JP2002075371A - Manufacturing method for positive electrode plate for lead-acid battery and lead-acid battery - Google Patents

Manufacturing method for positive electrode plate for lead-acid battery and lead-acid battery

Info

Publication number
JP2002075371A
JP2002075371A JP2000265872A JP2000265872A JP2002075371A JP 2002075371 A JP2002075371 A JP 2002075371A JP 2000265872 A JP2000265872 A JP 2000265872A JP 2000265872 A JP2000265872 A JP 2000265872A JP 2002075371 A JP2002075371 A JP 2002075371A
Authority
JP
Japan
Prior art keywords
lead
positive electrode
electrode plate
active material
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000265872A
Other languages
Japanese (ja)
Inventor
Yuichi Tsuboi
裕一 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000265872A priority Critical patent/JP2002075371A/en
Publication of JP2002075371A publication Critical patent/JP2002075371A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a positive electrode plate for a lead-acid battery improving the using rate of an active material for the positive electrode plate without reducing the serviceable life performance and maintenance characteristics. SOLUTION: This manufacturing method for the positive electrode plate is provided with, at least, a process of manufacturing paste using the positive electrode active material, peroxyboric acid sodium, and dilute sulfuric acid and a process filling a collector with the paste manufactured in the above process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池に関する。[0001] The present invention relates to a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池は安価で性能も安定しているこ
とから、自動車用をはじめUPSなどのバックアップ電
源など幅広い分野で用いられている。しかし、ニッケル
水素電池やリチウムイオン電池などと比較してエネルギ
ー密度が低いという欠点がある。この原因のひとつに正
極活物質の利用率が低いことがあり、活物質の利用率向
上が望まれており、従来から利用率向上を目指して様々
な添加剤が検討されてきた。
2. Description of the Related Art Lead-acid batteries are inexpensive and have stable performance, and are therefore used in a wide range of fields such as backup power sources for vehicles and UPS. However, there is a disadvantage that the energy density is lower than that of a nickel metal hydride battery or a lithium ion battery. One of the causes is that the utilization rate of the positive electrode active material is low, and it has been desired to improve the utilization rate of the active material. Various additives have been studied for the purpose of improving the utilization rate.

【0003】例えば、特開昭61−171062号など
に記載されているように正極活物質に黒鉛(炭素系添加
剤)を添加したり、特開平04−14758号や特開平
03−276561号などに記載されているように、S
n化合物、Sb化合物などを活物質に添加し、活物質導
電性向上、活物質表面積増大、活物質中の細孔をコント
ロールするなどして活物質利用率を向上させていた。
For example, as described in JP-A-61-171062, graphite (carbon additive) is added to a positive electrode active material, and JP-A-04-14758 and JP-A-03-276561 are disclosed. As described in
An n-compound, an Sb compound, or the like is added to the active material to improve the conductivity of the active material, increase the surface area of the active material, control the pores in the active material, and improve the utilization rate of the active material.

【0004】また上記とは別に、特開平2−68857
号には、リン酸ジルコニウムを添加した鉛粉を用いて調
整した鉛蓄電池用ペーストを、所定のリン酸誘導体を含
む希硫酸中で化成後、リン酸中に浸漬し、正極活物質中
にZrPを存在させることにより、放電容量が大きい長
寿命の鉛蓄電池を提供する技術も知られていた。
In addition to the above, Japanese Patent Application Laid-Open No. 2-68857
No. 2, a lead-acid battery paste prepared using lead powder to which zirconium phosphate was added was converted into dilute sulfuric acid containing a predetermined phosphoric acid derivative, then immersed in phosphoric acid, and ZrP was added to the positive electrode active material. There is also known a technique for providing a long-life lead-acid battery having a large discharge capacity by making the lead-acid battery exist.

【0005】[0005]

【発明の解決しようとする課題】しかし、正極活物質の
利用率を向上させる効果のある添加剤は、その一方で活
物質の軟化や脱落を促進して寿命性能を低下させたり、
添加した元素が負極板に析出して水素過電圧を小さく
し、結果的に減液が多くなりメンテナンス特性を悪化さ
せたりするなどの問題があった。
However, additives that have the effect of improving the utilization rate of the positive electrode active material, on the other hand, promote the softening or falling off of the active material and reduce the life performance,
The added element precipitates on the negative electrode plate to reduce the hydrogen overvoltage, and as a result, there is a problem that the liquid reduction increases and the maintenance characteristics deteriorate.

【0006】本発明は上記課題を解決するもので、正極
板の活物質利用率を向上させ、なおかつ寿命性能やメン
テナンス特性が低下しない鉛蓄電池を提供することを目
的とするものである。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a lead-acid battery in which the active material utilization of the positive electrode plate is improved and the life performance and maintenance characteristics are not deteriorated.

【0007】[0007]

【課題を解決するための手段】請求項1にかかる発明
は、少なくとも鉛粉とペルオキソホウ酸ナトリウムと希
硫酸とを用いてペーストを作製する工程と、前記工程で
作製されたぺーストを集電体に充填する工程とを備えた
ことを特徴とする、鉛蓄電池用正極板の製造方法であ
る。
According to a first aspect of the present invention, there is provided a process for producing a paste using at least lead powder, sodium peroxoborate and dilute sulfuric acid, and collecting the paste produced in the process. And a step of filling the body with a positive electrode plate for a lead-acid battery.

【0008】請求項2記載の発明は、請求項1記載の鉛
蓄電池用正極板の製造方法において、鉛粉に対するペル
オキソホウ酸ナトリウムの量が0.1〜5wt%であるこ
とを特徴とするものである。
According to a second aspect of the present invention, in the method for producing a positive electrode plate for a lead storage battery according to the first aspect, the amount of sodium peroxoborate with respect to the lead powder is 0.1 to 5% by weight. It is.

【0009】請求項3記載の発明は、請求項1もしくは
2記載の製造方法で製造された正極板を備えたことを特
徴とする鉛蓄電池である。
According to a third aspect of the present invention, there is provided a lead-acid battery including a positive electrode plate manufactured by the manufacturing method according to the first or second aspect.

【0010】[0010]

【発明の実施の形態】本発明にかかる正極板の製造方法
は、正極活物質である鉛粉とペルオキソホウ酸ナトリウ
ムとを混合し、希硫酸を加え、定法に従ってペーストを
作成し、これを集電体に充填することにより実施するこ
とができる。この方法により製造された正極板を用いた
鉛蓄電池は、従来方法で製造された鉛蓄電池に比べ、利
用率および寿命性能において改善がみられる。尚、集電
体とは、正極活物質を保持するとともに集電機能を備え
た電極基体の総称であり、通常、格子状のものや箔状の
ものが使われる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a positive electrode plate according to the present invention, a lead is mixed with sodium peroxoborate as a positive electrode active material, diluted sulfuric acid is added, and a paste is prepared according to a standard method. It can be implemented by filling the electric body. The lead storage battery using the positive electrode plate manufactured by this method has an improvement in the utilization factor and the life performance as compared with the lead storage battery manufactured by the conventional method. Note that the current collector is a general term for an electrode substrate holding a positive electrode active material and having a current collecting function, and a grid-like or foil-like thing is usually used.

【0011】ペルオキソホウ酸ナトリウムを添加するこ
とによってなぜ正極活物質の利用率が向上するのかとい
う理由についてはまだ明らかではないが、ペルオキソホ
ウ酸ナトリウムは水に溶かすとH2O2を発生する強い酸化
剤であるため、ペースト調製中にペルオキソホウ酸ナト
リウムがH2O2を発生しながら分解され、その際に鉛粉と
の反応性が増し、未化活物質結晶との相互作用が生じや
すくなることが考えられる。そのため、化成した後も、
ペルオキソホウ酸ナトリウムを添加した正極活物質では
活物質とホウ素またはホウ酸イオンとの相互作用が維持
され、PbO2およびPbSO4の結晶構造に歪みを生じ、結晶
の発達が阻害され活物質の粗大化を抑制し、反応性に優
れた活物質を形成・維持するなどの効果があると思われ
る。
It is not yet clear why the addition of sodium peroxoborate improves the utilization rate of the positive electrode active material. However, sodium peroxoborate generates H 2 O 2 when dissolved in water. Because it is an oxidizing agent, sodium peroxoborate is decomposed while generating H 2 O 2 during paste preparation, and at that time, reactivity with lead powder increases, and interaction with unactivated active material crystals is likely to occur It can be considered. Therefore, even after chemical formation,
In the positive electrode active material to which sodium peroxoborate is added, the interaction between the active material and boron or borate ions is maintained, the crystal structure of PbO 2 and PbSO 4 is distorted, and the growth of the crystal is inhibited, and the active material is coarsened. It is believed that the compound has an effect of suppressing the formation of the active material and forming and maintaining an active material having excellent reactivity.

