JP2022080817A - Method for manufacturing compound for bond magnet - Google Patents
Method for manufacturing compound for bond magnet Download PDFInfo
- Publication number
- JP2022080817A JP2022080817A JP2021008212A JP2021008212A JP2022080817A JP 2022080817 A JP2022080817 A JP 2022080817A JP 2021008212 A JP2021008212 A JP 2021008212A JP 2021008212 A JP2021008212 A JP 2021008212A JP 2022080817 A JP2022080817 A JP 2022080817A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic powder
- magnet
- less
- compound
- smfen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000006247 magnetic powder Substances 0.000 claims abstract description 199
- 229920005989 resin Polymers 0.000 claims abstract description 73
- 239000011347 resin Substances 0.000 claims abstract description 73
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 67
- 239000010452 phosphate Substances 0.000 claims abstract description 61
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 60
- 239000000654 additive Substances 0.000 claims abstract description 54
- 230000000996 additive effect Effects 0.000 claims abstract description 53
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 53
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 52
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 52
- 238000004898 kneading Methods 0.000 claims abstract description 42
- 239000002245 particle Substances 0.000 claims description 64
- 238000001746 injection moulding Methods 0.000 claims description 42
- 239000011342 resin composition Substances 0.000 claims description 38
- 239000004677 Nylon Substances 0.000 claims description 31
- 229920001778 nylon Polymers 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 99
- 235000021317 phosphate Nutrition 0.000 description 58
- 235000011007 phosphoric acid Nutrition 0.000 description 53
- 238000001723 curing Methods 0.000 description 50
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 48
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 36
- 239000000243 solution Substances 0.000 description 30
- 230000004907 flux Effects 0.000 description 27
- 239000000047 product Substances 0.000 description 26
- 238000010306 acid treatment Methods 0.000 description 24
- 238000007254 oxidation reaction Methods 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 230000003647 oxidation Effects 0.000 description 23
- 229910052772 Samarium Inorganic materials 0.000 description 21
- -1 and for example Polymers 0.000 description 21
- 238000002347 injection Methods 0.000 description 21
- 239000007924 injection Substances 0.000 description 21
- 229910052742 iron Inorganic materials 0.000 description 21
- 239000002244 precipitate Substances 0.000 description 20
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 18
- 229910000077 silane Inorganic materials 0.000 description 18
- 239000000377 silicon dioxide Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 15
- 239000002002 slurry Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 239000003822 epoxy resin Substances 0.000 description 12
- 238000011049 filling Methods 0.000 description 12
- 238000005121 nitriding Methods 0.000 description 12
- 229920000647 polyepoxide Polymers 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 238000006722 reduction reaction Methods 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 229920000299 Nylon 12 Polymers 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 239000010409 thin film Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 6
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 150000007522 mineralic acids Chemical class 0.000 description 6
- 230000001376 precipitating effect Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000003929 acidic solution Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000010908 decantation Methods 0.000 description 5
- 239000006249 magnetic particle Substances 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 4
- 235000019799 monosodium phosphate Nutrition 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 3
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 229910001382 calcium hypophosphite Inorganic materials 0.000 description 3
- 229940064002 calcium hypophosphite Drugs 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- LLPKQRMDOFYSGZ-UHFFFAOYSA-N 2-methyl-4-methylimidazole Natural products CC1=CN=C(C)N1 LLPKQRMDOFYSGZ-UHFFFAOYSA-N 0.000 description 2
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 2
- 235000019838 diammonium phosphate Nutrition 0.000 description 2
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 235000019837 monoammonium phosphate Nutrition 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920000137 polyphosphoric acid Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 description 2
- 239000012066 reaction slurry Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 2
- 229910000165 zinc phosphate Inorganic materials 0.000 description 2
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- DKKYOQYISDAQER-UHFFFAOYSA-N 3-[3-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=C(OC=3C=C(N)C=CC=3)C=CC=2)=C1 DKKYOQYISDAQER-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- KNTKCYKJRSMRMZ-UHFFFAOYSA-N 3-chloropropyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)CCCCl KNTKCYKJRSMRMZ-UHFFFAOYSA-N 0.000 description 1
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- QJENIOQDYXRGLF-UHFFFAOYSA-N 4-[(4-amino-3-ethyl-5-methylphenyl)methyl]-2-ethyl-6-methylaniline Chemical compound CC1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=C(C)C=2)=C1 QJENIOQDYXRGLF-UHFFFAOYSA-N 0.000 description 1
- KWOIWTRRPFHBSI-UHFFFAOYSA-N 4-[2-[3-[2-(4-aminophenyl)propan-2-yl]phenyl]propan-2-yl]aniline Chemical compound C=1C=CC(C(C)(C)C=2C=CC(N)=CC=2)=CC=1C(C)(C)C1=CC=C(N)C=C1 KWOIWTRRPFHBSI-UHFFFAOYSA-N 0.000 description 1
- HESXPOICBNWMPI-UHFFFAOYSA-N 4-[2-[4-[2-(4-aminophenyl)propan-2-yl]phenyl]propan-2-yl]aniline Chemical compound C=1C=C(C(C)(C)C=2C=CC(N)=CC=2)C=CC=1C(C)(C)C1=CC=C(N)C=C1 HESXPOICBNWMPI-UHFFFAOYSA-N 0.000 description 1
- UTDAGHZGKXPRQI-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(S(=O)(=O)C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 UTDAGHZGKXPRQI-UHFFFAOYSA-N 0.000 description 1
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 1
- YRKVLGUIGNRYJX-UHFFFAOYSA-N 4-[9-(4-amino-3-methylphenyl)fluoren-9-yl]-2-methylaniline Chemical compound C1=C(N)C(C)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(C)C(N)=CC=2)=C1 YRKVLGUIGNRYJX-UHFFFAOYSA-N 0.000 description 1
- KHLRJDNGHBXOSV-UHFFFAOYSA-N 5-trimethoxysilylpentane-1,3-diamine Chemical compound CO[Si](OC)(OC)CCC(N)CCN KHLRJDNGHBXOSV-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910000612 Sm alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920003233 aromatic nylon Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical compound C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 229960001714 calcium phosphate Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- DCFGSSAHQAVEBW-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)octadecan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[NH2+]CCC[Si](OC)(OC)OC DCFGSSAHQAVEBW-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- BJRVEOKYZKROCC-UHFFFAOYSA-K samarium(3+);phosphate Chemical compound [Sm+3].[O-]P([O-])([O-])=O BJRVEOKYZKROCC-UHFFFAOYSA-K 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229940077935 zinc phosphate Drugs 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
特許法第30条第2項適用申請有り 〔集会名〕 2020BM シンポジウムプログラム「最先端磁性材料および高性能・高効率モータ技術の開発動向」(Webex上でのオンライン開催) 〔主催者名〕 日本ボンド磁性材料協会(JABM) 〔開催日〕 令和2年12月4日Application for application of Article 30, Paragraph 2 of the Patent Law [Meeting name] 2020BM Symposium Program "Development Trends of Cutting-edge Magnetic Materials and High-Performance and High-Efficiency Motor Technology" (held online on Webex) [Organizer Name] Japan Bond Magnetic Materials Association (JABM) [Date] December 4, 2nd year of Reiwa
本発明は、ボンド磁石用コンパウンドの製造方法に関する。 The present invention relates to a method for producing a compound for a bonded magnet.
特許文献1には、熱可塑性樹脂とSmFeN粒子を溶融混練後、圧縮成形してコンパウンドを作製し、射出成形するボンド磁石の製造方法が開示されている。 Patent Document 1 discloses a method for manufacturing a bonded magnet in which a thermoplastic resin and SmFeN particles are melt-kneaded, then compression-molded to produce a compound, and injection-molded.
一方、特許文献2には、NdFeB磁性粉末とエポキシ樹脂とエポキシ樹脂の硬化剤としてアミン系硬化剤を用いたボンド磁石が開示されている。 On the other hand, Patent Document 2 discloses a bonded magnet using an amine-based curing agent as a curing agent for NdFeB magnetic powder, an epoxy resin, and an epoxy resin.
SmFeN系異方性磁性粉末は、表面にリン酸塩が被覆されると保磁力が向上することが
知られている。例えば特許文献3においては、SmFeN系異方性磁性粉末を含む水を溶
媒としたスラリーに対して、pH調整されたオルトリン酸を含むリン酸処理液を添加する
ことによりSmFeN系異方性磁性粉末の表面にリン酸塩を被覆する方法が開示されてい
る。
It is known that the coercive force of the SmFeN-based anisotropic magnetic powder is improved when the surface is coated with phosphate. For example, in Patent Document 3, SmFeN-based anisotropic magnetic powder is obtained by adding a phosphoric acid treatment solution containing pH-adjusted orthophosphoric acid to a slurry using water containing SmFeN-based anisotropic magnetic powder as a solvent. A method of coating the surface of a phosphate with a phosphate is disclosed.
特許文献4においては、粒径の大きいSmFeN系異方性磁性粉末を含む有機溶媒を溶媒
としたスラリーに対して、pH調整されたリン酸処理液を添加した後、SmFeN系異方
性磁性粉末を粉砕することによりSmFeN系異方性磁性粉末の粒度調整をするとともに
、表面にリン酸塩を被覆する方法が開示されている。
In Patent Document 4, a pH-adjusted phosphoric acid treatment liquid is added to a slurry using an organic solvent containing an SmFeN-based anisotropic magnetic powder having a large particle size as a solvent, and then the SmFeN-based anisotropic magnetic powder is added. Disclosed is a method of adjusting the particle size of the SmFeN-based anisotropic magnetic powder by pulverizing the mixture and coating the surface with a phosphate.
特許文献5においては、リン酸塩が被覆されたSmFeN系異方性磁性粉末に対して酸化
処理をすることよりリン酸塩が被覆されたSmFeN系異方性磁性粉末の保磁力が高くな
ることが開示されている。
In Patent Document 5, the coercive force of the phosphoric acid-coated SmFeN-based anisotropic magnetic powder is increased by performing an oxidation treatment on the phosphoric acid-coated SmFeN-based anisotropic magnetic powder. Is disclosed.
本発明は、熱可塑性樹脂を含むボンド磁石用コンパウンドの流動性を改善し、磁性粉末の高充填化が可能となるボンド磁石用コンパウンドと、磁気特性が向上したボンド磁石を提供することを目的とする。 An object of the present invention is to provide a compound for a bond magnet that improves the fluidity of the compound for a bond magnet containing a thermoplastic resin and enables a high filling of magnetic powder, and a bond magnet with improved magnetic properties. do.
本発明の一態様にかかるボンド磁石用コンパウンドの製造方法は、熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、前記ボンド磁石用添加剤、磁性粉末、および、熱可塑性樹脂を混練してボンド磁石用コンパウンドを得る混練工程とを含み、前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む。 In the method for producing a compound for a bonded magnet according to one aspect of the present invention, a thermosetting resin and a curing agent in which the ratio of the reactive groups to the reactive groups of the thermosetting resin is 2 or more and 11 or less are thermally cured. The magnetic powder comprises a step of obtaining an additive for a bond magnet and a kneading step of kneading the additive for a bond magnet, a magnetic powder, and a thermoplastic resin to obtain a compound for a bond magnet, and the magnetic powder has phosphorus on the surface. Contains SmFeN-based anisotropic magnetic powder coated with an acid salt.
本発明の一態様にかかるボンド磁石用コンパウンドの製造方法は、熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、前記ボンド磁石用添加剤と熱可塑性樹脂を混練し、ボンド磁石用樹脂組成物を得る工程と、前記ボンド磁石用樹脂組成物および磁性粉末を混練し、ボンド磁石用コンパウンドを得る混練工程とを含み、前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む。 In the method for producing a compound for a bonded magnet according to one aspect of the present invention, a thermosetting resin and a curing agent in which the ratio of the reactive groups to the reactive groups of the thermosetting resin is 2 or more and 11 or less are thermally cured. The step of obtaining the bond magnet additive, the step of kneading the bond magnet additive and the thermoplastic resin to obtain the bond magnet resin composition, and the step of kneading the bond magnet resin composition and the magnetic powder are performed. The magnetic powder comprises a kneading step of obtaining a compound for a bond magnet, and the magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
本発明の一態様にかかるボンド磁石の製造方法は、熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、前記ボンド磁石用添加剤、磁性粉末、および、熱可塑性樹脂を混練してボンド磁石用コンパウンドを得る混練工程と、得られたボンド磁石用コンパウンドを射出成形する射出成形工程とを含み、前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む。 In the method for producing a bonded magnet according to one aspect of the present invention, a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less are thermally cured and bonded. A step of obtaining an additive for a magnet, a kneading step of kneading the additive for a bond magnet, a magnetic powder, and a thermoplastic resin to obtain a compound for a bond magnet, and an injection for injecting the obtained compound for a bond magnet. The magnetic powder includes a molding step, and the magnetic powder includes a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
本発明の一態様にかかるボンド磁石の製造方法は、熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、前記ボンド磁石用添加剤と熱可塑性樹脂を混練し、ボンド磁石用樹脂組成物を得る工程と、前記ボンド磁石用樹脂組成物および磁性粉末を混練し、ボンド磁石用コンパウンドを得る混練工程と、得られたボンド磁石用コンパウンドを射出成形する射出成形工程とを含み、前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む。 In the method for producing a bonded magnet according to one aspect of the present invention, a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less are thermally cured and bonded. A step of obtaining an additive for a magnet, a step of kneading the additive for a bond magnet and a thermoplastic resin to obtain a resin composition for a bond magnet, and a step of kneading the resin composition for a bond magnet and a magnetic powder to knead the bond magnet. The magnetic powder includes a kneading step for obtaining a compound for use and an injection molding step for injection molding the obtained compound for a bond magnet, and the magnetic powder includes a SmFeN-based anisotropic magnetic powder having a surface coated with a phosphate.
上記態様によれば、熱可塑性樹脂を含むボンド磁石用コンパウンドの流動性を改善でき、磁性粉末の高充填化が可能となって、磁気特性が向上したボンド磁石を提供することができる。 According to the above aspect, the fluidity of the compound for a bonded magnet containing a thermoplastic resin can be improved, the magnetic powder can be highly filled, and the bonded magnet having improved magnetic properties can be provided.
以下、本発明の実施形態について詳述する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例であり、本発明を以下のものに限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。 Hereinafter, embodiments of the present invention will be described in detail. However, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following. In this specification, the term "process" is used not only for an independent process but also for the term "process" if the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. included.
本実施形態の第1のボンド磁石用コンパウンドの製造方法は、
熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、
前記ボンド磁石用添加剤、磁性粉末、および、熱可塑性樹脂を混練してボンド磁石用コンパウンドを得る混練工程とを含み、前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含むことを特徴とする。
The method for manufacturing the first bond magnet compound of the present embodiment is as follows.
A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
The magnetic powder comprises a kneading step of kneading the additive for a bonded magnet, a magnetic powder, and a thermoplastic resin to obtain a compound for a bonded magnet, and the magnetic powder has a SmFeN-based anisotropic surface coated with a phosphate. It is characterized by containing magnetic powder.
熱可塑性樹脂を含むボンド磁石を作製する際に、熱可塑性樹脂と熱硬化性樹脂を混練したものを射出成形すると、熱硬化性樹脂の反応性基(例えばエポキシ樹脂の場合はグリジシル基)と熱可塑性樹脂の反応性基(例えばナイロン12の場合はアミド基)が反応することにより、樹脂の流動性が低下し成形性が悪くなることがあった。本実施形態の熱硬化性樹脂と熱硬化性樹脂の当量に対する当量の比が2以上11以下である硬化剤との硬化物は、熱硬化性樹脂の反応性基が硬化剤の反応性基(例えばDDS(ジアミノジフェニルスルホン)の場合はアミノ基)により十分に失活しているため、熱可塑性樹脂の反応性基との反応が起こりにくく樹脂の流動性の低下を抑制できるので、熱可塑性樹脂を含むボンド磁石の添加剤として用いることができる。また、本実施形態の熱可塑性樹脂を含むボンド磁石用添加剤により作製したボンド磁石用コンパウンドを用いてボンド磁石を射出成形により作製する場合、射出圧を下げることができるので、得られたボンド磁石の磁気特性が向上する。 When a bonded magnet containing a thermoplastic resin is manufactured by injection molding a kneaded thermoplastic resin and a thermocurable resin, the reactive group (for example, in the case of an epoxy resin, a glycisyl group) and heat of the thermoplastic resin are heat-molded. When the reactive group of the plastic resin (for example, the amide group in the case of nylon 12) reacts, the fluidity of the resin may decrease and the moldability may deteriorate. In the cured product of the thermosetting resin of the present embodiment in which the ratio of the equivalent to the equivalent of the thermosetting resin is 2 or more and 11 or less, the reactive group of the thermosetting resin is the reactive group of the curing agent ( For example, in the case of DDS (diaminodiphenyl sulfone), it is sufficiently deactivated by the amino group), so that the reaction with the reactive group of the thermoplastic resin is unlikely to occur and the decrease in the fluidity of the resin can be suppressed. Can be used as an additive for bonded magnets containing. Further, when the bond magnet is manufactured by injection molding using the bond magnet compound prepared by the additive for bond magnet containing the thermoplastic resin of the present embodiment, the injection pressure can be reduced, so that the obtained bond magnet can be obtained. The magnetic properties of the are improved.
熱硬化性樹脂は、熱硬化するものであれば特に限定されず、たとえばエポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリイミド樹脂、アルキド樹脂、フラン樹脂、ジシクロペンタジエン樹脂、アクリル樹脂、アリルカーボネート樹脂などが挙げられる。中でも機械特性と耐熱性の点で、エポキシ樹脂が好ましい。熱硬化性樹脂は、室温において液状のもの若しくは溶媒に溶解して液状になる固体が好ましい。また、エポキシ樹脂の場合は、硬化剤との反応性の点から、剛直な骨格と立体障害の少ない結晶構造を有し、分子量が小さく、流動性が高いものを選択することが好ましく、たとえばビフェニル型、ビスフェノールA型、ナフタレン型、アントラセン型のものなどが挙げられる。エポキシ樹脂としては、たとえばjER-YX4000、jER-828、jER-YX8800 、jER-YL6121HA、jER-YL6677、(三菱ケミカル株式会社製)、EPICLON-HP-4032D、HP-7200L、HP-7200、HP-7200H、HP-7200HH、HP-7200HHH、 HP-4700、HP-4770、HP-5000、HP-6000、HP-4710(DIC株式会社製)、YDC-1312、YSLV-70XY、YSLV-80XY(日鉄ケミカル&マテリアル株式会社製)などを用いることができる。 The thermosetting resin is not particularly limited as long as it is thermosetting, and for example, epoxy resin, phenol resin, urea resin, melamine resin, guanamine resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, polyurethane resin, etc. Examples thereof include silicone resin, polyimide resin, alkyd resin, furan resin, dicyclopentadiene resin, acrylic resin, and allyl carbonate resin. Of these, epoxy resin is preferable in terms of mechanical properties and heat resistance. The thermosetting resin is preferably a liquid at room temperature or a solid that dissolves in a solvent and becomes liquid. Further, in the case of an epoxy resin, from the viewpoint of reactivity with a curing agent, it is preferable to select a resin having a rigid skeleton, a crystal structure with few steric hindrance, a small molecular weight and high fluidity, for example, biphenyl. Types, bisphenol A type, naphthalene type, anthracene type and the like can be mentioned. Examples of the epoxy resin include jER-YX4000, jER-828, jER-YX8800, jER-YL6121HA, jER-YL6677, (manufactured by Mitsubishi Chemical Corporation), EPICLON-HP-4032D, HP-7200L, HP-7200, HP- 7200H, HP-7200HH, HP-7200HHH, HP-4700, HP-4770, HP-5000, HP-6000, HP-4710 (manufactured by DIC Co., Ltd.), YDC-1312, YSLV-70XY, YSLV-80XY (Nittetsu) Chemical & Material Co., Ltd.) can be used.
硬化剤は、選択した熱硬化性樹脂を熱硬化するものであれば特に限定されず、熱硬化性樹脂がエポキシ樹脂の場合、たとえばアミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤、イミダゾール系硬化剤、フェノール樹脂系硬化剤、ポリメルカプタン樹脂系硬化剤、ポリスルフィド樹脂系硬化剤、有機酸ヒドラジド系硬化剤などが挙げられる。アミン系硬化剤としては、ジアミノジフェニルスルホン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。 The curing agent is not particularly limited as long as it heat-cures the selected thermosetting resin, and when the thermosetting resin is an epoxy resin, for example, an amine-based curing agent, an acid anhydride-based curing agent, or a polyamide-based curing agent. , Imidazole-based curing agent, phenol resin-based curing agent, polyvinylcaptan resin-based curing agent, polysulfide resin-based curing agent, organic acid hydrazide-based curing agent, and the like. Examples of the amine-based curing agent include diaminodiphenyl sulfone, meta-phenylenediamine, diaminodiphenylmethane, diethylenetriamine, and triethylenetetramine.
硬化剤は、熱可塑性樹脂としてナイロン樹脂を用い、熱硬化性樹脂としてエポキシ樹脂を用いる場合、芳香族骨格を有するジアミン系硬化剤を用いることが好ましい。芳香族骨格を有するジアミン系硬化剤は、芳香族骨格を有することにより反応性基であるアミノ基周辺に立体障害が少ない化学構造であるため、エポキシ樹脂の反応性基であるグリジシル基に対し反応性が良く、またアミノ基がナイロン樹脂の反応性基であるアミド基に対し親和性が高いことによりナイロン樹脂の流動性が改善すると考えられる。このような硬化剤としては、上述のジアミノジフェニルスルホン、メタフェニレンジアミン、ジアミノジフェニルメタンの他に、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、ビスアニリンP、ビスアニリンM、ベンゾグアナミン、3,3’-ジニトロベンジジン、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、o-トリジン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、1,3-フェニレンジアミン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ジアミノジフェニルメタン、3,3’-スルホニルジアニリン、4,4’-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼンが挙げられる。 When a nylon resin is used as the thermoplastic resin and an epoxy resin is used as the thermosetting resin, it is preferable to use a diamine-based curing agent having an aromatic skeleton as the curing agent. Since the diamine-based curing agent having an aromatic skeleton has a chemical structure having a chemical structure with less steric damage around the amino group which is a reactive group due to having an aromatic skeleton, it reacts with a glycisyl group which is a reactive group of an epoxy resin. It is considered that the fluidity of the nylon resin is improved because the amino group has good properties and the amino group has a high affinity for the amide group which is the reactive group of the nylon resin. Examples of such a curing agent include 9,9-bis (4-amino-3-methylphenyl) fluorene, bisaniline P, bisaniline M, benzoguanamine, and 3 in addition to the above-mentioned diaminodiphenylsulfone, metaphenylenediamine, and diaminodiphenylmethane. , 3'-dinitrobenzidine, 4,4'-methylenebis (2-ethyl-6-methylaniline), o-tridine, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-amino) Phenoxy) phenyl] sulfone, 1,3-phenylenediamine, 2,2'-bis (trifluoromethyl) benzidine, 4,4'-diaminodiphenylmethane, 3,3'-sulfonyldianiline, 4,4'-diaminodiphenyl ether , 1,3-Bis (3-aminophenoxy) benzene.
硬化剤の配合量は、熱硬化性樹脂の反応性基数に対する反応性基数の比(熱硬化性樹脂の当量に対する硬化剤の当量の比)にて調整される。熱硬化性樹脂の反応性基数に対する硬化剤の反応性基数の比は2以上11以下であるが、2以上10以下が好ましく、2以上7以下がより好ましい。また、反応性基数の下限は、2.5を超えることが好ましく、3以上がより好ましい。該比が11を超えると、ボンド磁石の機械特性が低下し、2未満では、熱硬化性樹脂の反応性基に対する硬化剤の反応性基の比が小さいため、熱硬化性樹脂の反応性基が残留する。以降の工程にて熱可塑性樹脂と混練する場合に、熱可塑性樹脂の反応性基と残留した熱硬化性樹脂の反応性基が反応することにより、射出成形時に粘度上昇が起こりボンド磁石の成形性と得られた成形品の機械特性が、熱可塑性樹脂単独での成形性や機械特性よりも悪化する。ここで、熱硬化性樹脂種の当量とは1グラム当量の反応性基を含む樹脂のグラム数をいい、硬化剤種の当量とは、活性水素当量のことをいう。 The blending amount of the curing agent is adjusted by the ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin (the ratio of the equivalent amount of the curing agent to the equivalent amount of the thermosetting resin). The ratio of the number of reactive groups of the curing agent to the number of reactive groups of the thermosetting resin is 2 or more and 11 or less, preferably 2 or more and 10 or less, and more preferably 2 or more and 7 or less. The lower limit of the number of reactive groups is preferably more than 2.5, more preferably 3 or more. When the ratio exceeds 11, the mechanical properties of the bonded magnet deteriorate, and when it is less than 2, the ratio of the reactive group of the curing agent to the reactive group of the thermosetting resin is small, so that the reactive group of the thermosetting resin is small. Remains. When kneaded with the thermoplastic resin in the subsequent steps, the reactive group of the thermoplastic resin reacts with the reactive group of the residual thermosetting resin, which causes an increase in viscosity during injection molding and the formability of the bond magnet. The mechanical properties of the obtained molded product are worse than the moldability and mechanical properties of the thermoplastic resin alone. Here, the equivalent of the thermosetting resin type means the number of grams of the resin containing 1 gram equivalent of the reactive group, and the equivalent of the curing agent type means the equivalent of active hydrogen.
硬化物は、前述の熱硬化性樹脂に硬化剤を配合し熱硬化することにより得ることができる。熱硬化する温度は、使用する熱硬化性樹脂の特性に合わせて設定できるが、硬化性の観点から60℃以上250℃以下が好ましく、180℃以上220℃以下がより好ましい。 The cured product can be obtained by adding a curing agent to the above-mentioned thermosetting resin and heat-curing. The thermosetting temperature can be set according to the characteristics of the thermosetting resin to be used, but from the viewpoint of curability, it is preferably 60 ° C. or higher and 250 ° C. or lower, and more preferably 180 ° C. or higher and 220 ° C. or lower.
硬化物は、必要に応じて粉砕することができる。硬化物を粉砕する方法は特に限定されず、サンプルミル、ボールミル、スタンプミル、乳鉢、ミキサー粉砕などを使用することができる。必要であれば、粉砕物を篩等で分級することもできる。粉砕物の平均粒径は、熱可塑性樹脂との相溶性の点より1000μm以下が好ましく、500μm以下がより好ましい。 The cured product can be pulverized if necessary. The method for pulverizing the cured product is not particularly limited, and a sample mill, a ball mill, a stamp mill, a mortar, a mixer pulverization, or the like can be used. If necessary, the crushed material can be classified by a sieve or the like. The average particle size of the pulverized product is preferably 1000 μm or less, more preferably 500 μm or less, from the viewpoint of compatibility with the thermoplastic resin.
ボンド磁石用添加剤は、熱硬化性樹脂および硬化剤とともに硬化促進剤を配合して硬化させることにより得ることもできる。硬化促進剤としては、たとえば、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7、1,5ジアザビシクロ(4,3,0)-ノネン-5、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-メチル-4メチルイミダゾール、トリフェニルホスフィン、スルホニウム塩などが挙げられる。硬化促進剤の含有量は特に限定されないが、一般的には熱硬化性樹脂と硬化剤の総量に対して、0.01質量%以上10質量%以下を添加する。 The additive for a bonded magnet can also be obtained by blending a curing accelerator together with a thermosetting resin and a curing agent and curing the mixture. Examples of the curing accelerator include 1,8-diazabicyclo (5,4,0) -undecene-7, 1,5 diazabicyclo (4,3,0) -nonene-5, 1-cyanoethyl-2-ethyl-4. -Methylimidazole, 2-methyl-4methylimidazole, triphenylphosphine, sulfonium salt and the like can be mentioned. The content of the curing accelerator is not particularly limited, but in general, 0.01% by mass or more and 10% by mass or less is added to the total amount of the thermosetting resin and the curing agent.
混練工程において、ボンド磁石用添加剤、磁性粉末、および、熱可塑性樹脂を溶融混練して、射出成形に使用するボンド磁石用コンパウンドを作製する。溶融混練機は特に限定されないが、単軸スクリュー混練機、二軸スクリュー混練機、ミキシングロール、ニーダ、バンバリーミキサ、噛み合わせ型二軸スクリュー押出機、非噛み合わせ二軸スクリュー押出機等を用いることができる。溶融混練温度は特に限定されず、使用する熱可塑性樹脂の特性に応じて設定できるが、180℃以上250℃以下が好ましい。 In the kneading step, the additive for the bond magnet, the magnetic powder, and the thermoplastic resin are melt-kneaded to prepare a compound for the bond magnet used for injection molding. The melt kneader is not particularly limited, but a single-screw kneader, a twin-screw kneader, a mixing roll, a kneader, a Banbury mixer, a meshing twin-screw extruder, a non-meshing twin-screw extruder, etc. shall be used. Can be done. The melt-kneading temperature is not particularly limited and can be set according to the characteristics of the thermoplastic resin used, but is preferably 180 ° C. or higher and 250 ° C. or lower.
熱可塑性樹脂は、射出成形可能な樹脂であれば特に限定されないが、たとえばナイロン樹脂(ポリアミド);ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン;ポリエステル;ポリカーボネート(PC);ポリフェニレンサルファイド(PPS);ポリエーテルエーテルケトン(PEEK);ポリアセタール(POM);液晶ポリマー(LCP)などが挙げられる。ナイロン樹脂としては、6ナイロン、11ナイロン、12ナイロンのようなポリラクタム類、6,6ナイロン、6,10ナイロン、6,12ナイロンのようなジカルボン酸とジアミンとの縮合物、6ナイロン/6,6ナイロン、6ナイロン/6,10ナイロン、6ナイロン/12ナイロン、6ナイロン/6,12ナイロン、6ナイロン/6,10ナイロン/6,10ナイロン、6ナイロン/6,6ナイロン/6,12ナイロン、6ナイロン/ポリエーテルのような共重合ポリアミド類、ナイロン6T、ナイロン9T、ナイロンMXD6、芳香族ナイロン、非晶質ナイロン等が挙げられる。なかでも、吸水率の低さと成形性、機械特性との兼ね合いから、ナイロン樹脂が好ましく、特に12ナイロンが好ましい。 The thermoplastic resin is not particularly limited as long as it is an injection moldable resin, and is, for example, nylon resin (polyamide); polyolefins such as polypropylene (PP) and polyethylene (PE); polyester; polycarbonate (PC); polyphenylene sulfide (PPS). ; Polyetheretherketone (PEEK); Polyacetal (POM); Liquid crystal polymer (LCP) and the like. Nylon resins include polylactams such as 6 nylon, 11 nylon and 12 nylon, condensates of dicarboxylic acid and diamine such as 6,6 nylon, 6,10 nylon and 6,12 nylon, 6 nylon / 6, 6 Nylon, 6 Nylon / 6,10 Nylon, 6 Nylon / 12 Nylon, 6 Nylon / 6,12 Nylon, 6 Nylon / 6,10 Nylon / 6,10 Nylon, 6 Nylon / 6,6 Nylon / 6,12 Nylon , 6 Nylon / Polyether-like copolymerized polyamides, nylon 6T, nylon 9T, nylon MXD6, aromatic nylon, amorphous nylon and the like. Of these, nylon resin is preferable, and 12 nylon is particularly preferable, in view of the balance between low water absorption rate, moldability, and mechanical properties.
磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む。SmFeN系異方性磁性粉末としては、Th2Zn17型の結晶構造をもち、一般式がSmxFe100-x-yNyで表される希土類金属サマリウムSmと鉄Feと窒素Nからなる窒化物が挙げられる。ここで、xは、8.1原子%以上10原子%以下、yは13.5原子%以上13.9原子%以下、残部が主としてFeとされることが好ましく、粒径分布は、減磁特性の角型性の点から、単分散であることが好ましい。SmFeN系異方性磁性粉末の表面へのリン酸塩の被覆形成方法は、後述する。 The magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate. The SmFeN-based anisotropic magnetic powder has a Th 2 Zn 17 -type crystal structure and is composed of a rare earth metal samarium Sm represented by the general formula Sm x Fe 100-xy Ny , iron Fe, and nitrogen N. Examples include nitrides. Here, it is preferable that x is 8.1 atomic% or more and 10 atomic% or less, y is 13.5 atomic% or more and 13.9 atomic% or less, and the balance is mainly Fe, and the particle size distribution is demagnetized. From the viewpoint of the angularity of the characteristics, monodisperse is preferable. The method for forming a phosphate coating on the surface of the SmFeN-based anisotropic magnetic powder will be described later.
磁性粉末は、SmFeN系異方性磁性粉末に加えて、NdFeB系、SmCo系の希土類磁性粉末を含んでいてもよい。
なお、SmFeN系異方性磁性粉末については、特開平11-189811号公報に開示された方法により製造できる。NdFeB系磁性粉末については、国際公開2003/85147号公報に開示されたHDDR法により製造できる。SmCo系磁性粉末については、特開平08-260083号公報に開示された方法により製造できる。
The magnetic powder may contain NdFeB-based or SmCo-based rare earth magnetic powder in addition to the SmFeN-based anisotropic magnetic powder.
The SmFeN-based anisotropic magnetic powder can be produced by the method disclosed in Japanese Patent Application Laid-Open No. 11-189811. The NdFeB-based magnetic powder can be produced by the HDDR method disclosed in International Publication No. 2003/85147. The SmCo-based magnetic powder can be produced by the method disclosed in JP-A-08-26083.
磁性粉末は、必要に応じてリン酸処理を行っても良い。リン酸処理液を基本的には水中、またはイソプロパノールなどの有機溶媒中に溶解させ、必要に応じて硝酸イオン等の反応促進剤、Vイオン、Crイオン、Moイオン等の結晶微細化剤を添加したリン酸浴中に磁性粉末を投入し、希土類磁性粉末の表面にP-O結合を有する不動態膜を形成させる。 リン酸処理薬としては、例えば、オルトリン酸、リン酸二水素ナトリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸亜鉛、リン酸カルシウム等のリン酸塩系、次亜リン酸系、次亜リン酸塩系、ピロリン酸系、ポリリン酸系等の無機リン酸、有機リン酸が挙げられる。 The magnetic powder may be treated with phosphoric acid, if necessary. The phosphoric acid treatment solution is basically dissolved in water or an organic solvent such as isopropanol, and if necessary, a reaction accelerator such as nitrate ion and a crystal micronizing agent such as V ion, Cr ion and Mo ion are added. The magnetic powder is put into the phosphoric acid bath, and an immobile film having a PO bond is formed on the surface of the rare earth magnetic powder. Examples of the phosphoric acid treatment agent include phosphates such as orthophosphoric acid, sodium dihydrogen phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, zinc phosphate and calcium phosphate, hypophosphite and hypophosphite. Examples thereof include inorganic phosphoric acid such as phosphate type, pyrophosphoric acid type and polyphosphoric acid type, and organic phosphoric acid.
[シリカ処理工程]
磁性粉末は、必要に応じてシリカ処理を行ってもよい。磁性粉末にシリカ薄膜を形成することにより、耐酸化性を向上できる。シリカ薄膜は、例えば、アルキルシリケート、リン酸塩被覆磁性粉末、およびアルカリ溶液を混合することにより形成できる。
[Silica treatment process]
The magnetic powder may be treated with silica if necessary. By forming a silica thin film on the magnetic powder, oxidation resistance can be improved. The silica thin film can be formed, for example, by mixing an alkyl silicate, a phosphate-coated magnetic powder, and an alkaline solution.
[シランカップリング処理工程]
シリカ処理後の磁性粉末を、さらにシランカップリング剤で処理してもよい。シリカ薄膜が形成された磁性粉末をシランカップリング処理することで、シリカ薄膜上にカップリング剤膜が形成され、磁性粉末の磁気特性が向上するとともに、樹脂との濡れ性、磁石の強度を改善することができる。シランカップリング剤は、樹脂の種類に合わせて選定すればよく特に限定されないが、例えば、3-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン・塩酸塩、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチレンジシラザン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、γ-クロロプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、ビニルトリクロロシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、オレイドプロピルトリエトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、ポリエトキシジメチルシロキサン、ポリエトキシメチルシロキサン、ビス(トリメトキシシリルプロピル)アミン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、γ-イソシアネートプロピルトリメトキシシラン、ビニルメチルジメトキシシラン、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、t-ブチルカルバメートトリアルコキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のシランカップリング剤が挙げられる。これらのシランカップリング剤は1種のみを使用してもよく、2種以上を組み合わせて使用してもよい。シランカップリング剤の添加量は、磁性粉末100重量部に対して、0.2質量%以上0.8質量%以下が好ましく、0.25質量%以上0.6質量%以下がより好ましい。0.2質量%未満ではシランカップリング剤の効果が小さく、0.8質量%を超えると、磁性粉末の凝集により、磁性粉末や磁石の磁気特性を低下させる傾向がある。
[Silane coupling treatment process]
The magnetic powder after the silica treatment may be further treated with a silane coupling agent. By silane coupling treatment of the magnetic powder on which the silica thin film is formed, a coupling agent film is formed on the silica thin film, improving the magnetic properties of the magnetic powder, as well as improving the wettability with the resin and the strength of the magnet. can do. The silane coupling agent may be selected according to the type of resin and is not particularly limited. For example, 3-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-). Aminoethyl) Aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride , Γ-Glysidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltriacetoxysilane, γ-chloropropyltrimethoxysilane, hexamethylene disilazane, γ-ani Renopropyltrimethoxysilane, vinyltrimethoxysilane, octadecyl [3- (trimethoxysilyl) propyl] ammonium chloride, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethyl Chlorosilane, vinyltrichlorosilane, vinyltris (βmethoxyethoxy) silane, vinyltriethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β (aminoethyl) ) Γ-Aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, oleidopropyltriethoxysilane , Γ-Issipylpropyltriethoxysilane, polyethoxydimethylsiloxane, polyethoxymethylsiloxane, bis (trimethoxysilylpropyl) amine, bis (3-triethoxysilylpropyl) tetrasulfan, γ-isoxapropyltrimethoxysilane, vinyl Methyldimethoxysilane, 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, t-butylcarbamatetrialkoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) )-A silane coupling agent such as -1-propaneamine can be mentioned. Only one kind of these silane coupling agents may be used, or two or more kinds thereof may be used in combination. The amount of the silane coupling agent added is preferably 0.2% by mass or more and 0.8% by mass or less, and more preferably 0.25% by mass or more and 0.6% by mass or less with respect to 100 parts by weight of the magnetic powder. If it is less than 0.2% by mass, the effect of the silane coupling agent is small, and if it exceeds 0.8% by mass, the magnetic properties of the magnetic powder and the magnet tend to be deteriorated due to the aggregation of the magnetic powder.
シリカ処理、或いはシランカップリング処理後のSmFeN系異方性磁性粉末は、常法により、ろ過、脱水、乾燥を行うことができる。 The SmFeN-based anisotropic magnetic powder after the silica treatment or the silane coupling treatment can be filtered, dehydrated, and dried by a conventional method.
