JP2002075767A - Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing method - Google Patents
Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing methodInfo
- Publication number
- JP2002075767A JP2002075767A JP2000263541A JP2000263541A JP2002075767A JP 2002075767 A JP2002075767 A JP 2002075767A JP 2000263541 A JP2000263541 A JP 2000263541A JP 2000263541 A JP2000263541 A JP 2000263541A JP 2002075767 A JP2002075767 A JP 2002075767A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- acid
- coating
- fine particles
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 33
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 230000007797 corrosion Effects 0.000 title description 33
- 238000005260 corrosion Methods 0.000 title description 33
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 54
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000010419 fine particle Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 19
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011733 molybdenum Substances 0.000 claims abstract description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000010937 tungsten Substances 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims description 53
- 238000000576 coating method Methods 0.000 claims description 53
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 23
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 16
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims description 16
- CMMUKUYEPRGBFB-UHFFFAOYSA-L dichromic acid Chemical compound O[Cr](=O)(=O)O[Cr](O)(=O)=O CMMUKUYEPRGBFB-UHFFFAOYSA-L 0.000 claims description 16
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 14
- 239000011651 chromium Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 claims description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 13
- 239000011574 phosphorus Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 claims description 11
- 238000007747 plating Methods 0.000 abstract description 8
- 239000012808 vapor phase Substances 0.000 abstract description 7
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000005480 shot peening Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229940024548 aluminum oxide Drugs 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 102100022626 Glutamate receptor ionotropic, NMDA 2D Human genes 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 101000972840 Homo sapiens Glutamate receptor ionotropic, NMDA 2D Proteins 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 101001062854 Rattus norvegicus Fatty acid-binding protein 5 Proteins 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Chemical Treatment Of Metals (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れた耐食性被膜
を表面に有する希土類系永久磁石およびその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth permanent magnet having an excellent corrosion-resistant coating on the surface and a method for producing the same.
【0002】[0002]
【従来の技術】Nd−Fe−B系永久磁石に代表される
R−Fe−B系永久磁石やSm−Fe−N系永久磁石に
代表されるR−Fe−N系永久磁石などの希土類系永久
磁石は、資源的に豊富で安価な材料が用いられ、かつ、
高い磁気特性を有していることから、特にR−Fe−B
系永久磁石は今日様々な分野で使用されている。しかし
ながら、希土類系永久磁石は反応性の高い希土類金属:
Rを含むため、大気中で酸化腐食されやすく、何の表面
処理をも行わずに使用した場合には、わずかな酸やアル
カリや水分などの存在によって表面から腐食が進行して
錆が発生し、それに伴って、磁石特性の劣化やばらつき
を招く。さらに、錆が発生した磁石を磁気回路などの装
置に組み込んだ場合、錆が飛散して周辺部品を汚染する
恐れがある。上記の点に鑑み、希土類系永久磁石に優れ
た耐食性を付与することを目的として、その表面にアル
ミニウム被膜を蒸着法などの気相めっき法によって成膜
することが行われている。アルミニウム被膜は耐食性に
優れていることに加え、部品組み込み時に必要とされる
接着剤との接着信頼性に優れている(接着剤が本質的に
有する破壊強度に達するまでに被膜と接着剤との間で剥
離が生じにくい)ので、強い接着強度が要求される希土
類系永久磁石に対して広く適用されている。2. Description of the Related Art Rare-earth based magnets such as R-Fe-B permanent magnets represented by Nd-Fe-B permanent magnets and R-Fe-N permanent magnets represented by Sm-Fe-N permanent magnets Permanent magnets are made of inexpensive materials that are abundant in resources,
In particular, R-Fe-B
Permanent magnets are used in various fields today. However, rare earth permanent magnets are highly reactive rare earth metals:
Because it contains R, it is easily oxidized and corroded in the air. If used without any surface treatment, corrosion will progress from the surface due to the presence of a slight amount of acid, alkali or moisture, causing rust. As a result, deterioration and variations in magnet characteristics are caused. Further, when the rusted magnet is incorporated in a device such as a magnetic circuit, the rust may be scattered and contaminate peripheral components. In view of the above, in order to impart excellent corrosion resistance to rare earth permanent magnets, an aluminum film is formed on the surface thereof by vapor phase plating such as evaporation. The aluminum coating has excellent corrosion resistance and excellent adhesion reliability with the adhesive required at the time of assembling parts. (Between the coating and the adhesive until the fracture strength inherent in the adhesive is reached) This is widely applied to rare-earth permanent magnets that require strong adhesive strength.
【0003】[0003]
【発明が解決しようとする課題】以上のように、気相め
っき法で成膜されるアルミニウム被膜は優れた特性を発
揮するが、気相めっき法を行うための装置は一般に大掛
かりであり、多額の設備投資が必要となる。従って、ア
ルミニウム被膜が有する優れた特性と同様の特性を有
し、かつ、低コストで簡便に成膜することができる耐食
性被膜が望まれており、本発明においては、このような
被膜を表面に有する希土類系永久磁石およびその製造方
法を提供することを目的とする。As described above, although the aluminum film formed by the vapor phase plating method exhibits excellent characteristics, the apparatus for performing the vapor phase plating method is generally large-scale and expensive. Capital investment is required. Therefore, a corrosion-resistant coating that has the same properties as the excellent properties of an aluminum coating and that can be easily formed at low cost is desired. In the present invention, such a coating is applied to the surface. It is an object of the present invention to provide a rare earth permanent magnet having the same and a method for producing the same.
【0004】[0004]
【課題を解決するための手段】本発明者らは、上記の点
に鑑みて種々の検討を行った結果、希土類系永久磁石表
面に、アルミニウム微粒子と重クロム酸やクロム酸など
を含有する処理液を塗布した後、熱処理することによ
り、気相めっき法で成膜されるアルミニウム被膜が有す
る優れた特性と同様の特性を有し、かつ、緻密で磁石表
面に対する密着性に優れた耐食性被膜を低コストで簡便
に磁石表面に成膜することができることを見出した。Means for Solving the Problems The present inventors have conducted various studies in view of the above points, and as a result, have found that the surface of a rare-earth permanent magnet contains aluminum fine particles and dichromic acid or chromic acid. After applying the solution, by performing a heat treatment, a corrosion-resistant coating having the same properties as the aluminum coating formed by the vapor phase plating method, and having a dense and excellent adhesion to the magnet surface. It has been found that a film can be easily formed on the magnet surface at low cost.
【0005】本発明は、かかる知見に基づいてなされた
ものであり、本発明の永久磁石は、請求項1記載の通
り、希土類系永久磁石表面に、(I)アルミニウム微粒
子と(II)クロム、モリブデン、タングステン、リン
から選ばれる少なくとも1種の成分を含有する被膜を有
することを特徴とする。また、請求項2記載の永久磁石
は、請求項1記載の永久磁石において、前記アルミニウ
ム微粒子の平均粒子径が0.01μm〜50μmである
ことを特徴とする。また、請求項3記載の永久磁石は、
請求項1または2記載の永久磁石において、前記被膜中
における(I)アルミニウム微粒子の(II)クロム、
モリブデン、タングステン、リンから選ばれる少なくと
も1種の成分に対する組成比((I)/(II))が1
〜100(mol/mol)であることを特徴とする。
また、請求項4記載の永久磁石は、請求項1乃至3のい
ずれかに記載の永久磁石において、前記被膜の膜厚が
0.1μm〜100μmであることを特徴とする。ま
た、請求項5記載の永久磁石は、請求項1乃至4のいず
れかに記載の永久磁石において、前記被膜表面がピーニ
ング処理されていることを特徴とする。また、請求項6
記載の永久磁石は、請求項1乃至5のいずれかに記載の
永久磁石において、前記希土類系永久磁石がR−Fe−
B系永久磁石であることを特徴とする。また、本発明の
(I)アルミニウム微粒子と(II)クロム、モリブデ
ン、タングステン、リンから選ばれる少なくとも1種の
成分を含有する被膜を有する永久磁石の製造方法は、請
求項7記載の通り、希土類系永久磁石表面に、(i)ア
ルミニウム微粒子と(ii)重クロム酸、クロム酸、モ
リブデン酸、タングステン酸、リン酸、およびこれらの
塩から選ばれる少なくとも1種を含有する処理液を塗布
した後、熱処理することを特徴とする。また、請求項8
記載の製造方法は、請求項7記載の製造方法において、
前記処理液中における(i)アルミニウム微粒子の(i
i)重クロム酸、クロム酸、モリブデン酸、タングステ
ン酸、リン酸、およびこれらの塩から選ばれる少なくと
も1種に対する組成比((i)/(ii))が1〜10
0(mol/mol)であることを含有する。また、本
発明の表面がピーニング処理されている被膜を有する永
久磁石の製造方法は、請求項9記載の通り、請求項7ま
たは8記載の製造方法により希土類系永久磁石表面に被
膜を形成した後、被膜表面をピーニング処理することを
特徴とする。The present invention has been made based on this finding. According to the first aspect of the present invention, there is provided a permanent magnet having (I) aluminum fine particles, (II) chromium, It has a coating containing at least one component selected from molybdenum, tungsten, and phosphorus. A permanent magnet according to a second aspect is characterized in that, in the permanent magnet according to the first aspect, the average particle diameter of the aluminum fine particles is 0.01 μm to 50 μm. The permanent magnet according to claim 3 is
3. The permanent magnet according to claim 1, wherein (I) aluminum fine particles (II) chromium in the coating,
The composition ratio ((I) / (II)) to at least one component selected from molybdenum, tungsten, and phosphorus is 1
~ 100 (mol / mol).
A permanent magnet according to a fourth aspect is characterized in that, in the permanent magnet according to any one of the first to third aspects, the thickness of the coating is 0.1 μm to 100 μm. A permanent magnet according to a fifth aspect is characterized in that, in the permanent magnet according to any one of the first to fourth aspects, the surface of the coating film is peened. Claim 6
The permanent magnet according to any one of claims 1 to 5, wherein the rare-earth permanent magnet is R-Fe-
It is a B type permanent magnet. Further, the method of the present invention for producing a permanent magnet having a coating containing (I) aluminum fine particles and (II) at least one component selected from chromium, molybdenum, tungsten and phosphorus is as described in claim 7. After applying a treatment liquid containing (i) aluminum fine particles and (ii) at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof to the surface of the permanent magnet And heat-treating. Claim 8
The manufacturing method according to claim 7, wherein
(I) aluminum fine particles (i) in the treatment liquid
i) The composition ratio ((i) / (ii)) to at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof is 1 to 10.
0 (mol / mol). Further, according to the method of the present invention for producing a permanent magnet having a coating whose surface is peened, after forming a coating on the rare earth permanent magnet surface by the production method of claim 7 or 8, as in claim 9, And peening the coating surface.
【0006】[0006]
【発明の実施の形態】本発明の永久磁石は、希土類系永
久磁石表面に、(I)アルミニウム微粒子と(II)ク
ロム、モリブデン、タングステン、リンから選ばれる少
なくとも1種の成分を含有する被膜を有することを特徴
とするものである。BEST MODE FOR CARRYING OUT THE INVENTION The permanent magnet according to the present invention has a rare-earth permanent magnet surface coated with a coating containing (I) aluminum fine particles and (II) at least one component selected from chromium, molybdenum, tungsten and phosphorus. It is characterized by having.
【0007】本発明の永久磁石は、例えば、希土類系永
久磁石表面に、(i)アルミニウム微粒子と(ii)重
クロム酸、クロム酸、モリブデン酸、タングステン酸、
リン酸、およびこれらの塩から選ばれる少なくとも1種
を含有する処理液を塗布した後、熱処理することにより
製造される。The permanent magnet of the present invention comprises, for example, (i) aluminum fine particles and (ii) dichromic acid, chromic acid, molybdic acid, tungstate,
It is produced by applying a treatment liquid containing at least one selected from phosphoric acid and salts thereof, followed by heat treatment.
【0008】処理液は、例えば、水にアルミニウム微粒
子を均一分散させるとともに、重クロム酸、クロム酸、
モリブデン酸、タングステン酸、リン酸、およびこれら
の塩から選ばれる少なくとも1種を溶解させることによ
り調製される。[0008] The treatment liquid is, for example, uniformly dispersing aluminum fine particles in water, dichromic acid, chromic acid,
It is prepared by dissolving at least one selected from molybdic acid, tungstic acid, phosphoric acid, and salts thereof.
【0009】処理液に配合されるアルミニウム微粒子の
大きさや形状などは、形成する被膜の膜厚を考慮して適
宜選択されうるものであるが、通常、その大きさは、平
均粒子径が0.01μm〜50μmのものを使用するこ
とが望ましい。平均粒子径が0.01μm未満である
と、処理液中で微粒子の二次凝集などが起こり、製造工
程途中において処理液の取り扱いが困難になったり、微
粒子が均一分散した被膜が形成できなくなったりする恐
れがあるからである。一方、被膜中には小さい微粒子を
数多く分散させ、被膜中における微粒子の体積含有率を
高めることが被膜により高い耐食性を付与する観点から
望ましく、平均粒子径が50μmを超える微粒子を使用
した場合、被膜中における微粒子の体積含有率が制限を
受けてしまい、より高い耐食性の付与に影響を及ぼす恐
れがあるからである。なお、アルミニウム微粒子の粒度
分布は、その最大値が膜厚以下であれば特段制限される
ものではない。また、アルミニウム微粒子は、球状、薄
片状、不定形状など各種形状のものを使用することがで
きる。The size and shape of the aluminum fine particles to be mixed in the treatment liquid can be appropriately selected in consideration of the thickness of the coating film to be formed. It is desirable to use one having a diameter of from 01 μm to 50 μm. When the average particle size is less than 0.01 μm, secondary aggregation of fine particles occurs in the processing liquid, and it becomes difficult to handle the processing liquid during the manufacturing process, or a film in which the fine particles are uniformly dispersed cannot be formed. This is because there is a risk of doing so. On the other hand, it is desirable to disperse a large number of small fine particles in the coating and to increase the volume content of the fine particles in the coating from the viewpoint of imparting higher corrosion resistance to the coating, and when using fine particles having an average particle diameter of more than 50 μm, This is because the volume content of the fine particles in the inside is restricted, which may affect the provision of higher corrosion resistance. The particle size distribution of the aluminum fine particles is not particularly limited as long as the maximum value is equal to or less than the film thickness. Further, as the aluminum fine particles, those having various shapes such as a spherical shape, a flaky shape, and an irregular shape can be used.
【0010】処理液中には、重クロム酸、クロム酸、モ
リブデン酸、タングステン酸、リン酸、およびこれらの
塩から選ばれる少なくとも1種を配合すればよいが、例
えば、重クロム酸やクロム酸とリン酸を組み合わせて配
合したり、モリブデン酸とリン酸を組み合わせて配合し
たり、重クロム酸やクロム酸とモリブデン酸とリン酸を
組み合わせて配合したりすることにより、被膜中に複数
の成分を含有せしめることが、被膜により高い耐食性を
付与する観点から望ましい。The treatment solution may contain at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof. And phosphoric acid in combination, molybdic acid and phosphoric acid in combination, or dichromic acid or chromic acid, molybdic acid and phosphoric acid in combination to form multiple components in the coating Is desirable from the viewpoint of imparting higher corrosion resistance to the coating.
【0011】なお、処理液に配合される重クロム酸、ク
ロム酸、モリブデン酸、タングステン酸、リン酸の塩と
しては、リチウム塩、ナトリウム塩、カリウム塩、マグ
ネシウム塩、カルシウム塩、アンモニウム塩などが挙げ
られる。The salts of dichromic acid, chromic acid, molybdic acid, tungstic acid, and phosphoric acid to be mixed in the treatment liquid include lithium salts, sodium salts, potassium salts, magnesium salts, calcium salts, and ammonium salts. No.
【0012】処理液中における(i)アルミニウム微粒
子の(ii)重クロム酸、クロム酸、モリブデン酸、タ
ングステン酸、リン酸、およびこれらの塩から選ばれる
少なくとも1種に対する組成比((i)/(ii))
は、1〜100(mol/mol)に調整することが望
ましく、2〜20(mol/mol)に調整することが
より望ましい。組成比が1(mol/mol)未満であ
ると、被膜の耐食性に寄与するアルミニウム微粒子の含
量が少なすぎるために耐食性に優れた被膜を形成するこ
とが困難になる恐れがあるからである。一方、組成比が
100(mol/mol)を超えると、アルミニウム微
粒子とアルミニウム微粒子の間の空隙が他の被膜成分に
よって十分に充填されず、その結果、緻密な被膜が形成
されにくくなる恐れがあるからである。処理液中におけ
る両者の組成比を以上のように調整することにより、被
膜中における(I)アルミニウム微粒子の(II)クロ
ム、モリブデン、タングステン、リンから選ばれる少な
くとも1種の成分に対する組成比((I)/(II))
が望ましくは1〜100(mol/mol)、より望ま
しくは2〜20(mol/mol)の被膜が形成され、
優れた特性を発揮する。The composition ratio of (i) aluminum fine particles to (ii) at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof in the treatment liquid ((i) / (Ii))
Is preferably adjusted to 1 to 100 (mol / mol), and more preferably to 2 to 20 (mol / mol). If the composition ratio is less than 1 (mol / mol), the content of the aluminum fine particles contributing to the corrosion resistance of the film may be too small, so that it may be difficult to form a film having excellent corrosion resistance. On the other hand, when the composition ratio exceeds 100 (mol / mol), the voids between the aluminum fine particles and the aluminum fine particles are not sufficiently filled with other coating components, and as a result, a dense coating may not be easily formed. Because. By adjusting the composition ratio of the two in the treatment liquid as described above, the composition ratio ((I) of the aluminum fine particles in the coating to (II) at least one component selected from chromium, molybdenum, tungsten, and phosphorus (( I) / (II))
Preferably, a coating of 1 to 100 (mol / mol), more preferably 2 to 20 (mol / mol) is formed,
Demonstrates excellent properties.
【0013】処理液に対する(i)アルミニウム微粒子
の(ii)重クロム酸、クロム酸、モリブデン酸、タン
グステン酸、リン酸、およびこれらの塩から選ばれる少
なくとも1種の合計配合割合は、特段限定されるもので
はないが、通常、重クロム酸、クロム酸、モリブデン
酸、タングステン酸、リン酸、およびこれらの塩から選
ばれる少なくとも1種を水1リットルに1mol〜10
mol溶解させ、これに対して所望する組成比でアルミ
ニウム微粒子を均一分散させればよい。The total blending ratio of (i) aluminum fine particles to the treatment liquid and (ii) at least one kind selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid and salts thereof is particularly limited. Although not necessarily, usually, at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof is added in an amount of 1 mol to 10 mol / liter of water.
mol, and aluminum fine particles may be uniformly dispersed in a desired composition ratio.
【0014】処理液のpHは0〜5に調整することが望
ましい。処理液のpHをこのように調整することによ
り、希土類系永久磁石表面との間で優れた密着性を示す
緻密な被膜を形成することができる。It is desirable to adjust the pH of the processing solution to 0-5. By adjusting the pH of the treatment liquid in this way, it is possible to form a dense film showing excellent adhesion to the surface of the rare-earth permanent magnet.
【0015】処理液には、pH調整剤として塩酸や硫酸
やホウ酸などの無機酸や水酸化ナトリウムやアンモニア
などのアルカリを配合してもよい。また、pH緩衝剤と
してリンゴ酸やマロン酸やクエン酸やコハク酸などの有
機酸を配合してもよい。また、処理液のpHや粘度を調
整する目的や、アルミニウム微粒子以外の成分で形成さ
れている被膜部分の耐食性を向上させる目的に、酸化マ
グネシウム、水酸化マグネシウム、酸化亜鉛、水酸化亜
鉛、水酸化アルミニウム、水酸化リチウムなどの水溶性
物質を配合してもよい。さらに、被膜の硬度増強などの
目的に、酸化アルミニウム微粒子、酸化珪素微粒子、炭
化ホウ素微粒子、窒化珪素微粒子などを配合してもよ
い。The treatment liquid may contain an inorganic acid such as hydrochloric acid, sulfuric acid or boric acid, or an alkali such as sodium hydroxide or ammonia as a pH adjuster. Further, an organic acid such as malic acid, malonic acid, citric acid or succinic acid may be blended as a pH buffer. In addition, magnesium oxide, magnesium hydroxide, zinc oxide, zinc hydroxide, and hydroxide are used for the purpose of adjusting the pH and viscosity of the processing solution and for improving the corrosion resistance of the coating portion formed with components other than the aluminum fine particles. A water-soluble substance such as aluminum or lithium hydroxide may be blended. Further, aluminum oxide fine particles, silicon oxide fine particles, boron carbide fine particles, silicon nitride fine particles, and the like may be blended for the purpose of enhancing the hardness of the coating film.
【0016】以上のようにして調製される処理液を磁石
表面に塗布した後、熱処理することにより被膜を形成さ
せる。ここで、処理液を磁石表面に塗布するに際して
は、ディップコーティング法、スプレー法、スピンコー
ト法などの公知の塗布方法を採用することができる。After the treatment liquid prepared as described above is applied to the surface of the magnet, heat treatment is performed to form a film. Here, when applying the treatment liquid to the magnet surface, a known application method such as a dip coating method, a spray method, and a spin coating method can be adopted.
【0017】磁石表面に処理液を塗布した後の熱処理
は、大気中や不活性ガス中や真空中などの各種の雰囲気
下、焼結磁石の場合、100℃〜450℃の温度範囲で
行うことが望ましく、200℃〜400℃の温度範囲で
行うことがより望ましい。熱処理温度が100℃未満で
あると、被膜が十分に緻密化しない恐れがあるからであ
る。一方、熱処理温度が450℃を越えると、磁石の磁
気特性の劣化を招く恐れがあるからである。また、ボン
ド磁石の場合、熱処理温度は使用する樹脂の耐熱温度を
考慮して設定しなければならない。例えば、エポキシ樹
脂やポリアミド樹脂を用いたボンド磁石の場合、熱処理
温度は、これらの樹脂の耐熱温度を考慮して、100℃
〜200℃とすることが望ましい。なお、通常、生産性
を考慮すれば、熱処理時間は1分〜3時間とするのがよ
い。The heat treatment after the treatment liquid is applied to the magnet surface is performed in various atmospheres such as the atmosphere, an inert gas, or a vacuum, and in the case of a sintered magnet, in a temperature range of 100 ° C. to 450 ° C. And more desirably in a temperature range of 200 ° C to 400 ° C. If the heat treatment temperature is lower than 100 ° C., the coating may not be sufficiently densified. On the other hand, if the heat treatment temperature exceeds 450 ° C., the magnetic properties of the magnet may be deteriorated. In the case of a bonded magnet, the heat treatment temperature must be set in consideration of the heat resistance temperature of the resin used. For example, in the case of a bonded magnet using an epoxy resin or a polyamide resin, the heat treatment temperature is set to 100 ° C. in consideration of the heat resistance temperature of these resins.
It is desirable to set it to 200 ° C. In general, the heat treatment time is preferably 1 minute to 3 hours in consideration of productivity.
【0018】以上のようにして形成される被膜は、気相
めっき法で成膜されるアルミニウム被膜と同様の展延性
を有しているので、その表面に公知のピーニング処理を
施して表面を緻密化することにより耐食性の向上を図る
ことができる。例えば、ショットピーニングを行う場
合、投射材としては、ビッカース硬度が300以上で、
平均粒子径が30μm〜1000μmのガラスビーズや
スチールショットやジルコニアショットなどを使用する
ことができる。なお、投射材の平均粒子径が30μm未
満であると、被膜の耐食性の向上に十分なピーニング効
果を得ることができない恐れがあり、投射材の平均粒子
径が1000μmを超えると、被膜表面の粗度が大きく
なるばかりでなく、アルミニウム微粒子以外の成分で形
成されている部分表面から亀裂が生じ、耐食性の低下を
招く恐れがある。投射条件は、使用する投射材、被処理
物である被膜を表面に有する磁石と投射ノズルとの距離
などによって適宜選定されうるものであるが、通常、投
射圧力は0.1MPa〜0.5MPa、投射時間は1分
〜1時間である。The film formed as described above has the same extensibility as the aluminum film formed by the vapor phase plating method. Thus, the corrosion resistance can be improved. For example, when performing shot peening, the shot material has a Vickers hardness of 300 or more,
Glass beads, steel shots, zirconia shots, or the like having an average particle diameter of 30 μm to 1000 μm can be used. If the average particle size of the shot material is less than 30 μm, there is a possibility that a peening effect sufficient for improving the corrosion resistance of the coating may not be obtained. If the average particle size of the shot material exceeds 1000 μm, the roughness of the coating surface may be reduced. In addition to the increase in the degree of cracking, cracks may be generated from the surface of the part formed of components other than the aluminum fine particles, which may cause a reduction in corrosion resistance. The projection conditions can be appropriately selected depending on the projection material to be used, the distance between the projection nozzle and a magnet having a coating on the surface of the workpiece, and the projection pressure is usually 0.1 MPa to 0.5 MPa, The projection time is 1 minute to 1 hour.
【0019】本発明に適用される希土類系永久磁石とし
ては、例えば、R−Co系永久磁石、R−Fe−B系永
久磁石、R−Fe−N系永久磁石などの公知の希土類系
永久磁石が挙げられる。中でも、R−Fe−B系永久磁
石は、前述のように、磁気特性が高く、量産性や経済性
に優れている上に、被膜との優れた密着性を有する点に
おいて望ましいものである。これらの希土類系永久磁石
における希土類元素(R)は、Nd、Pr、Dy、H
o、Tb、Smのうち少なくとも1種、あるいはさら
に、La、Ce、Gd、Er、Eu、Tm、Yb、L
u、Yのうち少なくとも1種を含むものが望ましい。ま
た、通常はRのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタルやジジムなど)を入手
上の便宜などの理由によって使用することもできる。さ
らに、Al、Ti、V、Cr、Mn、Bi、Nb、T
a、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、
Zn、Hf、Gaのうち少なくとも1種を添加すること
で、保磁力や減磁曲線の角型性の改善、製造性の改善、
低価格化を図ることが可能となる。本発明における希土
類系永久磁石には、焼結磁石とボンド磁石のいずれもが
含まれる。Examples of the rare earth permanent magnet applicable to the present invention include known rare earth permanent magnets such as R—Co permanent magnet, R—Fe—B permanent magnet, and R—Fe—N permanent magnet. Is mentioned. Above all, R-Fe-B permanent magnets are desirable because they have high magnetic properties, are excellent in mass productivity and economical efficiency, and have excellent adhesion to a coating film, as described above. Rare earth elements (R) in these rare earth permanent magnets are Nd, Pr, Dy, H
at least one of o, Tb, and Sm, or La, Ce, Gd, Er, Eu, Tm, Yb, and L
Those containing at least one of u and Y are desirable. Usually, one kind of R is sufficient, but in practice, 2 kinds are preferred.
Mixtures of more than one species (such as misch metal or dymium) can also be used for reasons such as availability. Further, Al, Ti, V, Cr, Mn, Bi, Nb, T
a, Mo, W, Sb, Ge, Sn, Zr, Ni, Si,
By adding at least one of Zn, Hf, and Ga, the coercive force and the squareness of the demagnetization curve can be improved, the productivity can be improved,
It is possible to reduce the price. The rare earth permanent magnet according to the present invention includes both a sintered magnet and a bonded magnet.
【0020】以上の方法により希土類系永久磁石表面に
形成される、(I)アルミニウム微粒子と(II)クロ
ム、モリブデン、タングステン、リンから選ばれる少な
くとも1種の成分を含有する被膜は、以下のような特性
を有する。まず、アルミニウム微粒子の存在により、気
相めっき法で成膜されるアルミニウム被膜が有する優れ
た特性と同様の特性が発揮される。また、アルミニウム
微粒子と重クロム酸やクロム酸などが化学反応すること
によって両者が強固に結合しているので、緻密であると
ともに、個々のアルミニウム微粒子表面にも化学反応に
よって耐食性に優れた層が形成されているので、耐食性
に優れる。また、アルミニウムは酸素原子との親和性が
希土類金属と同じように高いので、アルミニウム微粒子
が磁石表面との間で界面反応層を形成することから、磁
石表面に対する密着性に優れる。また、重クロム酸やク
ロム酸などは希土類系永久磁石と反応して不働態被膜を
形成する能力を有するため、処理液を塗布して熱処理す
るという製造工程において、水を使用することによる磁
石自体の腐食を抑制する効果を有するとともに、磁石表
面に対する密着性に優れる。また、アルミニウム微粒子
の有する展延性を利用して、ピーニング処理を施して表
面を緻密化することにより耐食性の向上を図ることがで
きる。さらに、処理液組成や熱処理条件を調整すること
で、絶縁性を付与することもでき、この被膜を有する希
土類系永久磁石をモーターに使用すれば、渦電流の発生
を効果的に防止することもできる。The coating containing (I) aluminum fine particles and (II) at least one component selected from chromium, molybdenum, tungsten and phosphorus formed on the surface of the rare earth permanent magnet by the above method is as follows. It has various characteristics. First, due to the presence of the aluminum fine particles, the same properties as the excellent properties of the aluminum film formed by the vapor phase plating method are exhibited. In addition, since aluminum fine particles and dichromic acid or chromic acid are chemically bonded to each other due to a chemical reaction, they are dense and a layer with excellent corrosion resistance is formed on the surface of each aluminum fine particle by a chemical reaction. It has excellent corrosion resistance. In addition, aluminum has an affinity for oxygen atoms as high as a rare earth metal, so that aluminum fine particles form an interfacial reaction layer with the magnet surface, and therefore have excellent adhesion to the magnet surface. In addition, since dichromic acid and chromic acid have the ability to react with rare earth permanent magnets to form a passive film, the water itself is used in the manufacturing process of applying a treatment liquid and heat-treating it. Has the effect of suppressing corrosion of the magnet and has excellent adhesion to the magnet surface. In addition, by utilizing the extensibility of the aluminum fine particles, a peening treatment is performed to densify the surface, thereby improving corrosion resistance. Furthermore, by adjusting the composition of the processing solution and the conditions of the heat treatment, insulation properties can be imparted. If a rare-earth permanent magnet having this coating is used for a motor, the generation of eddy current can be effectively prevented. it can.
【0021】以上の方法により希土類系永久磁石表面に
形成される、(I)アルミニウム微粒子と(II)クロ
ム、モリブデン、タングステン、リンから選ばれる少な
くとも1種の成分を含有する被膜は、膜厚が0.1μm
以上であれば十分な耐食性を示す。本発明によって製造
しうる被膜の膜厚の上限は限定されるものではないが、
磁石自体の小型化に基づく要請から、被膜の膜厚は10
0μm以下が望ましい。実用上、好適な膜厚は1μm〜
30μmである。The film containing (I) aluminum fine particles and (II) at least one component selected from chromium, molybdenum, tungsten and phosphorus formed on the surface of the rare earth permanent magnet by the above method has a film thickness. 0.1 μm
If it is above, sufficient corrosion resistance is shown. Although the upper limit of the film thickness that can be produced by the present invention is not limited,
Due to the demand for downsizing of the magnet itself, the film thickness is 10
0 μm or less is desirable. In practice, the preferred film thickness is 1 μm or more.
30 μm.
【0022】なお、本発明の耐食性被膜の上に、同じ被
膜を積層形成したり別の被膜を積層形成したりしてもよ
い。このような構成を採用することによって、本発明の
耐食性被膜の特性を増強・補完したり、更なる機能性を
付与したりすることができる。本発明の製造方法は、処
理液の塗布と熱処理という樹脂被膜などを形成する工程
と同様の工程によるので、連続工程化(ライン化)によ
り、本発明の耐食性被膜を形成した後、速やかに樹脂被
膜などを形成することが可能となる。従って、工程間で
の磁石移動時におけるハンドリングに伴う磁石の割れや
欠けを抑制しながら、本発明の耐食性被膜の上に、更に
別の被膜を効率的に形成することができる。The same film or another film may be formed on the corrosion-resistant film of the present invention. By adopting such a configuration, the characteristics of the corrosion-resistant coating of the present invention can be enhanced or supplemented, and further functionality can be imparted. Since the production method of the present invention is the same as the step of forming a resin film such as application of a treatment liquid and heat treatment, the process is continuously performed (lined), and after the corrosion-resistant film of the present invention is formed, the resin is quickly formed. It becomes possible to form a coating or the like. Therefore, it is possible to efficiently form another coating on the corrosion-resistant coating of the present invention while suppressing cracking and chipping of the magnet due to handling when the magnet is moved between processes.
【0023】[0023]
【実施例】本発明を以下の実施例によってさらに詳細に
説明するが、本発明はこれに限定されるものではない。
なお、以下の実施例は、例えば、米国特許477072
3号公報や米国特許4792368号公報に記載されて
いるようにして、公知の鋳造インゴットを粉砕し、微粉
砕後に成形、焼結、熱処理、表面加工を行うことによっ
て得られた14Nd−79Fe−6B−1Co組成の焼
結磁石を用いて行った。The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.
The following embodiment is described, for example, in US Pat.
No. 3 and U.S. Pat. No. 4,792,368, 14Nd-79Fe-6B obtained by pulverizing a known casting ingot, finely pulverizing, and then performing molding, sintering, heat treatment and surface processing. This was performed using a sintered magnet having a -1Co composition.
【0024】実施例1:水1リットルに平均粒子径が3
μmのアルミニウム微粒子800g(29.65mo
l)を均一分散させ、さらに、無水クロム酸90g
(0.90mol)、リン酸330g(3.37mo
l)、酸化マグネシウム72g(1.79mol)を溶
解し、処理液を調製した(pH0〜5)。この処理液を
スプレー法にて磁石(縦20mm×横30mm×厚さ
0.5mm寸法)表面に塗布した後、350℃で1時間
熱処理を行い、被膜を形成した。以上のようにして形成
された被膜の膜厚は18μmであった(被膜破断面の電
子顕微鏡観察による)。また、蛍光X線強度測定より被
膜の成分組成比を分析したところ(理学電機社製RIX
−3000を使用)、アルミニウム/クロムは32.0
(mol/mol)、アルミニウム/リンは9.1(m
ol/mol)、アルミニウム/(クロム+リン)は
7.1(mol/mol)であり、処理液中の各成分組
成比にほぼ一致していた。以上のようにして形成された
被膜を有する磁石を温度80℃×相対湿度90%の高温
高湿条件下に放置して耐食性試験を行ったところ、試験
開始後300時間までは発錆は観察されず、形成された
被膜は優れた耐食性を示すことがわかった。Example 1: 1 liter of water has an average particle size of 3
800 g of fine aluminum particles (29.65 mo
l) is uniformly dispersed, and 90 g of chromic anhydride is further added.
(0.90 mol), phosphoric acid 330 g (3.37 mol)
l), 72 g (1.79 mol) of magnesium oxide was dissolved to prepare a treatment solution (pH 0 to 5). This treatment liquid was applied to the surface of a magnet (20 mm long × 30 mm wide × 0.5 mm thick) by a spray method, and then heat-treated at 350 ° C. for 1 hour to form a film. The thickness of the film formed as described above was 18 μm (by observing the fracture surface of the film with an electron microscope). In addition, the composition ratio of the coating was analyzed by X-ray fluorescence intensity measurement (RIX manufactured by Rigaku Corporation).
-3000 is used), aluminum / chromium is 32.0
(Mol / mol), aluminum / phosphorus is 9.1 (m
ol / mol) and aluminum / (chromium + phosphorus) were 7.1 (mol / mol), which almost coincided with the respective component composition ratios in the treatment liquid. When the magnet having the coating formed as described above was left under a high-temperature and high-humidity condition of a temperature of 80 ° C. and a relative humidity of 90%, a corrosion resistance test was performed. Rust was observed up to 300 hours after the start of the test. Thus, it was found that the formed film exhibited excellent corrosion resistance.
【0025】実施例2:実施例1記載の方法と同様の方
法で磁石(縦20mm×横30mm×厚さ0.5mm寸
法)表面に被膜を形成した後、被膜表面に対してショッ
トピーニングを行った。ショットピーニングは、投射材
としてガラスビーズGB−AG(新東ブレーター社製、
ビッカース硬度500〜550、JIS相当粒度180
番(中心粒度範囲(80%)53μm〜106μm))
を使用し、投射圧力0.2MPa、投射時間10分間の
条件で行った。以上のようにして表面がピーニング処理
された被膜を有する磁石に対して実施例1記載の耐食性
試験と同様の試験を行ったところ、試験開始後500時
間までは発錆は観察されなかった。このことから、被膜
表面をピーニング処理することで、耐食性の向上を図る
ことができることがわかった。Example 2 A film was formed on the surface of a magnet (20 mm long × 30 mm wide × 0.5 mm thick) in the same manner as described in Example 1, and shot peening was performed on the surface of the film. Was. Shot peening is performed using glass beads GB-AG (Shinto Blater, Inc.
Vickers hardness 500-550, JIS equivalent particle size 180
No. (central particle size range (80%) 53 μm to 106 μm)
And a projection pressure of 0.2 MPa and a projection time of 10 minutes. When a test similar to the corrosion resistance test described in Example 1 was performed on a magnet having a coating whose surface was peened as described above, no rust was observed until 500 hours after the start of the test. From this, it was found that by performing the peening treatment on the film surface, the corrosion resistance could be improved.
【0026】実施例3:実施例1記載の方法と同様の方
法で磁石(直径20mm×高さ7mm寸法)表面に被膜
を形成した。形成された被膜の膜厚は19μmであっ
た。その後、実施例2記載の方法と同様の方法で被膜表
面に対してショットピーニングを行った。以上のように
して表面がピーニング処理された被膜を有する磁石に対
して耐食性試験と圧縮せん断強度の測定を行った。実施
例1記載の耐食性試験と同様の試験の結果、試験開始後
500時間までは発錆は観察されなかった。圧縮せん断
強度の測定を、この磁石を変性アクリレート系接着剤
(ハードロックG−55:電気化学工業社製)を用いて
鋳鉄製治具に接着し、24時間放置後に行った結果、3
2.1MPaという優れた値を示した。この際、磁石と
被膜との間での解離は見られなかった。このことから、
本発明の耐食性被膜は、接着信頼性および磁石との密着
性の点で優れた特性を有することがわかった。Example 3 A coating was formed on the surface of a magnet (20 mm in diameter × 7 mm in height) in the same manner as described in Example 1. The film thickness of the formed film was 19 μm. Thereafter, shot peening was performed on the film surface in the same manner as in Example 2. A corrosion resistance test and a measurement of compressive shear strength were performed on a magnet having a coating whose surface was peened as described above. As a result of the same test as the corrosion resistance test described in Example 1, no rust was observed until 500 hours after the start of the test. The compression shear strength was measured by bonding this magnet to a cast iron jig using a modified acrylate adhesive (Hard Rock G-55: manufactured by Denki Kagaku Kogyo Co., Ltd.), and after standing for 24 hours.
It exhibited an excellent value of 2.1 MPa. At this time, no dissociation was observed between the magnet and the coating. From this,
It has been found that the corrosion-resistant coating of the present invention has excellent characteristics in terms of adhesion reliability and adhesion to a magnet.
【0027】[0027]
【発明の効果】本発明の希土類系永久磁石表面に形成さ
れる、(I)アルミニウム微粒子と(II)クロム、モ
リブデン、タングステン、リンから選ばれる少なくとも
1種の成分を含有する被膜は、気相めっき法で成膜され
るアルミニウム被膜が有する優れた特性と同様の特性を
有し、かつ、緻密で磁石表面に対する密着性に優れた耐
食性被膜である。また、その製造方法は、希土類系永久
磁石表面に、(i)アルミニウム微粒子と(ii)重ク
ロム酸、クロム酸、モリブデン酸、タングステン酸、リ
ン酸、およびこれらの塩から選ばれる少なくとも1種を
含有する処理液を塗布した後、熱処理するという、低コ
ストで簡便なものである。The film formed on the surface of the rare-earth permanent magnet according to the present invention and containing (I) aluminum fine particles and (II) at least one component selected from chromium, molybdenum, tungsten and phosphorus is a gas phase. It is a corrosion-resistant film having characteristics similar to those of an aluminum film formed by a plating method, and being dense and excellent in adhesion to a magnet surface. Further, the manufacturing method is such that (i) aluminum fine particles and (ii) at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof are applied to the surface of the rare-earth permanent magnet. This is low-cost and simple, in which a heat treatment is performed after the treatment liquid to be contained is applied.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 22/07 C23C 22/07 22/32 22/32 22/40 22/40 22/82 22/82 // C22C 38/00 303 C22C 38/00 303D Fターム(参考) 4K018 AA27 BA18 DA11 FA23 FA24 KA45 4K026 AA01 BA03 BA06 BB08 CA13 CA20 CA22 CA26 CA29 CA31 DA02 DA06 EB11 5E062 CD04 CG07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 22/07 C23C 22/07 22/32 22/32 22/40 22/40 22/82 22/82 / / C22C 38/00 303 C22C 38/00 303D F term (reference) 4K018 AA27 BA18 DA11 FA23 FA24 KA45 4K026 AA01 BA03 BA06 BB08 CA13 CA20 CA22 CA26 CA29 CA31 DA02 DA06 EB11 5E062 CD04 CG07
Claims (9)
ニウム微粒子と(II)クロム、モリブデン、タングス
テン、リンから選ばれる少なくとも1種の成分を含有す
る被膜を有することを特徴とする永久磁石。1. A permanent magnet comprising a rare-earth permanent magnet surface having a coating containing (I) aluminum fine particles and (II) at least one component selected from chromium, molybdenum, tungsten, and phosphorus.
0.01μm〜50μmであることを特徴とする請求項
1記載の永久磁石。2. The permanent magnet according to claim 1, wherein said aluminum fine particles have an average particle size of 0.01 μm to 50 μm.
微粒子の(II)クロム、モリブデン、タングステン、
リンから選ばれる少なくとも1種の成分に対する組成比
((I)/(II))が1〜100(mol/mol)
であることを特徴とする請求項1または2記載の永久磁
石。3. The method according to claim 1, wherein (I) aluminum fine particles (II) of chromium, molybdenum, tungsten,
The composition ratio ((I) / (II)) to at least one component selected from phosphorus is 1 to 100 (mol / mol)
The permanent magnet according to claim 1, wherein:
mであることを特徴とする請求項1乃至3のいずれかに
記載の永久磁石。4. A film having a thickness of 0.1 μm to 100 μm.
4. The permanent magnet according to claim 1, wherein m is m.
ることを特徴とする請求項1乃至4のいずれかに記載の
永久磁石。5. The permanent magnet according to claim 1, wherein the surface of the coating is peened.
永久磁石であることを特徴とする請求項1乃至5のいず
れかに記載の永久磁石。6. The permanent magnet according to claim 1, wherein the rare-earth permanent magnet is an R—Fe—B permanent magnet.
ニウム微粒子と(ii)重クロム酸、クロム酸、モリブ
デン酸、タングステン酸、リン酸、およびこれらの塩か
ら選ばれる少なくとも1種を含有する処理液を塗布した
後、熱処理することを特徴とする(I)アルミニウム微
粒子と(II)クロム、モリブデン、タングステン、リ
ンから選ばれる少なくとも1種の成分を含有する被膜を
有する永久磁石の製造方法。7. The rare-earth permanent magnet surface contains (i) aluminum fine particles and (ii) at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof. A method for producing a permanent magnet having a coating containing (I) aluminum fine particles and (II) at least one component selected from chromium, molybdenum, tungsten, and phosphorus, which is subjected to a heat treatment after applying a treatment liquid.
ム微粒子の(ii)重クロム酸、クロム酸、モリブデン
酸、タングステン酸、リン酸、およびこれらの塩から選
ばれる少なくとも1種に対する組成比((i)/(i
i))が1〜100(mol/mol)であることを特
徴する請求項7記載の製造方法。8. The composition ratio of (i) aluminum fine particles to (ii) at least one selected from dichromic acid, chromic acid, molybdic acid, tungstic acid, phosphoric acid, and salts thereof in the treatment liquid (( i) / (i
The method according to claim 7, wherein i)) is 1 to 100 (mol / mol).
希土類系永久磁石表面に被膜を形成した後、被膜表面を
ピーニング処理することを特徴とする表面がピーニング
処理されている被膜を有する永久磁石の製造方法。9. A permanent magnet having a coating whose surface has been peened, wherein a coating is formed on the surface of the rare-earth permanent magnet by the production method according to claim 7 or 8, followed by peening the surface of the coating. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000263541A JP2002075767A (en) | 2000-08-31 | 2000-08-31 | Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000263541A JP2002075767A (en) | 2000-08-31 | 2000-08-31 | Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002075767A true JP2002075767A (en) | 2002-03-15 |
Family
ID=18751074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000263541A Withdrawn JP2002075767A (en) | 2000-08-31 | 2000-08-31 | Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002075767A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007258698A (en) * | 2006-02-27 | 2007-10-04 | Tdk Corp | Method for manufacturing rare earth magnet |
JP2008530361A (en) * | 2005-02-15 | 2008-08-07 | ユナイテッド ステイツ オブ アメリカ アズ レプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー エト アル. | Composition for coating chromium-zirconium on metal substrate and preparation method thereof |
JP2008537975A (en) * | 2005-02-15 | 2008-10-02 | ユナイテッド ステイツ オブ アメリカ アズ レプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー エト アル. | Composition and method for protective coating of metal substrates |
JP2014205211A (en) * | 2013-04-11 | 2014-10-30 | 株式会社不二機販 | Wire saw and method of manufacturing wire saw |
JP2015532893A (en) * | 2012-09-10 | 2015-11-16 | バルカン イノックス ゲーエムベーハー | Method and blasting means for producing a satin finish on an aluminum substrate |
US11289249B2 (en) | 2017-08-30 | 2022-03-29 | Kabushiki Kaisha Toshiba | Permanent magnet, rotary electrical machine, and vehicle |
WO2022107461A1 (en) * | 2020-11-18 | 2022-05-27 | 日亜化学工業株式会社 | PRODUCTION METHOD FOR PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER |
JP2022080817A (en) * | 2020-11-18 | 2022-05-30 | 日亜化学工業株式会社 | Method for manufacturing compound for bond magnet |
-
2000
- 2000-08-31 JP JP2000263541A patent/JP2002075767A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008530361A (en) * | 2005-02-15 | 2008-08-07 | ユナイテッド ステイツ オブ アメリカ アズ レプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー エト アル. | Composition for coating chromium-zirconium on metal substrate and preparation method thereof |
JP2008537975A (en) * | 2005-02-15 | 2008-10-02 | ユナイテッド ステイツ オブ アメリカ アズ レプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー エト アル. | Composition and method for protective coating of metal substrates |
JP2007258698A (en) * | 2006-02-27 | 2007-10-04 | Tdk Corp | Method for manufacturing rare earth magnet |
JP2015532893A (en) * | 2012-09-10 | 2015-11-16 | バルカン イノックス ゲーエムベーハー | Method and blasting means for producing a satin finish on an aluminum substrate |
JP2014205211A (en) * | 2013-04-11 | 2014-10-30 | 株式会社不二機販 | Wire saw and method of manufacturing wire saw |
US11289249B2 (en) | 2017-08-30 | 2022-03-29 | Kabushiki Kaisha Toshiba | Permanent magnet, rotary electrical machine, and vehicle |
WO2022107461A1 (en) * | 2020-11-18 | 2022-05-27 | 日亜化学工業株式会社 | PRODUCTION METHOD FOR PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER |
JP2022080817A (en) * | 2020-11-18 | 2022-05-30 | 日亜化学工業株式会社 | Method for manufacturing compound for bond magnet |
JP7335515B2 (en) | 2020-11-18 | 2023-08-30 | 日亜化学工業株式会社 | Manufacturing method of compound for bonded magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008263208A (en) | Corrosion-resistant rare earth magnet | |
JP6361089B2 (en) | R-T-B sintered magnet | |
JP4591631B2 (en) | Corrosion-resistant magnet and manufacturing method thereof | |
US6251196B1 (en) | Process for producing Fe-B-R based permanent magnet having a corrosion-resistant film | |
US6281774B1 (en) | Corrosion-resistant permanent magnet and method for producing the same | |
JP2002075767A (en) | Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing method | |
JP3176597B2 (en) | Corrosion resistant permanent magnet and method for producing the same | |
JP2006049865A (en) | Corrosion resistant rare earth magnet and manufacturing method thereof | |
JP3351768B2 (en) | Method for producing Fe-BR based permanent magnet having corrosion resistant film | |
JPS62120002A (en) | Permanent magnet with excellent corrosion resistance | |
JP3877552B2 (en) | Method for manufacturing metal member | |
JP3423299B2 (en) | Fe-BR type permanent magnet having corrosion-resistant film | |
JP2000232026A (en) | MANUFACTURE OF Fe-B-R PERMANENT MAGNET HAVING CORROSION-RESISTING COATING | |
JP2006049864A (en) | Corrosion resistant rare earth magnet and manufacturing method thereof | |
JP2003064454A (en) | Corrosion resistant rare earth magnet, and production method therefor | |
EP0984464B1 (en) | Process for producing Fe-B-R based permanent magnet having a corrosion-resistant film | |
JP2004356328A (en) | Corrosion resistant rare earth based permanent magnet and its producing process | |
EP1032000B1 (en) | Corrosion-resistant permanent magnet and method for producing the same | |
WO2023119908A1 (en) | Rare-earth magnetic powder, method for manufacturing same, and bond magnet | |
JP4539288B2 (en) | Rare earth sintered magnet | |
JP4225063B2 (en) | High corrosion resistance permanent magnet and method of manufacturing the same | |
JPH05226125A (en) | Manufacture of highly corrosion-resistant rare-earth magnet | |
CN1131530C (en) | Process for mfg. Fe-B-R based permanent magnet with corrosion-resisting film | |
JPH06318512A (en) | Permanent magnet and manufactured thereof | |
JP3411605B2 (en) | Corrosion resistant permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070608 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071106 |