【0012】また、鉛蓄電池の正極板では、放電時に硫
酸鉛が生成して活物質の導電性が低下する現象がみられ
る。この活物質の導電性の低下は放電電圧の低下を引き
起こすひとつの要因であるが、ホウ素の化合物(ホウ化
物)は一般的に導電性に優れ、ペルオキソホウ酸ナトリ
ウムを添加した活物質中でホウ化物が放電時の活物質抵
抗の増大を抑制する役割を果たしていることも考えられ
る。以上のような効果が複合的に作用して利用率や寿命
性能の向上が実現されると思われるペルオキソホウ酸ナ
トリウムの量について言えば、鉛粉に対して0.1%未
満では利用率向上や寿命性能の改善効果が不十分であ
り、5wt%以上では正極の容積エネルギー密度が低下す
ることから、0.1〜5wt%が好適である。
Further, in the positive electrode plate of a lead storage battery, a phenomenon is observed in which lead sulfate is generated at the time of discharge and the conductivity of the active material is reduced. This decrease in the conductivity of the active material is one factor that causes a decrease in the discharge voltage. However, boron compounds (borides) generally have excellent conductivity, and boron compounds (borides) are used in active materials to which sodium peroxoborate is added. It is also conceivable that the oxide plays a role in suppressing an increase in the resistance of the active material during discharge. As for the amount of sodium peroxoborate, which is considered to improve the utilization rate and life performance due to the combined effects of the above effects, if the amount is less than 0.1% with respect to the lead powder, the utilization rate is improved. And the effect of improving the life performance is insufficient, and if it is 5 wt% or more, the volume energy density of the positive electrode decreases, so that 0.1 to 5 wt% is preferable.

【0013】また、本発明は、特定の鉛蓄電池の限定さ
れるものではなく、密閉式、液式、クラッド式等あらゆ
る形の鉛蓄電池について適用できる。また、鉛丹を添加
した鉛粉を用いた場合も本発明の効果は変わらない。
The present invention is not limited to a specific lead-acid battery, but can be applied to any type of lead-acid battery such as a sealed type, a liquid type, and a clad type. Further, the effect of the present invention does not change even when lead powder to which lead red is added is used.

【0014】[0014]

【実施例】以下、本発明を実施例に基づき説明する。ま
ず、鉛粉にペルオキソホウ酸ナトリウム(NaBO3・4H2O)
を鉛粉量に対して1wt%添加し、ついで所定量の水と希
硫酸を添加、混合して正極板用ペーストを調製した。次
に、このペーストを鉛合金製の集電体に充填して正極板
を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. First, sodium perborate to lead powder (NaBO 3 · 4H 2 O)
Was added to the lead powder in an amount of 1 wt%, and then predetermined amounts of water and dilute sulfuric acid were added and mixed to prepare a positive electrode plate paste. Next, this paste was filled into a lead alloy current collector to obtain a positive electrode plate.

【0015】また比較として、ペルオキソホウ酸ナトリ
ウム(NaBO3・4H2O)を無添加のペースト、ホウ酸(H3BO
3)を1wt%添加したペースト、及び、ホウ酸ナトリウ
ム(Na2B4O7・10H2O)を1wt%添加したペーストを調製
し、同様に集電体に充填して正極板を得た。
For comparison, a paste containing no sodium peroxoborate (NaBO 3 .4H 2 O) and boric acid (H 3 BO
3 ) A paste to which 1 wt% was added and a paste to which 1 wt% of sodium borate (Na 2 B 4 O 7 .10H 2 O) were added were prepared, and similarly filled into a current collector to obtain a positive electrode plate. .

【0016】上記とは別に、鉛粉にリグニンおよびバリ
ウム化合物、所定量の水、及び、希硫酸を添加混合して
負極板用ペーストを調製し、鉛合金製の集電体に充填し
て負極板を得た。
Separately from the above, a lignin and barium compound, a predetermined amount of water and dilute sulfuric acid are added to and mixed with lead powder to prepare a paste for a negative electrode plate, which is filled in a lead alloy current collector to form a negative electrode. I got a board.

【0017】これらの各正極板4枚と負極板5枚および
ガラス繊維セパレータを用いて2V―6Ahの密閉形鉛蓄
電池を作製した。次いで、希硫酸を注液し、電槽化成を
おこなった後、試験に供した。これら各鉛蓄電池の一覧
を図1に示す。
A sealed lead-acid battery of 2V-6Ah was manufactured by using each of these four positive plates, five negative plates and a glass fiber separator. Subsequently, diluted sulfuric acid was injected, the battery was chemically formed, and then subjected to a test. FIG. 1 shows a list of these lead storage batteries.

【0018】これらの鉛蓄電池を放電電流0.1CA
(0.6A)および1CA(6A)で容量試験をおこな
った。その結果を図2に示す。ホウ酸およびホウ酸ナト
リウムを添加したもの(C、D)、無添加品(B)はほ
ぼ同等の容量であったが、ペルオキソホウ酸ナトリウム
を添加した電池(A)は、ローレート放電で約8%、ハ
イレート放電では約15%もB、C、Dより大容量であ
った。
These lead-acid batteries were discharged at a discharge current of 0.1 CA.
(0.6 A) and 1 CA (6 A) were tested for capacity. The result is shown in FIG. The batteries with boric acid and sodium borate (C, D) and the additive-free product (B) had almost the same capacity, but the battery with sodium peroxoborate (A) had a capacity of about 8 at low rate discharge. %, And about 15% in the high-rate discharge, the capacity was larger than B, C and D.

【0019】さらに、これらの鉛蓄電池を寿命試験に供
した。寿命試験は40℃で1/3CA電流(2A)で定
格容量の50%を放電した後、定電流で放電電気量の1
20%を充電するという条件でおこなった。寿命判定
は、50サイクル毎に行った0.1CA(0.6A)電
流での容量試験において、放電容量が定格容量の50%
以下になった時を寿命とした。
Further, these lead storage batteries were subjected to a life test. In the life test, 50% of the rated capacity was discharged at 1/3 CA current (2 A) at 40 ° C.
The test was performed under the condition of charging 20%. In the life test, the discharge capacity was 50% of the rated capacity in a capacity test at a current of 0.1 CA (0.6 A) performed every 50 cycles.
The life was defined as the time when the following was reached.

【0020】各鉛蓄電池の寿命サイクル数および無添加
品(B)が寿命となった500サイクル時の0.1CA
放電容量を図3の右端列に示す。また図3の中列に示す
ように、無添加品(B)の寿命は500サイクル、ホウ
酸を添加した電池(C)の寿命は550サイクル、ホウ
酸ナトリウムを添加した電池(D)の寿命は600サイ
クルであったのに対して、ペルオキソホウ酸ナトリウム
を添加した電池(A)は、無添加品(B)が寿命となっ
た500サイクル時においても容量は定格容量の80%
以上を維持しており、寿命も大幅に長い800サイクル
であった。
The number of life cycles of each lead storage battery and 0.1 CA at 500 cycles when the additive-free product (B) reaches the end of its life
The discharge capacity is shown in the rightmost column of FIG. As shown in the middle row of FIG. 3, the life of the additive-free product (B) is 500 cycles, the life of the battery (C) to which boric acid is added is 550 cycles, and the life of the battery (D) to which sodium borate is added. The battery (A) to which sodium peroxoborate was added had a capacity of 80% of the rated capacity even at the time of 500 cycles when the non-added product (B) had a life of 500 cycles.
The above conditions were maintained, and the life was 800 cycles, which was significantly longer.

【0021】図4には、寿命試験中の電池の減液量を示
す。ペルオキソホウ酸ナトリウムを添加した電池(A)
は、無添加品(B)と同等程度であり、電池使用中の電
解液涸れの問題もなく、密閉化・メンテナンス特性にも
悪影響がなかった。
FIG. 4 shows the amount of liquid reduction of the battery during the life test. Battery containing sodium peroxoborate (A)
Was equivalent to that of the additive-free product (B), there was no problem of electrolyte drying during use of the battery, and there was no adverse effect on the sealing and maintenance characteristics.

【0022】[0022]

【発明の効果】以上に述べたように、本発明によれば正
極板の活物質利用率を向上させ、なおかつ寿命性能やメ
ンテナンス特性も良好と利点をもつ鉛蓄電池が提供され
る。
As described above, according to the present invention, there is provided a lead-acid battery having an advantage that the active material utilization rate of the positive electrode plate is improved and the life performance and the maintenance characteristics are good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池の内容を示す表である。FIG. 1 is a table showing the contents of a battery.

【図2】容量試験結果を示す図である。FIG. 2 is a diagram showing a capacity test result.

【図3】寿命試験結果を示す表である。FIG. 3 is a table showing life test results.

【図4】寿命試験中の減液量を示す表である。FIG. 4 is a table showing the amount of liquid reduction during a life test.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも鉛粉とペルオキソホウ酸ナトリ
ウムと希硫酸とを用いてペーストを作製する工程と、前
記工程で作製された ぺーストを集電体に充填する工
程とを備えたことを特徴とする、鉛蓄電池用正極板の製
造方法。
1. A process for producing a paste using at least lead powder, sodium peroxoborate and dilute sulfuric acid, and a process for filling the paste produced in the above process into a current collector. A method for producing a positive electrode plate for a lead storage battery.
【請求項2】鉛粉に対するペルオキソホウ酸ナトリウム
の量が0.1〜5wt%であることを特徴とする、請求項
1記載の鉛蓄電池用正極板の製造方法。
2. The method for producing a positive electrode plate for a lead storage battery according to claim 1, wherein the amount of sodium peroxoborate based on the lead powder is 0.1 to 5% by weight.
【請求項3】請求項1もしくは2記載の製造方法で製造
された正極板を備えたことを特徴とする、鉛蓄電池。
3. A lead-acid battery comprising a positive electrode plate manufactured by the method according to claim 1.
JP2000265872A 2000-09-01 2000-09-01 Manufacturing method for positive electrode plate for lead-acid battery and lead-acid battery Pending JP2002075371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265872A JP2002075371A (en) 2000-09-01 2000-09-01 Manufacturing method for positive electrode plate for lead-acid battery and lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265872A JP2002075371A (en) 2000-09-01 2000-09-01 Manufacturing method for positive electrode plate for lead-acid battery and lead-acid battery

Publications (1)

Publication Number Publication Date
JP2002075371A true JP2002075371A (en) 2002-03-15

Family

ID=18753065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265872A Pending JP2002075371A (en) 2000-09-01 2000-09-01 Manufacturing method for positive electrode plate for lead-acid battery and lead-acid battery

Country Status (1)

Country Link
JP (1) JP2002075371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715425A (en) * 2013-12-07 2014-04-09 河南超威电源有限公司 Lead paste for battery of electric vehicle, and use method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715425A (en) * 2013-12-07 2014-04-09 河南超威电源有限公司 Lead paste for battery of electric vehicle, and use method thereof

Similar Documents

Publication Publication Date Title
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
EP2960978B1 (en) Flooded lead-acid battery
JP2013218894A (en) Lead acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JPH06196165A (en) Sealed lead-acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP2002075371A (en) Manufacturing method for positive electrode plate for lead-acid battery and lead-acid battery
JPS63152868A (en) Lead-acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
CN209515896U (en) A kind of lithium ion secondary battery
JP4411860B2 (en) Storage battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JPH09219214A (en) Alkaline storage battery
JP2002075339A (en) Lead-acid battery
JPH0234757Y2 (en)
JP2762730B2 (en) Nickel-cadmium storage battery
JP2022138753A (en) Lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JP2002343413A (en) Seal type lead-acid battery
JPH06140042A (en) Sealed lead-acid battery
CN112864459A (en) Electrolyte, preparation method thereof and secondary lithium metal battery
JPH04206150A (en) Lead acid battery
JPH02119054A (en) Sealed lead-acid battery
JPH01117279A (en) Lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213