本実施形態の第1のボンド磁石用コンパウンドの製造方法において、ボンド磁石用コンパウンド中の磁性粉末の充填率は、75質量%以上96質量%以下が好ましく、90質量%以上95.5質量%以下がより好ましい。96質量%を超えると、射出成形時の粘度が高くなるため成形性が低下し、75質量%未満では、ボンド磁石の残留磁束密度が低くなる。 In the first method for producing a compound for a bonded magnet of the present embodiment, the filling rate of the magnetic powder in the compound for a bonded magnet is preferably 75% by mass or more and 96% by mass or less, and 90% by mass or more and 95.5% by mass or less. Is more preferable. If it exceeds 96% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates, and if it is less than 75% by mass, the residual magnetic flux density of the bonded magnet becomes low.
本実施形態の第1のボンド磁石用コンパウンド中のボンド磁石用添加剤の含有量は、0.1質量%以上4.2質量%以下が好ましく、0.3質量%以上3.5質量%以下がより好ましく、0.5質量%以上1.2質量%以下がさらに好ましい。ボンド磁石用添加剤の含有量が4.2質量%を超えると、ボンド磁石の残留磁束密度が低くなり、0.1質量%未満では、射出成形時の粘度が高くなるため成形性が低下することがある。 The content of the additive for the bond magnet in the first compound for the bond magnet of the present embodiment is preferably 0.1% by mass or more and 4.2% by mass or less, and 0.3% by mass or more and 3.5% by mass or less. Is more preferable, and 0.5% by mass or more and 1.2% by mass or less is further preferable. If the content of the additive for the bond magnet exceeds 4.2% by mass, the residual magnetic flux density of the bond magnet becomes low, and if it is less than 0.1% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates. Sometimes.
本実施形態の第1のボンド磁石用コンパウンド中の熱可塑性樹脂の含有量は、2.5質量%以上25質量%以下が好ましく、3.5質量%以上10質量%以下がより好ましい。熱可塑性樹脂の含有量が25質量%を超えると、ボンド磁石の残留磁束密度が低くなり、2.5質量%未満では、射出成形時の粘度が高くなるため成形性が低下する。 The content of the thermoplastic resin in the first compound for a bonded magnet of the present embodiment is preferably 2.5% by mass or more and 25% by mass or less, and more preferably 3.5% by mass or more and 10% by mass or less. If the content of the thermoplastic resin exceeds 25% by mass, the residual magnetic flux density of the bonded magnet becomes low, and if it is less than 2.5% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態の第1のボンド磁石用コンパウンドにおいて、磁性粉末100重量部に対するボンド磁石用添加剤の重量部は、0.1重量部以上5.6重量部以下が好ましく、0.31重量部以上4.67重量部以下がより好ましく、0.52重量部以上1.6重量部以下がさらに好ましい。ボンド磁石用添加剤が5.6重量部を超えると、ボンド磁石の残留磁束密度が低くなり、0.1重量部未満では、射出成形時の粘度が高くなるため成形性が低下することがある。 In the first compound for bonded magnets of the present embodiment, the weight portion of the additive for bonded magnets with respect to 100 parts by weight of the magnetic powder is preferably 0.1 parts by weight or more and 5.6 parts by weight or less, preferably 0.31 parts by weight or more. 4.67 parts by weight or less is more preferable, and 0.52 parts by weight or more and 1.6 parts by weight or less is further preferable. If the amount of the additive for the bond magnet exceeds 5.6 parts by weight, the residual magnetic flux density of the bond magnet becomes low, and if it is less than 0.1 part by weight, the viscosity at the time of injection molding becomes high and the moldability may deteriorate. ..
本実施形態の第1のボンド磁石用コンパウンドにおいて、磁性粉末100重量部に対する熱可塑性樹脂の重量部は、2.6重量部以上33重量部以下が好ましく、3.6重量部以上14重量部以下がより好ましい。熱可塑性樹脂の重量部が33重量部を超えると、ボンド磁石の残留磁束密度が低くなり、2.6重量部未満では、射出成形時の粘度が高くなるため成形性が低下する。 In the first compound for a bonded magnet of the present embodiment, the weight portion of the thermoplastic resin with respect to 100 parts by weight of the magnetic powder is preferably 2.6 parts by weight or more and 33 parts by weight or less, preferably 3.6 parts by weight or more and 14 parts by weight or less. Is more preferable. If the weight portion of the thermoplastic resin exceeds 33 parts by weight, the residual magnetic flux density of the bonded magnet becomes low, and if it is less than 2.6 parts by weight, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態の第2のボンド磁石用コンパウンドの製造方法は、
熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、
前記ボンド磁石用添加剤と熱可塑性樹脂を混練し、ボンド磁石用樹脂組成物を得る工程と、
前記ボンド磁石用樹脂組成物および磁性粉末を混練し、ボンド磁石用コンパウンドを得る混練工程と
を含み、
前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含むことを特徴とする。
The method for manufacturing the second bond magnet compound of the present embodiment is as follows.
A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
A step of kneading the additive for a bonded magnet and a thermoplastic resin to obtain a resin composition for a bonded magnet.
The process includes a kneading step of kneading the resin composition for a bonded magnet and a magnetic powder to obtain a compound for a bonded magnet.
The magnetic powder is characterized by containing a SmFeN-based anisotropic magnetic powder having a surface coated with a phosphate.
ボンド磁石用添加剤を得る工程、該工程で使用する熱硬化性樹脂、硬化剤および磁性粉末は、前述した通りである。 The step of obtaining the additive for the bond magnet, the thermosetting resin, the curing agent and the magnetic powder used in the step are as described above.
ボンド磁石用樹脂組成物を得る混練工程、該工程で使用する熱可塑性樹脂は、前述した通りである。熱硬化樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤との硬化物と、熱可塑性樹脂とを、磁性粉末と混練する前に事前に溶融混練することによって溶融混練物を得る。得られた混練物において、熱可塑性樹脂と硬化物は事前に溶融混練した物であれば、完全相溶、部分相溶または非相溶であっても良いが、中でも完全相溶が好ましい。 The kneading step for obtaining the resin composition for a bonded magnet, and the thermoplastic resin used in the step are as described above. The cured product of the thermosetting resin and the curing agent in which the ratio of the reactive groups to the reactive groups of the thermosetting resin is 2 or more and 11 or less, and the thermoplastic resin are melted in advance before being kneaded with the magnetic powder. A molten kneaded product is obtained by kneading. In the obtained kneaded product, the thermoplastic resin and the cured product may be completely compatible, partially compatible or incompatible as long as they are previously melt-kneaded, but complete compatibility is particularly preferable.
硬化物と熱可塑性樹脂が充分に混練されることによって得られたボンド磁石用樹脂組成物では、熱可塑性樹脂が結晶性樹脂の場合、融点と結晶化温度が低くなる。その結果、ボンド磁石用コンパウンドの射出圧も低下して、得られたボンド磁石の配向率と磁気特性が向上し、保磁力も向上する。融点は、熱可塑性樹脂の融点よりも3.0℃以上低くなることが好ましく、4.5℃以上低くなることがより好ましい。また、結晶化温度は、熱可塑性樹脂の結晶化温度よりも2.0℃以上低くなることが好ましく、3.0℃以上低くなることがより好ましい。 In the resin composition for a bonded magnet obtained by sufficiently kneading the cured product and the thermoplastic resin, when the thermoplastic resin is a crystalline resin, the melting point and the crystallization temperature are lowered. As a result, the injection pressure of the compound for the bond magnet is also reduced, the orientation ratio and magnetic characteristics of the obtained bond magnet are improved, and the coercive force is also improved. The melting point is preferably 3.0 ° C. or higher, more preferably 4.5 ° C. or higher, lower than the melting point of the thermoplastic resin. Further, the crystallization temperature is preferably 2.0 ° C. or higher, more preferably 3.0 ° C. or higher, lower than the crystallization temperature of the thermoplastic resin.
熱可塑性樹脂としてポリアミド12を用いた場合、ボンド磁石用樹脂組成物の融点(ピークトップ)は160℃以上177℃以下が好ましく、170℃以上175℃以下がより好ましい。また、融解ピークのピークトップと終融点との差は5.0℃を超えることが好ましく、5.5℃を超えることがより好ましい。さらに、融解ピークの熱量は50mJ/mg以上が好ましく、55mJ/mg以上がより好ましい。 When the polyamide 12 is used as the thermoplastic resin, the melting point (peak top) of the resin composition for a bonded magnet is preferably 160 ° C. or higher and 177 ° C. or lower, more preferably 170 ° C. or higher and 175 ° C. or lower. Further, the difference between the peak top of the melting peak and the final melting point is preferably more than 5.0 ° C, more preferably more than 5.5 ° C. Further, the calorific value of the melting peak is preferably 50 mJ / mg or more, more preferably 55 mJ / mg or more.
ボンド磁石用添加剤の配合量は、ボンド磁石用添加剤および熱可塑性樹脂からなる樹脂組成物中、5質量%以上50質量%以下が好ましく、10質量%以上20質量%以下がより好ましい。50質量%を超えると、磁性粉末の充填率が低下し、5質量%未満では、溶融混練物の融点および結晶化温度の低下効果が小さく、ボンド磁石成形時の射出圧を十分に低下させることができなくなる。 The blending amount of the additive for the bond magnet is preferably 5% by mass or more and 50% by mass or less, and more preferably 10% by mass or more and 20% by mass or less in the resin composition composed of the additive for the bond magnet and the thermoplastic resin. If it exceeds 50% by mass, the filling rate of the magnetic powder is lowered, and if it is less than 5% by mass, the effect of lowering the melting point and the crystallization temperature of the melt-kneaded product is small, and the injection pressure at the time of forming the bond magnet is sufficiently lowered. Can't be done.
ボンド磁石用コンパウンドを得る工程、該工程で使用する磁性粉末は、前述した通りである。 The step of obtaining the compound for the bond magnet and the magnetic powder used in the step are as described above.
本実施形態の第2のボンド磁石用コンパウンドの製造方法において、ボンド磁石用コンパウンド中の磁性粉末の充填率は、75質量%以上96質量%以下が好ましく、90質量%以上95.5質量%以下がより好ましい。96質量%を超えると、射出成形時の粘度が高くなるため成形性が低下し、75質量%未満では、ボンド磁石の残留磁束密度が低くなる。 In the second method for producing a compound for a bonded magnet of the present embodiment, the filling rate of the magnetic powder in the compound for a bonded magnet is preferably 75% by mass or more and 96% by mass or less, and 90% by mass or more and 95.5% by mass or less. Is more preferable. If it exceeds 96% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates, and if it is less than 75% by mass, the residual magnetic flux density of the bonded magnet becomes low.
本実施形態の第2のボンド磁石用コンパウンド中のボンド磁石用樹脂組成物の含有量は、2.5質量%以上25質量%以下が好ましく、3.5質量%以上10質量%以下がより好ましい。ボンド磁石用樹脂組成物の含有量が25質量%を超えると、ボンド磁石の残留磁束密度が低くなり、2.5質量%未満では、射出成形時の粘度が高くなるため成形性が低下する。 The content of the resin composition for a bonded magnet in the second compound for a bonded magnet of the present embodiment is preferably 2.5% by mass or more and 25% by mass or less, and more preferably 3.5% by mass or more and 10% by mass or less. .. When the content of the resin composition for a bond magnet exceeds 25% by mass, the residual magnetic flux density of the bond magnet becomes low, and when it is less than 2.5% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態の第2のボンド磁石用コンパウンドにおいて、磁性粉末100重量部に対するボンド磁石用樹脂組成物の重量部は、2.6重量部以上33重量部以下が好ましく、3.6重量部以上14重量部以下がより好ましい。ボンド磁石用樹脂組成物の重量部が33重量部を超えると、ボンド磁石の残留磁束密度が低くなり、2.6重量部未満では、射出成形時の粘度が高くなるため成形性が低下する。 In the second compound for bonded magnets of the present embodiment, the weight portion of the resin composition for bonded magnets with respect to 100 parts by weight of the magnetic powder is preferably 2.6 parts by weight or more and 33 parts by weight or less, preferably 3.6 parts by weight or more and 14 parts by weight. More preferably, it is by weight or less. When the weight part of the resin composition for a bond magnet exceeds 33 parts by weight, the residual magnetic flux density of the bond magnet becomes low, and when it is less than 2.6 parts by weight, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態のボンド磁石用コンパウンドは、前述の製造方法により得られる。 The compound for a bonded magnet of the present embodiment is obtained by the above-mentioned manufacturing method.
本実施形態の第1のボンド磁石の製造方法は、
熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、
前記ボンド磁石用添加剤、磁性粉末、および、熱可塑性樹脂を混練してボンド磁石用コンパウンドを得る混練工程と、
得られたボンド磁石用コンパウンドを射出成形する射出成形工程と
を含み、前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含むことを特徴とする。
The method for manufacturing the first bonded magnet of the present embodiment is as follows.
A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
A kneading step of kneading the additive for a bond magnet, a magnetic powder, and a thermoplastic resin to obtain a compound for a bond magnet.
The magnetic powder includes an injection molding step of injection molding the obtained compound for a bonded magnet, and the magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
本実施形態の第2のボンド磁石の製造方法は、
熱硬化性樹脂と、熱硬化性樹脂の反応性基数に対する反応性基数の比が2以上11以下である硬化剤とを熱硬化させてボンド磁石用添加剤を得る工程と、
前記ボンド磁石用添加剤と熱可塑性樹脂を混練し、ボンド磁石用樹脂組成物を得る工程と、
前記ボンド磁石用樹脂組成物および磁性粉末を混練し、ボンド磁石用コンパウンドを得る混練工程と、
得られたボンド磁石用コンパウンドを射出成形する射出成形工程と
を含み、前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含むことを特徴とする。
The method for manufacturing the second bonded magnet of the present embodiment is as follows.
A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
A step of kneading the additive for a bonded magnet and a thermoplastic resin to obtain a resin composition for a bonded magnet.
A kneading step of kneading the resin composition for a bonded magnet and a magnetic powder to obtain a compound for a bonded magnet.
The magnetic powder includes an injection molding step of injection molding the obtained compound for a bonded magnet, and the magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
これらの2つのボンド磁石の製造方法において、ボンド磁石用添加剤を得る工程、ボンド磁石用コンパウンドを得る混練工程は前述した通りである。 In the method for producing these two bonded magnets, the step of obtaining the additive for the bonded magnet and the kneading step of obtaining the compound for the bonded magnet are as described above.
射出成形工程では、ボンド磁石用コンパウンドを射出成形し、射出成形物を得る。射出成形機のシリンダー温度は、ボンド磁石用コンパウンドが溶融する温度範囲であれば良く、磁性粉末の熱による磁気劣化を抑制する点から260℃以下が好ましい。射出圧は溶融したコンパウンドが射出できる圧力であればよいが、例えば射出成形機のシリンダー温度を230℃とし直径10mm厚み7mmのキャビィティーに射出成形する場合、成形性の観点より250MPa未満で完充填できることが好ましい。 In the injection molding step, a compound for a bond magnet is injection molded to obtain an injection molded product. The cylinder temperature of the injection molding machine may be in the temperature range in which the compound for the bond magnet melts, and is preferably 260 ° C. or lower from the viewpoint of suppressing magnetic deterioration due to heat of the magnetic powder. The injection pressure may be any pressure as long as the molten compound can be injected. For example, when the cylinder temperature of an injection molding machine is set to 230 ° C. and injection molding is performed into a cavity having a diameter of 10 mm and a thickness of 7 mm, the injection pressure is completely filled at less than 250 MPa from the viewpoint of moldability. It is preferable to be able to do it.
本実施形態の第1のボンド磁石は、たとえば前述の本実施形態の第1のボンド磁石の製造方法により得られ、ボンド磁石用添加剤、磁性粉末及び熱可塑性樹脂を含むことを特徴とする。第1のボンド磁石は、ボンド磁石用添加剤を含む流動性の高いボンド磁石用コンパウンドを用いることにより、低い射出圧によって作製されるので、射出成形による磁性粉末の磁気劣化が抑制されており、ボンド磁石の磁気特性が改善する。 The first bonded magnet of the present embodiment is obtained by, for example, the above-mentioned method for producing the first bonded magnet of the present embodiment, and is characterized by containing an additive for a bonded magnet, a magnetic powder, and a thermoplastic resin. The first bond magnet is manufactured with a low injection pressure by using a highly fluid bond magnet compound containing an additive for the bond magnet, so that magnetic deterioration of the magnetic powder due to injection molding is suppressed. The magnetic properties of the bonded magnet are improved.
本実施形態の第1のボンド磁石において、ボンド磁石中の磁性粉末の充填率は、75質量%以上96質量%以下が好ましく、90質量%以上95.5質量%以下がより好ましい。96質量%を超えると、射出成形時の粘度が高くなるため成形性が低下し、75質量%未満では、ボンド磁石の残留磁束密度が低くなる。 In the first bonded magnet of the present embodiment, the filling rate of the magnetic powder in the bonded magnet is preferably 75% by mass or more and 96% by mass or less, and more preferably 90% by mass or more and 95.5% by mass or less. If it exceeds 96% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates, and if it is less than 75% by mass, the residual magnetic flux density of the bonded magnet becomes low.
本実施形態の第1のボンド磁石において、ボンド磁石中のボンド磁石用添加剤の含有量は、0.1質量%以上4.2質量%以下が好ましく、0.3質量%以上3.5質量%以下がより好ましく、0.5質量%以上1.2質量%以下がさらに好ましい。ボンド磁石用添加剤の含有量が4.2質量%を超えると、ボンド磁石の残留磁束密度が低くなり、0.1質量%未満では、射出成形時の粘度が高くなるため成形性が低下することがある。 In the first bond magnet of the present embodiment, the content of the additive for the bond magnet in the bond magnet is preferably 0.1% by mass or more and 4.2% by mass or less, and 0.3% by mass or more and 3.5% by mass or less. % Or less is more preferable, and 0.5% by mass or more and 1.2% by mass or less is further preferable. If the content of the additive for the bond magnet exceeds 4.2% by mass, the residual magnetic flux density of the bond magnet becomes low, and if it is less than 0.1% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates. Sometimes.
本実施形態の第1のボンド磁石において、ボンド磁石中の熱可塑性樹脂の含有量は、2.5質量%以上25質量%以下が好ましく、3.5質量%以上10質量%以下がより好ましい。熱可塑性樹脂の含有量が25質量%を超えると、ボンド磁石の残留磁束密度が低くなり、2.5質量%未満では、射出成形時の粘度が高くなるため成形性が低下する。 In the first bonded magnet of the present embodiment, the content of the thermoplastic resin in the bonded magnet is preferably 2.5% by mass or more and 25% by mass or less, and more preferably 3.5% by mass or more and 10% by mass or less. If the content of the thermoplastic resin exceeds 25% by mass, the residual magnetic flux density of the bonded magnet becomes low, and if it is less than 2.5% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態の第1のボンド磁石において、磁性粉末100重量部に対するボンド磁石用添加剤の重量部は、0.1重量部以上5.6重量部以下が好ましく、0.31重量部以上4.67重量部以下がより好ましく、0.52重量部以上1.6重量部以下がさらに好ましい。ボンド磁石用添加剤が5.6重量部を超えると、ボンド磁石の残留磁束密度が低くなり、0.1重量部未満では、射出成形時の粘度が高くなるため成形性が低下することがある。 In the first bonded magnet of the present embodiment, the weight part of the additive for the bonded magnet with respect to 100 parts by weight of the magnetic powder is preferably 0.1 part by weight or more and 5.6 parts by weight or less, and 0.31 part by weight or more and 4. 67 parts by weight or less is more preferable, and 0.52 parts by weight or more and 1.6 parts by weight or less is further preferable. If the amount of the additive for the bond magnet exceeds 5.6 parts by weight, the residual magnetic flux density of the bond magnet becomes low, and if it is less than 0.1 part by weight, the viscosity at the time of injection molding becomes high and the moldability may deteriorate. ..
本実施形態の第1のボンド磁石において、磁性粉末100重量部に対する熱可塑性樹脂の重量部は、2.6重量部以上33重量部以下が好ましく、3.6重量部以上14重量部以下がより好ましい。熱可塑性樹脂の重量部が33重量部を超えると、ボンド磁石の残留磁束密度が低くなり、2.6重量部未満では、射出成形時の粘度が高くなるため成形性が低下する。 In the first bonded magnet of the present embodiment, the weight portion of the thermoplastic resin with respect to 100 parts by weight of the magnetic powder is preferably 2.6 parts by weight or more and 33 parts by weight or less, preferably 3.6 parts by weight or more and 14 parts by weight or less. preferable. If the weight portion of the thermoplastic resin exceeds 33 parts by weight, the residual magnetic flux density of the bonded magnet becomes low, and if it is less than 2.6 parts by weight, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態の第1のボンド磁石における配向率は特に限定されないが、98%以上が好ましく、99%以上がより好ましい。 The orientation ratio in the first bonded magnet of the present embodiment is not particularly limited, but is preferably 98% or more, and more preferably 99% or more.
本実施形態の第1のボンド磁石における残留磁束密度は、特に限定されないが、0.75T以上が好ましく、0.8T以上がより好ましい。本実施形態のボンド磁石用添加剤を使用することによって、高い残留磁束密度を達成することができる。 The residual magnetic flux density in the first bonded magnet of the present embodiment is not particularly limited, but is preferably 0.75 T or more, and more preferably 0.8 T or more. A high residual magnetic flux density can be achieved by using the additive for the bonded magnet of the present embodiment.
本実施形態の第1のボンド磁石における保磁力は特に限定されないが、1100kA/m以上が好ましく、1200kA/m以上がより好ましく、1450kA/m以上が特に好ましい。。本実施形態のボンド磁石用添加剤を使用することによって、高い保磁力を達成することができる。 The coercive force of the first bonded magnet of the present embodiment is not particularly limited, but is preferably 1100 kA / m or more, more preferably 1200 kA / m or more, and particularly preferably 1450 kA / m or more. .. A high coercive force can be achieved by using the additive for the bonded magnet of the present embodiment.
本実施形態の第1のボンド磁石は、ボンド磁石用添加剤、磁性粉末及び熱可塑性樹脂を混練することにより作製されるため、ボンド磁石用添加剤と磁性粉末とがそれぞれ独立して存在することになる。 Since the first bond magnet of the present embodiment is manufactured by kneading the additive for the bond magnet, the magnetic powder and the thermoplastic resin, the additive for the bond magnet and the magnetic powder are present independently of each other. become.
本実施形態の第2のボンド磁石は、たとえば前述の本実施形態の第2のボンド磁石の製造方法により得られ、ボンド磁石用樹脂組成物と、磁性粉末とを含むことを特徴とする。第2のボンド磁石は、ボンド磁石用樹脂組成物を含む流動性の高いボンド磁石用コンパウンドを用いることにより、低い射出圧によって作製されるので、射出成形による磁性粉末の磁気劣化が抑制されており、ボンド磁石の磁気特性が改善する。 The second bond magnet of the present embodiment is obtained by, for example, the above-mentioned method for producing the second bond magnet of the present embodiment, and is characterized by containing a resin composition for a bond magnet and a magnetic powder. The second bond magnet is produced by using a highly fluid bond magnet compound containing a resin composition for a bond magnet with a low injection pressure, so that magnetic deterioration of the magnetic powder due to injection molding is suppressed. , The magnetic properties of the bonded magnet are improved.
本実施形態の第2のボンド磁石において、ボンド磁石中の磁性粉末の充填率は、75質量%以上96質量%以下が好ましく、90質量%以上95.5質量%以下がより好ましい。96質量%を超えると、射出成形時の粘度が高くなるため成形性が低下し、75質量%未満では、ボンド磁石の残留磁束密度が低くなる。 In the second bonded magnet of the present embodiment, the filling rate of the magnetic powder in the bonded magnet is preferably 75% by mass or more and 96% by mass or less, and more preferably 90% by mass or more and 95.5% by mass or less. If it exceeds 96% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates, and if it is less than 75% by mass, the residual magnetic flux density of the bonded magnet becomes low.
本実施形態の第2のボンド磁石において、ボンド磁石中のボンド磁石用樹脂組成物の含有量は、2.5質量%以上25質量%以下が好ましく、3.5質量%以上10質量%以下がより好ましい。ボンド磁石用樹脂組成物の含有量が25質量%を超えると、ボンド磁石の残留磁束密度が低くなり、2.5質量%未満では、射出成形時の粘度が高くなるため成形性が低下する。 In the second bond magnet of the present embodiment, the content of the resin composition for the bond magnet in the bond magnet is preferably 2.5% by mass or more and 25% by mass or less, and 3.5% by mass or more and 10% by mass or less. More preferred. When the content of the resin composition for a bond magnet exceeds 25% by mass, the residual magnetic flux density of the bond magnet becomes low, and when it is less than 2.5% by mass, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態の第2のボンド磁石において、磁性粉末100重量部に対するボンド磁石用樹脂組成物の重量部は、2.6重量部以上33重量部以下が好ましく、3.6重量部以上14重量部以下がより好ましい。ボンド磁石用樹脂組成物の重量部が33重量部を超えると、ボンド磁石の残留磁束密度が低くなり、2.6重量部未満では、射出成形時の粘度が高くなるため成形性が低下する。 In the second bonded magnet of the present embodiment, the weight portion of the resin composition for a bonded magnet with respect to 100 parts by weight of the magnetic powder is preferably 2.6 parts by weight or more and 33 parts by weight or less, and 3.6 parts by weight or more and 14 parts by weight. The following are more preferable. When the weight part of the resin composition for a bond magnet exceeds 33 parts by weight, the residual magnetic flux density of the bond magnet becomes low, and when it is less than 2.6 parts by weight, the viscosity at the time of injection molding becomes high and the moldability deteriorates.
本実施形態の第2のボンド磁石における配向率は特に限定されないが、98%以上が好ましく、99%以上がより好ましい。 The orientation ratio in the second bonded magnet of the present embodiment is not particularly limited, but is preferably 98% or more, and more preferably 99% or more.
本実施形態の第2のボンド磁石における残留磁束密度は、特に限定されないが、0.75T以上が好ましく、0.8T以上がより好ましい。熱硬化性樹脂と硬化剤との硬化物と、熱可塑性樹脂との溶融混練物を含有する本実施形態のボンド磁石用樹脂組成物を使用することによって、高い残留磁束密度を達成することができる。 The residual magnetic flux density in the second bonded magnet of the present embodiment is not particularly limited, but is preferably 0.75 T or more, and more preferably 0.8 T or more. A high residual magnetic flux density can be achieved by using the resin composition for a bonded magnet of the present embodiment containing a cured product of a thermosetting resin and a curing agent and a melt-kneaded product of a thermoplastic resin. ..
本実施形態の第2のボンド磁石における保磁力は特に限定されないが、1150kA/m以上が好ましく、1200kA/m以上がより好ましく、1450kA/m以上が特に好ましい。熱硬化性樹脂と硬化剤との硬化物と、熱可塑性樹脂との溶融混練物を含有する本実施形態のボンド磁石用樹脂組成物を使用することによって、高い保磁力を達成することができる。 The coercive force of the second bonded magnet of the present embodiment is not particularly limited, but is preferably 1150 kA / m or more, more preferably 1200 kA / m or more, and particularly preferably 1450 kA / m or more. A high coercive force can be achieved by using the resin composition for a bonded magnet of the present embodiment, which contains a cured product of a thermosetting resin and a curing agent, and a melt-kneaded product of a thermoplastic resin.
本実施形態の第2のボンド磁石は、ボンド磁石用樹脂組成物及び磁性粉末を混練することにより作製されるため、ボンド磁石用樹脂組成物と磁性粉末とがそれぞれ独立して存在することになる。 Since the second bond magnet of the present embodiment is produced by kneading the resin composition for the bond magnet and the magnetic powder, the resin composition for the bond magnet and the magnetic powder are present independently of each other. ..
<SmFeN系異方性磁性粉末>
本実施形態の第1および第2のボンド磁石用コンパウンドの製造方法において、磁性粉末に含まれるSmFeN系異方性磁性粉末は、特に限定されないが、例えばSmとFeを含む溶液と沈殿剤を混合し、SmとFeとを含む沈殿物を得る工程(沈殿工程)、
前記沈殿物を焼成してSmとFeを含む酸化物を得る工程(酸化工程)、
前記酸化物を、還元性ガス含有雰囲気下で熱処理して部分酸化物を得る工程(前処理工程)、
前記部分酸化物を還元する工程(還元工程)、および
還元工程で得られた合金粒子を窒化処理する工程(窒化工程)
を含む方法によって製造されたものを好適に使用できる。
<SmFeN-based anisotropic magnetic powder>
In the method for producing the first and second bonded magnet compounds of the present embodiment, the SmFeN-based anisotropic magnetic powder contained in the magnetic powder is not particularly limited, but for example, a solution containing Sm and Fe and a precipitant are mixed. Then, a step of obtaining a precipitate containing Sm and Fe (precipitation step),
Step of calcining the precipitate to obtain an oxide containing Sm and Fe (oxidation step),
A step of heat-treating the oxide in a reducing gas-containing atmosphere to obtain a partial oxide (pretreatment step).
A step of reducing the partial oxide (reduction step) and a step of nitriding the alloy particles obtained in the reduction step (nitriding step).
Those manufactured by a method including the above can be preferably used.
[沈殿工程]
沈殿工程では、強酸性の溶液にSm原料、Fe原料を溶解して、SmとFeを含む溶液を調製する。Sm2Fe17N3を主相として得る場合、SmおよびFeのモル比(Sm:Fe)は1.5:17~3.0:17が好ましく、2.0:17~2.5:17がより好ましい。La、W、Co、Ti、Sc、Y、Pr、Nd、Pm、Gd、Tb、Dy、Ho、Er、Tm、Luなどの原料を前述した溶液に加えても良い。
[Precipitation process]
In the precipitation step, the Sm raw material and the Fe raw material are dissolved in a strongly acidic solution to prepare a solution containing Sm and Fe. When Sm 2 Fe 17 N 3 is obtained as the main phase, the molar ratio of Sm and Fe (Sm: Fe) is preferably 1.5:17 to 3.0:17, and 2.0:17 to 2.5:17. Is more preferable. Raw materials such as La, W, Co, Ti, Sc, Y, Pr, Nd, Pm, Gd, Tb, Dy, Ho, Er, Tm, and Lu may be added to the above-mentioned solution.
Sm原料、Fe原料としては、強酸性の溶液に溶解できるものであれば限定されない。例えば、入手のしやすさの点で、Sm原料としては酸化サマリウムが、Fe原料としてはFeSO4が挙げられる。SmとFeを含む溶液の濃度は、Sm原料とFe原料が実質的に酸性溶液に溶解する範囲で適宜調整することができる。酸性溶液としては溶解性の点で硫酸が挙げられる。 The Sm raw material and Fe raw material are not limited as long as they can be dissolved in a strongly acidic solution. For example, in terms of availability, samarium oxide can be mentioned as the Sm raw material, and FeSO 4 can be mentioned as the Fe raw material. The concentration of the solution containing Sm and Fe can be appropriately adjusted within a range in which the Sm raw material and the Fe raw material are substantially dissolved in the acidic solution. Examples of the acidic solution include sulfuric acid in terms of solubility.
SmとFeを含む溶液と沈殿剤を反応させることにより、SmとFeを含む不溶性の沈殿物を得る。ここで、SmとFeを含む溶液は、沈殿剤との反応時にSmとFeを含む溶液となっていればよく、たとえばSmとFeを含む原料を別々の溶液として調製し、各々の溶液を滴下して沈殿剤と反応させても良い。別々の溶液として調製する場合においても各原料が実質的に酸性溶液に溶解する範囲で適宜調整する。沈殿剤としては、アルカリ性の溶液でSmとFeを含む溶液と反応して沈殿物が得られるものであれば限定されず、アンモニア水、苛性ソーダなどが挙げられ、苛性ソーダが好ましい。 By reacting the solution containing Sm and Fe with the precipitating agent, an insoluble precipitate containing Sm and Fe is obtained. Here, the solution containing Sm and Fe may be a solution containing Sm and Fe at the time of reaction with the precipitating agent. For example, raw materials containing Sm and Fe are prepared as separate solutions, and each solution is dropped. And may react with the precipitating agent. Even when prepared as separate solutions, appropriate adjustments are made as long as each raw material is substantially dissolved in an acidic solution. The precipitating agent is not limited as long as it is an alkaline solution that reacts with a solution containing Sm and Fe to obtain a precipitate, and examples thereof include aqueous ammonia and caustic soda, and caustic soda is preferable.
沈殿反応は、沈殿物の粒子の性状を容易に調整できる点から、SmとFeを含む溶液と、沈殿剤とを、それぞれ水などの溶媒に滴下する方法が好ましい。SmとFeを含む溶液と沈殿剤との供給速度、反応温度、反応液濃度、反応時のpH等を適宜制御することにより、構成元素の分布が均質で、粒度分布のシャープな、粉末形状の整った沈殿物が得られる。このような沈殿物を使用することによって、最終製品である磁性粉末の磁気特性が向上する。反応温度は、0~50℃とすることができ、35~45℃であることが好ましい。反応液濃度は、金属イオンの総濃度として0.65mol/L~0.85mol/Lとすることが好ましく、0.7mol/L~0.84mol/Lとすることがより好ましい。反応pHは、5~9とすることが好ましく、6.5~8とすることがより好ましい。 In the precipitation reaction, a method of dropping a solution containing Sm and Fe and a precipitating agent into a solvent such as water is preferable because the properties of the particles of the precipitate can be easily adjusted. By appropriately controlling the supply rate of the solution containing Sm and Fe and the precipitant, the reaction temperature, the concentration of the reaction solution, the pH at the time of reaction, etc., the distribution of the constituent elements is uniform, the particle size distribution is sharp, and the powder shape is formed. A well-organized precipitate is obtained. By using such a precipitate, the magnetic properties of the final product, the magnetic powder, are improved. The reaction temperature can be 0 to 50 ° C, preferably 35 to 45 ° C. The concentration of the reaction solution is preferably 0.65 mol / L to 0.85 mol / L, more preferably 0.7 mol / L to 0.84 mol / L, as the total concentration of the metal ions. The reaction pH is preferably 5 to 9, more preferably 6.5 to 8.
沈殿工程で得られた異方性磁性粉末粒子により、最終的に得られる磁性粉末の粉末粒径、粉末形状、粒度分布がおよそ決定される。得られた粒子の粒径をレーザー回折式湿式粒度分布計により測定した場合、全粉末が、0.05~20μm、好ましくは0.1~10μmの範囲にほぼ入るような大きさと分布であることが好ましい。また、異方性磁性粉末粒子の平均粒径は、粒度分布における小粒径側からの体積累積50%に相当する粒径として測定され、0.1~10μmの範囲内にあることが好ましい。 The anisotropic magnetic powder particles obtained in the precipitation step roughly determine the powder particle size, powder shape, and particle size distribution of the finally obtained magnetic powder. When the particle size of the obtained particles is measured by a laser diffraction type wet particle size distribution meter, the total powder has a size and distribution within the range of 0.05 to 20 μm, preferably 0.1 to 10 μm. Is preferable. Further, the average particle size of the anisotropic magnetic powder particles is measured as a particle size corresponding to 50% of the cumulative volume from the small particle size side in the particle size distribution, and is preferably in the range of 0.1 to 10 μm.
沈殿物を分離した後は、続く酸化工程の熱処理において残存する溶媒に沈殿物が再溶解して、溶媒が蒸発する際に沈殿物が凝集したり、粒度分布、粉末粒径等が変化したりすることを抑制するために、分離物を脱溶媒しておくことが好ましい。脱溶媒する方法として具体的には、例えば溶媒として水を使用する場合、70~200℃のオーブン中で5~12時間乾燥する方法が挙げられる。 After separating the precipitate, the precipitate is redissolved in the remaining solvent in the heat treatment of the subsequent oxidation step, and when the solvent evaporates, the precipitate aggregates and the particle size distribution, powder particle size, etc. change. It is preferable to desolvate the separated product in order to prevent the separation. Specific examples of the method for removing the solvent include, for example, when water is used as the solvent, a method of drying in an oven at 70 to 200 ° C. for 5 to 12 hours can be mentioned.
沈殿工程の後に、得られる沈殿物を分離洗浄する工程を含んでもよい。洗浄する工程は上澄み溶液の導電率が5mS/m2以下となるまで適宜行う。沈殿物を分離する工程としては、例えば、得られた沈殿物に溶媒(好ましくは水)を加えて混合した後、濾過法、デカンテーション法等を用いることができる。 After the precipitation step, a step of separating and washing the obtained precipitate may be included. The washing step is appropriately performed until the conductivity of the supernatant solution becomes 5 mS / m 2 or less. As a step of separating the precipitate, for example, a filtration method, a decantation method or the like can be used after adding a solvent (preferably water) to the obtained precipitate and mixing them.
[酸化工程]
酸化工程とは、沈殿工程で形成された沈殿物を焼成することにより、SmとFeとを含む酸化物を得る工程である。例えば、熱処理により沈殿物を酸化物に変換することができる。沈殿物を熱処理する場合、酸素の存在下で行われる必要があり、例えば、大気雰囲気下で行うことができる。また、酸素存在下で行われる必要があるため、沈殿物中の非金属部分に酸素原子を含むことが好ましい。
[Oxidation process]
The oxidation step is a step of obtaining an oxide containing Sm and Fe by calcining the precipitate formed in the precipitation step. For example, the precipitate can be converted into an oxide by heat treatment. When the precipitate is heat-treated, it must be carried out in the presence of oxygen, for example, in the air atmosphere. Moreover, since it is necessary to carry out in the presence of oxygen, it is preferable that the non-metal portion in the precipitate contains an oxygen atom.
酸化工程における熱処理温度(以下、酸化温度)は特に限定されないが、700~1300℃が好ましく、900~1200℃がより好ましい。700℃未満では酸化が不十分となり、1300℃を超えると、目的とする磁性粉末の形状、平均粒径および粒度分布が得られない傾向にある。熱処理時間も特に限定されないが、1~3時間が好ましい。 The heat treatment temperature (hereinafter referred to as the oxidation temperature) in the oxidation step is not particularly limited, but is preferably 700 to 1300 ° C, more preferably 900 to 1200 ° C. If the temperature is lower than 700 ° C., the oxidation becomes insufficient, and if the temperature exceeds 1300 ° C., the desired shape, average particle size and particle size distribution of the magnetic powder tend not to be obtained. The heat treatment time is not particularly limited, but 1 to 3 hours is preferable.
得られる酸化物は、酸化物粒子内においてSm、Feの微視的な混合が充分になされ、沈殿物の形状、粒度分布等が反映された酸化物粒子である。 The obtained oxide is an oxide particle in which Sm and Fe are sufficiently microscopically mixed in the oxide particle, and the shape of the precipitate, the particle size distribution, and the like are reflected.
[前処理工程]
前処理工程とは、SmとFeを含む酸化物を、還元性ガス雰囲気下で熱処理することにより、酸化物の一部が還元された部分酸化物を得る工程である。
[Pretreatment process]
The pretreatment step is a step of heat-treating an oxide containing Sm and Fe in a reducing gas atmosphere to obtain a partially reduced oxide.
ここで、部分酸化物とは、酸化物の一部が還元された酸化物をいう。酸化物の酸素濃度は特に限定されないが、10質量%以下が好ましく、8質量%以下がより好ましい。10質量%を超えると、還元工程においてCaとの還元発熱が大きくなり、焼成温度が高くなることで異常な粒子成長をした粒子ができてしまう傾向がある。ここで、部分酸化物の酸素濃度は、非分散赤外吸収法(ND-IR)により測定することができる。 Here, the partial oxide means an oxide in which a part of the oxide is reduced. The oxygen concentration of the oxide is not particularly limited, but is preferably 10% by mass or less, more preferably 8% by mass or less. If it exceeds 10% by mass, the reduction heat generation with Ca becomes large in the reduction step, and the firing temperature becomes high, so that particles with abnormal particle growth tend to be formed. Here, the oxygen concentration of the partial oxide can be measured by the non-dispersed infrared absorption method (ND-IR).
還元性ガスは水素(H2)、一酸化炭素(CO)、メタン(CH4)等の炭化水素ガスなどから適宜選択されるが、コストの点で水素ガスが好ましく、ガスの流量は、酸化物が飛散しない範囲で適宜調整される。前処理工程における熱処理温度(以下、前処理温度)は、300℃以上950℃以下の範囲とし、好ましくは400℃以上、より好ましくは750℃以上であり、好ましくは900℃未満である。前処理温度が300℃以上であるとSmとFeを含む酸化物の還元が効率的に進行する。また950℃以下であると酸化物粒子が粒子成長、偏析することが抑制され、所望の粒径を維持することができる。また、還元性ガスとして水素を用いる場合、使用する酸化物層の厚みを20mm以下に調整し、更に反応炉内の露点を-10℃以下に調整することが好ましい。 The reducing gas is appropriately selected from hydrocarbon gases such as hydrogen (H 2 ), carbon monoxide (CO), and methane (CH 4 ), but hydrogen gas is preferable in terms of cost, and the flow rate of the gas is oxidation. It is adjusted appropriately as long as the object does not scatter. The heat treatment temperature (hereinafter, pretreatment temperature) in the pretreatment step is in the range of 300 ° C. or higher and 950 ° C. or lower, preferably 400 ° C. or higher, more preferably 750 ° C. or higher, and preferably less than 900 ° C. When the pretreatment temperature is 300 ° C. or higher, the reduction of the oxide containing Sm and Fe proceeds efficiently. Further, when the temperature is 950 ° C. or lower, the oxide particles are suppressed from growing and segregating, and the desired particle size can be maintained. When hydrogen is used as the reducing gas, it is preferable to adjust the thickness of the oxide layer to be used to 20 mm or less, and further adjust the dew point in the reaction furnace to −10 ° C. or less.
[還元工程]
還元工程とは、前記部分酸化物を、還元剤の存在下、920℃以上1200℃以下で熱処理することにより、合金粒子を得る工程であり、例えば部分酸化物をカルシウム融体またはカルシウムの蒸気と接触することで還元が行われる。熱処理温度は、磁気特性の点より950℃以上1150℃以下が好ましく、980℃以上1100℃以下がより好ましい。熱処理時間は、還元反応をより均一に行う観点から、120分未満が好ましく、90分未満がより好ましく、熱処理時間の下限は10分以上が好ましく、30分以上がより好ましい。
[Reduction process]
The reduction step is a step of obtaining alloy particles by heat-treating the partial oxide at 920 ° C. or higher and 1200 ° C. or lower in the presence of a reducing agent. For example, the partial oxide is combined with a calcium melt or calcium vapor. Reduction is performed by contact. The heat treatment temperature is preferably 950 ° C. or higher and 1150 ° C. or lower, and more preferably 980 ° C. or higher and 1100 ° C. or lower from the viewpoint of magnetic characteristics. The heat treatment time is preferably less than 120 minutes, more preferably less than 90 minutes, and the lower limit of the heat treatment time is preferably 10 minutes or more, more preferably 30 minutes or more, from the viewpoint of more uniform reduction reaction.
金属カルシウムは、粒状又は粉末状の形で使用されるが、その粒子径は10mm以下が好ましい。これにより還元反応時における凝集をより効果的に抑制することができる。また、金属カルシウムは、反応当量(Sm酸化物を還元するのに必要な化学量論量であり、Feが酸化物の形である場合には、これを還元するに必要な分を含む)の1.1~3.0倍量の割合で添加することができ、1.5~2.0倍量が好ましい。 Metallic calcium is used in the form of granules or powder, and the particle size thereof is preferably 10 mm or less. This makes it possible to more effectively suppress aggregation during the reduction reaction. In addition, metallic calcium is a reaction equivalent (a stoichiometric amount required to reduce Sm oxide, and if Fe is in the form of an oxide, it includes the amount required to reduce it). It can be added in an amount of 1.1 to 3.0 times, preferably 1.5 to 2.0 times.
還元工程では、還元剤である金属カルシウムとともに、必要に応じて崩壊促進剤を使用することができる。この崩壊促進剤は、後述する水洗工程に際して、生成物の崩壊、粒状化を促進させるために適宜使用されるものであり、例えば、塩化カルシウム等のアルカリ土類金属塩、酸化カルシウム等のアルカリ土類酸化物などが挙げられる。これらの崩壊促進剤は、Sm源として使用されるSm酸化物当り1~30質量%、好ましくは5~28質量%の割合で使用される。 In the reduction step, a disintegration accelerator can be used as needed together with the metallic calcium which is a reducing agent. This disintegration accelerator is appropriately used to promote disintegration and granulation of the product in the washing step described later. For example, alkaline earth metal salts such as calcium chloride and alkaline soil such as calcium oxide. Examples include similar oxides. These disintegration accelerators are used in a proportion of 1 to 30% by mass, preferably 5 to 28% by mass, per Sm oxide used as a Sm source.
[窒化工程]
窒化工程とは、還元工程で得られた合金粒子を窒化処理することにより、異方性の磁性粒子を得る工程である。前述の沈殿工程で得られる粒子状の沈殿物を用いていることから、還元工程にて多孔質塊状の合金粒子が得られる。これにより、粉砕処理を行うことなく直ちに窒素雰囲気中で熱処理して窒化することができるため、窒化を均一に行うことができる。
[Nitriding process]
The nitriding step is a step of obtaining anisotropic magnetic particles by nitriding the alloy particles obtained in the reduction step. Since the particulate precipitate obtained in the above-mentioned precipitation step is used, porous lumpy alloy particles can be obtained in the reduction step. As a result, nitriding can be performed uniformly by heat treatment in a nitrogen atmosphere immediately without performing pulverization treatment.
合金粒子の窒化処理における熱処理温度(以下、窒化温度)は、好ましくは300~600℃、特に好ましくは400~550℃の温度とし、この温度範囲で雰囲気を窒素雰囲気に置換することにより行われる。熱処理時間は、合金粒子の窒化が充分に均一に行われる程度に設定されればよい。 The heat treatment temperature (hereinafter referred to as nitriding temperature) in the nitriding treatment of the alloy particles is preferably a temperature of 300 to 600 ° C., particularly preferably 400 to 550 ° C., and is carried out by replacing the atmosphere with a nitrogen atmosphere in this temperature range. The heat treatment time may be set so that the nitriding of the alloy particles is sufficiently uniform.
窒化工程後に得られる生成物には、磁性粒子に加えて、副生するCaO、未反応の金属カルシウム等が含まれ、これらが複合した焼結塊状態となっている場合がある。そこで、その場合は、この生成物を冷却水中に投入して、CaO及び金属カルシウムを水酸化カルシウム(Ca(OH)2)懸濁物として磁性粒子から分離することができる。さらに残留する水酸化カルシウムは、磁性粒子を酢酸等で洗浄して充分に除去してもよい。 The product obtained after the nitriding step contains CaO by-produced, unreacted metallic calcium, and the like in addition to the magnetic particles, and may be in a sintered mass state in which these are combined. Therefore, in that case, this product can be put into cooling water to separate CaO and metallic calcium from the magnetic particles as a calcium hydroxide (Ca (OH) 2 ) suspension. Further, the residual calcium hydroxide may be sufficiently removed by washing the magnetic particles with acetic acid or the like.
前述の製造方法により得られるSmFeN系異方性磁性粉末は、Th2Zn17型の結晶構造をもち、一般式がSmxFe100-x-yNyで表される希土類金属サマリウムSmと鉄Feと窒素Nからなる窒化物である。ここで、xは、8.1原子%以上10原子%以下、yは13.5原子%以上13.9原子%以下、残部が主としてFeとされることが好ましい。 The SmFeN-based anisotropic magnetic powder obtained by the above-mentioned production method has a Th 2 Zn 17 -type crystal structure, and has a general formula of Sm x Fe 100-xy Ny , which is a rare earth metal samarium Sm and iron. It is a nitride composed of Fe and nitrogen N. Here, it is preferable that x is 8.1 atomic% or more and 10 atomic% or less, y is 13.5 atomic% or more and 13.9 atomic% or less, and the balance is mainly Fe.
SmFeN系異方性磁性粉末の平均粒径は、2μm以上5μm以下が好ましく、2.5μm以上4.8μm以下がより好ましい。2μm未満では、ボンド磁石中の磁性粉末の充填量が小さくなるため磁化が低下し、5μmを超えると、ボンド磁石の保磁力が低下する傾向がある。ここで、平均粒径は、レーザー回折式粒径分布測定装置を用いて乾式条件で測定した粒径である。 The average particle size of the SmFeN-based anisotropic magnetic powder is preferably 2 μm or more and 5 μm or less, and more preferably 2.5 μm or more and 4.8 μm or less. If it is less than 2 μm, the filling amount of the magnetic powder in the bonded magnet becomes small, so that the magnetization decreases, and if it exceeds 5 μm, the coercive force of the bonded magnet tends to decrease. Here, the average particle size is the particle size measured under dry conditions using a laser diffraction type particle size distribution measuring device.
SmFeN系異方性磁性粉末の粒径D10は、1μm以上3μm以下が好ましく、1.5μm以上2.5μm以下がより好ましい。1μm未満では、ボンド磁石中の磁性粉末の充填量が小さくなるため磁化が低下し、一方で3μmを超えると、ボンド磁石の保磁力が低下する傾向がある。ここで、D10とは、SmFeN系異方性磁性粉末の体積基準による粒度分布の積算値が10%に相当する粒径である。 The particle size D10 of the SmFeN-based anisotropic magnetic powder is preferably 1 μm or more and 3 μm or less, and more preferably 1.5 μm or more and 2.5 μm or less. If it is less than 1 μm, the filling amount of the magnetic powder in the bonded magnet becomes small, so that the magnetization decreases, while if it exceeds 3 μm, the coercive force of the bonded magnet tends to decrease. Here, D10 is a particle size corresponding to an integrated value of the particle size distribution based on the volume of the SmFeN-based anisotropic magnetic powder of 10%.
SmFeN系異方性磁性粉末の粒径D50は、2.5μm以上5μm以下が好ましく、2.7μm以上4.8μm以下がより好ましい。2.5μm未満では、ボンド磁石中の磁性粉末の充填量が小さくなるため磁化が低下し、5μmを超えると、ボンド磁石の保磁力が低下する傾向がある。ここで、D50とは、SmFeN系異方性磁性粉末の体積基準による粒度分布の積算値が50%に相当する粒径である。 The particle size D50 of the SmFeN-based anisotropic magnetic powder is preferably 2.5 μm or more and 5 μm or less, and more preferably 2.7 μm or more and 4.8 μm or less. If it is less than 2.5 μm, the filling amount of the magnetic powder in the bonded magnet becomes small, so that the magnetization decreases, and if it exceeds 5 μm, the coercive force of the bonded magnet tends to decrease. Here, D50 is a particle size corresponding to an integrated value of the particle size distribution based on the volume of the SmFeN-based anisotropic magnetic powder of 50%.
SmFeN系異方性磁性粉末の粒径D90は、3μm以上7μm以下が好ましく、4μm以上6μm以下がより好ましい。3μm未満では、ボンド磁石中の磁性粉末の充填量が小さくなるため磁化が低下し、7μmを超えると、ボンド磁石の保磁力が低下する傾向がある。ここで、D90とは、SmFeN系異方性磁性粉末の体積基準による粒度分布の積算値が90%に相当する粒径である。 The particle size D90 of the SmFeN-based anisotropic magnetic powder is preferably 3 μm or more and 7 μm or less, and more preferably 4 μm or more and 6 μm or less. If it is less than 3 μm, the filling amount of the magnetic powder in the bonded magnet becomes small, so that the magnetization decreases, and if it exceeds 7 μm, the coercive force of the bonded magnet tends to decrease. Here, D90 is a particle size corresponding to 90% of the integrated value of the particle size distribution based on the volume of the SmFeN-based anisotropic magnetic powder.
SmFeN系異方性磁性粉末の下記で定義されるスパン:
スパン=(D90-D10)/D50
は、保磁力の点から2以下が好ましく、1.5以下がより好ましい。
Span defined below for SmFeN-based anisotropic magnetic powders:
Span = (D90-D10) / D50
Is preferably 2 or less, more preferably 1.5 or less, from the viewpoint of coercive force.
SmFeN系異方性磁性粉末の円形度は特に限定されないが、0.5以上が好ましく、0.6以上がより好ましい。0.5未満では、流動性が悪くなることで、成形時に粒子間で応力がかかるため磁気特性が低下する。ここで、円形度の測定には、3000倍で撮影したSEM画像を画像処理で二値化し、粒子1個に対して、円形度を求める。本発明で規定する円形度とは、1000個~10000個程度の粒子を計測して求めた円形度の平均値を意味する。一般的に粒径が小さい粒子が多くなるほど円形度は高くなるため、1μm以上の粒子について円形度の測定を行う。円形度の測定においては定義式:円形度=(4πS/L2)を用いる。但し、Sは、粒子の二次元投影面積、Lは二次元投影周囲長である。 The circularity of the SmFeN-based anisotropic magnetic powder is not particularly limited, but is preferably 0.5 or more, and more preferably 0.6 or more. If it is less than 0.5, the fluidity deteriorates and stress is applied between the particles during molding, so that the magnetic properties deteriorate. Here, in order to measure the circularity, the SEM image taken at 3000 times is binarized by image processing, and the circularity is obtained for one particle. The circularity defined in the present invention means an average value of circularity obtained by measuring about 1000 to 10000 particles. Generally, the larger the number of particles having a small particle size, the higher the circularity. Therefore, the circularity is measured for particles having a diameter of 1 μm or more. In the measurement of circularity, the definition formula: circularity = (4πS / L2) is used. However, S is the two-dimensional projected area of the particle, and L is the two-dimensional projected perimeter.
<リン酸塩被覆SmFeN系異方性磁性粉末の製造方法>
本実施形態の磁性粉末は表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む。表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末は、SmFeN系異方性磁性粉末を含むスラリーに対して、pH調整されたリン酸処理液を添加することによって作製できる。
<Method for producing phosphate-coated SmFeN-based anisotropic magnetic powder>
The magnetic powder of the present embodiment contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate. The SmFeN-based anisotropic magnetic powder having a surface coated with a phosphate can be produced by adding a pH-adjusted phosphoric acid treatment solution to a slurry containing the SmFeN-based anisotropic magnetic powder.
[リン酸処理工程]
リン酸処理工程では、SmFeN系異方性磁性粉末、溶媒、およびリン酸化合物を混合して表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を得る。リン酸塩被覆SmFeN系異方性磁性粉末は、SmFeN系異方性磁性粉末に含まれる金属成分(例えば鉄やサマリウム)とリン酸化合物に含まれるリン酸成分とが反応することによりリン酸塩(例えばリン酸鉄、リン酸サマリウム)がSmFeN系異方性磁性粉末の表面において析出することによって形成される。中でも溶媒を水とすることによって、溶媒を有機溶媒とする場合と比べて、粒径が小さいリン酸塩が析出するので、被覆部が緻密なリン酸塩被覆SmFeN系異方性磁性粉末が得られ、保磁力(iHc)が向上すると考えられる。以下溶媒を水とした場合について説明する。
[Phosphoric acid treatment process]
In the phosphoric acid treatment step, an SmFeN-based anisotropic magnetic powder, a solvent, and a phosphoric acid compound are mixed to obtain an SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate. The phosphate-coated SmFeN-based anisotropic magnetic powder is a phosphate obtained by reacting a metal component (for example, iron or samarium) contained in the SmFeN-based anisotropic magnetic powder with a phosphoric acid component contained in a phosphoric acid compound. (For example, iron phosphate, samarium phosphate) is formed by precipitating on the surface of the SmFeN-based anisotropic magnetic powder. Above all, when the solvent is water, a phosphate having a smaller particle size is precipitated as compared with the case where the solvent is an organic solvent, so that a phosphate-coated SmFeN-based anisotropic magnetic powder having a dense coating can be obtained. It is considered that the coercive force (iHc) is improved. The case where the solvent is water will be described below.
リン酸処理工程では、SmFeN系異方性磁性粉末、水、およびリン酸化合物を含むスラリーを作製する。スラリーの作製方法は特に限定されないが、例えば、水を溶媒としてSmFeN系異方性磁性粉末とリン酸化合物を含むリン酸水溶液とを混合することによって得られる。スラリー中のSmFeN系異方性磁性粉末の含有量は、例えば1質量%以上50質量%以下であり、生産性の点から5質量%以上20質量%以下であることが好ましい。スラリー中のリン酸成分(PO4)の含有量は、PO4換算量で、例えば0.01質量%以上10質量%以下であり、金属成分とリン酸成分との反応性や生産性の点から0.05質量%以上5質量%以下であることが好ましい。 In the phosphoric acid treatment step, a slurry containing an SmFeN-based anisotropic magnetic powder, water, and a phosphoric acid compound is prepared. The method for producing the slurry is not particularly limited, but it can be obtained, for example, by mixing an SmFeN-based anisotropic magnetic powder and a phosphoric acid aqueous solution containing a phosphoric acid compound using water as a solvent. The content of the SmFeN-based anisotropic magnetic powder in the slurry is, for example, 1% by mass or more and 50% by mass or less, and preferably 5% by mass or more and 20% by mass or less from the viewpoint of productivity. The content of the phosphoric acid component ( PO 4 ) in the slurry is, for example, 0.01% by mass or more and 10% by mass or less in terms of PO4, in terms of reactivity and productivity between the metal component and the phosphoric acid component. It is preferably 0.05% by mass or more and 5% by mass or less.
リン酸水溶液はリン酸化合物と水を混合することによって得られる。リン酸化合物としては、例えば、オルトリン酸、リン酸二水素ナトリウム、リン酸一水素ナトリウム、リン酸二水素アンモニウム、リン酸一水素アンモニウム、リン酸亜鉛、リン酸カルシウムなどのリン酸塩系、次亜リン酸系、次亜リン酸塩系、ピロリン酸系、ポリリン酸系などの無機リン酸等、有機リン酸が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。また、被覆部の耐水性、耐食性や磁性粉末の磁気特性を向上する目的で、モリブデン酸塩、タングステン酸塩、バナジン酸塩、クロム酸塩などのオキソ酸塩等、硝酸ナトリウム、亜硝酸ナトリウムなどの酸化剤等、EDTAなどのキレート剤等を添加剤として用いることができる。 The phosphoric acid aqueous solution is obtained by mixing a phosphoric acid compound and water. Examples of the phosphoric acid compound include phosphates such as orthophosphoric acid, sodium dihydrogen phosphate, sodium monohydrogen phosphate, ammonium dihydrogen phosphate, ammonium monohydrogen phosphate, zinc phosphate, and calcium phosphate, and hypophosphite. Examples thereof include organic phosphoric acid such as acid-based, hypophosphite-based, pyrophosphoric acid-based, and polyphosphoric acid-based inorganic phosphoric acid. Only one of these may be used, or two or more thereof may be used in combination. Further, for the purpose of improving the water resistance, corrosion resistance and magnetic properties of the magnetic powder of the coating portion, oxo acid salts such as molybdenate, tungstate, vanadinate and chromate, sodium nitrate, sodium nitrite, etc. An oxidizing agent or the like, a chelating agent such as EDTA can be used as an additive.
リン酸水溶液におけるリン酸の濃度(PO4換算量)は、例えば5質量%以上50質量%以下であり、リン酸化合物の溶解度、保存安定性や化成処理のし易さの点から10質量%以上30質量%以下であることが好ましい。リン酸水溶液のpHは、例えば1以上4.5以下であり、リン酸塩の析出速度を制御しやすい点から1.5以上4以下であることが好ましい。pHは希塩酸、希硫酸などにより調整できる。 The concentration of phosphoric acid ( PO4 equivalent amount) in the aqueous phosphoric acid solution is, for example, 5% by mass or more and 50% by mass or less, and is 10% by mass in terms of solubility of the phosphoric acid compound, storage stability, and ease of chemical conversion treatment. It is preferably 30% by mass or less. The pH of the aqueous phosphoric acid solution is, for example, 1 or more and 4.5 or less, and preferably 1.5 or more and 4 or less from the viewpoint of easily controlling the precipitation rate of the phosphate. The pH can be adjusted with dilute hydrochloric acid, dilute sulfuric acid, or the like.
リン酸処理工程においては、無機酸を添加してスラリーのpHを1以上4.5以下に調整することが好ましい。pHを1以上4.5以下に調整した場合には、調整しない場合と比べて、リン酸塩の析出量を多くすることができ、被覆部の厚みが厚いリン酸塩被覆SmFeN系異方性磁性粉末が得られるので、保磁力(iHc)が向上すると考えられる。調整するpH範囲はpH1以上4.5以下が好ましく、pH1.6以上3.9以下がより好ましく、pH2以上3以下がさらに好ましい。添加する無機酸としては、塩酸、硝酸、硫酸、ほう酸、フッ化水素酸が挙げられる。リン酸処理工程中は、上記pHの範囲となるように、無機酸を随時添加する。廃液処理の観点から無機酸を使用するが、目的に応じて有機酸を併用することができる。有機酸としては酢酸、蟻酸、酒石酸等が挙げられる。 In the phosphoric acid treatment step, it is preferable to add an inorganic acid to adjust the pH of the slurry to 1 or more and 4.5 or less. When the pH is adjusted to 1 or more and 4.5 or less, the amount of phosphate precipitates can be increased as compared with the case where the pH is not adjusted, and the phosphate-coated SmFeN-based anisotropy with a thick coating portion. Since the magnetic powder is obtained, it is considered that the coercive force (iHc) is improved. The pH range to be adjusted is preferably pH 1 or more and 4.5 or less, more preferably pH 1.6 or more and 3.9 or less, and further preferably pH 2 or more and 3 or less. Examples of the inorganic acid to be added include hydrochloric acid, nitric acid, sulfuric acid, boric acid, and hydrofluoric acid. During the phosphoric acid treatment step, an inorganic acid is added at any time so as to be within the above pH range. Inorganic acids are used from the viewpoint of waste liquid treatment, but organic acids can be used in combination depending on the purpose. Examples of the organic acid include acetic acid, formic acid, tartaric acid and the like.
リン酸処理工程において、無機酸を添加してスラリーのpHを1以上4.5以下に調整した場合には、調整は10分間以上行うことが好ましく、被覆部の厚さが薄い部分を減らす観点から30分間以上行うことがより好ましい。pH維持の初期はpHの上昇が早いためにpH制御用の無機酸の投入間隔が短いが、被覆が進むとともに次第にpH変動が緩やかになり、無機酸の投入間隔が長くなることから反応終点が判断できる。 When the pH of the slurry is adjusted to 1 or more and 4.5 or less by adding an inorganic acid in the phosphoric acid treatment step, the adjustment is preferably performed for 10 minutes or more, and the viewpoint of reducing the portion where the thickness of the coating portion is thin is reduced. It is more preferable to carry out for 30 minutes or more. At the initial stage of pH maintenance, the pH control interval is short because the pH rises quickly, but as the coating progresses, the pH fluctuation gradually slows down and the inorganic acid input interval becomes longer, so the reaction end point is I can judge.
[リン酸処理後の酸化工程]
リン酸塩被覆SmFeN系異方性磁性粉末は、必要に応じて酸化処理を行ってもよい。リン酸塩被覆SmFeN系異方性磁性粉末を酸化処理することにより、リン酸塩により被覆されている母材のSmFeN系異方性磁性粉末の表面が酸化されて酸化鉄層が形成され、リン酸塩被覆SmFeN系異方性磁性粉末の耐酸化性が向上する。また、酸化することにより、ボンド磁石作製時にリン酸塩被覆SmFeN系異方性磁性粉末が高温に曝された際に、SmFeN粒子表面での好ましくない酸化還元反応、分解反応や変質が生じることを抑制することができ、結果として磁気特性、特に固有保磁力(iHc)の高い磁石を得ることができる。
[Oxidation process after phosphoric acid treatment]
The phosphate-coated SmFeN-based anisotropic magnetic powder may be subjected to an oxidation treatment, if necessary. By oxidizing the phosphate-coated SmFeN-based anisotropic magnetic powder, the surface of the SmFeN-based anisotropic magnetic powder of the base material coated with the phosphate is oxidized to form an iron oxide layer, and phosphorus is formed. The oxidation resistance of the acid salt-coated SmFeN-based anisotropic magnetic powder is improved. Further, by oxidation, when the phosphate-coated SmFeN-based anisotropic magnetic powder is exposed to a high temperature during the production of the bonded magnet, an unfavorable redox reaction, decomposition reaction and alteration occur on the surface of the SmFeN particles. It can be suppressed, and as a result, a magnet having high magnetic properties, particularly high intrinsic coercive force (iHc), can be obtained.
酸化処理は、リン酸処理後のSmFeN系異方性磁性粉末を、酸素含有雰囲気下で熱処理することにより行う。反応雰囲気は窒素、アルゴンなどの不活性ガス中に酸素を含むことが好ましい。酸素濃度は3%以上21%以下が好ましく、3.5%以上10%以下がより好ましい。酸化反応中は磁性粉末1kgに対して2L/分以上10L/分以下の流速でガスを交換することが好ましい。 The oxidation treatment is performed by heat-treating the SmFeN-based anisotropic magnetic powder after the phosphoric acid treatment in an oxygen-containing atmosphere. The reaction atmosphere preferably contains oxygen in an inert gas such as nitrogen or argon. The oxygen concentration is preferably 3% or more and 21% or less, and more preferably 3.5% or more and 10% or less. During the oxidation reaction, it is preferable to exchange the gas at a flow rate of 2 L / min or more and 10 L / min or less with respect to 1 kg of the magnetic powder.
酸化処理時の温度は150℃以上250℃以下が好ましく、170℃以上230℃以下がより好ましい。150℃未満では酸化鉄層の生成が不十分であり、耐酸化性が小さくなる傾向がある。250℃を超えると酸化鉄層が過剰に形成し、保磁力が低下する傾向がある。反応時間は3時間以上10時間以下が好ましい。 The temperature during the oxidation treatment is preferably 150 ° C. or higher and 250 ° C. or lower, and more preferably 170 ° C. or higher and 230 ° C. or lower. Below 150 ° C., the formation of the iron oxide layer is insufficient, and the oxidation resistance tends to decrease. If the temperature exceeds 250 ° C., an iron oxide layer is excessively formed, and the coercive force tends to decrease. The reaction time is preferably 3 hours or more and 10 hours or less.
リン酸処理後のSmFeN系異方性磁性粉末は、必要に応じて上述のシリカ処理やシランカップリング処理を行ってもよい。 The SmFeN-based anisotropic magnetic powder after the phosphoric acid treatment may be subjected to the above-mentioned silica treatment or silane coupling treatment, if necessary.
リン酸処理工程後、酸化工程後、シリカ処理、或いはシランカップリング処理後のSmFeN系異方性磁性粉末は、常法により、ろ過、脱水、乾燥を行うことができる。 The SmFeN-based anisotropic magnetic powder after the phosphoric acid treatment step, the oxidation step, the silica treatment, or the silane coupling treatment can be filtered, dehydrated, and dried by a conventional method.
<リン酸塩被覆SmFeN系異方性磁性粉末>
リン酸塩被覆SmFeN系異方性磁性粉末におけるリン酸塩含有量の下限が0.1質量%以上であればよく、0.55質量%以上であることが好ましく、0.75質量%以上であることが特に好ましく、リン酸塩含有量の上限は4.5質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下であることが特に好ましい。リン酸塩含有量が0.1質量%未満の場合、リン酸塩による被覆の効果が小さくなる傾向があり、4.5質量%を超えると、リン酸塩被覆されたSmFeN系異方性磁性粉末同士が凝集して保磁力が低下する傾向がある。なお、磁性粉末のリン酸塩含有量は、ICP発光分光分析法(ICP-AES)を用いて測定されるPO4分子換算量で表す。
<Phosphate-coated SmFeN-based anisotropic magnetic powder>
The lower limit of the phosphate content in the phosphate-coated SmFeN-based anisotropic magnetic powder may be 0.1% by mass or more, preferably 0.55% by mass or more, and 0.75% by mass or more. The upper limit of the phosphate content is preferably 4.5% by mass or less, more preferably 2.5% by mass or less, and particularly preferably 2% by mass or less. When the phosphate content is less than 0.1% by mass, the effect of coating with the phosphate tends to be small, and when it exceeds 4.5% by mass, the phosphate-coated SmFeN-based anisotropic magnetism tends to be small. The powders tend to aggregate and the coercive force tends to decrease. The phosphate content of the magnetic powder is expressed as a PO4 molecule equivalent measured by ICP emission spectroscopic analysis (ICP - AES).
リン酸塩被覆SmFeN系異方性磁性粉末は、DSCにおける発熱開始温度が、90℃以上であればよく、120℃以上であることが好ましく、170℃以上であることがより好ましく、200℃以上であることが特に好ましい。DSCにおける発熱開始温度はリン酸塩被覆の緻密さ、厚み、および耐酸化性等の総合的な評価であり、90℃以上であるときに高い保磁力が得られる。なお、DSCにおける発熱開始温度は、例えば、リン酸塩被覆SmFeN系異方性磁性粉末を20mg計量し、高温型示差走査熱分析装置(DSC6300、日立ハイテクサイエンス社製)を用いて、エアー雰囲気(200mL/min)、室温から400℃(昇温速度:20℃/min)、リファレンス:アルミナ(20mg)の測定条件でDSC分析を行うことにより測定できる。発熱開始温度が高いことは、酸化による発熱が起こりにくいことから、リン酸被覆がより緻密に形成されていることを意味する。 The phosphate-coated SmFeN-based anisotropic magnetic powder may have a heat generation start temperature of 90 ° C. or higher, preferably 120 ° C. or higher, more preferably 170 ° C. or higher, and 200 ° C. or higher. Is particularly preferable. The heat generation start temperature in DSC is a comprehensive evaluation of the density, thickness, oxidation resistance, etc. of the phosphate coating, and a high coercive force can be obtained when the temperature is 90 ° C. or higher. The heat generation start temperature in the DSC is, for example, 20 mg of a phosphate-coated SmFeN-based anisotropic magnetic powder, and an air atmosphere (DSC6300, manufactured by Hitachi High-Tech Science Co., Ltd.) using a high-temperature differential scanning heat analyzer (DSC6300, manufactured by Hitachi High-Tech Science Co., Ltd.). It can be measured by performing DSC analysis under the measurement conditions of 200 mL / min), room temperature to 400 ° C. (heating rate: 20 ° C./min), and reference: alumina (20 mg). The high heat generation start temperature means that the phosphoric acid coating is formed more densely because heat generation due to oxidation is unlikely to occur.
リン酸塩被覆SmFeN系異方性磁性粉末は、XRD回折パターンにおいて、αFeの(110)面の回折ピーク強度(I)とSmFeN系異方性磁性粉末の(300)面のピーク強度(II)との比(I)/(II)が3×10-2以下であることが好ましく、2.5×10-2以下であることがより好ましく、1.0×10-2以下であることが特に好ましい。αFeの(110)面の回折ピーク強度(I)は、不純物であるαFeの存在量を表しており、前述した比(I)/(II)が2.5×10-2以下であるときに、高い保磁力が得られる。なお、XRD回折パターンにおける回折ピーク強度は、例えばリン酸塩被覆SmFeN系異方性磁性粉末を粉末X線結晶回折装置(リガク製、X線波長:CuKa1)にてXRDパターンを測定し、α-Feの(110)面の回折ピーク強度をSm2Fe17N3の(300)面のピーク強度で除した値をα-Feピークハイト比として求めることができる。α-Feピークハイト比が低いことは不純物であるα-Feの含有量が低いことを意味する。 The phosphate-coated SmFeN-based anisotropic magnetic powder has a diffraction peak intensity (I) on the (110) plane of αFe and a peak intensity (II) on the (300) plane of the SmFeN-based anisotropic magnetic powder in the XRD diffraction pattern. The ratio (I) / (II) to and to is preferably 3 × 10 −2 or less, more preferably 2.5 × 10 − 2 or less, and preferably 1.0 × 10 − 2 or less. Especially preferable. The diffraction peak intensity (I) on the (110) plane of αFe represents the abundance of the impurity αFe, and when the ratio (I) / (II) described above is 2.5 × 10 −2 or less. , High coercive force can be obtained. The diffraction peak intensity in the XRD diffraction pattern is determined by measuring the XRD pattern of a phosphate-coated SmFeN-based anisotropic magnetic powder with a powder X-ray crystal diffractometer (X-ray wavelength: CuKa1), and then α-. The value obtained by dividing the diffraction peak intensity of the (110) plane of Fe by the peak intensity of the (300) plane of Sm 2 Fe 17 N 3 can be obtained as the α-Fe peak height ratio. A low α-Fe peak height ratio means that the content of the impurity α-Fe is low.
リン酸塩被覆SmFeN系異方性磁性粉末は、炭素含有量が1000ppm以下であることが好ましく、800ppm以下であることがより好ましい。炭素含有量は、リン酸塩中の有機不純物量を示しており、炭素含有量が1000ppmを超えるとボンド磁石を作製する過程において、リン酸塩被覆SmFeN系異方性磁性粉末が高温にさらされることで有機不純物が分解し被覆部に欠陥が生じるため、保磁力が低下する傾向がある。ここで、炭素含有量は、TOC法によって測定することができる。 The phosphate-coated SmFeN-based anisotropic magnetic powder preferably has a carbon content of 1000 ppm or less, more preferably 800 ppm or less. The carbon content indicates the amount of organic impurities in the phosphate, and when the carbon content exceeds 1000 ppm, the phosphate-coated SmFeN-based anisotropic magnetic powder is exposed to a high temperature in the process of producing a bonded magnet. As a result, organic impurities are decomposed and defects are generated in the coating portion, so that the coercive force tends to decrease. Here, the carbon content can be measured by the TOC method.
リン酸塩被覆SmFeN系異方性磁性粉末の、リン酸塩被覆部の厚みは特に限定されないが、リン酸塩被覆SmFeN系異方性磁性粉末の保磁力の点から10nm以上200nm以下が好ましい。なお、リン酸塩被覆部の厚みは、リン酸塩被覆SmFeN系異方性磁性粉末の断面において、EDXによるライン分析によって組成分析を行うことにより測定できる。 The thickness of the phosphate-coated portion of the phosphate-coated SmFeN-based anisotropic magnetic powder is not particularly limited, but is preferably 10 nm or more and 200 nm or less from the viewpoint of the coercive force of the phosphate-coated SmFeN-based anisotropic magnetic powder. The thickness of the phosphate-coated portion can be measured by performing a composition analysis on the cross section of the phosphate-coated SmFeN-based anisotropic magnetic powder by line analysis using EDX.
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
実施例および比較例では、下記の材料を使用した。
エポキシ樹脂:ビフェニルタイプ(エポキシ当量186g/eq)
硬化剤:DDS(ジアミノジフェニルスルホン)(活性水素当量62.0g/eq)
硬化促進剤:TPP(トリフェニルホスフィン)
熱可塑性樹脂:ポリアミド12(ダイセル・エボニック社製ZZ3000P)
In the examples and comparative examples, the following materials were used.
Epoxy resin: Biphenyl type (epoxy equivalent 186 g / eq)
Curing agent: DDS (diaminodiphenyl sulfone) (active hydrogen equivalent 62.0 g / eq)
Curing accelerator: TPP (triphenylphosphine)
Thermoplastic resin: Polyamide 12 (ZZ3000P manufactured by Daicel Evonik)
製造例1
(SmFeN系異方性磁性粉末の作製)
純水2.0kgにFeSO4・7H2O 5.0kgを混合溶解した。さらにSm2O3 0.49kgと70%硫酸0.74kgとを加えてよく攪拌し、完全に溶解させた。次に、得られた溶液に純水を加え、最終的にFe濃度が0.726mol/L、Sm濃度が0.112mol/Lとなるように調整し、SmFe硫酸溶液とした。
Production Example 1
(Preparation of SmFeN-based anisotropic magnetic powder)
FeSO 4.7H 2 O 5.0 kg was mixed and dissolved in 2.0 kg of pure water. Further, 0.49 kg of Sm 2 O 3 and 0.74 kg of 70% sulfuric acid were added and stirred well to completely dissolve them. Next, pure water was added to the obtained solution to adjust the Fe concentration to 0.726 mol / L and the Sm concentration to 0.112 mol / L to prepare a SmFe sulfuric acid solution.
[沈殿工程]
温度が40℃に保たれた純水20kg中に、調製したSmFe硫酸溶液全量を反応開始から70分間で攪拌しながら滴下し、同時に15%アンモニア液を滴下させ、pHを7~8に調整した。これにより、SmFe水酸化物を含むスラリーを得た。得られたスラリーをデカンテーションにより純水で洗浄した後、水酸化物を固液分離した。分離した水酸化物を100℃のオーブン中で10時間乾燥した。
[Precipitation process]
The entire amount of the prepared SmFe sulfuric acid solution was added dropwise to 20 kg of pure water maintained at a temperature of 40 ° C. with stirring for 70 minutes from the start of the reaction, and at the same time, a 15% ammonia solution was added dropwise to adjust the pH to 7-8. .. As a result, a slurry containing SmFe hydroxide was obtained. The obtained slurry was washed with pure water by decantation, and then the hydroxide was separated into solid and liquid. The separated hydroxide was dried in an oven at 100 ° C. for 10 hours.
[酸化工程]
沈殿工程で得られた水酸化物を大気中1000℃で1時間、焼成処理した。冷却後、原料粉末として赤色のSmFe酸化物を得た。
[Oxidation process]
The hydroxide obtained in the precipitation step was calcined in the air at 1000 ° C. for 1 hour. After cooling, a red SmFe oxide was obtained as a raw material powder.
[前処理工程]
SmFe酸化物100gを、嵩厚10mmとなるように鋼製容器に入れた。容器を炉内に入れ、100Paまで減圧した後、水素ガスを導入しながら、前処理温度の850℃まで昇温し、そのまま15時間保持した。非分散赤外吸収法(ND-IR)(株式会社堀場製作所製EMGA-820)により酸素濃度を測定したところ、5質量%であった。これにより、Smと結合している酸素は還元されず、Feと結合している酸素のうち、95%が還元される黒色の部分酸化物を得たことがわかった。
[Pretreatment process]
100 g of SmFe oxide was placed in a steel container so as to have a bulk thickness of 10 mm. The container was placed in a furnace, the pressure was reduced to 100 Pa, and then the temperature was raised to the pretreatment temperature of 850 ° C. while introducing hydrogen gas, and the mixture was kept as it was for 15 hours. The oxygen concentration was measured by the non-dispersed infrared absorption method (ND-IR) (EMGA-820 manufactured by HORIBA, Ltd.) and found to be 5% by mass. As a result, it was found that the oxygen bound to Sm was not reduced, and 95% of the oxygen bound to Fe was reduced to obtain a black partial oxide.
[還元工程]
前処理工程で得られた部分酸化物60gと平均粒径約6mmの金属カルシウム19.2gとを混合して炉内に入れた。炉内を真空排気した後、アルゴンガス(Arガス)を導入した。1045℃まで上昇させて、45分間保持することにより、Fe-Sm合金粒子を得た。
[Reduction process]
60 g of the partial oxide obtained in the pretreatment step and 19.2 g of metallic calcium having an average particle size of about 6 mm were mixed and placed in a furnace. After evacuating the inside of the furnace, argon gas (Ar gas) was introduced. Fe—Sm alloy particles were obtained by raising the temperature to 1045 ° C. and holding for 45 minutes.
[窒化工程]
引き続き、炉内温度を100℃まで冷却した後、真空排気を行い、窒素ガスを導入しながら、温度を450℃まで上昇させて、そのまま23時間保持して、磁性粒子を含む塊状生成物を得た。
[Nitriding process]
Subsequently, after cooling the temperature inside the furnace to 100 ° C., vacuum exhaust was performed, the temperature was raised to 450 ° C. while introducing nitrogen gas, and the temperature was maintained as it was for 23 hours to obtain a lump product containing magnetic particles. rice field.
[水洗工程]
窒化工程で得られた塊状の生成物を純水3kgに投入し、30分間攪拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを10回繰り返した。次いで99.9%酢酸2.5gを投入して15分間攪拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを2回繰り返し行い、続いて脱水と乾燥後、機械的解砕処理を行うことでSmFeN系異方性磁性粉末(平均粒径3μm)を得た。
[Washing process]
The lumpy product obtained in the nitriding step was put into 3 kg of pure water and stirred for 30 minutes. After standing still, the supernatant was drained by decantation. Addition to pure water, stirring and decantation were repeated 10 times. Then, 2.5 g of 99.9% acetic acid was added and stirred for 15 minutes. After standing still, the supernatant was drained by decantation. SmFeN-based anisotropic magnetic powder (average particle size 3 μm) was obtained by repeatedly adding water to pure water, stirring and decanting twice, followed by dehydration and drying, and then mechanically crushing the powder.
製造例2
[リン酸処理工程1]
リン酸処理液として、85%オルトリン酸:リン酸二水素ナトリウム:モリブデン酸ナトリウム2水和物=1:6:1の重量比で混合し、純水と希塩酸でpHを2.5、PO4濃度を20質量%に調整したものを準備した。製造例1で得られたSmFeN系異方性磁性粉末1000gを塩化水素:70gの希塩酸中で1分間攪拌して表面酸化膜や汚れ成分を除去した後、上澄み液の導電率が100μS/cm以下になるまで排水と注水を繰り返し、SmFeN系異方性磁性粉末を10質量%含むスラリーを得た。得られたスラリーを撹拌しながら、準備したリン酸処理液100gを処理槽中に全量投入した。リン酸処理反応スラリーのpHは5分かけて2.5から6に上昇した。15分攪拌した後に吸引濾過、脱水し、真空乾燥することでリン酸塩被覆SmFeN系異方性磁性粉末を得た。
Manufacturing example 2
[Phosphoric acid treatment step 1]
As a phosphoric acid treatment solution, 85% orthophosphoric acid: sodium dihydrogen phosphate: sodium molybdate dihydrate = 1: 6: 1 was mixed in a weight ratio, and the pH was 2.5 and PO 4 with pure water and dilute hydrochloric acid. A preparation having an adjusted concentration of 20% by mass was prepared. After removing 1000 g of the SmFeN-based anisotropic magnetic powder obtained in Production Example 1 in dilute hydrochloric acid of hydrogen chloride: 70 g for 1 minute to remove the surface oxide film and dirt components, the conductivity of the supernatant liquid is 100 μS / cm or less. Drainage and water injection were repeated until the amount became, and a slurry containing 10% by mass of SmFeN-based anisotropic magnetic powder was obtained. While stirring the obtained slurry, 100 g of the prepared phosphoric acid treatment liquid was put into the treatment tank in its entirety. The pH of the phosphoric acid treatment reaction slurry increased from 2.5 to 6 over 5 minutes. After stirring for 15 minutes, suction filtration, dehydration, and vacuum drying were performed to obtain a phosphate-coated SmFeN-based anisotropic magnetic powder.
[シリカ処理工程]
リン酸塩被覆SmFeN系異方性磁性粉末、エチルシリケート40、および12.5重量%のアンモニア水を、それぞれ97.8:1.8:0.4の重量比で、ミキサーで混合した。混合物を真空中200℃で加熱して、粒子表面にシリカ薄膜が形成されたSmFeN系異方性磁性粉末を得た。
[Silica treatment process]
Phosphate-coated SmFeN-based anisotropic magnetic powder, ethyl silicate 40, and 12.5% by weight of aqueous ammonia were mixed with a mixer at a weight ratio of 97.8: 1.8: 0.4, respectively. The mixture was heated in vacuum at 200 ° C. to obtain a SmFeN-based anisotropic magnetic powder having a silica thin film formed on the particle surface.
[シランカップリング処理工程]
シリカ薄膜が形成されたSmFeN系異方性磁性粉末と、12.5重量%のアンモニア水
をミキサー内で混合した後、50重量%の3-アミノプロピルトリエトキシシランのエタ
ノール溶液をミキサーにて混合した。シリカ薄膜が形成されたSmFeN系異方性磁性粉
末と12.5重量%のアンモニア水と50重量%の3-アミノプロピルトリエトキシシラ
ンのエタノール溶液の重量比は、それぞれ99:0.2:0.8であった。その混合物を
100℃の窒素雰囲気下で10時間乾燥し、シランカップリング処理されたSmFeN系異方性磁性粉末を得た。
[Silane coupling treatment process]
After mixing SmFeN-based anisotropic magnetic powder on which a silica thin film is formed and 12.5% by weight of ammonia water in a mixer, 50% by weight of an ethanol solution of 3-aminopropyltriethoxysilane is mixed in the mixer. did. The weight ratio of the SmFeN-based anisotropic magnetic powder on which the silica thin film was formed, 12.5% by weight of ammonia water, and 50% by weight of the ethanol solution of 3-aminopropyltriethoxysilane was 99: 0.2: 0, respectively. It was 8.8. The mixture was dried in a nitrogen atmosphere at 100 ° C. for 10 hours to obtain a silane-coupled SmFeN-based anisotropic magnetic powder.
製造例3
[リン酸処理工程2]
リン酸処理液として、85%オルトリン酸:リン酸二水素ナトリウム:モリブデン酸ナトリウム2水和物=1:6:1の重量比で混合し、純水と希塩酸でpHを2、PO4濃度を20質量%に調整したものを準備した。製造例1で得られたSmFeN系異方性磁性粉末1000gを塩化水素:70gの希塩酸中で1分間攪拌して表面酸化膜や汚れ成分を除去した後、上澄み液の導電率が100μS/cm以下になるまで排水と注水を繰り返し、SmFeN系異方性磁性粉末を10質量%含むスラリーを得た。得られたスラリーを撹拌しながら、準備したリン酸処理液100gを処理槽中に全量投入した後、6重量%の塩酸を随時投入することでリン酸処理反応スラリーのpHを2.5±0.1の範囲にて制御し30分間維持した。続いて吸引濾過、脱水し、真空乾燥することでリン酸塩被覆SmFeN系異方性磁性粉末を得た。
Production example 3
[Phosphoric acid treatment step 2]
As a phosphoric acid treatment solution, mix 85% orthophosphoric acid: sodium dihydrogen phosphate: sodium molybdenate dihydrate = 1: 6: 1, and use pure water and dilute hydrochloric acid to adjust the pH to 2 and the PO4 concentration. The one adjusted to 20% by mass was prepared. After removing 1000 g of the SmFeN-based anisotropic magnetic powder obtained in Production Example 1 in dilute hydrochloric acid of hydrogen chloride: 70 g for 1 minute to remove the surface oxide film and dirt components, the conductivity of the supernatant liquid is 100 μS / cm or less. Drainage and water injection were repeated until the amount became, and a slurry containing 10% by mass of SmFeN-based anisotropic magnetic powder was obtained. While stirring the obtained slurry, 100 g of the prepared phosphoric acid treatment solution was put into the treatment tank in its entirety, and then 6% by weight of hydrochloric acid was added at any time to adjust the pH of the phosphoric acid treatment reaction slurry to 2.5 ± 0. It was controlled in the range of .1 and maintained for 30 minutes. Subsequently, suction filtration, dehydration, and vacuum drying were carried out to obtain a phosphate-coated SmFeN-based anisotropic magnetic powder.
[リン酸処理後の酸化工程]
得られたリン酸塩被覆SmFeN系異方性磁性粉末1000gを窒素とエアーの混合ガス(酸素濃度4%、5L/min)雰囲気下で室温から徐々に昇温し、最高温度170℃で8時間の熱処理を実施し、酸化処理されたSmFeN系異方性磁性粉末を得た。
[Oxidation process after phosphoric acid treatment]
1000 g of the obtained phosphate-coated SmFeN-based anisotropic magnetic powder was gradually heated from room temperature in an atmosphere of a mixed gas of nitrogen and air (oxygen concentration 4%, 5 L / min), and the maximum temperature was 170 ° C. for 8 hours. The heat treatment was carried out to obtain an oxidation-treated SmFeN-based anisotropic magnetic powder.
[シリカ処理工程]
酸化処理されたSmFeN系異方性磁性粉末、エチルシリケート40、および12.5重量%のアンモニア水を、それぞれ97.8:1.8:0.4の重量比で、ミキサーで混合した。混合物を真空中200℃で加熱して、粒子表面にシリカ薄膜が形成されたSmFeN系異方性磁性粉末を得た。
[Silica treatment process]
Oxidized SmFeN-based anisotropic magnetic powder, ethyl silicate 40, and 12.5% by weight of aqueous ammonia were mixed with a mixer at a weight ratio of 97.8: 1.8: 0.4, respectively. The mixture was heated in vacuum at 200 ° C. to obtain a SmFeN-based anisotropic magnetic powder having a silica thin film formed on the particle surface.
[シランカップリング処理工程]
シリカ薄膜が形成されたSmFeN系異方性磁性粉末と、12.5重量%のアンモニア水
をミキサー内で混合した後、50重量%3-アミノプロピルトリエトキシシランのエタノ
ール溶液をミキサーにて混合した。シリカ薄膜が形成されたSmFeN系異方性磁性粉末
と12.5重量%のアンモニア水と50重量%の3-アミノプロピルトリエトキシシラン
のエタノール溶液の重量比は、それぞれ99:0.2:0.8であった。その混合物を1
00℃の窒素雰囲気下で10時間乾燥し、シランカップリング処理されたSmFeN系異
方性磁性粉末を得た。
[Silane coupling treatment process]
The SmFeN-based anisotropic magnetic powder on which the silica thin film was formed was mixed with 12.5% by weight of aqueous ammonia in a mixer, and then an ethanol solution of 50% by weight 3-aminopropyltriethoxysilane was mixed with the mixer. .. The weight ratio of the SmFeN-based anisotropic magnetic powder on which the silica thin film was formed, 12.5% by weight of ammonia water, and 50% by weight of the ethanol solution of 3-aminopropyltriethoxysilane was 99: 0.2: 0, respectively. It was 8.8. 1 of the mixture
The mixture was dried in a nitrogen atmosphere at 00 ° C. for 10 hours to obtain a silane-coupled SmFeN-based anisotropic magnetic powder.
製造例4
(ボンド磁石用添加剤の作製)
アセトン100重量部に対して、エポキシ樹脂12重量部、硬化剤8.8重量部、硬化促進剤0.4重量部を溶解し混合した。アセトンを揮発させた後、棚段乾燥機にて窒素雰囲気下200℃で6時間硬化処理した。得られた硬化物をミキサーにより粉砕し、目開き500μmの篩にて分級し、ボンド磁石用添加剤を作製した。
Production example 4
(Making additives for bonded magnets)
12 parts by weight of the epoxy resin, 8.8 parts by weight of the curing agent, and 0.4 parts by weight of the curing accelerator were dissolved and mixed with 100 parts by weight of acetone. After the acetone was volatilized, it was cured in a shelf dryer at 200 ° C. for 6 hours in a nitrogen atmosphere. The obtained cured product was pulverized with a mixer and classified with a sieve having an opening of 500 μm to prepare an additive for a bonded magnet.
製造例5
(ボンド磁石用樹脂組成物の作製)
ポリアミド12が100重量部に対して、17.4重量部の製造例4で得られたボンド磁石用添加剤を二軸混練機にて210℃環境下で溶融混練し、ボンド磁石用樹脂組成物を得た。
Production Example 5
(Preparation of resin composition for bond magnet)
With respect to 100 parts by weight of the polyamide 12, the additive for a bonded magnet obtained in Production Example 4 of 17.4 parts by weight was melt-kneaded in a twin-screw kneader in an environment of 210 ° C. to obtain a resin composition for a bonded magnet. Got
実施例1
(ボンド磁石用コンパウンドの作製)
製造例2で作製したシランカップリング処理されたSmFeN系異方性磁性粉末100重量部に対し、1.27重量部の製造例4で作製したボンド磁石用添加剤、および、7.19重量部のポリアミド12を混練し、二軸混練機にて210℃環境下で溶融押出混練し、ボンド磁石用コンパウンドを得た。
Example 1
(Making a compound for bond magnets)
1.27 parts by weight of the additive for the bonded magnet prepared in Production Example 4 and 7.19 parts by weight with respect to 100 parts by weight of the silane-coupled SmFeN-based anisotropic magnetic powder prepared in Production Example 2. The polyamide 12 was kneaded and melt-extruded and kneaded in a twin-screw kneader in an environment of 210 ° C. to obtain a compound for a bonded magnet.
(ボンド磁石の作製)
得られたボンド磁石用コンパウンドを、シリンダー温度230℃、金型温度90℃、射出
圧186MPaにて射出成形し、直径10mm厚み7mmのボンド磁石を得た。
(Making a bond magnet)
The obtained compound for a bond magnet was injection-molded at a cylinder temperature of 230 ° C., a mold temperature of 90 ° C., and an injection pressure of 186 MPa to obtain a bond magnet having a diameter of 10 mm and a thickness of 7 mm.
実施例2
(ボンド磁石用コンパウンドの作製)
製造例2で作製したシランカップリング処理されたSmFeN系異方性磁性粉末100重量部に対し、8.46重量部の製造例5で作製したボンド磁石用樹脂組成物を混練し、二軸混練機にて210℃環境下で溶融押出混練し、ボンド磁石用コンパウンドを得た。
Example 2
(Making a compound for bond magnets)
8.46 parts by weight of the resin composition for a bonded magnet prepared in Production Example 5 is kneaded with 100 parts by weight of the silane-coupled SmFeN-based anisotropic magnetic powder produced in Production Example 2 and biaxially kneaded. It was melt-extruded and kneaded in a machine at 210 ° C. to obtain a compound for a bonded magnet.
(ボンド磁石の作製)
得られたボンド磁石用コンパウンドを用いて実施例1と同様にしてボンド磁石を得た。なお、射出成形時の射出圧は144MPaであった。
(Making a bond magnet)
A bond magnet was obtained in the same manner as in Example 1 using the obtained compound for bond magnets. The injection pressure at the time of injection molding was 144 MPa.
実施例3
(ボンド磁石用コンパウンドの作製)
製造例2で作製したシランカップリング処理されたSmFeN系異方性磁性粉末100重量部に対し、7.89重量部の製造例5で作製したボンド磁石用樹脂組成物を混練し、二軸混練機にて210℃環境下で溶融押出混練し、ボンド磁石用コンパウンドを得た。
Example 3
(Making a compound for bond magnets)
7.89 parts by weight of the resin composition for a bonded magnet prepared in Production Example 5 is kneaded with 100 parts by weight of the silane-coupled SmFeN-based anisotropic magnetic powder produced in Production Example 2 and biaxially kneaded. It was melt-extruded and kneaded in a machine at 210 ° C. to obtain a compound for a bonded magnet.
(ボンド磁石の作製)
得られたボンド磁石用コンパウンドを用いて実施例1と同様にしてボンド磁石を得た。なお、射出成形時の射出圧は241MPaであった。
(Making a bond magnet)
A bond magnet was obtained in the same manner as in Example 1 using the obtained compound for bond magnets. The injection pressure during injection molding was 241 MPa.
実施例4
(ボンド磁石用コンパウンドの作製)
製造例3で作製したシランカップリング処理されたSmFeN系異方性磁性粉末100重量部に対し、8.46重量部の製造例5で作製したボンド磁石用樹脂組成物を混練し、二軸混練機にて210℃環境下で溶融押出混練し、ボンド磁石用コンパウンドを得た。
Example 4
(Making a compound for bond magnets)
8.46 parts by weight of the resin composition for a bonded magnet prepared in Production Example 5 is kneaded with 100 parts by weight of the silane-coupled SmFeN-based anisotropic magnetic powder produced in Production Example 3 and biaxially kneaded. It was melt-extruded and kneaded in a machine at 210 ° C. to obtain a compound for a bonded magnet.
(ボンド磁石の作製)
得られたボンド磁石用コンパウンドを用いて実施例1と同様にしてボンド磁石を得た。なお、射出成形時の射出圧は115MPaであった。
(Making a bond magnet)
A bond magnet was obtained in the same manner as in Example 1 using the obtained compound for bond magnets. The injection pressure during injection molding was 115 MPa.
実施例5
(ボンド磁石用コンパウンドの作製)
製造例3で作製したシランカップリング処理されたSmFeN系異方性磁性粉末100重量部に対し、7.89重量部の製造例5で作製したボンド磁石用樹脂組成物を混練し、二軸混練機にて210℃環境下で溶融押出混練し、ボンド磁石用コンパウンドを得た。
Example 5
(Making a compound for bond magnets)
7.89 parts by weight of the resin composition for a bonded magnet prepared in Production Example 5 is kneaded with 100 parts by weight of the silane-coupled SmFeN-based anisotropic magnetic powder produced in Production Example 3 and biaxially kneaded. It was melt-extruded and kneaded in a machine at 210 ° C. to obtain a compound for a bonded magnet.
(ボンド磁石の作製)
得られたボンド磁石用コンパウンドを用いて実施例1と同様にしてボンド磁石を得た。なお、射出成形時の射出圧は230MPaであった。
(Making a bond magnet)
A bond magnet was obtained in the same manner as in Example 1 using the obtained compound for bond magnets. The injection pressure during injection molding was 230 MPa.
比較例1
(ボンド磁石用コンパウンドの作製)
製造例2で作製したシランカップリング処理されたSmFeN系異方性磁性粉末100重量部に対し、8.27重量部のポリアミド12を混練し、二軸混練機にて210℃環境下で溶融押出混練し、ボンド磁石用コンパウンドを得た。
Comparative Example 1
(Making a compound for bond magnets)
8.27 parts by weight of polyamide 12 is kneaded with 100 parts by weight of the silane-coupled SmFeN-based anisotropic magnetic powder produced in Production Example 2, and melt-extruded in a twin-screw kneader in an environment of 210 ° C. Kneading was performed to obtain a compound for a bonded magnet.
(ボンド磁石の作製)
得られたボンド磁石用コンパウンドを用いて実施例1と同様にしてボンド磁石を得た。なお、射出成形時の射出圧は235MPaであった。
(Making a bond magnet)
A bond magnet was obtained in the same manner as in Example 1 using the obtained compound for bond magnets. The injection pressure during injection molding was 235 MPa.
比較例2
(ボンド磁石用コンパウンドの作製)
製造例2で作製したシランカップリング処理されたSmFeN系異方性磁性粉末100重量部に対し、7.7重量部のポリアミド12を混練し、二軸混練機にて210℃環境下で溶融押出混練し、ボンド磁石用コンパウンドを得た。
Comparative Example 2
(Making a compound for bond magnets)
7.7 parts by weight of polyamide 12 is kneaded with 100 parts by weight of the silane-coupled SmFeN-based anisotropic magnetic powder produced in Production Example 2, and melt-extruded in a twin-screw kneader in an environment of 210 ° C. Kneading was performed to obtain a compound for a bonded magnet.
(ボンド磁石の作製)
得られたボンド磁石用コンパウンドを用いて実施例1と同様に行ったところ、射出金型内に完充填できず、成形品を得ることができなかった。
(Making a bond magnet)
When the same procedure as in Example 1 was carried out using the obtained compound for a bonded magnet, the injection die could not be completely filled and a molded product could not be obtained.
実施例および比較例で得られたボンド磁石の残留磁束密度Brと保磁力iHcおよび配向率を以下の方法で評価した。評価結果を表1に示す。 The residual magnetic flux density Br, coercive force iHc, and orientation rate of the bonded magnets obtained in Examples and Comparative Examples were evaluated by the following methods. The evaluation results are shown in Table 1.
(磁粉の残留磁束密度(Br)、保磁力(iHc))
<残留磁束密度、保磁力および配向率>
製造例2および製造例3で得られたシランカップリング処理されたSmFeN系磁性粉末を、パラフィンワックスと共に試料容器に詰め、ドライヤーにてパラフィンワックスを溶融した後、2Tの配向磁場にてその磁化容易磁区を揃えた。この磁場配向した試料を6Tの着磁磁場でパルス着磁し、最大磁場2TのVSM(振動試料型磁力計 理研電子製;型式:BHV-55)を用いて磁気特性(残留磁化σr、固有保磁力iHc)を測定した。結果を表1に示す。なお、残留磁化σr(単位:emu/g)に計算式(Br=4×π×ρ×σr、ρ:密度=7.66g/cm3)を用いて残留磁束密度Br(単位:T)を算出した。
(Residual magnetic flux density (Br) of magnetic powder, coercive force (iHc))
<Residual magnetic flux density, coercive force and orientation rate>
The silane-coupled SmFeN-based magnetic powder obtained in Production Example 2 and Production Example 3 is packed in a sample container together with paraffin wax, and the paraffin wax is melted by a dryer, and then easily magnetized by a 2T orientation magnetic field. Aligned magnetic domains. This magnetic field-oriented sample is pulse-magnetized with a magnetic field of 6T, and magnetic properties (residual magnetization σr, intrinsic maintenance) are used using VSM (vibrating sample magnetometer Riken Denshi; model: BHV-55) with a maximum magnetic field of 2T. The magnetic force iHc) was measured. The results are shown in Table 1. The residual magnetic flux density Br (unit: T) is calculated by using a calculation formula (Br = 4 × π × ρ × σr, ρ: density = 7.66 g / cm 3 ) for the residual magnetization σr (unit: emu / g). Calculated.
(PO4付着量)
製造例2および製造例3で得られたリン酸塩被覆SmFeN系異方性磁性粉末中のP濃度を、ICP発光分光分析法(ICP-AES)を用いて測定し、PO4分子量に換算してPO4付着量を求めた。結果を表1に示す。
(PO 4 adhesion amount)
The P concentration in the phosphate-coated SmFeN-based anisotropic magnetic powder obtained in Production Example 2 and Production Example 3 was measured by ICP emission spectroscopic analysis (ICP-AES) and converted into PO 4 molecular weight. The amount of PO 4 adhered was determined. The results are shown in Table 1.
(ボンド磁石の残留磁束密度(Br)、保磁力(iHc))
実施例および比較例で作製したボンド磁石について、BHトレーサーを用いて残留磁束密度Br(T)と保磁力iHc(kA/m)を測定した。配向率は、以下の式:
配向率(%)=Br(T)/(SmFeN系磁性粉末の体積充填率(vol%)÷100×シランカップリングSmFeN系磁性粉末の残留磁束密度(T))×100
により算出した。
(Residual magnetic flux density (Br) of bonded magnet, coercive force (iHc))
For the bonded magnets produced in Examples and Comparative Examples, the residual magnetic flux density Br (T) and the coercive force iHc (kA / m) were measured using a BH tracer. The orientation rate is calculated by the following formula:
Orientation rate (%) = Br (T) / (Volume filling rate of SmFeN-based magnetic powder (vol%) ÷ 100 × Silane coupling Residual magnetic flux density (T) of SmFeN-based magnetic powder) × 100
Calculated by
表1より、実施例では、磁性粉末の体積充填率が同じ各比較例と比較した場合に、射出圧が低くなっており、ボンド磁石用コンパウンドの流動性が改善することを確認できた。また、ボンド磁石用コンパウンドの流動性が改善した結果、ボンド磁石中の保磁力が高くなることを確認できた。 From Table 1, it was confirmed that in the examples, the injection pressure was lower and the fluidity of the compound for the bond magnet was improved when compared with each comparative example having the same volume filling factor of the magnetic powder. Further, as a result of improving the fluidity of the compound for the bond magnet, it was confirmed that the coercive force in the bond magnet was increased.
ポリアミド12、ポリアミド12と製造例2で作製したボンド磁石用添加剤を下記表2の割合で混合した粉末混合物、製造例3で作製したボンド磁石用樹脂組成物のDSC測定を行った。DSC測定は、示差走査熱量計を用い、10℃/分で210℃まで昇温後、5℃/分で30℃まで降温することで測定した。融解ピークと結晶化ピークの値等を表2に示す。 DSC measurement was carried out for a powder mixture in which the polyamide 12 and the polyamide 12 and the additive for a bond magnet prepared in Production Example 2 were mixed at the ratios shown in Table 2 below, and the resin composition for a bond magnet prepared in Production Example 3. The DSC measurement was performed by using a differential scanning calorimeter to raise the temperature to 210 ° C. at 10 ° C./min and then lower the temperature to 30 ° C. at 5 ° C./min. Table 2 shows the values of the melting peak and the crystallization peak.
事前に硬化物とポリアミド12を溶融混練したボンド磁石用樹脂組成物では、ポリアミド12単独と比べて融点が約5℃、結晶化温度は約3℃低下した。融点と結晶化温度の低下により、射出成形時の金型内での樹脂の冷却固化が遅くなり、ボンド磁石用コンパウンドの流動性を改善するものと推定される。 In the resin composition for a bonded magnet in which the cured product and the polyamide 12 were melt-kneaded in advance, the melting point was about 5 ° C. and the crystallization temperature was about 3 ° C. lower than those of the polyamide 12 alone. It is presumed that the decrease in melting point and crystallization temperature slows the cooling and solidification of the resin in the mold during injection molding and improves the fluidity of the compound for bond magnets.
本発明のボンド磁石用コンパウンドの製造方法によれば、流動性が大きく改善されたボンド磁石用コンパウンドを得ることができ、得られたボンド磁石の保磁力も改善することができる。得られたボンド磁石は、複合材料及びボンド磁石として、モーター等の用途に好適に適用することができる。 According to the method for producing a compound for a bond magnet of the present invention, a compound for a bond magnet having greatly improved fluidity can be obtained, and the coercive force of the obtained bond magnet can also be improved. The obtained bond magnet can be suitably applied to applications such as motors as a composite material and a bond magnet.
Claims (8)
前記ボンド磁石用添加剤、磁性粉末、および、熱可塑性樹脂を混練してボンド磁石用コンパウンドを得る混練工程と
を含み、
前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む、
ボンド磁石用コンパウンドの製造方法。 A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
A kneading step of kneading the additive for a bond magnet, a magnetic powder, and a thermoplastic resin to obtain a compound for a bond magnet is included.
The magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
How to manufacture a compound for bonded magnets.
前記ボンド磁石用添加剤と熱可塑性樹脂を混練し、ボンド磁石用樹脂組成物を得る工程と、
前記ボンド磁石用樹脂組成物および磁性粉末を混練し、ボンド磁石用コンパウンドを得る混練工程と
を含み、
前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む、
ボンド磁石用コンパウンドの製造方法。 A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
A step of kneading the additive for a bonded magnet and a thermoplastic resin to obtain a resin composition for a bonded magnet.
The process includes a kneading step of kneading the resin composition for a bonded magnet and a magnetic powder to obtain a compound for a bonded magnet.
The magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
How to manufacture a compound for bonded magnets.
前記ボンド磁石用添加剤、磁性粉末、および、熱可塑性樹脂を混練してボンド磁石用コンパウンドを得る混練工程と、
得られたボンド磁石用コンパウンドを射出成形する射出成形工程と
を含み、
前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む、
ボンド磁石の製造方法。 A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
A kneading step of kneading the additive for a bond magnet, a magnetic powder, and a thermoplastic resin to obtain a compound for a bond magnet.
Including an injection molding step of injection molding the obtained compound for a bond magnet,
The magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
How to manufacture a bond magnet.
前記ボンド磁石用添加剤と熱可塑性樹脂を混練し、ボンド磁石用樹脂組成物を得る工程と、
前記ボンド磁石用樹脂組成物および磁性粉末を混練し、ボンド磁石用コンパウンドを得る混練工程と、
得られたボンド磁石用コンパウンドを射出成形する射出成形工程と
を含み、
前記磁性粉末は、表面にリン酸塩が被覆されたSmFeN系異方性磁性粉末を含む、
ボンド磁石の製造方法。 A step of thermally curing a thermosetting resin and a curing agent having a ratio of the number of reactive groups to the number of reactive groups of the thermosetting resin of 2 or more and 11 or less to obtain an additive for a bonded magnet.
A step of kneading the additive for a bonded magnet and a thermoplastic resin to obtain a resin composition for a bonded magnet.
A kneading step of kneading the resin composition for a bonded magnet and a magnetic powder to obtain a compound for a bonded magnet.
Including an injection molding step of injection molding the obtained compound for a bond magnet,
The magnetic powder contains a SmFeN-based anisotropic magnetic powder whose surface is coated with a phosphate.
How to manufacture a bond magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/455,155 US20220157520A1 (en) | 2020-11-18 | 2021-11-16 | Compound for bonded magnet, bonded magnet, method of producing same, and resin composition for bonded magnets |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020191743 | 2020-11-18 | ||
JP2020191743 | 2020-11-18 | ||
JP2020192544 | 2020-11-19 | ||
JP2020192544 | 2020-11-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022080817A true JP2022080817A (en) | 2022-05-30 |
JP7335515B2 JP7335515B2 (en) | 2023-08-30 |
Family
ID=81756992
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020201165A Pending JP2022080806A (en) | 2020-11-18 | 2020-12-03 | Compound for bonded magnet and method of producing the same |
JP2021008210A Pending JP2022080815A (en) | 2020-11-18 | 2021-01-21 | Compound for bonded magnet and method of producing the same |
JP2021008211A Pending JP2022080816A (en) | 2020-11-18 | 2021-01-21 | Method for manufacturing compound for bond magnet |
JP2021008212A Active JP7335515B2 (en) | 2020-11-18 | 2021-01-21 | Manufacturing method of compound for bonded magnet |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020201165A Pending JP2022080806A (en) | 2020-11-18 | 2020-12-03 | Compound for bonded magnet and method of producing the same |
JP2021008210A Pending JP2022080815A (en) | 2020-11-18 | 2021-01-21 | Compound for bonded magnet and method of producing the same |
JP2021008211A Pending JP2022080816A (en) | 2020-11-18 | 2021-01-21 | Method for manufacturing compound for bond magnet |
Country Status (1)
Country | Link |
---|---|
JP (4) | JP2022080806A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023234158A1 (en) * | 2022-05-31 | 2023-12-07 | 本州化学工業株式会社 | Crystal of 4,4'-bis(1,1-bis(4-hydroxy-3-methylphenyl)ethyl)biphenyl and method for producing same |
WO2024038829A1 (en) * | 2022-08-19 | 2024-02-22 | 日亜化学工業株式会社 | α-FE-CONTAINING RARE EARTH ELEMENT-IRON-NITROGEN MAGNETIC POWDER, MANUFACTURING METHOD FOR SAME, MAGNETIC MATERIAL FOR MAGNETIC FIELD AMPLIFICATION, AND MAGNETIC MATERIAL FOR ULTRA-HIGH FREQUENCY ABSORPTION |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002008911A (en) * | 2000-06-22 | 2002-01-11 | Nichia Chem Ind Ltd | Surface treating method of rare earth-iron-nitrogen magnetic powder, and plastic magnet formed of the same |
JP2002043109A (en) * | 2000-07-19 | 2002-02-08 | Nichia Chem Ind Ltd | Surface treatment method of rare earth-iron-nitrogen magnetic power and plastic magnet formed of the same |
JP2002075767A (en) * | 2000-08-31 | 2002-03-15 | Sumitomo Special Metals Co Ltd | Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing method |
JP2006283094A (en) * | 2005-03-31 | 2006-10-19 | Toda Kogyo Corp | Sm-Fe-N MAGNETIC PARTICLE POWDER, ITS MANUFACTURING METHOD, AND BOND MAGNET |
JP2014160794A (en) * | 2012-06-20 | 2014-09-04 | Sumitomo Metal Mining Co Ltd | Rare earth-transition metal-nitrogen based magnet fine powder and method for manufacturing the same |
JP2017210662A (en) * | 2016-05-26 | 2017-11-30 | 国立大学法人東北大学 | Production method of magnet alloy powder |
JP2020056101A (en) * | 2018-09-26 | 2020-04-09 | 日亜化学工業株式会社 | Method for producing rare earth magnetic powder |
JP6780693B2 (en) * | 2018-01-22 | 2020-11-04 | 日亜化学工業株式会社 | Manufacturing method of bond magnets and compounds for bond magnets |
WO2021014837A1 (en) * | 2019-07-22 | 2021-01-28 | 日亜化学工業株式会社 | Additive for bonded magnet and method for manufacturing compound for bonded magnet |
-
2020
- 2020-12-03 JP JP2020201165A patent/JP2022080806A/en active Pending
-
2021
- 2021-01-21 JP JP2021008210A patent/JP2022080815A/en active Pending
- 2021-01-21 JP JP2021008211A patent/JP2022080816A/en active Pending
- 2021-01-21 JP JP2021008212A patent/JP7335515B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002008911A (en) * | 2000-06-22 | 2002-01-11 | Nichia Chem Ind Ltd | Surface treating method of rare earth-iron-nitrogen magnetic powder, and plastic magnet formed of the same |
JP2002043109A (en) * | 2000-07-19 | 2002-02-08 | Nichia Chem Ind Ltd | Surface treatment method of rare earth-iron-nitrogen magnetic power and plastic magnet formed of the same |
JP2002075767A (en) * | 2000-08-31 | 2002-03-15 | Sumitomo Special Metals Co Ltd | Rare earth permanent magnet having corrosion-resistant covering, and its manufacturing method |
JP2006283094A (en) * | 2005-03-31 | 2006-10-19 | Toda Kogyo Corp | Sm-Fe-N MAGNETIC PARTICLE POWDER, ITS MANUFACTURING METHOD, AND BOND MAGNET |
JP2014160794A (en) * | 2012-06-20 | 2014-09-04 | Sumitomo Metal Mining Co Ltd | Rare earth-transition metal-nitrogen based magnet fine powder and method for manufacturing the same |
JP2017210662A (en) * | 2016-05-26 | 2017-11-30 | 国立大学法人東北大学 | Production method of magnet alloy powder |
JP6780693B2 (en) * | 2018-01-22 | 2020-11-04 | 日亜化学工業株式会社 | Manufacturing method of bond magnets and compounds for bond magnets |
JP2020056101A (en) * | 2018-09-26 | 2020-04-09 | 日亜化学工業株式会社 | Method for producing rare earth magnetic powder |
WO2021014837A1 (en) * | 2019-07-22 | 2021-01-28 | 日亜化学工業株式会社 | Additive for bonded magnet and method for manufacturing compound for bonded magnet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023234158A1 (en) * | 2022-05-31 | 2023-12-07 | 本州化学工業株式会社 | Crystal of 4,4'-bis(1,1-bis(4-hydroxy-3-methylphenyl)ethyl)biphenyl and method for producing same |
WO2024038829A1 (en) * | 2022-08-19 | 2024-02-22 | 日亜化学工業株式会社 | α-FE-CONTAINING RARE EARTH ELEMENT-IRON-NITROGEN MAGNETIC POWDER, MANUFACTURING METHOD FOR SAME, MAGNETIC MATERIAL FOR MAGNETIC FIELD AMPLIFICATION, AND MAGNETIC MATERIAL FOR ULTRA-HIGH FREQUENCY ABSORPTION |
Also Published As
Publication number | Publication date |
---|---|
JP2022080806A (en) | 2022-05-30 |
JP2022080816A (en) | 2022-05-30 |
JP7335515B2 (en) | 2023-08-30 |
JP2022080815A (en) | 2022-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11676748B2 (en) | Anisotropic magnetic powders and method of producing the same | |
JP5499738B2 (en) | Surface-treated rare earth magnetic powder, resin composition for bonded magnet containing the rare earth magnetic powder, and bonded magnet | |
WO1999033597A1 (en) | Sm-Fe-N ALLOY POWDER AND PROCESS FOR THE PRODUCTION THEREROF | |
JP7335515B2 (en) | Manufacturing method of compound for bonded magnet | |
JP2021057599A (en) | Manufacturing method of r-t-b series rare earth magnet powder, r-t-b series rare earth magnet powder, and bond magnet | |
JP6303366B2 (en) | Magnetic particle manufacturing method and magnetic particle | |
JP2022109276A (en) | Manufacturing method of magnetic powder | |
JP4623308B2 (en) | Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet | |
JP2014236195A (en) | Method of producing magnetic particles | |
WO2022107461A1 (en) | PRODUCTION METHOD FOR PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER | |
JP3826537B2 (en) | Rare earth bonded magnet and composition for rare earth bonded magnet | |
WO2022107462A1 (en) | PRODUCTION METHOD OF PHOSPHATE-COATED SmFeN-BASE ANISOTROPIC MAGNETIC POWDER, AND BOND MAGNET | |
JP5110296B2 (en) | Method for producing Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet | |
US20220157520A1 (en) | Compound for bonded magnet, bonded magnet, method of producing same, and resin composition for bonded magnets | |
US20230374257A1 (en) | Method of producing magnetic powder-containing resin composition | |
JP5019037B2 (en) | Sm-Fe-N-based magnetic particle powder and method for producing the same, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet | |
JP2024051932A (en) | MANUFACTURING METHOD FOR PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER | |
US20230207166A1 (en) | METHOD OF PRODUCING PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER | |
JP4296379B2 (en) | Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet | |
CN116508122A (en) | Method for producing phosphate-coated SmFeN anisotropic magnetic powder, and phosphate-coated SmFeN anisotropic magnetic powder | |
WO2022259949A1 (en) | Smfen-based anisotropic magnetic powder, bonded maget, method for producing said smfen-based anisotropic magnetic powder, and method for producing said bonded maget | |
WO2023048003A1 (en) | Smfen-based anisotropic magnetic powder and bonded magnet, and method for producing said powder and magnet | |
JP6985607B2 (en) | Manufacturing method of anisotropic magnetic powder | |
JP2024028122A (en) | Rare earth magnetic powder manufacturing method and rare earth magnetic powder | |
CN117594348A (en) | Method for producing rare earth magnetic powder, and rare earth magnetic powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20210217 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230608 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230731 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7335515 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |