014193489A (en) * 2009-11-02 2014-10-09 Megastir Technologies Llc Mandrel
EP2898981A2 (en) 2014-01-27 2015-07-29 Nippon Light Metal Company, Ltd. Joining method
KR20160050082A (en) 2013-10-21 2016-05-10 니폰게이긴조쿠가부시키가이샤 Method for manufacturing heat transfer plate and joining method
CN107283044A (en) * 2017-08-05 2017-10-24 宁波金凤焊割机械制造有限公司 A kind of manufacture method of high ferro Wiring nose
CN113369670A (en) * 2021-06-16 2021-09-10 西北工业大学 Method for improving backfill type friction stir spot welding efficiency
JP2021164943A (en) * 2020-04-08 2021-10-14 Jfeスチール株式会社 Friction stir joining method for aluminum alloy plate and steel plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623716B2 (en) * 1975-01-30 1981-06-02
US5697544A (en) * 1996-03-21 1997-12-16 Boeing North American, Inc. Adjustable pin for friction stir welding tool
JPH1071478A (en) * 1996-08-30 1998-03-17 Showa Alum Corp Friction agitation joining method
JPH10202374A (en) * 1997-01-22 1998-08-04 Showa Alum Corp Friction-agitation joining method
JPH10328855A (en) * 1997-05-30 1998-12-15 Showa Alum Corp Manufacture of conductive joined body joined with different kinds of metal
JP2000153374A (en) * 1998-11-18 2000-06-06 Hitachi Ltd Frictional agitation joining device, frictional agitation joining tool and frictional agitation joining structure
JP2001252774A (en) * 2000-03-10 2001-09-18 Showa Denko Kk Method of friction stir joining
JP2001259863A (en) * 2000-03-17 2001-09-25 Sumitomo Light Metal Ind Ltd Method of spot joining for aluminum alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623716B2 (en) * 1975-01-30 1981-06-02
US5697544A (en) * 1996-03-21 1997-12-16 Boeing North American, Inc. Adjustable pin for friction stir welding tool
JPH1071478A (en) * 1996-08-30 1998-03-17 Showa Alum Corp Friction agitation joining method
JPH10202374A (en) * 1997-01-22 1998-08-04 Showa Alum Corp Friction-agitation joining method
JPH10328855A (en) * 1997-05-30 1998-12-15 Showa Alum Corp Manufacture of conductive joined body joined with different kinds of metal
JP2000153374A (en) * 1998-11-18 2000-06-06 Hitachi Ltd Frictional agitation joining device, frictional agitation joining tool and frictional agitation joining structure
JP2001252774A (en) * 2000-03-10 2001-09-18 Showa Denko Kk Method of friction stir joining
JP2001259863A (en) * 2000-03-17 2001-09-25 Sumitomo Light Metal Ind Ltd Method of spot joining for aluminum alloy

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103758A (en) * 2002-09-09 2004-04-02 Matsushita Electric Ind Co Ltd Method for manufacturing heat sink for electronic component and heat sink for electronic component produced by using same
US7392771B2 (en) 2003-01-28 2008-07-01 Honda Motor Co., Ltd. Cylinder block and cylinder sleeve, method of producing cylinder block and cylinder sleeve by friction stir welding, and friction stir welding method
US6913186B2 (en) 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
JP2006212651A (en) * 2005-02-02 2006-08-17 Sumitomo Light Metal Ind Ltd Friction stir spot welding method, and rotary tool for friction stir spot welding used for it
EP1716959A3 (en) * 2005-04-28 2006-12-06 Hydro Aluminium Deutschland GmbH Process of and devices for friction stir welding of at least two Workpieces of different materials with a slidable pin and current passing through the workpieces
JP2006341279A (en) * 2005-06-09 2006-12-21 Sumitomo Light Metal Ind Ltd Method for joining edge face in superimposed material
JP2007007729A (en) * 2005-06-27 2007-01-18 Gkss Forschungszentrum Geesthacht Gmbh Apparatus for friction stir welding
WO2008090633A1 (en) * 2007-01-22 2008-07-31 Susumu Hioki Friction stir welding apparatus and method of welding
JP2010005687A (en) * 2008-06-30 2010-01-14 Mitsui Mining & Smelting Co Ltd Composite material and method for manufacturing the same
JP2014193489A (en) * 2009-11-02 2014-10-09 Megastir Technologies Llc Mandrel
JP2011115857A (en) * 2011-02-07 2011-06-16 Kawasaki Heavy Ind Ltd Friction stir welding device
KR20160050082A (en) 2013-10-21 2016-05-10 니폰게이긴조쿠가부시키가이샤 Method for manufacturing heat transfer plate and joining method
KR20180083918A (en) 2013-10-21 2018-07-23 니폰게이긴조쿠가부시키가이샤 Joining method
EP2898981A2 (en) 2014-01-27 2015-07-29 Nippon Light Metal Company, Ltd. Joining method
EP2995413A1 (en) 2014-01-27 2016-03-16 Nippon Light Metal Company Ltd. Joining method
EP3254797A1 (en) 2014-01-27 2017-12-13 Nippon Light Metal Company, Ltd. Joining method
US10335894B2 (en) 2014-01-27 2019-07-02 Nippon Light Metal Company, Ltd. Joining method
CN107283044A (en) * 2017-08-05 2017-10-24 宁波金凤焊割机械制造有限公司 A kind of manufacture method of high ferro Wiring nose
JP2021164943A (en) * 2020-04-08 2021-10-14 Jfeスチール株式会社 Friction stir joining method for aluminum alloy plate and steel plate
JP7173081B2 (en) 2020-04-08 2022-11-16 Jfeスチール株式会社 Friction stir welding method for aluminum alloy plate and steel plate
CN113369670A (en) * 2021-06-16 2021-09-10 西北工业大学 Method for improving backfill type friction stir spot welding efficiency
CN113369670B (en) * 2021-06-16 2023-12-05 西北工业大学 Method for improving backfill type friction stir spot welding efficiency

Also Published As

Publication number Publication date
JP3864684B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP2002079383A (en) Method of joining and joining tool
US6053391A (en) Friction stir welding tool
JP3897391B2 (en) Friction stir welding method for metal joining members
TW201636139A (en) Joining method and method for manufacturing composite rolled material
WO2020095483A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP2005288499A (en) Friction stir welding method and reforming method thereby
JP5151036B2 (en) Friction stir welding method
JP4732571B2 (en) Friction stir welding tool and friction stir welding method
JP3295376B2 (en) Friction stir welding
JPH1071478A (en) Friction agitation joining method
JP2000042781A (en) Method for repairing recessed defect part
JP2002248582A (en) Friction stir welding method
JP4453682B2 (en) Joining method and joining tool
JP3452044B2 (en) Friction stir tool, joining method using the same, and method for removing fine voids on casting surface
JP3935234B2 (en) Manufacturing method of butt joint
JP2002035964A (en) Friction stir welding method and tool for lap joint
JPH08141755A (en) Friction welding method for different kinds of metallic material
JP2006205190A (en) Method of joining dissimilar metals
JP7347234B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
JP7173081B2 (en) Friction stir welding method for aluminum alloy plate and steel plate
JP7347235B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
JP2000225476A (en) Friction-stir-welding method for works made of metal
JP3652833B2 (en) Truss material manufacturing method
JP2003225777A (en) Friction stirring and joining tool
JP2021062376A (en) Friction stirring and joining tool and friction stirring and joining method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees