JP2002072082A - Optical system and optical equipment using the same - Google Patents

Optical system and optical equipment using the same

Info

Publication number
JP2002072082A
JP2002072082A JP2000265629A JP2000265629A JP2002072082A JP 2002072082 A JP2002072082 A JP 2002072082A JP 2000265629 A JP2000265629 A JP 2000265629A JP 2000265629 A JP2000265629 A JP 2000265629A JP 2002072082 A JP2002072082 A JP 2002072082A
Authority
JP
Japan
Prior art keywords
refractive power
lens
lens group
optical
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000265629A
Other languages
Japanese (ja)
Other versions
JP2002072082A5 (en
JP4641339B2 (en
Inventor
Makoto Fujimoto
誠 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000265629A priority Critical patent/JP4641339B2/en
Publication of JP2002072082A publication Critical patent/JP2002072082A/en
Publication of JP2002072082A5 publication Critical patent/JP2002072082A5/ja
Application granted granted Critical
Publication of JP4641339B2 publication Critical patent/JP4641339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a telephoto type optical system having a large aperture ratio whose image forming performance is improved by combining a dioptric system and a diffraction optical device, and optical equipment using the optical system. SOLUTION: This optical system is provided with a 1st lens group having positive refractive power and a 2nd lens group having negative refractive power in order from an object side, and the 1st lens group is constituted of the diffraction optical device consisting of a diffraction grating having rotationally symmetric shape with respect to an optical axis and having positive refractive power, one or more positive lenses and one or more negative lenses. Assuming that ϕD means the refractive power of the diffraction optical device having the positive refractive power in the 1st lens group, ϕ1 means the refractive power of the 1st lens group, ϕ means the refractive power of an entire lens system and L means the entire length (a distance from the 1st lens group to an image surface) of the lens, the optical system satisfies conditional expressions 0.005<ϕD/ϕ1<0.05, 0.45<ϕ/ϕ1<0.5 and 0.50<ϕ×L<0.75.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学系及びそれを
用いた光学機器に関し、屈折光学系と回折光学素子を用
いて大口径化と結像性能の向上を図った望遠型の撮影レ
ンズとして、銀塩写真カメラ、ビデオカメラ、電子スチ
ルカメラ、デジタルカメラ等の光学機器に好適なもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system and an optical apparatus using the same, and more particularly, to a telephoto taking lens having a large aperture and improved imaging performance using a refractive optical system and a diffractive optical element. It is suitable for optical devices such as a silver halide photographic camera, a video camera, an electronic still camera, and a digital camera.

【0002】[0002]

【従来の技術】従来より長焦点距離の撮影光学系に好適
なレンズタイプとして、物体側から順に正の屈折力を有
する前方レンズ群と、負の屈折力を有する後方レンズ群
を有する光学系、所謂望遠レンズが知られている。
2. Description of the Related Art Conventionally, as a lens type suitable for a photographing optical system having a long focal length, an optical system having a front lens group having a positive refractive power and a rear lens group having a negative refractive power in order from the object side. A so-called telephoto lens is known.

【0003】一般的に焦点距離の長い望遠レンズでは、
焦点距離が延びるにしたがって、諸収差のうち、特に軸
上色収差及び倍率色収差等の色収差が悪化する傾向にあ
る。これらの色収差を良好に補正する為に、蛍石等の異
常部分分散を持った低分散材質を用いた正レンズと高分
散材質を用いた負レンズを組み合わせて色消しを行った
望遠レンズが種々と提案されている。
[0003] In general, a telephoto lens having a long focal length,
As the focal length increases, chromatic aberration such as axial chromatic aberration and chromatic aberration of magnification among various aberrations tends to be worsened. In order to satisfactorily correct these chromatic aberrations, there are various telephoto lenses that perform achromatization by combining a positive lens using a low dispersion material with anomalous partial dispersion such as fluorite and a negative lens using a high dispersion material. It has been proposed.

【0004】蛍石等の異常部分分散ガラスは、色収差の
補正に関して効果がある反面、加工が難しく又非常に高
価であるという欠点があり、比重も異常部分分散を有さ
ない他の低分散ガラスよりも比較的大きく、それを用い
るとレンズ系全体が重くなるという欠点もあった。(例
えば、蛍石で比重3.18、FK01で比重3.63。
これらに対し、異常部分分散性の小さいFK5は比重
2.46、BK7で比重2.52である。)そして、異
常部分分散ガラスは、表面が比較的傷つき易く、更にF
K01等は大口径とすると、急激な温度変化に対して割
れ易いという欠点もあった。
Anomalous partial dispersion glass such as fluorite is effective in correcting chromatic aberration, but has the drawback that it is difficult to process and is very expensive, and other low dispersion glass having no specific gravity and anomalous partial dispersion. It is relatively large, and there is also a drawback that using it makes the entire lens system heavier. (For example, fluorite has a specific gravity of 3.18 and FK01 has a specific gravity of 3.63.
On the other hand, FK5 having a small anomalous partial dispersibility has a specific gravity of 2.46, and BK7 has a specific gravity of 2.52. ) And, the surface of the abnormally dispersed glass is relatively easily damaged.
If K01 or the like has a large diameter, it also has a disadvantage that it is easily cracked by a rapid temperature change.

【0005】一方光学系の色収差を補正する方法とし
て、分散の異なる2つの材質の硝材(レンズ)を組み合
わせる方法に対して、レンズ面やあるいは光学系の1部
に回折作用を有する回折格子を設けた回折光学素子を用
いて、色収差を減じる方法がSPIE Vol.1354 Inte
rnational Lens Design Conference(1990)等の文
献や特開平4−213421号公報、持開平6−324
262号公報、特開平6−331887号そしてUSP
5044706号等により開示されている。
On the other hand, as a method of correcting chromatic aberration of an optical system, a diffraction grating having a diffractive action is provided on a lens surface or a part of the optical system, compared to a method of combining two glass materials (lenses) having different dispersions. A method of reducing chromatic aberration using a diffractive optical element is described in SPIE Vol. 1354 Inte
References such as rnational Lens Design Conference (1990), JP-A-4-213421, and Kokai Hei6-324.
262, JP-A-6-331887 and USP
No. 5,044,706.

【0006】特開平6−324262号公報では、少な
くとも1枚の正の屈折力を持った回折光学素子と、少な
くとも1枚の負の屈折力を持った屈折光学素子より構成
されたFナンバーF2.8程度の色収差が比較的良好に
補正された望遠レンズを開示している。また、特開平6
−331887号公報でも同様に、回折光学素子と屈折
光学素子を組み合せ、色収差が比較的良好に補正された
FナンバーF2.8程度の望遠レンズを開示している。
Japanese Patent Application Laid-Open No. Hei 6-324262 discloses an F-number F2.F2 composed of at least one diffractive optical element having a positive refractive power and at least one refractive optical element having a negative refractive power. A telephoto lens in which chromatic aberration of about 8 has been corrected relatively well is disclosed. In addition, Japanese Unexamined Patent Publication
Similarly, Japanese Patent No. 331887 discloses a telephoto lens having an F-number of about F2.8 in which a chromatic aberration is corrected relatively well by combining a diffractive optical element and a refractive optical element.

【0007】又、多くの撮影レンズ(光学系)における
フォーカスは撮影レンズ全体を移動させたり、若しくは
撮影レンズの一郎を移動させたりして行っている。この
うち撮影レンズが長焦点距離を有する望遠レンズの場合
は撮影レンズが大型となり、又、高重量となるため、撮
影レンズ全体を移動させてフォーカスを行うのが機構的
に困難である。
Further, focusing in many photographing lenses (optical systems) is performed by moving the entire photographing lens or moving the photographing lens. When the photographing lens is a telephoto lens having a long focal length, the photographing lens becomes large and heavy, and it is mechanically difficult to move the entire photographing lens to perform focusing.

【0008】このため、望遠レンズでは一部のレンズ群
を移動させてフォーカスを行っているものが多い。この
うち撮影レンズの前方レンズ群以外の比較的小型でしか
も軽量のレンズ系中の中央部分の一部のレンズ群を移動
させてフォーカスを行ったインナーフォーカス式を用い
ているものが種々と提案されている。
For this reason, many telephoto lenses focus by moving some lens groups. Of these, various types that use an inner focus type in which focusing is performed by moving a part of the central lens group in a relatively small and lightweight lens system other than the front lens group of the photographing lens have been proposed. ing.

【0009】例えば、特開昭55−147606号公報
では焦点距離300mm、Fナンバー2.8のインナー
フォーカス式の望遠レンズを、特開昭59−65820
号公報や特開昭59−65821号公報では焦点距離1
35mm、Fナンバー2.8程度のインナーフォーカス
式の望遠レンズを提案している。
For example, Japanese Patent Application Laid-Open No. Sho 55-147606 discloses an inner focus telephoto lens having a focal length of 300 mm and an F number of 2.8.
And Japanese Patent Application Laid-Open No. 59-65821, the focal length is 1
An inner-focus telephoto lens of about 35 mm and an F number of about 2.8 has been proposed.

【0010】これらで提案されているインナーフォーカ
ス式の望遠レンズでは何れも物体側より順に正の屈折力
の第1群、負の屈折力の第2群、そして正の屈折力の第
3群の3つのレンズ群を有し、第2群を光軸上移動させ
てフォーカスを行っている。
In any of the inner focus type telephoto lenses proposed here, the first lens unit having a positive refractive power, the second lens unit having a negative refractive power, and the third lens unit having a positive refractive power are arranged in order from the object side. It has three lens groups, and focuses by moving the second group on the optical axis.

【0011】[0011]

【発明が解決しようとする課題】撮影レンズを銀塩写真
カメラに用いたとして、焦点距離を銀塩写真カメラ用に
換算して焦点距離300ミリを超えるFナンバー2.8
から4程度の超望遠レンズになると、光学系中に回折光
学素子を用いて収差補正を行っても、テレ比が0.9程
度とするのが限度であり、多くの場合レンズ全長が長く
なり、その為レンズ重量が重くなるという問題点が生じ
てくる。
Assuming that the photographing lens is used in a silver halide photographic camera, the focal length is converted to that for a silver halide photographic camera.
In the case of a super-telephoto lens from about to 4, even if aberration correction is performed using a diffractive optical element in the optical system, the telephoto ratio is limited to about 0.9, and in many cases, the overall length of the lens becomes longer. Therefore, there is a problem that the lens weight becomes heavy.

【0012】本発明は光学系中に回折光学素子を適切に
用いることにより、色収差当の諸収差を良好に補正しつ
つ、テレ比の小さい(レンズ全長の短い)、高い光学性
能を有した望遠型の光学系及びそれを用いた光学機器の
提供を目的とする。
According to the present invention, by appropriately using a diffractive optical element in an optical system, a telephoto lens having a small tele ratio (short lens length) and high optical performance while favorably correcting various aberrations such as chromatic aberration. It is an object of the present invention to provide a mold type optical system and an optical device using the same.

【0013】[0013]

【課題を解決するための手段】請求項1の発明の光学系
は本発明の回折光学素子を有した光学系は、物体側より
順に、正の屈折力を有する第1レンズ群、負の屈折力を
有する第2レンズ群を有し、前記第1レンズ群は、光軸
に対して回転対称形状の回折格子からなる正の屈折力の
回折光学素子と1枚以上の正レンズと1枚以上の負レン
ズから成り φD :第1レンズ群中の、正の屈折力の回折光学素子
の屈折力 φ1 :第1レンズ群の屈折力 φ :レンズ系全体の屈折力 L :レンズ全長(第1レンズ群から像面までの距離) としたとき、 0.005 < φD/φ1 < 0.05 0.45 < φ/φ1 < 0.5 0.50 < φ×L < 0.75 の条件式を満足することを特徴としている。
According to a first aspect of the present invention, an optical system having a diffractive optical element according to the present invention comprises, in order from the object side, a first lens group having a positive refractive power; A first lens group having a positive refractive power composed of a diffraction grating having a rotationally symmetrical shape with respect to the optical axis, one or more positive lenses, and one or more lenses; Φ: Refractive power of a diffractive optical element having a positive refractive power in the first lens group φ1: Refractive power of the first lens group φ: Refractive power of the entire lens system L: Overall length of the lens (first lens group) (Distance from the group to the image plane), satisfying the following condition: 0.005 <φD / φ1 <0.05 0.45 <φ / φ1 <0.5 0.50 <φ × L <0.75 It is characterized by doing.

【0014】請求項2の発明は請求項1の発明において
無限遠物体から近距離物体へのフォーカシングに際し、
前記第2レンズ群を光軸上像側へ移動させて行い、 φ2 :第2レンズ群の屈折力 としたとき、 −1 < φ/φ2 < −0.2 の条件式を満足することを特徴としている。
According to a second aspect of the present invention, when focusing from an object at infinity to an object at a short distance in the first aspect,
The second lens group is moved toward the image side on the optical axis, and satisfies a conditional expression of -1 <φ / φ2 <−0.2, where φ2 is the refractive power of the second lens group. And

【0015】請求項3は請求項1または2の発明におい
て前記第2レンズ群の像面側に正の屈折力の第3レンズ
群を有することを特徴としている。
A third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, a third lens unit having a positive refractive power is provided on the image plane side of the second lens unit.

【0016】請求項4の発明の光学機器は請求項1、2
または3の光学系を有していることを特徴としている。
The optical apparatus according to the fourth aspect of the present invention is the optical apparatus according to the first or second aspect.
Alternatively, it is characterized by having three optical systems.

【0017】[0017]

【発明の実施の形態】図1、図3、図5、図7、図9、図1
1は本発明の後述する光学系の数値実施例1〜6のレン
ズ断面図である。図2、図4、図6、図8、図10、図12
は本発明の光学系の数値実施例1〜6の収差図である。
レンズ断面図において、L1は正の屈折力の第1群(第
1レンズ群)、L2は負の屈折力の2群(第2レンズ
群)、L3は正の屈折力の第3群(第3レンズ群)であ
る。SPは開口絞り、IPは像面である。Gは光学フィ
ルターや保護ガラスやフェースプレート等のガラスブロ
ックである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1, FIG. 3, FIG. 5, FIG. 7, FIG.
1 is a lens cross-sectional view of Numerical Examples 1 to 6 of the optical system described later of the present invention. 2, 4, 6, 8, 10, and 12
FIG. 7 is an aberration diagram of Numerical Examples 1 to 6 of the optical system of the present invention.
In the lens cross-sectional view, L1 is a first group having positive refractive power (first lens group), L2 is a second group having negative refractive power (second lens group), and L3 is a third group having positive refractive power (second lens group). 3 lens group). SP is an aperture stop and IP is an image plane. G is a glass block such as an optical filter, a protective glass, and a face plate.

【0018】DOEは光軸に対して回転対称形状の回折
格子から成る正の屈折力の回折光学素子(回折面)であ
る。
The DOE is a diffractive optical element (diffractive surface) having a positive refractive power and composed of a diffraction grating having a rotationally symmetric shape with respect to the optical axis.

【0019】回折光学素子DOEは第1レンズ群中の接
合レンズ面に設けているが、他のレンズ面であっても良
い。本実施形態の回折光学素子(回折面)は光学系中に用
いたとき屈折面と回折面とで、ある基準波長の光線に対
する色収差の出方が逆方向に発現するという物理現象を
利用している。
Although the diffractive optical element DOE is provided on the cemented lens surface in the first lens group, it may be provided on another lens surface. The diffractive optical element of the present embodiment (diffractive surface) is a refracting surface and a diffractive surface when used in an optical system, utilizing the physical phenomenon that the appearance of chromatic aberration for a light beam of a certain reference wavelength appears in the opposite direction. I have.

【0020】又、このような回折光学素子は、その周期
的構造の周期を変化させることで非球面レンズ的な効果
をも持たせて収差を低減させている。
Further, such a diffractive optical element has an effect of an aspheric lens by changing the period of the periodic structure, thereby reducing aberration.

【0021】本実施形態では、第2群L2を矢印の如く
像面側へ移動させることにより無限遠物体から至近物体
へのフォーカスを行っている。本実施形態では光束の入
射高が高く、比較的収差補正が容易な第1群中に少なく
とも1つの回折光学素子DOEを設けると共に第1群の
屈折力やレンズ系全体の屈折力を条件式(1)〜(3)
の如く設定し、これにより画面全体及び物体距離全般に
渡りフォーカスの際の収差変動の少ない高い光学性能を
有した光学系を達成している。
In the present embodiment, the second lens unit L2 is moved to the image plane side as indicated by an arrow to focus from an object at infinity to a close object. In the present embodiment, at least one diffractive optical element DOE is provided in the first group in which the incident height of the light beam is high and the aberration correction is relatively easy, and the refractive power of the first group and the refractive power of the entire lens system are conditional expressions ( 1)-(3)
As a result, an optical system having high optical performance with little aberration fluctuation at the time of focusing over the entire screen and the entire object distance is achieved.

【0022】即ち、本発明の光学系は物体側より順に、
正の屈折力を有する第1レンズ群、負の屈折力を有する
第2レンズ群を有し、前記第1レンズ群は、光軸に対し
て回転対称形状の回折格子からなる正の屈折力の回折光
学素子と1枚以上の正レンズと1枚以上の負レンズから
成り φD :第1レンズ群中の、正の屈折力の回折光学素子
の屈折力 φ1 :第1レンズ群の屈折力 φ :レンズ系全体の屈折力 L :レンズ全長(第1レンズ群から像面までの距離) としたとき、 0.005 < φD/φ1 < 0.05 0.45 < φ/φ1 < 0.5 0.50 < φ×L < 0.75 の条件式を満足するようにしている。
That is, the optical system of the present invention is arranged in order from the object side.
A first lens group having a positive refractive power and a second lens group having a negative refractive power, wherein the first lens group has a positive refractive power composed of a diffraction grating having a rotationally symmetric shape with respect to an optical axis. It consists of a diffractive optical element, one or more positive lenses, and one or more negative lenses. ΦD: Refractive power of a diffractive optical element having a positive refractive power in the first lens group φ1: Refractive power of the first lens group φ: 0.005 <φD / φ1 <0.05 0.45 <φ / φ1 <0.5 0, where L is the refractive power of the entire lens system and the total length of the lens (the distance from the first lens group to the image plane). 50 <φ × L <0.75 is satisfied.

【0023】ここで屈折力φは焦点距離をfとしたとき φ=1/f で表わされるものである。Here, the refractive power φ is represented by φ = 1 / f where f is the focal length.

【0024】以下、条件式(1)、(2)、(3)の技
術的意味について説明する。
The technical meaning of conditional expressions (1), (2) and (3) will be described below.

【0025】条件式(1)は回折面DOと第1群の屈折
力の比に関し、条件式(1)の上限を越えて回折面DO
の屈折力が強くなると、球面収差、色の球面収差の諸収
差が悪化し、回折面の非球面効果(高次の位相項)では
補正しきれなくなる。
Conditional expression (1) relates to the ratio of the refractive power of the diffractive surface DO to the refractive power of the first lens group, and exceeds the upper limit of conditional expression (1).
When the refractive power of the lens becomes strong, various aberrations such as spherical aberration and chromatic spherical aberration are deteriorated, and cannot be completely corrected by the aspherical effect (higher-order phase term) of the diffraction surface.

【0026】また、条件式(1)の下限を超えると、軸
上色収差がキャンセル(補正)できなくなる。
If the lower limit of condition (1) is exceeded, axial chromatic aberration cannot be canceled (corrected).

【0027】条件式(2)は全系と第1群の屈折力の比
に関し、条件式(2)の上限を越えて第1群の屈折力が
小さくなると、レンズ全長を短くすることが困難とな
る。
Conditional expression (2) relates to the ratio of the refractive power of the first lens unit to that of the entire system. If the refractive power of the first lens unit becomes smaller than the upper limit of conditional expression (2), it is difficult to shorten the total lens length. Becomes

【0028】また、条件式(2)の下限を超えると、レ
ンズ全長を短くすることには有利であるが、第1群で発
生する球面収差等の諸収差が増大し補正しきれなくなり
好ましくない。
If the lower limit of conditional expression (2) is exceeded, it is advantageous to shorten the total length of the lens, but it is not preferable because various aberrations such as spherical aberration generated in the first lens unit are increased and cannot be corrected. .

【0029】条件式(3)はテレ比に関し、条件式
(3)の上限を超えて光学全長が長くなると、第1群の
屈折力が弱まり、必要となる回折光学素子の屈折力も弱
まり、所望の波長域における軸上の色収差を補正しきれ
なくなる。
The conditional expression (3) relates to the telephoto ratio. If the total length of the optical system becomes longer than the upper limit of the conditional expression (3), the refractive power of the first lens group will be reduced, and the required refractive power of the diffractive optical element will also be reduced. Cannot correct axial chromatic aberration in the above wavelength range.

【0030】また、条件式(3)の下限を越えて、光学
全長が短くなると、第1群で発生する球面収差等の諸収
差が増大し補正しきれなくなり好ましくない。
If the total length of the optical system is shorter than the lower limit of the conditional expression (3), various aberrations such as spherical aberration generated in the first lens unit are increased and cannot be corrected.

【0031】尚、さらに好ましくは条件式(1)〜
(3)の数値範囲を以下の如く設定するのが良い。
It is more preferable that conditional expressions (1) to (1) are satisfied.
It is preferable to set the numerical value range of (3) as follows.

【0032】 0.008 < φD/φ1 < 0.03 0.3 < φ/φ1 < 0.4 0.4 < φ×L < 0.73 次に本実施形態において第1レンズ群に設けた回折光学
面(回折面)について説明する。
0.008 <φD / φ1 <0.030.3 <φ / φ1 <0.40.4 <φ × L <0.73 Next, the diffraction provided in the first lens group in the present embodiment. The optical surface (diffraction surface) will be described.

【0033】本発明の実施形態では、正の屈折力の回折
面を1面設けた場合を示したが、更に回折面を追加して
も良く、これによれば、更に良好な光学性能が得られ
る。追加する回折面は、正の屈折力であっても負の屈折
力であってもよく、特に負の屈折力の回折面を追加する
場合は、光学系の像面寄りで瞳近軸光線の入射高が比較
的高く、かつ、近軸軸上光線の入射高が比較的低くなる
位置に配置するのが良い。これにより、倍率色収差を更
に良好に補正することができる。また、各回折面は平面
或いは球面レンズに配置してあるが、非球面をベースと
してもよく、両面に施してもよい。更に、接合レンズの
接合面に施しても良く、ベースの材質は光を透過するも
のであれば、特にガラスでなくても良い。
In the embodiment of the present invention, the case where one diffractive surface having a positive refractive power is provided is shown. However, a further diffractive surface may be added. Can be The diffractive surface to be added may have either a positive refractive power or a negative refractive power. In particular, when a diffractive surface having a negative refractive power is added, a paraxial pupil ray near the image plane of the optical system is generated. It is preferable to arrange the position where the incidence height is relatively high and the incidence height of the paraxial on-axis ray is relatively low. Thereby, chromatic aberration of magnification can be corrected more favorably. Further, although each diffraction surface is arranged on a flat or spherical lens, it may be based on an aspheric surface or may be provided on both surfaces. Furthermore, it may be applied to the cemented surface of the cemented lens, and the material of the base is not particularly limited to glass as long as it allows light to pass through.

【0034】特に、第1レンズ群内の回折面について
は、軸上物点及び軸外物点からの光線が出来るだけ回折
面へ垂直に入射するよう、平面または物体側へ凸面を向
けたレンズ面あるいは物体へ緩い凹面を向けたレンズ面
に設けるのがよく、これにより、回折効率の低下を緩和
することが出来る。望ましくは、レンズ面の法線に対
し、±15°未満で光線が入射するようなレンズ面に回
折面を設定するのが良い。
In particular, regarding the diffractive surface in the first lens group, a lens whose convex surface is directed to a plane or an object side so that rays from an on-axis object point and an off-axis object point enter the diffractive surface as perpendicularly as possible. It is preferable to provide a lens surface with a gentle concave surface facing a surface or an object, so that a decrease in diffraction efficiency can be mitigated. Desirably, the diffractive surface should be set on the lens surface such that light rays are incident at less than ± 15 ° with respect to the normal to the lens surface.

【0035】前述の位相形状で表される回折光学面の回
折格子形状は、実際には図13に示すようなキノフォー
ム形状の形態で実現される。
The diffraction grating shape of the diffractive optical surface represented by the above-described phase shape is actually realized in the form of a kinoform as shown in FIG.

【0036】図13において1は回折面を設けるベース
となる基材、2は回折格子を形成する光学材料(樹脂
部)、3は回折格子(回折面)である。
In FIG. 13, reference numeral 1 denotes a base material on which a diffraction surface is provided, reference numeral 2 denotes an optical material (resin portion) for forming a diffraction grating, and reference numeral 3 denotes a diffraction grating (diffraction surface).

【0037】図14は図13に示す回折光学素子の1次
回折効率の波長依存性を示している。実際の回折素子の
構成は前述した基材1の表面に塗布した樹脂部2に、波
長530nmで1次回折効率が100%となるような格
子厚dの回折格子3を成形している。
FIG. 14 shows the wavelength dependence of the first-order diffraction efficiency of the diffractive optical element shown in FIG. In the actual configuration of the diffraction element, a diffraction grating 3 having a grating thickness d such that the primary diffraction efficiency becomes 100% at a wavelength of 530 nm is formed on the resin portion 2 applied to the surface of the base material 1 described above.

【0038】図14で明らかなように設計次数での回折
効率は最適化した波長530nmから離れるに従って低
下する。その低下した分、設計次数近接の次数0次、2
次回折光が増大することになり、これがフレアとなって
光学系の解像度の低下につながる。
As is apparent from FIG. 14, the diffraction efficiency at the design order decreases as the distance from the optimized wavelength of 530 nm increases. Due to the decrease, the order 0 order near the design order, 2
The next-order diffracted light increases, which becomes a flare and leads to a decrease in the resolution of the optical system.

【0039】そこで本発明では、図15に示すような異
なる材質の回折格子を積層状に配置した形態の回折格子
形状を実施例の一つとして採用している。このような構
成にすることにより、より広い波長域で高い1次の回折
効率を得る構成とすることができる。図16はこの構成
での回折光学素子の1次回折効率の波長依存性を示して
いる。
Accordingly, in the present invention, a diffraction grating configuration in which diffraction gratings of different materials are arranged in a stacked manner as shown in FIG. 15 is employed as one of the embodiments. With such a configuration, it is possible to obtain a high first-order diffraction efficiency in a wider wavelength range. FIG. 16 shows the wavelength dependence of the first-order diffraction efficiency of the diffractive optical element having this configuration.

【0040】この図から分かるように積層構造の回折格
子にすることで、設計次数の回折効率は使用波長全域で
95%以上の高い回折効率を有している。これにより本
発明の撮影光学系は高い解像度が得られ光学性能は更に
改善される。
As can be seen from this figure, the diffraction efficiency of the design order has a high diffraction efficiency of 95% or more over the entire use wavelength range by using the diffraction grating having the laminated structure. Thereby, the imaging optical system of the present invention can obtain a high resolution, and the optical performance is further improved.

【0041】なお、ここでの回折光学素子としては、材
質を樹脂に限定するものでなく、基材1によっては第1
の回折格子4を直接に基材1に形成してもよい。
The material of the diffractive optical element here is not limited to resin, but depending on the substrate 1, the first
May be directly formed on the substrate 1.

【0042】また更に、図17のように積層構造を3層
以上の構成にすると、より良好な光学性能を得ることが
できる。
Further, when the laminated structure has three or more layers as shown in FIG. 17, better optical performance can be obtained.

【0043】このような構成とすることにより、空気層
に触れる部分の回折格子の格子厚を薄くすることが可能
となる。それにより回折格子のエッジの壁部分で発生す
る散乱光によるフレアが低減され、また回折格子に入射
する光の入射角の増大に伴う回折効率低下の軽減も可能
となり、光学性能は更に改善される。
With such a configuration, it is possible to reduce the grating thickness of the portion of the diffraction grating that touches the air layer. As a result, flare due to scattered light generated at the wall portion of the edge of the diffraction grating is reduced, and a decrease in diffraction efficiency due to an increase in the incident angle of light incident on the diffraction grating can be reduced, thereby further improving optical performance. .

【0044】図18は、この構成での回折光学素子の1
次回折効率の波長依存性を示している。
FIG. 18 shows one example of the diffractive optical element having this configuration.
The wavelength dependence of the second-order diffraction efficiency is shown.

【0045】また、回折格子を図示のような積層構造に
することにより、格子面を外気に触れにくい構成とする
ことができ、ごみの付着、汚れなどによる画質を劣化さ
せる不要な散乱光の発生を低減することができる。
Further, by making the diffraction grating a laminated structure as shown in the figure, the grating surface can be made hard to contact with the outside air, and unnecessary scattering light which deteriorates the image quality due to adhesion of dirt or dirt can be generated. Can be reduced.

【0046】もちろん、本実施例のように回折光学面を
レンズの接合面に配置することは、このような観点から
も有効である。
Of course, the arrangement of the diffractive optical surface on the joint surface of the lens as in this embodiment is effective from such a viewpoint.

【0047】本発明の目的とする光学系は以上の如く構
成することにより達成されるが、さらに、光学性能を良
好にするには次の諸条件のうち少なくとも1つを満足さ
せるのが良い。
The optical system aimed at by the present invention can be achieved by the above-described configuration. To further improve the optical performance, it is preferable to satisfy at least one of the following conditions.

【0048】(ア−1)無限遠物体から近距離物体への
フォーカシングに際し、前記第2レンズ群を光軸上像側
へ移動させて行い、 φ2 :第2レンズ群の屈折力 としたとき、 −1 < φ/φ2 < −0.2 ・・・(4) の条件式を満足することである。
(A-1) Focusing from an object at infinity to an object at a short distance is performed by moving the second lens group toward the image side on the optical axis. When φ2: the refracting power of the second lens group, −1 <φ / φ2 <−0.2 (4)

【0049】条件式(4)は全系と第2レンズ群の屈折
力の比に関し、条件式(1)〜(3)を満足した上で色
収差を含めた諸収差を、フォーカシングによる変動も含
め更に良好にし、かつ、オートフォーカス機能を有した
カメラに適した軽量でフォーカスの際のレンズ群の繰り
出し量の少ない光学系とするためのものである。
Conditional expression (4) relates to the ratio of the refracting power of the entire system to the second lens group. The conditional expressions (1) to (3) are satisfied, and various aberrations including chromatic aberration are included, including fluctuations due to focusing. It is intended to provide an optical system which is more favorable and is lightweight and suitable for a camera having an autofocus function, and has a small extension amount of a lens group during focusing.

【0050】条件式(4)の上限値を越えて第2レンズ
群の屈折力が強まると、その結果第1レンズ群の屈折力
も強まり、第2レンズ群のレンズ外径及びフォーカスの
際の繰出し量は減少するものの、基準状態での収差とフ
ォーカシングによる収差変動がともに悪化するので、好
ましくない。
When the refractive power of the second lens group is increased beyond the upper limit value of the conditional expression (4), the refractive power of the first lens group is also increased, and the lens outer diameter of the second lens group and the extension at the time of focusing. Although the amount is reduced, both the aberration in the reference state and the aberration fluctuation due to focusing become worse, which is not preferable.

【0051】また、条件式(4)の下限を超えて、第2
レンズ群の屈折力が弱まると。収差補正上は有利となる
ものの、レンズ外径及び繰出し量が増加してくるので好
ましくない。
When the lower limit of conditional expression (4) is exceeded, the second condition
When the refractive power of the lens group weakens. Although it is advantageous for aberration correction, it is not preferable because the lens outer diameter and the extension amount increase.

【0052】尚、更に好ましくは条件式(4)の数値範
囲を次の如く設定するのが良い。
It is more preferable to set the numerical range of conditional expression (4) as follows.

【0053】−0.7 < φ/φ2 < −0.25 (ア−2)第2レンズ群は像面側に凹面を向けた1つの
負レンズ又は正レンズと負レンズの接合レンズで構成す
ることである。
-0.7 <φ / φ2 <−0.25 (A-2) The second lens group is composed of one negative lens having a concave surface facing the image surface side or a cemented lens of a positive lens and a negative lens. That is.

【0054】これによればフォーカスを高速に行うこと
が容易となる。
According to this, it becomes easy to perform focusing at high speed.

【0055】(ア−3)回折面を第1レンズ群中の物体
側に凸面を向けた正レンズと像面側に凸面を向けた正レ
ンズとからなる接合レンズの接合面に設けることであ
る。これによれば回折面の回折効果による色収差の補正
を効果的に行うことが容易となる。
(A-3) The diffractive surface is provided on the cemented surface of the cemented lens of the first lens unit, which is composed of a positive lens having a convex surface facing the object side and a positive lens having a convex surface facing the image surface side. . According to this, it becomes easy to effectively correct the chromatic aberration by the diffraction effect of the diffraction surface.

【0056】次に本発明の光学系を用いたビデオカメラ
(光学機器)の実施形態を図19を用いて説明する。
Next, a video camera using the optical system of the present invention.
An embodiment of (optical device) will be described with reference to FIG.

【0057】図19において、10はビデオカメラ本
体、11は本発明の光学系、12は光学系11によって
被写体像を受光するCCD等の撮像素子、13は撮像素
子12が受光した被写体像を記録する記録手段、14は
不図子の表示素子に表示された被写体像を記録するため
のファインダーである。上記表示素子は液晶パネル等に
よって構成され、撮像素子12上に形成された被写体像
が表示される。
In FIG. 19, reference numeral 10 denotes a video camera body, 11 denotes an optical system of the present invention, 12 denotes an image pickup device such as a CCD for receiving a subject image by the optical system 11, and 13 denotes a subject image received by the image pickup device 12. The recording means 14 is a finder for recording a subject image displayed on a display element (not shown). The display element is constituted by a liquid crystal panel or the like, and displays a subject image formed on the imaging element 12.

【0058】このように本発明の光学系をビデオカメラ
等の光学機器に適用することにより、小型で高い光学性
能を有する光学機器を実現している。
As described above, by applying the optical system of the present invention to an optical device such as a video camera, an optical device having a small size and high optical performance is realized.

【0059】次に本発明の光学系の数値実施例を示す。
数値実施例においてriは物体側より順に第i番目の曲
率半径、diは物体側より順に第i番目の面と第i+1
番目の面のレンズ厚又は空気間隔、niとνiは各々物
体側より順に第i番目の光学部材の屈折率とアッベ数で
ある。又、表−1に前述の条件式と数値実施例との関係
を示す。
Next, numerical examples of the optical system according to the present invention will be described.
In the numerical examples, ri is the i-th radius of curvature in order from the object side, and di is the i-th surface and i + 1th in order from the object side.
The lens thickness or air gap of the i-th surface, ni and νi are the refractive index and Abbe number of the i-th optical member in order from the object side. Table 1 shows the relationship between the above-described conditional expressions and the numerical examples.

【0060】実施例の回折面の位相形状ψは、次式によ
って表される。 ψ(h,m)=(2π/mλ0)(C2h2+C4h4
+C6h6…) ここに、 h:光軸に対して垂直方向の高さ m:回折光の回折次数 λ0:設計波長 Ci:位相係数(i=1,2,3…) である。
The phase shape の of the diffraction surface in the embodiment is represented by the following equation. ψ (h, m) = (2π / mλ0) (C2h2 + C4h4
+ C6h6) where h: height in the direction perpendicular to the optical axis m: diffraction order of diffracted light λ0: design wavelength Ci: phase coefficient (i = 1, 2, 3,...)

【0061】各実施例において、回折光の回折次数mは
1であり、設計波長λ0はd線の波長(587.56n
m)である。
In each embodiment, the diffraction order m of the diffracted light is 1, and the design wavelength λ0 is the wavelength of the d-line (587.56n).
m).

【0062】また、任意の波長λ、任意の回折次数mに
対する回折面Dの屈折力φDは、最も低次の位相係数C
1を用いて次のように表わすことができる。
The refractive power φD of the diffraction surface D for an arbitrary wavelength λ and an arbitrary diffraction order m is the lowest phase coefficient C
It can be expressed as follows using 1 .

【0063】φD(λ,m)=−2C1mλ/λ0ΦD (λ, m) = − 2C1mλ / λ0

【0064】[0064]

【外1】 [Outside 1]

【0065】[0065]

【外2】 [Outside 2]

【0066】[0066]

【外3】 [Outside 3]

【0067】[0067]

【外4】 [Outside 4]

【0068】[0068]

【外5】 [Outside 5]

【0069】[0069]

【外6】 [Outside 6]

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【発明の効果】本発明によれば以上のように光学系中に
回折光学素子を適切に用いることにより、色収差当の諸
収差を良好に補正しつつ、テレ比の小さい(レンズ全長
の短い)、高い光学性能を有した望遠型の光学系及びそ
れを用いた光学機器を達成することができる。
According to the present invention, as described above, by appropriately using a diffractive optical element in an optical system, various aberrations such as chromatic aberration can be favorably corrected, and the tele ratio is small (the overall length of the lens is short). A telephoto optical system having high optical performance and an optical apparatus using the same can be achieved.

【0072】この他本発明によれば、大口径比でありな
がら、色収差を始めとする諸収差を良好に補正しなが
ら、軽量・コンパクト・高画質な回折光学素子を有した
光学系を達成することができる。
In addition, according to the present invention, an optical system having a light-weight, compact, and high-quality diffractive optical element can be achieved while satisfactorily correcting various aberrations including chromatic aberration while having a large aperture ratio. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学系の数値実施例1のレンズ断面図FIG. 1 is a lens cross-sectional view of a numerical example 1 of an optical system according to the present invention.

【図2】本発明の光学系の数値実施例1の収差図FIG. 2 is an aberration diagram of a numerical example 1 of the optical system according to the present invention.

【図3】本発明の光学系の数値実施例2のレンズ断面図FIG. 3 is a lens cross-sectional view of Numerical Example 2 of the optical system of the present invention.

【図4】本発明の光学系の数値実施例2の収差図FIG. 4 is an aberration diagram of a numerical example 2 of the optical system according to the present invention.

【図5】本発明の光学系の数値実施例3のレンズ断面図FIG. 5 is a lens cross-sectional view of a numerical example 3 of the optical system according to the present invention.

【図6】本発明の光学系の数値実施例3の収差図FIG. 6 is an aberration diagram of a numerical example 3 of the optical system according to the present invention.

【図7】本発明の数光学系の値実施例4のレンズ断面図FIG. 7 is a lens sectional view of a numerical example 4 of the numerical optical system according to the present invention;

【図8】本発明の光学系の数値実施例4の収差図FIG. 8 is an aberration diagram of a numerical example 4 of the optical system according to the present invention.

【図9】本発明の光学系の数値実施例5のレンズ断面図FIG. 9 is a lens cross-sectional view of Numerical Example 5 of the optical system of the present invention.

【図10】本発明の光学系の数値実施例5の収差図FIG. 10 is an aberration diagram for a numerical example 5 of the optical system according to the present invention;

【図11】本発明の光学系の数値実施例6のレンズ断面
FIG. 11 is a lens sectional view of a numerical example 6 of the optical system according to the present invention;

【図12】本発明の光学系の数値実施例6の収差図FIG. 12 is an aberration diagram of a numerical example 6 of the optical system according to the present invention;

【図13】 本発明における単層回折格子の断面模式図FIG. 13 is a schematic cross-sectional view of a single-layer diffraction grating according to the present invention.

【図14】 本発明における単層回折格子の回折効率を
示すグラフ
FIG. 14 is a graph showing the diffraction efficiency of a single-layer diffraction grating according to the present invention.

【図15】 本発明における積層回折格子の断面模式図FIG. 15 is a schematic cross-sectional view of a laminated diffraction grating according to the present invention.

【図16】 本発明における積層回折格子の回折効率を
示すグラフ
FIG. 16 is a graph showing the diffraction efficiency of the laminated diffraction grating in the present invention.

【図17】 本発明における3積層回折格子の断面模式
FIG. 17 is a schematic cross-sectional view of a three-layer diffraction grating according to the present invention.

【図18】 本発明における3積層回折格子の回折効率
を示すグラフ
FIG. 18 is a graph showing the diffraction efficiency of a three-layer diffraction grating according to the present invention.

【図19】 本発明の光学機器の要部概略図FIG. 19 is a schematic view of a main part of an optical apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群 DOE 回折光学素子 SP 絞り G ガラスブロック ΔS サジタル像面 ΔM メリディオナル像面 d d線 g g線 L1 First lens group L2 Second lens group L3 Third lens group DOE Diffractive optical element SP Stop G Glass block ΔS Sagittal image plane ΔM Meridional image plane d d line g g line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力を有する第1
レンズ群、負の屈折力を有する第2レンズ群を有し、前
記第1レンズ群は、光軸に対して回転対称形状の回折格
子からなる正の屈折力の回折光学素子と1枚以上の正レ
ンズと1枚以上の負レンズから成り φD :第1レンズ群中の、正の屈折力の回折光学素子
の屈折力 φ1 :第1レンズ群の屈折力 φ :レンズ系全体の屈折力 L :レンズ全長(第1レンズ群から像面までの距離) としたとき、 0.005 < φD/φ1 < 0.05 0.45 < φ/φ1 < 0.5 0.50 < φ×L < 0.75 の条件式を満足することを特徴とする光学系。
1. A first lens having a positive refractive power in order from the object side.
A second lens group having a negative refractive power, wherein the first lens group includes a diffractive optical element having a positive refractive power and a diffraction grating having a rotationally symmetric shape with respect to an optical axis; ΦD: refractive power of a diffractive optical element having a positive refractive power in the first lens group φ1: refractive power of the first lens group φ: refractive power of the entire lens system L: Assuming the total lens length (the distance from the first lens group to the image plane), 0.005 <φD / φ1 <0.05 0.45 <φ / φ1 <0.5 0.50 <φ × L <0. 75, wherein the following conditional expression is satisfied:
【請求項2】無限遠物体から近距離物体へのフォーカシ
ングに際し、前記第2レンズ群を光軸上像側へ移動させ
て行い、 φ2 :第2レンズ群の屈折力 としたとき、 −1 < φ/φ2 < −0.2 の条件式を満足することを特徴とする請求項1の光学
系。
2. When focusing from an object at infinity to an object at a short distance, the second lens group is moved to the image side on the optical axis, and when φ2: refractive power of the second lens group, −1 < 2. The optical system according to claim 1, wherein a conditional expression of φ / φ2 <−0.2 is satisfied.
【請求項3】前記第2レンズ群の像面側に正の屈折力の
第3レンズ群を有することを特徴とする請求項1または
2の光学系。
3. An optical system according to claim 1, further comprising a third lens group having a positive refractive power on the image plane side of said second lens group.
【請求項4】請求項1、2又は3の光学系を有している
ことを特徴とする光学機器。
4. An optical apparatus comprising the optical system according to claim 1, 2 or 3.
JP2000265629A 2000-09-01 2000-09-01 Optical system and optical instrument using the same Expired - Fee Related JP4641339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265629A JP4641339B2 (en) 2000-09-01 2000-09-01 Optical system and optical instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265629A JP4641339B2 (en) 2000-09-01 2000-09-01 Optical system and optical instrument using the same

Publications (3)

Publication Number Publication Date
JP2002072082A true JP2002072082A (en) 2002-03-12
JP2002072082A5 JP2002072082A5 (en) 2007-10-11
JP4641339B2 JP4641339B2 (en) 2011-03-02

Family

ID=18752866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265629A Expired - Fee Related JP4641339B2 (en) 2000-09-01 2000-09-01 Optical system and optical instrument using the same

Country Status (1)

Country Link
JP (1) JP4641339B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7426083B2 (en) 2005-05-11 2008-09-16 Canon Kabushiki Kaisha Imaging optical system and image capturing apparatus including imaging optical system
CN102789042A (en) * 2011-05-20 2012-11-21 索尼株式会社 Internal focus lens
JP2015011171A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Optical system having diffractive optical element, and optical devices
US8988792B2 (en) 2011-01-13 2015-03-24 Nikon Corporation Optical system, optical apparatus and method for arranging diffractive optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152233A (en) * 1997-07-31 1999-02-26 Canon Inc Attachment lens and optical system loaded therewith
JPH11295590A (en) * 1998-04-14 1999-10-29 Canon Inc Optical system provided with diffraction optical element
JPH11305126A (en) * 1998-04-21 1999-11-05 Minolta Co Ltd Optical lens system
JP2000221402A (en) * 1999-02-03 2000-08-11 Minolta Co Ltd Lens optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152233A (en) * 1997-07-31 1999-02-26 Canon Inc Attachment lens and optical system loaded therewith
JPH11295590A (en) * 1998-04-14 1999-10-29 Canon Inc Optical system provided with diffraction optical element
JPH11305126A (en) * 1998-04-21 1999-11-05 Minolta Co Ltd Optical lens system
JP2000221402A (en) * 1999-02-03 2000-08-11 Minolta Co Ltd Lens optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7426083B2 (en) 2005-05-11 2008-09-16 Canon Kabushiki Kaisha Imaging optical system and image capturing apparatus including imaging optical system
US8988792B2 (en) 2011-01-13 2015-03-24 Nikon Corporation Optical system, optical apparatus and method for arranging diffractive optical element
CN102789042A (en) * 2011-05-20 2012-11-21 索尼株式会社 Internal focus lens
JP2015011171A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Optical system having diffractive optical element, and optical devices

Also Published As

Publication number Publication date
JP4641339B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4898379B2 (en) Imaging optical system and imaging apparatus having the same
JP4829590B2 (en) Imaging optical system and imaging apparatus having the same
JP3542552B2 (en) Zoom lens and optical device using the same
JP2000258685A (en) Photographing optical system
US6924949B2 (en) Lens system and optical device having the same
US10746977B2 (en) Optical system and image pickup apparatus including the same
US20190004277A1 (en) Zoom lens and image pickup apparatus
JP5639625B2 (en) Imaging optical system and imaging apparatus having the same
JP4182088B2 (en) Zoom lens and optical apparatus having the same
JP6012349B2 (en) Imaging optical system and imaging apparatus having the same
US6865027B2 (en) Zoom lens and camera having the same
JP4245780B2 (en) Zoom imaging optical system
JP3184581B2 (en) Zoom lens
JP4345050B2 (en) Super wide angle lens
US10379272B2 (en) Optical system and image pickup apparatus including the same
JP5078498B2 (en) Zoom lens and imaging apparatus having the same
JP2003215452A (en) Zoom lens and optical equipment having the same
JP2004012504A (en) Zoom lens and optical equipment having it
JP4336406B2 (en) Imaging device
JP4641339B2 (en) Optical system and optical instrument using the same
JP4652539B2 (en) Imaging optical system and optical apparatus using the same
JP2001318316A (en) Zoom lens and optical apparatus using the same
JP4789349B2 (en) Zoom lens and optical apparatus having the same
JP4323595B2 (en) Imaging optical system and camera
JP3720767B2 (en) Zoom lens and optical apparatus having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees