JP2002076623A - Manufacturing method of ceramic wiring board - Google Patents

Manufacturing method of ceramic wiring board

Info

Publication number
JP2002076623A
JP2002076623A JP2000252977A JP2000252977A JP2002076623A JP 2002076623 A JP2002076623 A JP 2002076623A JP 2000252977 A JP2000252977 A JP 2000252977A JP 2000252977 A JP2000252977 A JP 2000252977A JP 2002076623 A JP2002076623 A JP 2002076623A
Authority
JP
Japan
Prior art keywords
elastic member
green sheet
cavity
sheet laminate
flexible elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000252977A
Other languages
Japanese (ja)
Other versions
JP4541513B2 (en
Inventor
Koji Matsuda
浩二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000252977A priority Critical patent/JP4541513B2/en
Publication of JP2002076623A publication Critical patent/JP2002076623A/en
Application granted granted Critical
Publication of JP4541513B2 publication Critical patent/JP4541513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for appropriately crimping the area between the layers of a green sheet laminate while accurately retaining a product shape in the manufacture of a ceramic wiring board. SOLUTION: A cavity 11 is formed as a sheet side recessed section that is open at the uppermost layer of the green sheet laminate 20 where a plurality of ceramic green sheets (a first layer 16, a second layer 14, and a third layer 12) are laminated, and a flexible elastic member 2 where a constant projection pattern is formed on the surface is overlapped to the green sheet laminate 20 so that the side of the projection pattern is located at the side of the recessed pattern. Then, by pressing the green sheet laminate 20 in the lamination direction by the flexible elastic member 2, the green sheet laminate 20 is pinched by the flexible elastic member 2 and a tool 40, and at the same time an elastic member side projection 4 is forcibly deformed when the projection 4 that does not correspond to the sheet side recessed section (cavity 11) is generated for allowing the elastic member side projection 4 to enter the cavity 11, thus crimping the area between the layers of the green sheet laminate 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、セラミック配線基板の
製造方法に関する。
The present invention relates to a method for manufacturing a ceramic wiring board.

【0002】[0002]

【従来の技術】セラミック積層構造をとるセラミック配
線基板は、例えば以下のごとく製造される。まず、アル
ミナ等のセラミックグリーンシートにおいてキャビティ
を形成し、タングステン、モリブデン等を主成分とする
メタライズインクをスクリーン印刷する。次いで、この
ようなセラミックグリーンシートを積層し、これらを厚
さ方向に圧縮力を加えて圧着し、その後、これを焼成す
ることとなる。
2. Description of the Related Art A ceramic wiring board having a ceramic laminated structure is manufactured, for example, as follows. First, a cavity is formed in a ceramic green sheet of alumina or the like, and a metallized ink containing tungsten, molybdenum or the like as a main component is screen-printed. Next, such ceramic green sheets are laminated, and they are pressed by applying a compressive force in the thickness direction, and then fired.

【0003】上記のごとく、セラミックグリーンシート
の圧着は、積層体に厚さ方向に圧縮力を付与してその層
間を圧着する手法が一般的であるが、このような圧着工
程において製品の細部に至るまで良好に圧着が完了し、
かつ圧縮力の付与時又は圧縮力の開放時において製品の
変形等が効果的に防止され、圧着後の積層体形状が高精
度に維持される方法が望まれていた。
As described above, the pressing of ceramic green sheets is generally performed by applying a compressive force to the laminate in the thickness direction to press the layers between the layers. The crimping is completed successfully until
In addition, there has been a demand for a method in which deformation of a product is effectively prevented when a compressive force is applied or when the compressive force is released, and a shape of a laminated body after pressure bonding is maintained with high accuracy.

【0004】[0004]

【発明が解決しようとする課題】本発明の解決すべき課
題は、セラミック配線基板の製造において、製品形状を
高精度に維持しつつグリーンシート積層体の層間を良好
に圧着し得る製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a ceramic wiring board, which is capable of satisfactorily pressing between layers of a green sheet laminate while maintaining a product shape with high precision. Is to do.

【0005】[0005]

【課題を解決するための手段及び作用・効果】上記のよ
うな課題を解決するために、本発明は、複数のセラミッ
クグリーンシートを積層、圧着して、最上層に1又は複
数形成されたシート側凹部が開口するグリーンシート積
層体(以下、単に積層体ともいう)を製造する圧着工程
を含み、圧着工程において、グリーンシート積層体に対
し、1又は複数の弾性部材側凸部がシート側凹部の形状
と異なる形状で表面に形成された柔軟弾性部材を、弾性
部材側凸部の側がシート側凸部が開口する側に位置する
ように重ね合わせ、さらに、柔軟弾性部材にてグリーン
シート積層体を積層方向に押圧することにより、グリー
ンシート積層体の層間を圧着することを特徴とするセラ
ミック配線基板の製造方法を提供する。
Means for Solving the Problems and Action / Effect In order to solve the above-mentioned problems, the present invention relates to a sheet formed by laminating and pressing a plurality of ceramic green sheets and forming one or more sheets on the uppermost layer. The method includes a pressure bonding step of manufacturing a green sheet laminate (hereinafter, also simply referred to as a laminate) having side recesses. In the pressure bonding step, one or more elastic member-side protrusions are formed on the green sheet laminate by the sheet side recesses. A flexible elastic member formed on the surface in a shape different from the shape of the above is overlapped so that the side of the elastic member side convex portion is located on the side where the sheet side convex portion is opened, and further, the green sheet laminate is formed by the flexible elastic member. The method for manufacturing a ceramic wiring board is characterized in that the layers of the green sheet laminate are pressure-bonded by pressing the layers in the stacking direction.

【0006】上記のごとく、弾性部材側凸部が形成され
る柔軟弾性部材を圧着に使用すれば、その弾性部材側凸
部が積層体の最上層に開口するシート側凹部(以下、キ
ャビティとも言う)に進入し易くなる。即ち、当接面が
平坦に形成される柔軟弾性部材を使用した場合には、シ
ート側凹部への柔軟弾性部材の進入に伴う当該柔軟弾性
部材の当接面の変形量が過大となり、そのための加圧量
も増大せざるを得ないが、上記方法によれば、弾性部材
側凸部が強制変形されない状態においてもシート側凹部
内にその弾性部材側凸部の一部が進入可能となる。
As described above, if the flexible elastic member having the elastic member-side convex portion is used for pressure bonding, the elastic member-side convex portion is opened to the uppermost layer of the laminate, and the sheet-side concave portion (hereinafter also referred to as a cavity). ). That is, when a flexible elastic member having a flat contact surface is used, the amount of deformation of the contact surface of the flexible elastic member due to the entry of the flexible elastic member into the sheet-side concave portion becomes excessively large. Although the amount of pressurization must be increased, according to the above method, even if the elastic member-side convex portion is not forcibly deformed, a part of the elastic member-side convex portion can enter the sheet-side concave portion.

【0007】また、当接面が平坦に形成される柔軟弾性
部材を使用した場合、圧着時においてキャビティ内部に
充填された当該柔軟弾性部材の一部は、圧着状態が開放
された場合には弾性復帰力により自由状態となる。その
復帰量が過大であるとキャビティ内部が過度に減圧状態
となり、その結果としていわゆるバックリングが生じる
可能性がある。例えば、図14に示されるように、当接
面が平坦に形成される弾性材料を圧着に使用した場合、
積層体最上層に当接した時点においてキャビティ11の
大部分が空隙となるため、この空隙を充填するよう柔軟
弾性部材101を変形させなければならない。また、キ
ャビティ11内への柔軟弾性部材101の進入前におい
てキャビティ11の開口部が強固に密封された状態とな
るため、キャビティ内の空気抜け不良といった問題も生
ずる。さらには、仮に、図14(b)のごとく柔軟弾性
部材101がキャビティ内へ進入されたとしても、圧力
開放時において柔軟弾性部材101の弾性復帰量が大き
いため、その弾性復帰後においてキャビティ11内の減
圧状態が過大となり、図14(c)のごとくバックリン
グが生じ、製品不良となる可能性がある。また、当接面
が予めキャビティの形状に合わせた形状となっている弾
性部材を使用した場合にも、上記と同様に、減圧状態が
過大となりバックリングが生じ、製品不良となる可能性
があった。
In the case where a flexible elastic member having a flat contact surface is used, a part of the flexible elastic member filled in the cavity at the time of pressing is elastic when the compressed state is released. A free state is established by the return force. If the amount of return is excessive, the inside of the cavity is excessively depressurized, and as a result, buckling may occur. For example, as shown in FIG. 14, when an elastic material having a flat contact surface is used for crimping,
Most of the cavity 11 becomes a void when it comes into contact with the uppermost layer of the laminate, so the flexible elastic member 101 must be deformed so as to fill the void. In addition, before the flexible elastic member 101 enters the cavity 11, the opening of the cavity 11 is in a state of being tightly sealed. Further, even if the flexible elastic member 101 enters the cavity as shown in FIG. 14 (b), the elastic return of the flexible elastic member 101 is large when the pressure is released. 14C becomes excessive, buckling occurs as shown in FIG. 14C, and there is a possibility that the product becomes defective. Also, when using an elastic member whose contact surface has a shape that matches the shape of the cavity in advance, similarly to the above, the decompression state becomes excessive, buckling may occur, and there is a possibility that a product defect may occur. Was.

【0008】それに対し、上記のごとく弾性部材側凸部
をキャビティ内に進入させると、圧着後においてキャビ
ティの開口が開放される程度に当該柔軟弾性部材の強制
変形が復帰した場合、依然として弾性部材側凸部の一部
がキャビティ内の空間の占有することとなる。また、弾
性部材とキャビティの形状が同一の形状ではないため、
両者に隙間が生じる。従って、減圧の度合は上記平坦面
形状のものと比較して極めて小さいか、又は減圧がほぼ
生じないためバックリングを防止でき、ひいては高精度
の製品提供、歩留まりの向上等に寄与する。また、キャ
ビティ形状は、製品の品種により異なるため、弾性部材
側凸部が、キャビティの形状に合わせた柔軟弾性部材を
用いる場合、品種の数だけ多くの種類の治具を必要とす
るが、本発明の製造方法によると、一種類の治具を多品
種に使用可能となる。このように汎用性があるため、治
具のコストを抑えて製造することができる。
On the other hand, if the elastic member-side convex portion is made to enter the cavity as described above, the forced elastic deformation of the flexible elastic member is restored to such an extent that the opening of the cavity is opened after the compression, and the elastic member side still remains. A part of the protrusion occupies the space in the cavity. Also, since the shape of the elastic member and the cavity are not the same,
There is a gap between the two. Therefore, the degree of decompression is extremely small as compared with the above flat surface shape, or buckling can be prevented since decompression hardly occurs, which contributes to providing high-accuracy products and improving yield. Also, since the shape of the cavity differs depending on the product type, when the elastic member side convex portion uses a flexible elastic member that matches the shape of the cavity, many types of jigs are required as many as the product types. According to the manufacturing method of the invention, one kind of jig can be used for many kinds. Because of such versatility, the jig can be manufactured at a reduced cost.

【0009】また、柔軟弾性部材にてグリーシート積層
体を積層方向に押圧する際に、弾性部材側凸部を強制変
形させて該弾性部材側凸部をシート側凹部に進入させつ
つ、グリーンシート積層体の層間を圧着するようにでき
る。
When the green sheet laminate is pressed in the laminating direction by the flexible elastic member, the green sheet is forcedly deformed so that the elastic member-side convex portion enters the sheet-side concave portion. The layers of the laminate can be pressed together.

【0010】また、各シート側凹部に対応した位置に各
々のシート側凹部よりも小面積の貫通孔が形成された被
覆板により、各シート側凹部の開口内周縁が貫通孔内に
露出しない形にてグリーンシート積層体の最上層面部を
覆い、その被覆版の上から柔軟弾性部材を被せて押圧す
ることにより、弾性部材側凸部を被覆板の貫通孔を経て
シート側凹部内に進入させるようにできる。
[0010] In addition, the covering plate having a through-hole having a smaller area than each of the sheet-side recesses is formed at a position corresponding to each of the sheet-side recesses so that the inner peripheral edge of the opening of each of the sheet-side recesses is not exposed in the through-hole. By covering the uppermost layer surface of the green sheet laminate with a flexible elastic member over the cover plate and pressing, the elastic member-side convex portion enters the sheet-side concave portion through the through hole of the cover plate. I can do it.

【0011】このように、被覆板にて最上層面部を覆う
ことで、最上層面部において柔軟弾性部材による圧接が
望まれない位置を被覆できる。例えば、シート最上層面
部において、キャビティ以外の貫通孔等(例えば、キャ
スタレーション等)が形成されている場合には、圧接に
よってその貫通孔等に柔軟弾性部材が進入することとな
り、当該積層体(例えばその貫通孔近傍等)が変形して
形状精度の低下を招く。これに対し、被覆板により圧接
が望まれない位置を被覆すれば、このような変形を防止
でき、かつ当接面となるシート最上層面をも効果的に保
護できる。さらに、当該被覆板により、各シート側凹部
の開口内周縁が貫通孔内に露出しないようにグリーンシ
ート積層体の最上層面部を覆うことにより、柔軟弾性部
材のシート側凹部内への進入時において、その柔軟弾性
部材による開口内周縁への圧力の集中を防止でき、開口
内周縁の形状を高精度に維持できる。さらに、キャビテ
ィ近傍部へ被覆板の角が当たり、グリーンシートに傷が
ついたり、変形することを防止することが可能となる。
As described above, by covering the uppermost layer surface portion with the cover plate, it is possible to cover a position on the uppermost layer surface portion where pressing by the flexible elastic member is not desired. For example, when a through hole or the like (for example, castellation) other than the cavity is formed in the uppermost layer surface portion of the sheet, the flexible elastic member enters the through hole or the like by pressure contact, and the laminate ( For example, the vicinity of the through-hole) is deformed and the shape accuracy is reduced. On the other hand, if the cover plate covers a position where pressure contact is not desired, such deformation can be prevented, and the uppermost surface of the sheet serving as the contact surface can be effectively protected. Furthermore, the cover plate covers the uppermost surface of the green sheet laminate so that the inner peripheral edge of the opening of each sheet-side recess is not exposed in the through-hole, so that the flexible elastic member enters the sheet-side recess. The concentration of pressure on the inner peripheral edge of the opening by the flexible elastic member can be prevented, and the shape of the inner peripheral edge of the opening can be maintained with high accuracy. Further, it is possible to prevent the corner of the cover plate from hitting the vicinity of the cavity, thereby preventing the green sheet from being damaged or deformed.

【0012】なお、本発明における弾性材料として、ゴ
ム、エラストマー等の柔軟弾性材料を使用でき、中でも
特にシリコンゴムを好適に用いることができる。これに
よると、柔軟性に優れるため弾性部材側凸部のキャビテ
ィ内への進入がスムーズとなり、かつ耐久性及び耐薬品
性を併せて有するため極めて機能的である。
As the elastic material in the present invention, a soft elastic material such as rubber and elastomer can be used, and among them, silicone rubber can be particularly preferably used. According to this, the elastic member-side convex portion smoothly enters the cavity due to excellent flexibility, and is extremely functional because it has both durability and chemical resistance.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を図面に示す
実施例を参照しつつ説明する。図1は、本発明の製造方
法の対象となるグリーンシート積層体の一例についての
平面図を示している。まず、積層体の圧着工程前の状態
について図1及び図2を参照して述べると、グリーンシ
ート積層体20は、複数枚(本実施例では3枚)のセラ
ミックグリーンシートが積層されてなり、さらに、ワー
ク基板10を一体的に配列的に集合させた配線基板製造
単位(以下、配線基板単位ともいう)15(図1におい
て黒太枠にて囲まれた部分)を複数(図1では8つ)含
んだ形で形成される。この配線基板製造単位15は、図
2(a)のごとく、ワーク基板10が所定の配列にて形
成されており、圧着工程前においては図1のごとく複数
の配線基板製造単位15が一体化した形でグリーンシー
ト積層体20が構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to embodiments shown in the drawings. FIG. 1 is a plan view showing an example of a green sheet laminate to be subjected to the production method of the present invention. First, the state before the pressure bonding step of the laminate will be described with reference to FIGS. 1 and 2. The green sheet laminate 20 is formed by laminating a plurality of (three in this embodiment) ceramic green sheets. Further, a plurality of wiring board manufacturing units (hereinafter, also referred to as wiring board units) 15 (parts surrounded by a thick black frame in FIG. 1) in which the work boards 10 are collectively arranged in an integrated manner (eight in FIG. 1). One) is formed in a form that includes. 2A, the work substrates 10 are formed in a predetermined arrangement as shown in FIG. 2A, and a plurality of wiring substrate manufacturing units 15 are integrated as shown in FIG. The green sheet laminate 20 is formed in the shape.

【0014】配線基板製造単位15に設けられるワーク
基板10は、図2(b)のごとく、最上層側に開口する
シート側凹状部としてのキャビティ11が形成されてい
る。このキャビティ11は、図2(c)のA−A断面図
のごとく、最上層12を貫通する最上層孔11a(第三
層孔11aともいう)、及びボンディングパッド層とし
ての第二層14を貫通する第二層孔11bが互いに対応
した位置に形成されてなり、第一層16がキャビティ1
1の底部をなす形態となっている。なお、積層数はこれ
に限定されず、適数層(例えば2層〜6層)とできる。
As shown in FIG. 2B, the work board 10 provided in the wiring board manufacturing unit 15 has a cavity 11 as a sheet-side concave portion opened to the uppermost layer side. The cavity 11 has an uppermost layer hole 11a (also referred to as a third layer hole 11a) penetrating the uppermost layer 12 and a second layer 14 as a bonding pad layer, as shown in the AA sectional view of FIG. The penetrating second layer holes 11 b are formed at positions corresponding to each other, and the first layer 16 is formed in the cavity 1.
1 forms the bottom. The number of layers is not limited to this, and may be an appropriate number (for example, 2 to 6 layers).

【0015】また、各層のセラミックの所定位置には、
配線用のビアホールが形成され、各層のビアホール内に
は、例えば、モリブデン、タングステン等の導体ペース
トのスクリーン印刷によりビア導体が充填されている。
更に、各層のセラミック層の上面には、金属の導体ペー
ストで配線パターンがスクリーン印刷されている。
Further, at a predetermined position of the ceramic of each layer,
Via holes for wiring are formed, and the via holes in each layer are filled with via conductors by screen printing of a conductive paste such as molybdenum or tungsten.
Furthermore, a wiring pattern is screen-printed on the upper surface of each ceramic layer with a metal conductive paste.

【0016】なお、このようなグリーンシート積層体2
0を形成する前段階の工程について述べると、例えばア
ルミナセラミック等を主体とするグリーンシートをドク
ターブレード法等により製造するとともに、これを所定
のサイズに切断し、次いでその切断されたシートにおい
て所定形状の孔を所定位置にて打ち抜く。さらに打ち抜
かれた孔にタングステン(W)又はモリブデン(Mo)
等の高融点金属を主に含むメタライズインクを充填する
ことにより、当該セラミックグリーンシートを垂直方向
に貫通するビア形成を行う。そのセラミックグリーンシ
ート表面において上記同様のメタライズインクをスクリ
ーン印刷により所定のパターンにて印刷し、メタライズ
層を形成する。そして、シート側凹部となるべき第三層
孔11a、及び第二層孔11bを各セラミックグリーン
シートの所定位置に形成し、それらセラミックグリーン
シートを積層することによりグリーンシート積層体20
を得る。なお、グリーンシート積層体20は、層間にお
いて接着用の溶剤が塗布された状態にて仮接着される。
そして、このようなグリーンシート積層体20の層間
を、以下において説明する圧着工程にて圧着することと
なる。
Incidentally, such a green sheet laminate 2
For example, a green sheet mainly composed of alumina ceramic or the like is manufactured by a doctor blade method or the like, and the green sheet is cut into a predetermined size. Hole is punched at a predetermined position. In addition, tungsten (W) or molybdenum (Mo)
By filling a metallized ink mainly containing a high melting point metal such as the above, a via is formed to penetrate the ceramic green sheet in the vertical direction. On the surface of the ceramic green sheet, the same metallized ink as described above is printed in a predetermined pattern by screen printing to form a metallized layer. Then, a third layer hole 11a and a second layer hole 11b which are to be sheet-side recesses are formed at predetermined positions of the ceramic green sheets, and the ceramic green sheets are stacked to form a green sheet laminate 20.
Get. The green sheet laminate 20 is temporarily bonded in a state where a bonding solvent is applied between the layers.
Then, the layers of the green sheet laminate 20 are pressure-bonded in a pressure-bonding step described below.

【0017】まず、圧着工程の概要について述べる。複
数のセラミックグリーンシート(第一層16、第二層1
4、第三層12)が積層されたグリーンシート積層体2
0の最上層にて開口するシート側凹部としてキャビティ
11が上記のごとく形成されているが、この得るべきグ
リーンシート積層体20は、セラミック配線基板の品種
に応じて異なる凹部パターンが形成されるものである。
そして、当該圧着工程においては、その凹部パターンの
異なる複数のグリーンシート積層体に対し、一定の凸部
パターンが表面に形成された柔軟弾性部材(図4参照:
なお、図4(a)及び(b)はその柔軟弾性部材の一例
についての斜視図及び平面図を示す。)を、その凸部パ
ターンの側が凹部パターンの側に位置するように重ね合
わせる。なお、図6はこれらを重ね合わせた状態を示し
ている。
First, an outline of the pressure bonding step will be described. A plurality of ceramic green sheets (first layer 16, second layer 1)
4. Green sheet laminate 2 on which third layer 12) is laminated
The cavity 11 is formed as described above as a sheet-side concave portion that is opened in the uppermost layer of No. 0. The green sheet laminate 20 to be obtained is one in which a different concave portion pattern is formed depending on the type of ceramic wiring board. It is.
Then, in the pressing step, a flexible elastic member having a fixed convex pattern formed on the surface thereof is formed on a plurality of green sheet laminates having different concave patterns (see FIG. 4:
4A and 4B show a perspective view and a plan view of an example of the soft elastic member. ) Are overlapped so that the convex pattern side is located on the concave pattern side. FIG. 6 shows a state in which these are superimposed.

【0018】そして、このような柔軟弾性部材2にてグ
リーンシート積層体20を積層方向に押圧することによ
り、シート側凹部(キャビティ11)と異なる形状で形
成された弾性部材側凸部4を強制変形させて当該弾性部
材側凸部4をキャビティ11に進入させつつ、グリーン
シート積層体20の層間を圧着する。この圧着において
は、図6のように柔軟弾性部材2と治具40により積層
体20が狭圧される。例えば、この狭圧はいわゆる真空
引き等により柔軟弾性部材2を治具40側に引き寄せて
行うことができる。また、治具40には積層体20を加
熱するように、図示しないヒータが備えられており、上
記狭圧に加えて当該ヒータの加熱により熱圧着する。
By pressing the green sheet laminate 20 in the laminating direction with such a flexible elastic member 2, the elastic member-side convex portion 4 formed in a shape different from the sheet-side concave portion (cavity 11) is forcibly applied. The layers of the green sheet laminate 20 are pressure-bonded while deforming so that the elastic member-side protrusions 4 enter the cavities 11. In this crimping, the laminate 20 is narrowed by the soft elastic member 2 and the jig 40 as shown in FIG. For example, this narrow pressure can be performed by pulling the flexible elastic member 2 toward the jig 40 by so-called vacuuming or the like. Further, the jig 40 is provided with a heater (not shown) so as to heat the laminated body 20, and performs thermocompression bonding by heating the heater in addition to the above-described narrow pressure.

【0019】本実施例においては、柔軟弾性部材2の表
面形状として、図4(a)の斜視図、及び図4(b)の
平面図のごとく、凸条形態をなした弾性部材側凸部とし
ての凸条部4が複数配列された構成を採用している。柔
軟弾性部材2は、凸条部4と板状部5とが一体化してな
り、凸条部4が板状部5より突出した形状となってい
る。この凸条部4の断面形状としては、図5の要部断面
図のごとく、断面外形線が略半円状となるように形成で
きるが、形状はこれに限定されるわけではなく、断面外
形線の形状を略コの字状、楕円半円状、U字状、その他
等、種々に選択できる。なお、シート側凹部(即ちキャ
ビティ11)の開口部の最大幅W(図2(b)参照)
と、弾性部材側凸部の最大幅Wとの比W/Wが、
1〜17(望ましくは1〜15、さらに望ましくは1〜
13)の範囲となるよう弾性部材側凸部のサイズ(図5
においては凸条部4のサイズ)を調整できる。なお、キ
ャビティ11の開口部の最大幅Wは、キャビティ11
の開口部内周縁上において互いに位置の異なる2点を選
択した場合、互いの距離が最大となる2点間隔を意味す
る。本実施例においては、図2(b)又は図10のごと
く、略方形状(なお、本実施例においては4角に所定の
アールが形成される)に形成されるキャビティ開口の対
角方向の幅をシート側凹部の開口部の最大幅Wとして
いる。
In this embodiment, as the surface shape of the flexible elastic member 2, as shown in the perspective view of FIG. 4A and the plan view of FIG. Is adopted in which a plurality of ridges 4 are arranged. The flexible elastic member 2 has a shape in which the ridge 4 and the plate 5 are integrated, and the ridge 4 protrudes from the plate 5. The cross-sectional shape of the ridge portion 4 can be formed so that the cross-sectional outline is substantially semicircular as shown in the main part cross-sectional view of FIG. 5, but the shape is not limited to this. The line shape can be variously selected, such as a substantially U-shape, an elliptical semicircle, a U-shape, and the like. Note that the maximum width W 1 of the opening of the sheet-side concave portion (that is, the cavity 11) (see FIG. 2B).
And the ratio W 1 / W 2 of the maximum width W 2 of the elastic member side convex portion is:
1 to 17 (preferably 1 to 15, more preferably 1 to
13), the size of the elastic member side convex portion (FIG. 5).
In (2), the size of the ridge 4) can be adjusted. The maximum width W 1 of the opening of the cavity 11, cavity 11
When two points having different positions on the inner peripheral edge of the opening are selected, this means a two-point interval at which the distance between the two points is maximized. In this embodiment, as shown in FIG. 2B or FIG. 10, a cavity opening formed in a substantially square shape (a predetermined radius is formed at four corners in this embodiment) in a diagonal direction. the width and the maximum width W 1 of the opening of the sheet side recess.

【0020】さらに、凸部最大幅Wは以下のごとく定
義できる。即ち、図4のごとく弾性部材側凸部が凸条形
態の場合、その条方向に対する垂直断面において、当該
弾性部材側凸部の突出方向に対する垂直方向の最大幅を
意味する。図5は条方向に対する垂直断面を示してお
り、図5において、凸条部4の突出方向(板状部5の厚
さ方向)に対する垂直方向(板状部5の板面方向)の最
大幅Wは凸条部4の突出基端位置となっている。な
お、弾性部材側凸部の突出方向は、当該弾性部材側凸部
の基端がその面上に位置するよう構成される基準面に対
する垂直方向を意味する。図5の例では、一点鎖線にて
示される基準面50を基端として、凸条部4が突出する
形態となっているが、上記した凸条部4の突出方向に対
する垂直方向とは、基準面の面方向と換言できる。な
お、図12(a)ないし(c)においては、凸条部4の
変形例について示しているが、いずれにおいても、凸条
部4の突出方向に対する垂直方向(即ち基準面の面方
向)における、その凸条部4の最大幅をW、高さをH
としている。なお、この比W/Wが17以上であ
ると、弾性部材側凸部サイズが過小となり、望ましい効
果を得られなくなる場合が生じる。また、1以下である
と、キャビティの開口部に対して弾性部材側凸部が過大
となり、キャビティサイズと比較して当該弾性部材凸部
の外面形状が平坦面に近くなり、上記平坦面形状の柔軟
弾性部材と同様の不都合が生じる可能性がある。上記範
囲に設定するとこれらの問題が解消される。なお、この
比が1〜15であると弾性部材凸部がキャビティ内の隅
々まで行き届き、キャビティ内に十分な押圧力が付与さ
れる好適範囲となる。さらに1〜13に設定するとその
効果が極めて顕著となる。
Furthermore, the convex portion maximum width W 2 can be defined as follows. In other words, as shown in FIG. 4, when the elastic member-side convex portion has a convex ridge shape, it means the maximum width in the direction perpendicular to the projecting direction of the elastic member-side convex portion in a cross section perpendicular to the ridge direction. FIG. 5 shows a cross section perpendicular to the ridge direction. In FIG. 5, the maximum width in the vertical direction (the plate surface direction of the platy portion 5) with respect to the protruding direction of the protruding ridge portion 4 (the thickness direction of the platy portion 5). W 2 has a protruding base end position of the ridge portion 4. In addition, the projecting direction of the elastic member-side convex portion means a direction perpendicular to a reference plane configured such that the base end of the elastic member-side convex portion is located on the surface. In the example of FIG. 5, the protruding ridges 4 protrude from the reference surface 50 indicated by the one-dot chain line as a base end. In other words, it can be expressed in the direction of the surface. 12 (a) to 12 (c) show modified examples of the ridges 4, but in any case, in the direction perpendicular to the direction in which the ridges 4 protrude (that is, in the plane direction of the reference plane). , The maximum width of the ridge 4 is W 2 , and the height is H.
It is 2 . If the ratio W 1 / W 2 is 17 or more, the size of the elastic member side convex portion becomes too small, and a desired effect may not be obtained. Further, when it is 1 or less, the elastic member side convex portion is excessively large with respect to the opening of the cavity, and the outer surface shape of the elastic member convex portion is closer to a flat surface compared to the cavity size, and the flat surface shape The same disadvantages as those of the flexible elastic member may occur. Setting these values in the above range solves these problems. When the ratio is 1 to 15, the elastic member convex portions reach all corners in the cavity, which is a preferable range in which a sufficient pressing force is applied in the cavity. Further, when it is set to 1 to 13, the effect becomes extremely remarkable.

【0021】また、柔軟弾性部材は、グリーンシート積
層体の最上層における凹部パターンが異なる他の積層体
に対しても同様に適用できる。例えば、図1の積層体と
異なる凹部パターンを有する図9の積層体に対しても利
用できるのである。図9の積層体は、図1の積層体20
と全体がほぼ同サイズのものであって、配線基板製造単
位15の大きさ及び数、ワーク基板の大きさ及び数等が
図1のものと異なっている。図10にはその積層体のワ
ーク基板10について示しているが、この場合において
もキャビティ11と弾性部材側凸部とが上記範囲(即ち
/Wが、1〜17)となるように調整できる。即
ち、サイズが定められた柔軟弾性部材であっても、W
/Wが、1〜17の範囲となる様々なキャビティに
(即ちグリーンシート積層体に)適用できることとな
る。このように、単一の柔軟弾性部材を多種の積層体に
適用でき、極めて汎用性の高い製造方法となるのであ
る。なお、このサイズとしては、例えば最大幅W
3.37mmと設定できる。また、それ以外の柔軟弾性
部材2の寸法例としては、図5に示されるように、例え
ば凸条部間の幅Wを1.22mm、凸条部4の高さH
を1.60mm、柔軟弾性部材の凸状部を含めた高さ
を8mm(又は11mm)とできる。なお、柔軟弾
性部材2の厚さは、対象となる積層体の厚さに応じて設
定できる。具体的には図6のように積層体に対し柔軟弾
性部材2をセットした場合に柔軟弾性部材2の上面が治
具40より突出するように、積層体の厚さに応じて柔軟
弾性部材2の厚さを設定できる。
The flexible elastic member can be similarly applied to other laminates having different concave patterns in the uppermost layer of the green sheet laminate. For example, the present invention can be applied to the laminate of FIG. 9 having a concave pattern different from that of the laminate of FIG. The laminate of FIG. 9 is the same as the laminate 20 of FIG.
And the whole are substantially the same size, and the size and number of the wiring board manufacturing units 15 and the size and number of the work boards are different from those in FIG. FIG. 10 shows the work substrate 10 of the laminate, but also in this case, the cavity 11 and the elastic member-side convex portion are set so as to be within the above range (that is, W 1 / W 2 is 1 to 17). Can be adjusted. In other words, even if the size is a flexible elastic member, W 1
/ W 2 can be applied to various cavities in the range of 1 to 17 (that is, to the green sheet laminate). As described above, a single flexible elastic member can be applied to various kinds of laminates, and the manufacturing method is extremely versatile. As the size, for example, the maximum width W 2 can be set to 3.37mm. As another example of the size of the flexible elastic member 2, as shown in FIG. 5, for example, the width W 3 between the ridges is 1.22 mm, and the height H of the ridges 4 is H.
2 1.60 mm, a height H 1 including the convex portion of the flexible resilient member can with 8 mm (or 11 mm). The thickness of the flexible elastic member 2 can be set according to the thickness of the target laminate. Specifically, as shown in FIG. 6, when the flexible elastic member 2 is set on the laminate, the flexible elastic member 2 is set in accordance with the thickness of the laminate so that the upper surface of the flexible elastic member 2 projects from the jig 40. Thickness can be set.

【0022】なお、上記説明においては、凸条形態をと
る弾性部材側凸部について説明したが、図13(a)の
ように、柔軟弾性部材2の表面の一部又は全部において
複数の弾性部材側凸部を例えば突起状に分散形成させて
もよい。なお、図13(a)では、なだらかな裾野部を
有して成る山状の突起部41が複数分散して柔軟弾性部
材2の表面が形成されている。この弾性部材側凸部とし
ての突起部41の形状は、図13(b)の半球状、図1
3(c)のなだらかな裾野状等の例のように、種々の形
状を適用できる。なお、このような分散形態をとる弾性
部材側凸部の場合には最大幅Wは以下のごとく定義す
る。即ち、分散形態の突起部をその突出側より平面視し
た場合における当該突起部の輪郭の最大径を最大幅W
とする。換言すれば、その最大幅Wは、その輪郭線上
において異なる2点を選択した場合の最大2点間距離と
なる。なお、図13(b)のように突起部41が半球状
の場合、上記平面視における輪郭線は突起部41の基端
となる基端面43の外縁輪郭線43aとなる。この定義
は、図13(c)、又はその他の形状の突起部において
も同様に適用する。
In the above description, the projections on the elastic member side in the form of convex stripes have been described. However, as shown in FIG. The side convex portions may be dispersedly formed, for example, in a projection shape. In FIG. 13A, the surface of the flexible elastic member 2 is formed by dispersing a plurality of mountain-shaped protrusions 41 each having a gentle foot. The shape of the protrusion 41 as the elastic member-side protrusion is a hemisphere in FIG.
Various shapes can be applied as in the example of the gentle foot shape shown in FIG. The maximum width W 2 in the case of the elastic member side protrusion employing such a dispersion form is defined as follows. That is, when the projections in the dispersed form are viewed in plan from the projecting side, the maximum diameter of the contour of the projections is defined as the maximum width W 2.
And In other words, the maximum width W 2 is maximized distance between two points when selecting two different points in the contour. In the case where the projection 41 is hemispherical as shown in FIG. 13B, the outline in the plan view becomes the outer edge outline 43a of the base end surface 43 which is the base end of the projection 41. This definition is similarly applied to the projections shown in FIG. 13C or other shapes.

【0023】そして、当該圧着工程においては、図7
(a)のごとく 各キャビティ11に対応した位置に各
々のキャビティ11よりも小面積の貫通孔29が形成さ
れた被覆板25により、各キャビティ11の開口内周縁
が貫通孔29内に露出しない形にてグリーンシート積層
体20の最上層面部を覆う。この被覆板25は、例えば
図3のごとくグリーンシート積層体20(図1)とほぼ
同形状とでき、さらに、各ワーク基板10と同配列にて
そのワーク基板10と同数の貫通孔29を設けることが
できる。そして、これらグリーンシート積層体20と被
覆板21との互いの対応する位置に位置決め用の位置決
め孔をそれぞれ形成し、その位置決め孔に位置決め部材
を挿通することにより位置決めできる。具体的には、図
1のごとく積層体20において積層体側位置決め孔21
が所定数(本実施例においては4角において4箇所)形
成されており、さらに図3のごとく被覆板25において
も、その積層体側位置決め孔21と重なる同位置にて被
覆板側位置決め孔31が形成される。そして、軸状部材
にてこれら位置決め孔21,31を共に貫通することに
より、グリーンシート積層体20と被覆板25の盤面方
向への移動が拘束されて位置決めされる。
In the pressing step, FIG.
As shown in (a), the inner peripheral edge of the opening of each cavity 11 is not exposed in the through hole 29 by the cover plate 25 in which a through hole 29 having a smaller area than each cavity 11 is formed at a position corresponding to each cavity 11. Cover the uppermost layer surface of the green sheet laminate 20. The cover plate 25 can have substantially the same shape as the green sheet laminate 20 (FIG. 1), for example, as shown in FIG. 3, and further, the same number of through holes 29 as the work boards 10 are provided in the same arrangement as the work boards 10. be able to. Then, positioning holes for positioning are formed at positions corresponding to each other of the green sheet laminate 20 and the cover plate 21, and positioning can be performed by inserting a positioning member into the positioning holes. More specifically, as shown in FIG.
Are formed in a predetermined number (four at four corners in this embodiment). Further, as shown in FIG. 3, also in the covering plate 25, the covering plate side positioning holes 31 are overlapped with the laminated body side positioning holes 21 at the same positions. It is formed. The positioning of the green sheet laminate 20 and the cover plate 25 in the direction of the board surface is restricted by passing through the positioning holes 21 and 31 together with the shaft member.

【0024】このように位置決めされた状態にて、被覆
版25の上から柔軟弾性部材2を被せて押圧することに
より、図7(a)ないし(c)のように弾性部材側凸部
(即ち凸条部4)を、被覆板25の貫通孔29を経てシ
ート側凹部(即ちキャビティ11)内に進入させる。な
お、図7(a)は凸条部4が被覆板25の片面に当接す
る程度に接近した状態を模式的に示し、図7(b)は凸
条部4によりキャビティ11の開口を塞ぐ程度に進入が
進んだ状態を示し、図7(c)は、凸条部4がキャビテ
ィ11をほぼ充填する程度に進入が進んだ状態を示して
いる。なお、図7(c)に至った後、柔軟弾性部材2に
よる加圧を低減すると、再び図7(b)と同様の状態に
戻り、さらに柔軟弾性部材2を離間させることにより図
7(a)の状態となる。
In this position, the flexible elastic member 2 is placed over the cover plate 25 and pressed, so that the elastic member side convex portion (that is, the convex portion on the elastic member side as shown in FIGS. 7A to 7C). The protruding ridge portion 4) is caused to enter the sheet-side concave portion (that is, the cavity 11) through the through hole 29 of the cover plate 25. FIG. 7A schematically shows a state in which the ridges 4 are close enough to contact one surface of the cover plate 25, and FIG. 7B shows a state in which the ridges 4 close the opening of the cavity 11. FIG. 7 (c) shows a state in which the protrusion has advanced to such an extent that the ridge 4 almost fills the cavity 11. FIG. When the pressure by the flexible elastic member 2 is reduced after reaching FIG. 7C, the state returns to the same state as that of FIG. 7B again, and the flexible elastic member 2 is further separated from the state shown in FIG. ).

【0025】上記のごとく弾性部材側凸部としての凸条
部4をキャビティ11内に進入させると、圧着後におい
て図7(b)のごとくキャビティ11の開口が開放され
る程度に当該柔軟弾性部材の強制変形が復帰した場合、
依然として弾性部材側凸部(凸条部4)の一部がキャビ
ティ内の空間の占有することとなる。従って、減圧の度
合は図14のような平坦面形状のものやキャビティ形状
と同一形状の凸部を持つものと比較して極めて小さい
か、又は減圧がほぼ生じないためバックリングを防止で
き、ひいては高精度の製品提供、歩留まりの向上等に寄
与する。
As described above, when the protruding ridges 4 serving as the elastic member-side convex portions are made to enter the cavity 11, the flexible elastic member is brought to such an extent that the opening of the cavity 11 is opened as shown in FIG. When the forced deformation of
Still, a part of the elastic member-side convex portion (projecting ridge portion 4) occupies the space in the cavity. Therefore, the degree of decompression is extremely small as compared with a flat surface shape as shown in FIG. 14 or a shape having a convex portion having the same shape as the cavity shape, or buckling can be prevented since decompression hardly occurs, and as a result, It contributes to providing high-precision products and improving yield.

【0026】図7(c)のごとく、 凸条部4は、シー
ト側凹部となるキャビティ11の凹部内面に追従させて
当該凹部内面とほぼ密着形態となるよう弾性変形され
る。このように、凹部内面にほぼ密着状態となるよう弾
性部材側凸部を進入させると、キャビティ11内におい
て各層の細部に至るまで満遍なく押圧される。例えば、
底部なる第一層16は凸条部4により十分に加圧され、
さらに第三層孔11a及び第二層11bの内周縁近傍ま
で凸条部4が行き届き、その内周縁近傍に進入した部分
により層間に塗布される溶剤のキャビティ内への漏洩を
堰き止めることができる。なお、被覆板25の材質とし
ては、グリーンシート積層体を構成するセラミックグリ
ーンシートより硬質な材質、例えば、ステンレス鋼等の
金属材料を用いることができるが、これに限定されると
いうわけではない。
As shown in FIG. 7 (c), the ridges 4 are elastically deformed so as to follow the inner surface of the concave portion of the cavity 11 serving as the concave portion on the sheet side so as to be substantially in close contact with the inner surface of the concave portion. As described above, when the elastic member-side convex portion is made to come into close contact with the inner surface of the concave portion, each layer is pressed evenly in the cavity 11 down to the details of each layer. For example,
The bottom first layer 16 is sufficiently pressed by the ridges 4,
Further, the ridges 4 reach the vicinity of the inner peripheral edge of the third layer hole 11a and the second layer 11b, and the portion that has entered the vicinity of the inner peripheral edge can block the leakage of the solvent applied between the layers into the cavity. . In addition, as a material of the cover plate 25, a material harder than the ceramic green sheets constituting the green sheet laminate, for example, a metal material such as stainless steel can be used, but is not limited thereto.

【0027】また、図8(a)ないし(c)には、一つ
のキャビティに複数の弾性部材側凸部が進入する例につ
いて示している。この例によれば、図7とほぼ同様に、
弾性部材側凸部としての凸条部4の複数がキャビティ1
1内に進入して、図8(a)の離間状態から、(b)、
(c)の状態へと順に移行し、圧着時には図8(c)の
ごとく、凹部内面にほぼ密着状態となる。圧着後は、柔
軟弾性部材2による加圧が解除されることにより、図8
(c)の状態から再び図8(b)へと移行することとな
る。この時、キャビティ11の形状と、進入する部分の
形状が同一形状でないため、弾性部材側凸部の凹凸に起
因してキャビティ内面と柔軟弾性部材表面と間に微小な
隙間が存在することとなり、それにより柔軟弾性部材表
面とキャビティ内面とが良好に離間する(即ち、キャビ
ティ内面が柔軟弾性部材と密着して連動することがな
い)。また、加圧の解除の際、キャビティ開口内縁と柔
軟弾性部材の進入側表面との間には、柔軟弾性部材表面
の凹凸による微小な隙間が存在するためキャビティ内の
空気抜けが良く、また、図8(b)のように、弾性復帰
中或いは復帰後において、柔軟弾性部材(特に弾性部材
側凸部)がキャビティ内をある程度占有するためキャビ
ティ内の減圧が抑制される。また、弾性部材側凸部(凸
条部4、突起部41等)の外面形状は、図8等のごと
く、いわゆる角とも称される二面接合部又は三面接合部
等の角状部分が形成されないようにできる(即ち、曲面
のみにより形成してもよい)。これによれば、角部によ
る圧力集中が起こらず、グリーシート積層体(特にキャ
ビティ内)の損傷を効果的に防止できる。
FIGS. 8A to 8C show an example in which a plurality of elastic member-side protrusions enter one cavity. According to this example, almost as in FIG.
A plurality of the ridges 4 as the elastic member side protrusions are formed in the cavity 1.
1, and from the separated state of FIG.
The state sequentially shifts to the state shown in FIG. 8C. At the time of pressure bonding, as shown in FIG. After the pressing, the pressurization by the soft elastic member 2 is released, so that FIG.
The state shown in FIG. 8C is again shifted to the state shown in FIG. At this time, since the shape of the cavity 11 and the shape of the portion to enter are not the same, a minute gap exists between the inner surface of the cavity and the surface of the flexible elastic member due to the unevenness of the elastic member side convex portion. Thereby, the surface of the flexible elastic member and the inner surface of the cavity are satisfactorily separated from each other (that is, the inner surface of the cavity does not come into close contact with the flexible elastic member and interlock with it). Further, when the pressurization is released, a small gap due to the unevenness of the surface of the flexible elastic member exists between the inner edge of the cavity opening and the entry side surface of the flexible elastic member, so that the air in the cavity is well ventilated, As shown in FIG. 8B, during or after the elastic return, the soft elastic member (particularly, the convex portion on the elastic member side) occupies the cavity to some extent, so that the pressure reduction in the cavity is suppressed. In addition, as shown in FIG. 8 and the like, the outer surface shape of the elastic member-side convex portion (the protruding ridge portion 4, the protruding portion 41, etc.) is formed by a horn-shaped portion such as a two-sided joint or a three-sided joint, also called a corner. (That is, it may be formed only by a curved surface). According to this, pressure concentration due to the corners does not occur, and damage to the grease sheet laminate (particularly in the cavity) can be effectively prevented.

【0028】また、柔軟弾性部材に使用される柔軟弾性
材料は、アスカーF型硬度計(高分子機器株式会社製)
において、Fスケール値が50°より大きく90°以下
(望ましくは60°より大きく90°以下、さらに望ま
しくは70°より大きく90°以下)となるように調整
できる。なお、90°を超えると、弾性部材側凸部のキ
ャビティ内への進入が困難となり、セラミックグリーン
シートの均一な加圧が困難となる。また、50°以下で
あると、柔軟弾性部材の形状維持、或いはキャビティ内
における良好な押圧が困難となる。上記範囲に調整する
ことにより、これら問題が解消される。なお、この範囲
を60°より大きく90°以下に設定すると、キャビテ
ィ内への柔軟弾性部材の進入がスムーズであり、かつ柔
軟弾性部材による良好な加圧がなされる好適範囲とな
る。さらに、70°より大きく90°以下であると、そ
の効果が極めて顕著となる。
The flexible elastic material used for the flexible elastic member is an Asker F-type hardness tester (manufactured by Kobunki Kiki Co., Ltd.).
Can be adjusted so that the F-scale value is greater than 50 ° and less than or equal to 90 ° (preferably greater than 60 ° and less than or equal to 90 °, more preferably greater than 70 ° and less than or equal to 90 °). If the angle exceeds 90 °, it is difficult for the elastic member-side protrusion to enter the cavity, and it is difficult to uniformly press the ceramic green sheet. On the other hand, if the angle is not more than 50 °, it is difficult to maintain the shape of the flexible elastic member or to favorably press the inside of the cavity. Adjustment to the above range solves these problems. When this range is set to be larger than 60 ° and equal to or smaller than 90 °, it is a preferable range in which the flexible elastic member can smoothly enter the cavity and good pressurization by the flexible elastic member can be performed. Further, when the angle is larger than 70 ° and equal to or smaller than 90 °, the effect becomes extremely remarkable.

【0029】また、本発明における柔軟弾性部材とし
て、ゴム、エラストマー等の柔軟弾性材料を使用でき、
中でも特にシリコンゴムを好適に用いることができる。
このシリコンゴムによると、柔軟性に優れるため弾性部
材側凸部のキャビティ内への進入がスムーズとなり、か
つ耐久性(例えば、繰り返し使用に対する耐劣化性
等)、及び耐薬品性(例えば、積層体層間に介在する接
着用の溶剤に対する耐性等)を併せて有するため極めて
機能的である。
Further, a flexible elastic material such as rubber or elastomer can be used as the flexible elastic member in the present invention.
Among them, silicone rubber can be particularly preferably used.
According to this silicon rubber, the elastic member has excellent flexibility, so that the elastic member-side convex portion can smoothly enter the cavity, and has durability (for example, deterioration resistance against repeated use) and chemical resistance (for example, a laminate). It is extremely functional because it also has resistance to a bonding solvent interposed between layers.

【0030】なお、柔軟弾性部材を、キャビティを被覆
するキャビティ被覆領域と、位置決めに使用する位置決
め孔9及びその近傍を含んだ位置決め領域とに分割し、
これらの領域の硬度が互いに異なるように、具体的に
は、キャビティ被覆領域の硬度よりも位置決め領域の硬
度が固くなるように調整できる。例えば、図4(b)に
おいて、平面視した場合に略長方形状に形成される柔軟
弾性部材2の長辺側側部近傍を位置決め領域7として設
定し、それ以外の内部をキャビティ被覆領域としてい
る。位置決め孔9は、位置決め用の軸状部材に挿通され
るために孔内面が侵食されやすく、その位置決め孔9の
近傍においてこの侵食が過度とならぬ硬度が必要とな
る。そのために、例えば位置決め領域7の硬度を上記F
スケールにて90°より大きく150°以下の範囲とな
るよう調整するとよい。なお、位置決め孔9は、孔2
1、31と重なるよう設けられ、上記位置決め部材によ
りこれらとともに貫通される。また、上記実施例では、
治具40内に1個の多数個取り配線基板を入れて圧着し
たが、これに限ることはない。例えば、複数の多数個取
り配線基板をセットしてもよいし、配線基板単位を複数
個セットして圧着してもよい。
The flexible elastic member is divided into a cavity covering region for covering the cavity and a positioning region including the positioning hole 9 used for positioning and the vicinity thereof.
The hardness of these regions can be adjusted so as to be different from each other, specifically, so that the hardness of the positioning region is higher than the hardness of the cavity covering region. For example, in FIG. 4B, the vicinity of the long side of the flexible elastic member 2 which is formed in a substantially rectangular shape when viewed in a plan view is set as the positioning region 7, and the other inside is set as the cavity covering region. . Since the positioning hole 9 is inserted through the positioning shaft-shaped member, the inner surface of the hole is easily eroded, and a hardness is required in the vicinity of the positioning hole 9 such that the erosion is not excessive. For this purpose, for example, the hardness of the positioning region 7 is set to the above F
It is preferable to adjust the scale so that it is larger than 90 ° and equal to or smaller than 150 °. The positioning hole 9 is the hole 2
1 and 31 are provided so as to overlap, and are penetrated therewith by the positioning member. In the above embodiment,
Although one multi-cavity wiring board is put in the jig 40 and crimped, the present invention is not limited to this. For example, a plurality of multi-cavity wiring boards may be set, or a plurality of wiring board units may be set and crimped.

【0031】このような、圧着工程によりグリーンシー
ト積層体20を圧着し、その圧着後のグリーンシート積
層体20を焼成後所定の大きさに(例えば、配線基板製
造単位15(図1)ごと)切断する。なお、当該圧着工
程、或いは、その前後の種々の工程と関連させて種々の
検査工程が設けられる。
The green sheet laminate 20 is press-bonded in such a press-bonding step, and the green sheet laminate 20 after the press-bonding is baked into a predetermined size (for example, each of the wiring board manufacturing units 15 (FIG. 1)). Disconnect. In addition, various inspection processes are provided in association with the crimping process or various processes before and after the crimping process.

【0032】以上、本発明の実施の形態を説明したが、
本発明はこれに限定されるものではなく、各請求項に記
載した範囲を逸脱しない限り、各請求項の記載文言に限
定されず、当業者がそれらから容易に置き換えられる範
囲にもおよび、かつ、当業者が通常有する知識に基づく
改良を適宜付加することができる。例えば、セラミック
グリーンシートの材料としては、アルミナに限らず、窒
化アルミニウム、窒化珪素、ガラスセラミック、ジルコ
ニウム等の種々のセラミック又はこれらの混合体を用い
ることもできる。また、材料として、低温焼成セラミッ
クを用いてもよく、例えば、BaO−Al−Si
系材料、CaO−Al−SiO系材料、C
aO−Al−SiO−B系のガラス粉末
とAl粉末との混合物、MgO−Al−S
iO−B系のガラス粉末とAl粉末との
混合物、又はSiO−B系のガラス粉末とAl
粉末との混合物等、800℃〜1000℃で焼成
できるセラミックを用いればよい。
The embodiment of the present invention has been described above.
The present invention is not limited to this, and is not limited to the language described in each claim unless it departs from the scope described in each claim, and extends to a range that can be easily replaced by those skilled in the art, and It is possible to appropriately add improvements based on the knowledge that those skilled in the art normally have. For example, the material of the ceramic green sheet is not limited to alumina, and various ceramics such as aluminum nitride, silicon nitride, glass ceramic, and zirconium, or a mixture thereof can be used. Further, as a material, a low-temperature fired ceramic may be used, for example, BaO—Al 2 O 3 —Si
O 2 based materials, CaO-Al 2 O 3 -SiO 2 based materials, C
aO-Al 2 O 3 -SiO 2 -B 2 O 3 based mixture of the glass powder and the Al 2 O 3 powder, MgO-Al 2 O 3 -S
iO 2 -B 2 O 3 based mixture of the glass powder and the Al 2 O 3 powder, or glass powder and the Al of SiO 2 -B 2 O 3 based
A ceramic that can be fired at 800 to 1000 ° C., such as a mixture with 2 O 3 powder, may be used.

【0033】また、低融点ガラス成分とセラミックなど
のフィラー材とから成るガラスセラミック材料が用いら
れる場合、例えば、低融点ガラス成分は、コージェライ
ト、ムライト、アノードサイト、セルジアン、スピネ
ル、カーナイト、ウイレマイト、ドロマイト、ペタライ
ト、オオズミライト及びその置換誘電体等の結晶相のう
ち少なくとも1種類を析出し得るガラス成分であり、フ
ィラー材は、クリストバライト、石英、コランダム(α
アルミナ)等が例示できる。
When a glass-ceramic material comprising a low-melting glass component and a filler material such as ceramic is used, for example, the low-melting glass component may be cordierite, mullite, anode site, cellian, spinel, carnite, willemite. , Dolomite, petalite, ozumilite and its substituted dielectrics are glass components capable of precipitating at least one kind of crystal phase, and the filler material is cristobalite, quartz, corundum (α)
Alumina) and the like.

【0034】また、メタライズインクの主体となる材
質、即ち導体ペーストとしては、Mo、Wに限らず、A
g、Ag/Pd、Ag/Pt、Au、Cu等、又はこれ
らの混合体を主成分とする導電性材料を所定の溶剤によ
ってペースト状に混練したものや、Ag粉末、Cu粉
末、Au粉末等の低抵抗性材料を主体とし、低融点ガラ
スフリット、有機ビヒクルを混練した導電ペーストを用
いてもよい。また、本発明の製造方法はいわゆるPGA
型やリードレスチップキャリア等を含む種々の配線基板
に利用できる。
The material which is the main component of the metallized ink, that is, the conductor paste is not limited to Mo and W, but may be A
g, Ag / Pd, Ag / Pt, Au, Cu, or the like, or a mixture obtained by kneading a conductive material mainly containing a mixture thereof into a paste with a predetermined solvent, Ag powder, Cu powder, Au powder, etc. A conductive paste containing a low melting point glass frit and an organic vehicle as a main component may be used. Further, the production method of the present invention is a so-called PGA
It can be used for various wiring boards including molds and leadless chip carriers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】グリーンシート積層体の一例を示す平面図。FIG. 1 is a plan view showing an example of a green sheet laminate.

【図2】配線基板製造単位の一例を示す平面図、及びワ
ーク基板の一例を示す平面図及びA−A断面図。
FIG. 2 is a plan view illustrating an example of a wiring board manufacturing unit, a plan view illustrating an example of a work board, and a cross-sectional view taken along line AA.

【図3】被覆板の一例を示す平面図。FIG. 3 is a plan view showing an example of a cover plate.

【図4】柔軟弾性部材の一例を示す斜視図及び平面図。FIG. 4 is a perspective view and a plan view showing an example of a flexible elastic member.

【図5】柔軟弾性部材の要部形状について説明する説明
図。
FIG. 5 is an explanatory diagram for explaining a main part shape of a flexible elastic member.

【図6】圧着工程における積層体、被覆板、治具及び柔
軟弾性部材の構成を概念的に説明する説明図。
FIG. 6 is an explanatory view conceptually illustrating the configuration of a laminate, a cover plate, a jig, and a flexible elastic member in a pressure bonding step.

【図7】キャビティ内への弾性部材側凸部の進入につい
て説明する説明図。
FIG. 7 is an explanatory diagram for explaining the approach of the elastic member-side protrusion into the cavity.

【図8】図7の別例を示す説明図。FIG. 8 is an explanatory view showing another example of FIG. 7;

【図9】グリーンシート積層体の別例を示す平面図。FIG. 9 is a plan view showing another example of the green sheet laminate.

【図10】図8のグリーンシート積層体のワーク基板の
例を示す平面図。
FIG. 10 is a plan view showing an example of a work substrate of the green sheet laminate of FIG. 8;

【図11】図8のグリーンシート積層体に対応する被覆
板の例を示す平面図。
FIG. 11 is a plan view showing an example of a cover plate corresponding to the green sheet laminate of FIG. 8;

【図12】弾性部材側凸部の変形例を示す説明図。FIG. 12 is an explanatory view showing a modification of the elastic member-side convex portion.

【図13】分散した突起部を有する柔軟弾性部材の例を
示す説明図。
FIG. 13 is an explanatory view showing an example of a flexible elastic member having dispersed projections.

【図14】圧着側が平坦面に形成される柔軟弾性部材を
用いた場合についての説明図。
FIG. 14 is an explanatory view of a case where a soft elastic member whose crimping side is formed on a flat surface is used.

【符号の説明】[Explanation of symbols]

2 柔軟弾性部材 4 凸条部 (弾性部材側凸部) 11 キャビティ (シート側凹部) 12 第三層 (最上層) 20 グリーンシート積層体 25 被覆板 41 突起部 (弾性部材側凸部) 2 Flexible elastic member 4 Projected ridge (elastic member side convex portion) 11 Cavity (sheet side concave portion) 12 Third layer (top layer) 20 Green sheet laminated body 25 Coating plate 41 Projection portion (elastic member side convex portion)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数のセラミックグリーンシートを積
層、圧着して、少なくとも最上層に1又は複数形成され
たシート側凹部が開口するグリーンシート積層体を製造
する圧着工程を含み、 前記圧着工程において、前記グリーンシート積層体に対
し、1又は複数の弾性部材側凸部が前記シート側凹部の
形状と異なる形状で表面に形成された柔軟弾性部材を、
前記弾性部材側凸部の側が前記シート側凹部が開口する
側に位置するように重ね合わせ、 さらに、前記柔軟弾性部材にて前記グリーンシート積層
体を積層方向に押圧することにより、前記グリーンシー
ト積層体の層間を圧着することを特徴とするセラミック
配線基板の製造方法。
1. A pressure bonding step of stacking and pressing a plurality of ceramic green sheets to produce a green sheet laminate in which at least one or more sheet-side recesses formed in an uppermost layer are opened, For the green sheet laminate, one or more elastic member-side protrusions are formed on the surface in a shape different from the shape of the sheet-side recesses, a flexible elastic member,
The green sheet stacking is performed by overlapping the elastic member side convex portion so that the side of the sheet side concave portion is opened, and pressing the green sheet laminate in the stacking direction by the flexible elastic member. A method for manufacturing a ceramic wiring board, comprising: crimping between layers of a body.
【請求項2】 前記柔軟弾性部材にて前記グリーシート
積層体を積層方向に押圧する際に、前記弾性部材側凸部
を強制変形させて該弾性部材側凸部を前記シート側凹部
に進入させつつ、前記グリーンシート積層体の層間を圧
着する請求項1に記載のセラミック配線基板の製造方
法。
2. When the grease sheet laminate is pressed in the laminating direction by the flexible elastic member, the elastic member-side convex portion is forcibly deformed so that the elastic member-side convex portion enters the sheet-side concave portion. 2. The method for manufacturing a ceramic wiring board according to claim 1, wherein the layers of the green sheet laminate are pressure-bonded.
【請求項3】 前記弾性部材側凸部は、前記柔軟弾性部
材の表面において分散した形で形成される請求項1又は
2に記載のセラミック配線基板の製造方法。
3. The method for manufacturing a ceramic wiring board according to claim 1, wherein the elastic member-side convex portions are formed in a dispersed form on the surface of the flexible elastic member.
【請求項4】 前記弾性部材側凸部は、凸条形態にて複
数配列される凸条部を含む請求項1又は2に記載のセラ
ミック配線基板の製造方法。
4. The method for manufacturing a ceramic wiring board according to claim 1, wherein the elastic member-side convex portion includes a plurality of convex portions arranged in a convex shape.
【請求項5】 前記シート側凹部の開口部の最大幅W
と、前記弾性部材側凸部の最大幅Wとの比W/W
が1〜17の範囲となるよう調整される請求項1ないし
4のいずれかに記載のセラミック配線基板の製造方法。
5. A maximum width W 1 of an opening of the concave portion on the sheet side.
When the ratio W between the maximum width W 2 of the elastic member side protrusion 1 / W 2
5. The method for manufacturing a ceramic wiring board according to claim 1, wherein the value is adjusted to fall within a range of 1 to 17. 5.
【請求項6】 前記弾性部材側凸部は、前記シート側凹
部の凹部内面に追従させて当該凹部内面とほぼ密着形態
となるよう弾性変形される請求項1ないし5のいずれか
に記載のセラミック配線基板の製造方法。
6. The ceramic according to claim 1, wherein the elastic member-side convex portion is elastically deformed so as to follow an inner surface of the concave portion of the sheet-side concave portion so as to be substantially in close contact with the inner surface of the concave portion. Manufacturing method of wiring board.
JP2000252977A 2000-08-23 2000-08-23 Manufacturing method of ceramic wiring board Expired - Fee Related JP4541513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252977A JP4541513B2 (en) 2000-08-23 2000-08-23 Manufacturing method of ceramic wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252977A JP4541513B2 (en) 2000-08-23 2000-08-23 Manufacturing method of ceramic wiring board

Publications (2)

Publication Number Publication Date
JP2002076623A true JP2002076623A (en) 2002-03-15
JP4541513B2 JP4541513B2 (en) 2010-09-08

Family

ID=18742143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252977A Expired - Fee Related JP4541513B2 (en) 2000-08-23 2000-08-23 Manufacturing method of ceramic wiring board

Country Status (1)

Country Link
JP (1) JP4541513B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448505B2 (en) 2017-08-30 2019-10-15 Ngk Spark Plug Co., Ltd. Wiring board, method for manufacturing wiring board, and method for manufacturing multi-pattern wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434994A (en) * 1990-05-30 1992-02-05 Toshiba Corp Connection of internal layer pattern of multilayer printed wiring board
JPH09181449A (en) * 1995-12-22 1997-07-11 Sumitomo Kinzoku Electro Device:Kk Method for manufacturing ceramic multilayer board
JP2000174152A (en) * 1998-12-08 2000-06-23 Sumitomo Metal Electronics Devices Inc Laminate jig
US6090237A (en) * 1996-12-03 2000-07-18 Reynolds; Carl V. Apparatus for restraining adhesive overflow in a multilayer substrate assembly during lamination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434994A (en) * 1990-05-30 1992-02-05 Toshiba Corp Connection of internal layer pattern of multilayer printed wiring board
JPH09181449A (en) * 1995-12-22 1997-07-11 Sumitomo Kinzoku Electro Device:Kk Method for manufacturing ceramic multilayer board
US6090237A (en) * 1996-12-03 2000-07-18 Reynolds; Carl V. Apparatus for restraining adhesive overflow in a multilayer substrate assembly during lamination
JP2000174152A (en) * 1998-12-08 2000-06-23 Sumitomo Metal Electronics Devices Inc Laminate jig

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448505B2 (en) 2017-08-30 2019-10-15 Ngk Spark Plug Co., Ltd. Wiring board, method for manufacturing wiring board, and method for manufacturing multi-pattern wiring board

Also Published As

Publication number Publication date
JP4541513B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US7646092B2 (en) Semiconductor device and manufacturing method thereof
CN107851616B (en) Wiring substrate and electronic device
CN110622300B (en) Substrate for mounting electronic component, electronic device, and electronic module
JP4765468B2 (en) Method for manufacturing ceramic substrate and ceramic substrate
JP2002076623A (en) Manufacturing method of ceramic wiring board
JP5215786B2 (en) Manufacturing method of ceramic package
JP3956703B2 (en) Manufacturing method of multilayer ceramic electronic component
EP4068347A1 (en) Package for housing electronic component, electronic device, and electronic module
JP4522226B2 (en) Electronic component element mounting method and electronic device manufacturing method
JP2656942B2 (en) Method for producing bonded body by low-melting glass bonding and bonded body
JP2945291B2 (en) Ceramic multilayer substrate
JP2003124387A (en) Semiconductor device and printed circuit board used therefor
US20210362372A1 (en) Method for manufacturing ceramic substrate and ceramic substrate
US11950360B2 (en) Method for manufacturing ceramic substrate and ceramic substrate
JP3091378B2 (en) Ceramic multilayer substrate
JP2001217334A (en) Method of manufacturing multi arrangement substrate for wiring boards
JP4482392B2 (en) Ceramic package assembly and ceramic package
JP4428883B2 (en) Multi-cavity ceramic wiring board
JP4746376B2 (en) Ceramic multilayer substrate and manufacturing method thereof
JP4392138B2 (en) Multi-cavity ceramic wiring board manufacturing method
JP2002289748A (en) Substrate for mounting electronic component
JP3537653B2 (en) Multi-cavity ceramic substrate
KR101046134B1 (en) Ceramic substrate, manufacturing method thereof and electric device using same
JP2002151805A (en) Ceramic wiring board of multiple allocation
JPH0529156U (en) Package for thin integrated circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees