JP5639625B2 - Imaging optical system and imaging apparatus having the same - Google Patents

Imaging optical system and imaging apparatus having the same Download PDF

Info

Publication number
JP5639625B2
JP5639625B2 JP2012202182A JP2012202182A JP5639625B2 JP 5639625 B2 JP5639625 B2 JP 5639625B2 JP 2012202182 A JP2012202182 A JP 2012202182A JP 2012202182 A JP2012202182 A JP 2012202182A JP 5639625 B2 JP5639625 B2 JP 5639625B2
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
imaging optical
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012202182A
Other languages
Japanese (ja)
Other versions
JP2014056196A (en
JP2014056196A5 (en
Inventor
純一 大元
純一 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012202182A priority Critical patent/JP5639625B2/en
Publication of JP2014056196A publication Critical patent/JP2014056196A/en
Publication of JP2014056196A5 publication Critical patent/JP2014056196A5/ja
Application granted granted Critical
Publication of JP5639625B2 publication Critical patent/JP5639625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は撮像光学系及びそれを有する撮像装置に関し、例えば固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ、TVカメラ、監視用カメラや銀塩フィルムを用いたフィルム用カメラ等に好適なものである。   The present invention relates to an imaging optical system and an imaging apparatus having the imaging optical system, and is suitable for, for example, a video camera using a solid-state imaging device, a digital still camera, a TV camera, a surveillance camera, a film camera using a silver salt film, and the like. is there.

長焦点距離の撮像光学系として、物体側から像側へ順に、正の屈折力を有する前方レンズ群と、負の屈折力を有する後方レンズ群より成る、所謂望遠タイプの撮像光学系(望遠レンズ)が知られている。ここで長焦点距離とは例えば有効撮像範囲の寸法に比べて長い焦点距離のことをいう。一般的に焦点距離の長い望遠タイプの撮像光学系では、焦点距離が延びるにしたがって、光学系全体が大型化し、また高重量化してくる。特に前方レンズ群が高重量化してくる。また諸収差のうち、特に軸上色収差及び倍率色収差等の色収差が多く発生してくる。   As a long focal length imaging optical system, a so-called telephoto imaging optical system (telephoto lens) comprising a front lens group having a positive refractive power and a rear lens group having a negative refractive power in order from the object side to the image side. )It has been known. Here, the long focal length means, for example, a long focal length compared to the size of the effective imaging range. In general, in a telephoto imaging optical system with a long focal length, the entire optical system becomes larger and heavier as the focal length increases. In particular, the front lens group becomes heavier. Of various aberrations, particularly, chromatic aberration such as longitudinal chromatic aberration and lateral chromatic aberration occurs.

これらの色収差を、蛍石等の異常部分分散性を持った低分散材料を用いて補正する(色消しを行った)撮像光学系が種々提案されている。例えば色収差を部分分散比(θgF)が大きい材料を開口絞りより前側(物体側)の正レンズに用いることで補正した撮像光学系が知られている(特許文献1)。特許文献1では焦点距離400mm前後でFナンバー2.8程度の望遠タイプの撮像光学系を開示している。   Various imaging optical systems have been proposed in which these chromatic aberrations are corrected using a low dispersion material having anomalous partial dispersion such as fluorite (which has been achromatic). For example, an imaging optical system in which chromatic aberration is corrected by using a material having a large partial dispersion ratio (θgF) for a positive lens on the front side (object side) of the aperture stop is known (Patent Document 1). Patent Document 1 discloses a telephoto imaging optical system having a focal length of about 400 mm and an F number of about 2.8.

一方、撮像光学系の色収差を含めた諸収差を補正しつつ、レンズ重量を軽量化する方法として、撮像光学系の一部に、回折作用を有する回折光学部を基板上に設けた回折光学素子を用いる方法が知られている。この方法を用いて、色収差を補正しつつレンズ全長を短縮したり、ガラス材料の比重を比較的軽い材料でレンズを構成することで総合的なレンズ重量を軽量化した撮像光学系が知られている(特許文献2)。   On the other hand, as a method for reducing the lens weight while correcting various aberrations including chromatic aberration of the imaging optical system, a diffractive optical element in which a diffractive optical part having a diffractive action is provided on a substrate as a part of the imaging optical system A method of using is known. An imaging optical system is known that uses this method to reduce the overall lens weight by correcting the chromatic aberration while shortening the overall lens length, or by constructing the lens with a relatively light glass material specific gravity. (Patent Document 2).

特許文献2では焦点距離800mm前後でFナンバー5.8程度の望遠タイプの撮像光学系を開示している。また多くの望遠タイプの撮像光学系では、フォーカシングを高速に行うために前方レンズ群以外の比較的小型でしかも軽量のレンズ群を移動させて行うインナーフォーカス式を用いた撮像光学系が知られている(特許文献3)。特許文献3では物体側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群を有し、第2レンズ群を移動させてフォーカスを行っている。   Patent Document 2 discloses a telephoto imaging optical system having a focal length of about 800 mm and an F number of about 5.8. Also, in many telephoto imaging optical systems, there is known an imaging optical system using an inner focus type in which a relatively small and lightweight lens group other than the front lens group is moved in order to perform focusing at high speed. (Patent Document 3). In Patent Document 3, in order from the object side, a first lens group having a positive refractive power and a second lens group having a negative refractive power are provided, and focusing is performed by moving the second lens group.

特開昭58−82217号公報JP 58-82217 A 特開2008−096656号公報JP 2008-096656 A 特開2009−271354号公報JP 2009-271354 A

望遠タイプの撮像光学系は一般に、焦点距離を長くするにつれてレンズ系全体が大型化及び高重量化してくる。このため望遠タイプの撮像光学系ではレンズ系全体の小型化及び軽重量化を図ることが重要になってくる。   In general, in the telephoto imaging optical system, the entire lens system is increased in size and weight as the focal length is increased. For this reason, in the telephoto imaging optical system, it is important to reduce the size and weight of the entire lens system.

一般に望遠タイプの撮像光学系において焦点距離が長くなるにつれて、正の屈折力の前方レンズ群が大型化及び高重量化してくる。更に色収差の発生が多くなってくる。このため望遠タイプの撮像光学系においては正の屈折力の前方レンズ群のレンズ構成を適切に設定することが全系の小型化及び軽量化を図りつつ、かつ色収差を良好に補正し、高い光学性能を得るのに重要になってくる。前方レンズ群のレンズ構成が不適切であると全系が大型化及び高重量化し、諸収差が増大し高い光学性能を得るのが大変困難になる。   In general, as the focal length becomes longer in a telephoto imaging optical system, the front lens unit having a positive refractive power becomes larger and heavier. Further, the occurrence of chromatic aberration increases. For this reason, in the telephoto imaging optical system, setting the lens configuration of the front lens unit having a positive refractive power appropriately reduces the size and weight of the entire system, and corrects chromatic aberration well, and has high optical performance. It becomes important to obtain performance. If the lens configuration of the front lens group is inappropriate, the entire system becomes larger and heavier, various aberrations increase, and it becomes very difficult to obtain high optical performance.

本発明は、全系の小型化及びレンズ重量の軽量化を図ることが容易な撮像光学系及びそれを有する撮像装置の提供を目的とする。   An object of the present invention is to provide an imaging optical system that can easily reduce the size of the entire system and reduce the weight of the lens, and an imaging apparatus having the imaging optical system.

本発明の撮像光学系は、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成され、フォーカシングに際して、前記第1レンズ群および前記第3レンズ群は不動であり、前記第2レンズ群が移動し、前記第1レンズ群は最も広い空気間隔を境に物体側に正の屈折力の第11レンズ群、像側に第12レンズ群を有し、前記第11レンズ群は1つの正レンズG1より構成され、前記正レンズG1の材料の屈折率をNG1、比重をdG1、焦点距離をfG1、全系の焦点距離をfとするとき、
dG1<−3.1×(NG1) +14.7×NG1−12.8
0.4<fG1/f<0.8
なる条件式を満たすことを特徴としている。
The imaging optical system of the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens group . The first lens group and the third lens group are stationary, the second lens group moves, and the first lens group has an eleventh positive refractive power on the object side with the widest air gap as a boundary. The lens group has a twelfth lens group on the image side, and the eleventh lens group is composed of one positive lens G1, the refractive index of the material of the positive lens G1 is NG1, the specific gravity is dG1, the focal length is fG1, When the focal length of the entire system is f,
dG1 <−3.1 × ( NG1 ) 2 + 14.7 × NG1-12.8
0.4 <fG1 / f <0.8
It is characterized by satisfying the following conditional expression.

本発明によれば、全系の小型化及びレンズ重量の軽量化を図ることが容易な撮像光学系が得られる。   According to the present invention, it is possible to obtain an imaging optical system that can easily reduce the size of the entire system and reduce the weight of the lens.

(A),(B) 本発明の実施例1の撮像光学系の物体距離無限遠時におけるレンズ断面図と収差図(A), (B) Lens cross-sectional view and aberration diagram of the imaging optical system of Example 1 of the present invention at an object distance of infinity (A),(B) 本発明の実施例2の撮像光学系の物体距離無限遠時におけるレンズ断面図と収差図(A), (B) Lens cross-sectional view and aberration diagram of the imaging optical system of Example 2 of the present invention at an object distance of infinity (A),(B) 本発明の実施例3の撮像光学系の物体距離無限遠時におけるレンズ断面図と収差図(A), (B) Lens cross-sectional view and aberration diagram of the imaging optical system of Example 3 of the present invention at an infinite object distance (A),(B) 本発明の実施例4の撮像光学系の物体距離無限遠時におけるレンズ断面図と収差図(A), (B) Lens cross-sectional view and aberration diagram of the imaging optical system of Example 4 of the present invention at an infinite object distance (A),(B) 本発明の実施例5の撮像光学系の物体距離無限遠時におけるレンズ断面図と収差図(A), (B) Lens cross-sectional view and aberration diagram of the imaging optical system of Example 5 of the present invention at an infinite object distance レンズの焦点距離と重量との関係を示す説明図Explanatory diagram showing the relationship between the focal length and weight of the lens 本発明に係る回折光学素子の説明図Explanatory drawing of the diffractive optical element according to the present invention 本発明に係る回折光学素子の説明図Explanatory drawing of the diffractive optical element according to the present invention 本発明の撮像装置の説明図Explanatory drawing of the imaging device of the present invention

以下に本発明の好ましい実施の形態を、添付の図面に基づいて説明する。本発明の撮像光学系は、物体側から像側へ順に、正の屈折力の第1レンズ群、フォーカスのために光軸方向に移動する負の屈折力の第2レンズ群、開口絞り、正又は負の屈折力の第3レンズ群、を有している。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. The imaging optical system of the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power that moves in the optical axis direction for focusing, an aperture stop, Or a third lens unit having a negative refractive power.

図1(A)乃至図5(A)は、本発明の撮像光学系の実施例1乃至実施例5のレンズ断面図である。また図1(B)乃至図5(B)は本発明の撮像光学系の実施例1乃至実施例5の縦収差図である。図6はレンズの焦点距離と重量の関係を示す説明図である。図7(A),(B)、図8(A),(B),(C)は各々本発明に係る回折光学素子の説明図である。図9は本発明の撮影光学系をカメラ本体に装着した一眼レフカメラシステム(撮像装置)の要部概略図である。   FIG. 1A to FIG. 5A are lens cross-sectional views of Examples 1 to 5 of the imaging optical system of the present invention. FIGS. 1B to 5B are longitudinal aberration diagrams of Examples 1 to 5 of the imaging optical system of the present invention. FIG. 6 is an explanatory diagram showing the relationship between the focal length and weight of the lens. 7A, 7B, 8A, 8B, and 8C are explanatory views of the diffractive optical element according to the present invention. FIG. 9 is a schematic diagram of a main part of a single-lens reflex camera system (imaging device) in which the photographing optical system of the present invention is mounted on the camera body.

各レンズ断面図において、L0は撮像光学系である。SPは軸上最大光束径を決定している開口絞りである。撮像光学系L0は正の屈折力の第1レンズ群L1、フォーカシングに際して移動する負の屈折力の第2レンズ群L2、正又は負の第3レンズ群L3を有している。第1レンズ群L1は最も広い空気間隔を境に物体側に正の屈折力の第11レンズ群L11、像側に第12レンズ群L12を有している。フォーカシングに際して第1レンズ群L1と第3レンズ群L3は不動である。 In each lens cross-sectional view, L0 is an imaging optical system. SP is an aperture stop that determines the axial maximum luminous flux diameter. The imaging optical system L0 includes a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power that moves during focusing, and a positive or negative third lens unit L3. The first lens unit L1 includes an eleventh lens unit L11 having a positive refractive power on the object side and a twelfth lens unit L12 on the image side with the widest air gap as a boundary. During focusing, the first lens unit L1 and the third lens unit L3 do not move.

第3レンズ群L3は物体側から像側へ順に、固定の第31レンズ群L31、光軸に対し垂直方向の成分を持つように移動して画像(結像位置)を光軸方向に対し垂直に移動させる第32レンズ群L32、固定の第33レンズ群L33を有する。   The third lens unit L3 moves in order from the object side to the image side so as to have a component in the direction perpendicular to the fixed thirty-first lens unit L31, and the image (image formation position) is perpendicular to the optical axis direction. And a fixed thirty-third lens unit L33.

実施例2乃至5は、瞳近軸光線が光軸と交わる位置よりも物体側に少なくとも1つの回折光学素子DOEを有している。Gは、光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルカメラの撮影光学系として使用する際には像を受光するCCDセンサやCMOSセンサ等の撮像素子(光電変換素子)の撮像面が、銀塩フィルム用カメラの撮像光学系とし使用する際にはフィルム面に相当する。   Examples 2 to 5 have at least one diffractive optical element DOE closer to the object side than the position where the pupil paraxial ray intersects the optical axis. G is an optical block corresponding to an optical filter, a face plate, a crystal low-pass filter, an infrared cut filter, or the like. IP is an image plane, and when used as a photographing optical system of a video camera or a digital camera, an imaging surface of a CCD sensor, a CMOS sensor or the like (photoelectric conversion element) that receives an image is used for a silver salt film camera. It corresponds to a film surface when used as an imaging optical system.

各収差図において、d-line、g-lineは順に、d線、g線である。ΔM、ΔSはメリディオナル像面、サジタル像面である。倍率色収差はg線によって表している。FnoはFナンバー、ωは半画角である。すべての収差図においては、後述する各数値実施例をmm単位で表したとき球面収差は0.2mm、非点収差は0.2mm、歪曲は2%、倍率色収差は0.025mmのスケールで描かれている。各実施例の撮像光学系L0は望遠タイプより成り、その特徴とする構成は次のとおりである。   In each aberration diagram, d-line and g-line are d-line and g-line, respectively. ΔM and ΔS are a meridional image plane and a sagittal image plane. Lateral chromatic aberration is represented by the g-line. Fno is the F number, and ω is the half angle of view. In all aberration diagrams, when each numerical example described later is expressed in mm, spherical aberration is 0.2 mm, astigmatism is 0.2 mm, distortion is 2%, and lateral chromatic aberration is drawn on a scale of 0.025 mm. It is. The imaging optical system L0 of each embodiment is of a telephoto type, and the characteristic configuration is as follows.

各実施例の撮像光学系において、第11レンズ群L11は1つの正レンズG1より構成されている。正レンズG1の材料の屈折率をNG1、比重をdG1、焦点距離をfG1とする。全系の焦点距離をfとする。このとき、
dG1<−3.1×(NG1) 2 +14.7×NG1−12.8 …(1)
0.4<fG1/f<0.8 …(2)
なる条件式を満たしている。
In the image pickup optical system of each embodiment, the eleventh lens unit L11 includes one positive lens G1. The refractive index of the material of the positive lens G1 is NG1, the specific gravity is dG1, and the focal length is fG1. Let f be the focal length of the entire system. At this time,
dG1 <−3.1 × ( NG1 ) 2 + 14.7 × NG1-12.8 (1)
0.4 <fG1 / f <0.8 (2)
The following conditional expression is satisfied.

従来、物体側から像側へ順に、正の屈折力の前方レンズ群と負の屈折力の後方レンズ群よりなる所謂望遠タイプ(テレフォトタイプ)の撮像光学系が多くの撮像装置に用いられている。   Conventionally, a so-called telephoto type imaging optical system including a front lens group having a positive refractive power and a rear lens group having a negative refractive power in order from the object side to the image side is used in many imaging apparatuses. Yes.

テレフォトタイプを採用した場合、前玉の有効範囲(有効径)は軸上光線の有効範囲が支配的となる。テレフォトタイプの撮像光学系は正、負の屈折力のレンズ群を有し、軸上光線を絞り込むことでレンズ全長の短縮を図っている。つまり、有効径は物体側のレンズが大きく、絞り面(像側)に向かって小さくなる。またF値(Fナンバー)が小さくなればレンズ有効径は逆比例倍で大きくなり、レンズの重量は3乗で増す。したがって、レンズ重量の軽減を図る場合、前玉レンズの軽量化を図ることが効果的である。   When the telephoto type is adopted, the effective range (effective diameter) of the front lens is dominated by the effective range of axial rays. The telephoto type imaging optical system has a lens group having positive and negative refractive powers, and shortens the total lens length by narrowing the axial ray. That is, the effective diameter of the lens on the object side is large and decreases toward the stop surface (image side). If the F value (F number) is decreased, the effective lens diameter is increased in inverse proportion, and the weight of the lens is increased to the third power. Therefore, when reducing the lens weight, it is effective to reduce the weight of the front lens.

レンズ群を構成する1つのレンズの屈折力を弱めてレンズを薄くして軽量化を図るとき、レンズ群全体の屈折力を維持するために他のレンズが大型化・厚肉化してしまうと全体として軽量化が図れない。材料の屈折率と目標とする焦点距離(パワーの逆数)を与えると必要な屈折力を構成するためのレンズの体積がほぼ一意に定まる。これに比重を乗ずるとレンズの所要重量が定まる。本発明者は、所望の屈折力を有するレンズの材料の屈折率と比重の関係からレンズ重量を最適化する手法を考案した。   When reducing the refractive power of one lens constituting a lens group and reducing the weight by reducing the thickness of the lens, if the other lens becomes larger and thicker in order to maintain the refractive power of the entire lens group As a result, weight reduction cannot be achieved. When the refractive index of the material and the target focal length (reciprocal of power) are given, the volume of the lens for constructing the necessary refractive power is almost uniquely determined. Multiply this by the specific gravity to determine the required weight of the lens. The inventor has devised a method for optimizing the lens weight from the relationship between the refractive index and specific gravity of a lens material having a desired refractive power.

図6は一定の条件下での単レンズの重量を硝材の比重ごとにプロットしたものである。ここでは、レンズ直径を140mm、シェイプファクターを1.30、レンズ周辺部のコバを2.5mm、レンズの焦点距離を240mmとしている。そして、レンズの材料の屈折率・レンズの焦点距離(屈折力)を変化させた場合にはレンズの第1レンズ面とレンズの中心厚みを変化させることで前記条件を満たすように調整している。   FIG. 6 is a plot of the weight of a single lens under certain conditions for each specific gravity of the glass material. Here, the lens diameter is 140 mm, the shape factor is 1.30, the edge around the lens is 2.5 mm, and the focal length of the lens is 240 mm. When the refractive index of the lens material and the focal length (refractive power) of the lens are changed, the first lens surface of the lens and the center thickness of the lens are changed so that the above condition is satisfied. .

例えば図6より材料の比重が2.46の場合、屈折率が1.53の時にレンズ重量が約500gとなることがわかる。また、比重が同じく2.46で屈折率を1.81にすればレンズ重量は約340gになることがわかる。図6ではレンズ重量を満たすために必要な屈折率と比重の関係を読み取ることができ、従来の構成よりも軽量な領域を図6の破線のように示すことができる。図6に示す破線よりも下側の領域の硝材を利用すればレンズを軽量化することが容易となる。   For example, FIG. 6 shows that when the specific gravity of the material is 2.46, the lens weight is about 500 g when the refractive index is 1.53. It can also be seen that if the specific gravity is also 2.46 and the refractive index is 1.81, the lens weight is about 340 g. In FIG. 6, the relationship between the refractive index and the specific gravity necessary to satisfy the lens weight can be read, and a lighter area than the conventional configuration can be shown as a broken line in FIG. If the glass material in the region below the broken line shown in FIG. 6 is used, the lens can be easily reduced in weight.

条件式(1)は以上の条件を鑑みて設定したものであり、第11レンズ群L11の軽量化が容易な範囲を屈折率と比重の関係で規定している。条件式(1)の値を超える範囲の材料を用いると、レンズの軽量化が難しい。第11レンズ群L11の屈折力が小さい場合には、正レンズG1が平行平板に近づくため、形状による重量の違いが小さくなる。このため、第11レンズ群L11の屈折力が弱い場合には条件式(1)を満たす材料を用いる効果が小さくなる。   Conditional expression (1) is set in view of the above conditions, and defines the range in which the eleventh lens unit L11 can be easily reduced in terms of the refractive index and specific gravity. If a material in a range exceeding the value of conditional expression (1) is used, it is difficult to reduce the weight of the lens. When the refractive power of the eleventh lens unit L11 is small, the positive lens G1 approaches a parallel plate, so that the difference in weight due to the shape is small. For this reason, when the refractive power of the eleventh lens unit L11 is weak, the effect of using a material satisfying conditional expression (1) is reduced.

条件式(2)は第11レンズ群L11の正レンズG1の焦点距離を規定する。条件式(2)の上限を超えて正レンズG1の焦点距離を長くすると軽量化の効果が小さくなる。正レンズG1の屈折力が弱くなることで後続レンズ群が大口径化し、光学系全体の軽量化が困難になる。また、条件式(2)の下限を下回って正レンズG1の焦点距離が短くなると全系の重量に対して支配的な寄与を有する第11レンズ群L11の重量が増加するため、望ましくない。   Conditional expression (2) defines the focal length of the positive lens G1 of the eleventh lens unit L11. If the focal length of the positive lens G1 is increased beyond the upper limit of the conditional expression (2), the effect of reducing the weight is reduced. When the refractive power of the positive lens G1 is weakened, the subsequent lens group has a large diameter, and it is difficult to reduce the weight of the entire optical system. Further, if the focal length of the positive lens G1 becomes shorter than the lower limit of the conditional expression (2), the weight of the eleventh lens unit L11 having a dominant contribution to the weight of the entire system increases, which is not desirable.

このように、条件式(1)を満たす材料を、条件式(2)を満たす屈折力で正レンズG1に用いることで第11レンズL11の軽量化を図っている。更に好ましくは条件式(1),(2)の数値を次の如く設定するのが良い。   Thus, the weight of the eleventh lens L11 is reduced by using a material that satisfies the conditional expression (1) for the positive lens G1 with a refractive power that satisfies the conditional expression (2). More preferably, the numerical values of conditional expressions (1) and (2) are set as follows.

dG1<−3.1×(NG1) 2 +14.7×NG1−12.9 …(1a)
0.45<fG1/f<0.75 …(2a)
以上の構成を取ることで全体として軽量で高画質な像が得られる撮影光学系が容易に得られる。更に好ましくは次に述べる条件のうち少なくとも1つの条件式を満足するのが良く、これによれば更なる高い光学性能が容易に得られる。
dG1 <−3.1 × ( NG1 ) 2 + 14.7 × NG1-12.9 (1a)
0.45 <fG1 / f <0.75 (2a)
By taking the above configuration, it is possible to easily obtain a photographing optical system that can obtain a light image with high quality as a whole. More preferably, at least one of the following conditions should be satisfied, whereby further high optical performance can be easily obtained.

第11レンズ群L11と第12レンズ群L12の光軸上の間隔をD1ab、最も物体側のレンズ面から像面までの距離(レンズ全長)をLとする。第12レンズ群L12に含まれる負レンズの物体側から数えた第j番目の負レンズGnjの焦点距離をfnj、材料のアッベ数をνdnjとする。第12レンズ群L12に含まれる少なくとも1つの正レンズの材料のアッベ数をνd12pとする。このとき、次の条件式のうち1以上を満足するのが良い。 D1ab the distance on the optical axis of the first lens subunit L11 and the second lens subunit L12, to the distance to the image plane (overall lens length) and L from the lens surface closest to the object side. The focal length of the jth negative lens Gnj counted from the object side of the negative lens included in the twelfth lens unit L12 is fnj, and the Abbe number of the material is νdnj. The Abbe number of the material of at least one positive lens included in the twelfth lens unit L12 is νd12p. At this time, it is preferable to satisfy one or more of the following conditional expressions.

1.5<NG1 …(3)
0.05<D1ab/L<0.40 …(4)
−0.251≦Σ(f/(fnj×νdnj))<−0.15 …(5)
80<νd12p …(6)
ここでΣは総和を表す。
1.5 <NG1 (3)
0.05 <D1ab / L <0.40 (4)
−0.251 ≦ Σ (f / (fnj × νdnj)) <− 0.15 (5)
80 <νd12p (6)
Here, Σ represents the sum.

次に前述の各条件式の技術的意味について説明する。条件式(3)は正レンズG1の材料の屈折率を規定する。条件式(3)の下限を下回る屈折率を有する材料を用いると、図6に示すように屈折力を強くしたときに第11レンズ群L11の重量が急激に増加するため軽量化が困難になる。第1レンズ群L1は最も物体側に配置された第11レンズ群L11と第11レンズ群L11よりも像側に配置された第12レンズ群L12より構成される。
条件式(4)は第11レンズ群L11と第12レンズ群L12との光軸上での距離と、最も物体側のレンズ面から像面までの光軸上の距離(レンズ全長)との比を規定する。条件式(4)の下限を下回ると第12レンズ群L12が大口径化し、第1レンズ群L1の軽量化が困難になる。条件式(4)の上限を上回ると第11レンズ群L11で生じた倍率色収差と軸上色収差をバランスよく補正するのが難しくなる。
Next, the technical meaning of each conditional expression described above will be described. Conditional expression (3) defines the refractive index of the material of the positive lens G1. If a material having a refractive index lower than the lower limit of the conditional expression (3) is used, the weight of the eleventh lens unit L11 increases rapidly when the refractive power is increased as shown in FIG. . The first lens unit L1 includes an eleventh lens unit L11 disposed on the most object side and a twelfth lens unit L12 disposed on the image side of the eleventh lens unit L11.
Conditional expression (4) is a ratio between the distance on the optical axis between the eleventh lens unit L11 and the twelfth lens unit L12 and the distance on the optical axis from the lens surface closest to the object side to the image plane (lens total length). Is specified. If the lower limit of conditional expression (4) is not reached, the twelfth lens unit L12 has a large diameter, which makes it difficult to reduce the weight of the first lens unit L1. If the upper limit of conditional expression (4) is exceeded, it will be difficult to correct the lateral chromatic aberration and axial chromatic aberration generated in the eleventh lens unit L11 in a balanced manner.

条件式(5)は第12レンズ群L12に含まれる負レンズの焦点距離と材料のアッベ数を規定する。条件式(5)を満足することにより、負レンズの色消し効果を適切に設定することで色収差をバランス良く補正している。条件式(5)の下限を下回ると負レンズの重量が増加するため望ましくない。条件式(5)の上限を超えると第11レンズ群L11で生じる倍率色収差と軸上色収差をバランスよく補正することが難しくなる。 Conditional expression (5) defines the focal length of the negative lens and the Abbe number of the material included in the twelfth lens unit L12. By satisfying conditional expression (5), the chromatic aberration is corrected in a well-balanced manner by appropriately setting the achromatic effect of the negative lens. If the lower limit of conditional expression (5) is not reached, the weight of the negative lens increases, which is not desirable. If the upper limit of conditional expression (5) is exceeded, it will be difficult to correct the lateral chromatic aberration and axial chromatic aberration that occur in the eleventh lens unit L11 in a well-balanced manner.

条件式(6)は第11レンズ群L11で生じる色収差を補正するための第12レンズ群L12の正レンズの材料のアッベ数を規定する。条件式(6)の下限を下回ると第11レンズ群L11で生じる色収差の補正が困難になる。望ましくは各実施例において条件式(6)を満足する正レンズを2枚以上用いるのが良い。   Conditional expression (6) defines the Abbe number of the material of the positive lens of the twelfth lens unit L12 for correcting chromatic aberration occurring in the eleventh lens unit L11. If the lower limit of conditional expression (6) is not reached, it will be difficult to correct chromatic aberration occurring in the eleventh lens unit L11. Desirably, two or more positive lenses satisfying conditional expression (6) are used in each embodiment.

また、条件式(6)を満足する代わりに、瞳近軸光線が光軸と交わる位置よりも物体側に少なくとも1つの回折光学素子を配置してもよい。回折光学素子は高い色収差補正能力を有するため、瞳近軸光線が光軸と交わる位置よりも物体側に配置することで軸上色収差と倍率色収差を効果的に補正できる。一般に、条件式(6)を満足する硝材は比重が大きく、重量が増加しやすい。回折光学素子を利用すると、第1レンズ群L1に軽量な硝材を利用することができて、光学系全体を軽量化することが容易になる。更に好ましくは条件式(3),(4),(6)の数値を次の如く設定するのが良い。 Instead of satisfying conditional expression (6), at least one diffractive optical element may be arranged on the object side of the position where the pupil paraxial ray intersects the optical axis. Since the diffractive optical element has a high ability to correct chromatic aberration, axial chromatic aberration and lateral chromatic aberration can be effectively corrected by disposing the pupil paraxial ray closer to the object side than the position where it intersects the optical axis. In general, a glass material satisfying conditional expression (6) has a large specific gravity and is likely to increase in weight. When the diffractive optical element is used, a light glass material can be used for the first lens unit L1, and the entire optical system can be easily reduced in weight. More preferably, the numerical values of the conditional expressions (3), (4) and (6) are set as follows.

1.53<NG1 …(3a)
0.1<D1ab/L<0.3 …(4a
90<νd12p …(6a)
一般に正レンズと負レンズの材料のアッベ数の値が近いと色収差を補正した場合、各レンズのパワーが強くなる傾向がある。このため、色収差が補正されても単色収差の補正が難しくなる場合がある。各実施例においてこのような場合には非球面を用いると効果的に単色収差を補正することが容易になる。
1.53 <NG1 (3a)
0.1 <D1ab / L <0.3 (4a )
90 <νd12p (6a)
Generally, when the Abbe numbers of the positive and negative lenses are close to each other, when correcting chromatic aberration, the power of each lens tends to increase. For this reason, even if the chromatic aberration is corrected, it may be difficult to correct the monochromatic aberration. In each of the embodiments, in such a case, it is easy to effectively correct monochromatic aberration by using an aspherical surface.

以上のように各実施例によれば色収差の補正が容易で、しかもレンズ重量の軽量化が容易な撮影光学系及びそれを有する撮像装置を得ることが容易である。以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   As described above, according to each embodiment, it is easy to obtain a photographic optical system that can easily correct chromatic aberration and that can easily reduce the weight of the lens, and an imaging apparatus having the same. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[実施例1]
図1に示す実施例1は対角画角が約6.32度の望遠タイプの撮像光学系である。実施例1では物体側から像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3を有している。第1レンズ群L1は最も広い空気間隔を境に第11レンズ群L11と第12レンズ群L12から構成されている。第2レンズ群L2と第3レンズ群L3の間に開口絞りSPを有している。第3レンズ群L3は正の屈折力の第31レンズ群L31と負の屈折力の第32レンズ群L32と正の屈折力の第33レンズ群L33を有している。
[Example 1]
Example 1 shown in FIG. 1 is a telephoto imaging optical system having a diagonal angle of view of about 6.32 degrees. The first exemplary embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a third lens unit L3 having a positive refractive power. The first lens unit L1 includes an eleventh lens unit L11 and a twelfth lens unit L12 with the widest air gap as a boundary. An aperture stop SP is provided between the second lens unit L2 and the third lens unit L3. The third lens unit L3 includes a thirty-first lens unit L31 having a positive refractive power, a thirty-second lens unit L32 having a negative refractive power, and a thirty-third lens unit L33 having a positive refractive power.

無限遠物体から近距離物体へのフォーカシングは第2レンズ群L2を像側に移動させることで行っている。焦点距離が長いレンズの場合はレンズが大きく、重いためレンズ全体を移動させてフォーカスを行うのが困難である。   Focusing from an infinitely distant object to a close object is performed by moving the second lens unit L2 to the image side. In the case of a lens having a long focal length, it is difficult to focus by moving the entire lens because the lens is large and heavy.

そこで本実施例では第1レンズ群L1以外の一部の小型軽量のレンズ群を移動させてフォーカスを行っている。撮像光学系LOが振動した時の撮影画像のブレの補正は第32レンズ群L32を可動レンズ群として光軸に対して垂直方向の成分を持つ方向に移動させて行っている。   Therefore, in this embodiment, focusing is performed by moving some small and light lens groups other than the first lens group L1. When the imaging optical system LO vibrates, the correction of the blur of the captured image is performed by moving the thirty-second lens unit L32 as a movable lens unit in a direction having a component perpendicular to the optical axis.

第11レンズ群L11の正レンズG1は株式会社オハラ社 商品名S-TIH3からなり、条件式(1)、(2)、(3)を満たす。実施例1の第11レンズ群L11の重量は約513gであるが、仮に同条件で株式会社オハラ社 商品名S−FSL5を用いた場合には約628gとなり、約115gの軽量化になっている。第12レンズ群L12は物体側から像側へ順に、正レンズ、負レンズ、正レンズ、正レンズから構成されている。   The positive lens G1 of the eleventh lens unit L11 is made of OHARA INC. Product name S-TIH3, and satisfies the conditional expressions (1), (2), and (3). The weight of the eleventh lens unit L11 in Example 1 is about 513 g. However, if the product name S-FSL5 is used under the same conditions, the weight is about 628 g, which is about 115 g. . The twelfth lens unit L12 includes a positive lens, a negative lens, a positive lens, and a positive lens in order from the object side to the image side.

第11レンズ群L11と第12レンズ群L12の間隔が条件式(4)を満たすことで物体側の大口径となる第11レンズ群L11のレンズの枚数を減らし、撮像光学系の軽量化を図っている。第2レンズ群L2は単一の負レンズから構成されている。第3レンズ群L3において、第31レンズ群L31は負レンズと正レンズを接合した1組の接合レンズから構成されている。第32レンズ群L32は正レンズと負レンズを接合した接合レンズと、負レンズから構成されている。第33レンズ群L33は正レンズと、正レンズと負レンズを接合した接合レンズから構成されている。   When the distance between the eleventh lens group L11 and the twelfth lens group L12 satisfies the conditional expression (4), the number of lenses of the eleventh lens group L11 having a large aperture on the object side is reduced, and the imaging optical system is reduced in weight. ing. The second lens unit L2 is composed of a single negative lens. In the third lens unit L3, the 31st lens unit L31 includes a pair of cemented lenses in which a negative lens and a positive lens are cemented. The thirty-second lens unit L32 includes a cemented lens obtained by cementing a positive lens and a negative lens, and a negative lens. The thirty-third lens unit L33 includes a positive lens and a cemented lens in which a positive lens and a negative lens are cemented.

[実施例2]
実施例2は対角画角が約6.32度の望遠タイプの撮像光学系である。実施例1では物体側から像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3を有している。
[Example 2]
The second embodiment is a telephoto imaging optical system having a diagonal field angle of about 6.32 degrees. The first exemplary embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a third lens unit L3 having a positive refractive power.

第1レンズ群L1は最も広い空気間隔を境に第11レンズ群L11と第12レンズ群L12から構成されている。第2レンズ群L2と第3レンズ群L3の間に開口絞りSPを有している。第3レンズ群L3は正の屈折力の第31レンズ群L31と負の屈折力の第32レンズ群L32と正の屈折力の第33レンズ群L33を有している。無限遠物体から近距離物体へのフォーカシングは第2レンズ群L2を像側に移動させることで行っている。焦点距離が長いレンズの場合はレンズが大きく、重いためレンズ全体を移動させてフォーカスを行うのが困難である。   The first lens unit L1 includes an eleventh lens unit L11 and a twelfth lens unit L12 with the widest air gap as a boundary. An aperture stop SP is provided between the second lens unit L2 and the third lens unit L3. The third lens unit L3 includes a thirty-first lens unit L31 having a positive refractive power, a thirty-second lens unit L32 having a negative refractive power, and a thirty-third lens unit L33 having a positive refractive power. Focusing from an infinitely distant object to a close object is performed by moving the second lens unit L2 to the image side. In the case of a lens having a long focal length, it is difficult to focus by moving the entire lens because the lens is large and heavy.

そこで本実施例では第1レンズ群L1以外の一部の小型軽量のレンズ群を移動させてフォーカスを行っている。撮像光学系OLが振動した時の撮影画像のブレの補正は第32レンズ群L32を可動レンズ群として光軸に対して垂直方向の成分を持つ方向に移動させて行っている。第11レンズ群L11の正レンズG1は株式会社オハラ社 商品名S−TIH1からなり、条件式(1)、(2)、(3)を満たす。実施例2の第11レンズ群L11は約462gであるが、仮に同条件で株式会社オハラ社 商品名S−FSL5を用いた場合には約525gとなり、約63gの軽量化になっている。   Therefore, in this embodiment, focusing is performed by moving some small and light lens groups other than the first lens group L1. When the imaging optical system OL vibrates, the blur of the captured image is corrected by moving the thirty-second lens unit L32 as a movable lens unit in a direction having a component perpendicular to the optical axis. The positive lens G1 of the eleventh lens unit L11 is made of OHARA INC. Trade name S-TIH1, and satisfies the conditional expressions (1), (2), and (3). The eleventh lens unit L11 of Example 2 is about 462 g. However, if the product name S-FSL5 of OHARA INC. Is used under the same conditions, it becomes about 525 g, which is about 63 g in weight.

第12レンズ群L12は物体側から像側へ順に、物体側に凸面を向けたメニスカス形状の正レンズ、負レンズと正レンズを接合した接合レンズ、正レンズから構成されている。接合レンズは回折光学素子DOEを構成し、接合レンズの接合面に回折光学部Dを有する。回折光学素子DOEを第1レンズ群L1に用いることで、色収差の補正を容易にしている。これによって第11レンズ群L11よりも像側にあるレンズに比重が軽い硝材を用いることができ、全系の軽量化を容易にしている。   The twelfth lens unit L12 includes, in order from the object side to the image side, a meniscus positive lens having a convex surface facing the object side, a cemented lens in which a negative lens and a positive lens are cemented, and a positive lens. The cemented lens constitutes a diffractive optical element DOE, and has a diffractive optical part D on the cemented surface of the cemented lens. By using the diffractive optical element DOE for the first lens unit L1, chromatic aberration can be easily corrected. As a result, a glass material having a lower specific gravity can be used for the lens located on the image side than the eleventh lens unit L11, thereby facilitating weight reduction of the entire system.

第11レンズ群L11と第12レンズ群L12の間隔が条件式(4)を満たすことで物体側の大口径となる第11レンズ群L11のレンズの枚数を減らし、撮像光学系の軽量化を図っている。第2レンズ群L2は1つの負レンズから構成されている。第3レンズ群L3において、第31レンズ群L31は負レンズと正レンズを接合した接合レンズから構成されている。第32レンズ群L32は正レンズと負レンズを接合した接合レンズと、負レンズから構成されている。第33レンズ群L33は正レンズと、負レンズと正レンズを接合した接合レンズから構成されている。   When the distance between the eleventh lens group L11 and the twelfth lens group L12 satisfies the conditional expression (4), the number of lenses of the eleventh lens group L11 having a large aperture on the object side is reduced, and the imaging optical system is reduced in weight. ing. The second lens unit L2 is composed of one negative lens. In the third lens unit L3, the thirty-first lens unit L31 includes a cemented lens in which a negative lens and a positive lens are cemented. The thirty-second lens unit L32 includes a cemented lens obtained by cementing a positive lens and a negative lens, and a negative lens. The thirty-third lens unit L33 includes a positive lens and a cemented lens in which a negative lens and a positive lens are cemented.

[実施例3]
実施例3は対角画角が約6.32度の望遠タイプの撮像光学系である。第11レンズ群L11の正レンズG1は株式会社オハラ社 商品名S−TIH53からなり、条件式(1)、(2)、(3)を満たす。第11レンズ群L11は約441gであるが、仮に同条件で株式会社オハラ社 商品名S−FSL5を用いた場合には約493gとなり、約52gの軽量化になっている。また、第12レンズ群L12は正レンズ、負レンズと正レンズを接合した接合レンズ、正レンズから構成されている。その他の構成は実施例2と同様である。
[Example 3]
The third embodiment is a telephoto imaging optical system having a diagonal field angle of about 6.32 degrees. The positive lens G1 of the eleventh lens unit L11 is made of OHARA INC. Product name S-TIH53, and satisfies the conditional expressions (1), (2), and (3). The eleventh lens unit L11 is about 441 g. However, if the product name S-FSL5 of OHARA INC. Is used under the same conditions, the weight is about 493 g, which is about 52 g. The twelfth lens unit L12 includes a positive lens, a cemented lens obtained by cementing a negative lens and a positive lens, and a positive lens. Other configurations are the same as those of the second embodiment.

[実施例4]
実施例4は対角画角が約6.32度の望遠タイプの撮像光学系である。第11レンズ群L11の正レンズG1は株式会社オハラ社 商品名S−TIM22からなり、条件式(1)、(2)、(3)を満たす。第11レンズ群L11は約404gであるが、仮に同条件で株式会社オハラ社 商品名S−FSL5を用いた場合には約451gとなり、約47gの軽量化になっている。その他は実施例2と同様の構成である。
[Example 4]
The fourth embodiment is a telephoto imaging optical system having a diagonal field angle of about 6.32 degrees. The positive lens G1 of the eleventh lens unit L11 includes a product name S-TIM22 of OHARA INC. And satisfies conditional expressions (1), (2), and (3). The eleventh lens unit L11 is about 404 g. However, if the product name S-FSL5 of OHARA INC. Is used under the same conditions, it becomes about 451 g, which is about 47 g in weight. Other configurations are the same as those in the second embodiment.

[実施例5]
実施例5は対角画角が約3.18度の望遠タイプの撮像光学系である。実施例5では物体側から像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3を有している。第1レンズ群L1は最も広い空気間隔を境に第11レンズ群L11と第12レンズ群L12から構成されている。第2レンズ群L2と第3レンズ群L3の間に開口絞りSPを有している。第3レンズ群L3は正の屈折力の第31レンズ群L31と負の屈折力の第32レンズ群L32と正の屈折力の第33レンズ群L33を有している。
[Example 5]
The fifth embodiment is a telephoto imaging optical system having a diagonal field angle of about 3.18 degrees. The fifth exemplary embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a third lens unit L3 having a negative refractive power. The first lens unit L1 includes an eleventh lens unit L11 and a twelfth lens unit L12 with the widest air gap as a boundary. An aperture stop SP is provided between the second lens unit L2 and the third lens unit L3. The third lens unit L3 includes a thirty-first lens unit L31 having a positive refractive power, a thirty-second lens unit L32 having a negative refractive power, and a thirty-third lens unit L33 having a positive refractive power.

無限遠物体から近距離物体へのフォーカシングは第2レンズ群L2を像側に移動させることで行っている。撮像光学系が振動した時の撮影画像のブレの補正は第32レンズ群L32を可動レンズ群として光軸と直交する方向に移動させて行っている。第11レンズ群L11の正レンズG1は株式会社オハラ社 商品名S−TIM27からなり、条件式(1)、(2)、(3)を満たす。第11レンズ群L11は約332gであるが、仮に同条件で株式会社オハラ社 商品名S−FSL5を用いた場合には約360gとなり、約28gの軽量化になっている。   Focusing from an infinitely distant object to a close object is performed by moving the second lens unit L2 to the image side. The correction of the shake of the captured image when the imaging optical system vibrates is performed by moving the thirty-second lens unit L32 as a movable lens unit in a direction perpendicular to the optical axis. The positive lens G1 of the eleventh lens unit L11 is made of OHARA Co., Ltd. trade name S-TIM27 and satisfies conditional expressions (1), (2), and (3). The eleventh lens unit L11 is about 332 g. However, if the product name S-FSL5 of OHARA INC. Is used under the same conditions, the weight is about 360 g, which is about 28 g.

第12レンズ群L12は物体側から像側へ順に、物体側に凸面を向けたメニスカス形状の正レンズ、負レンズと正レンズを接合した接合レンズから構成されている。接合レンズは回折光学素子fDOEを構成している。接合レンズの物体側の面に回折光学部DOEを有する。第11レンズ群L11と第12レンズ群L12の間隔が条件式(4)を満たすことで物体側の大口径となる第11レンズ群L11のレンズの枚数を減らし、撮像光学系の軽量化を図っている。   The twelfth lens unit L12 includes, in order from the object side to the image side, a meniscus positive lens having a convex surface facing the object side, and a cemented lens in which a negative lens and a positive lens are cemented. The cemented lens constitutes a diffractive optical element fDOE. A diffractive optical part DOE is provided on the object side surface of the cemented lens. When the distance between the eleventh lens group L11 and the twelfth lens group L12 satisfies the conditional expression (4), the number of lenses of the eleventh lens group L11 having a large aperture on the object side is reduced, and the imaging optical system is reduced in weight. ing.

第2レンズ群L2は正レンズと負レンズの接合レンズから構成されている。第3レンズ群L3において、第31レンズ群L31は負レンズと正レンズを接合した接合レンズから構成されている。第32レンズ群L32は正レンズと負レンズを接合した接合レンズと、正レンズから構成されている。第33レンズ群L33は正レンズと、正レンズと負レンズを接合した接合レンズ、負レンズ、正レンズと負レンズを接合した接合レンズから構成されている。   The second lens unit L2 includes a cemented lens of a positive lens and a negative lens. In the third lens unit L3, the thirty-first lens unit L31 includes a cemented lens in which a negative lens and a positive lens are cemented. The thirty-second lens unit L32 includes a cemented lens obtained by cementing a positive lens and a negative lens, and a positive lens. The thirty-third lens unit L33 includes a positive lens, a cemented lens in which the positive lens and the negative lens are cemented, a negative lens, and a cemented lens in which the positive lens and the negative lens are cemented.

ここで、各実施例の撮像光学系で用いた回折光学素子DOEの構成について説明する。撮像光学系内に配置される回折光学素子DOEを構成する回折光学部Dは、光軸に対して回転対称な回折格子より成っている。   Here, the configuration of the diffractive optical element DOE used in the imaging optical system of each embodiment will be described. The diffractive optical part D constituting the diffractive optical element DOE disposed in the imaging optical system is composed of a diffraction grating that is rotationally symmetric with respect to the optical axis.

図7(A)は回折光学素子31の回折光学部の一部分の拡大断面図である。図7(A)は基板(透明基板)32上に1つの層よりなる回折格子(回折光学部)33を設けている。図7(B)は、この回折光学素子31の回折効率の特性を示す説明図である。図7(B)において横軸は波長を表し、縦軸は回折効率を表している。なお、回折効率は全透過光束に対する回折光の光量の割合であり、格子部3aの境界面での反射光などは説明が複雑になるのでここでは考慮していない。   FIG. 7A is an enlarged cross-sectional view of a part of the diffractive optical part of the diffractive optical element 31. In FIG. 7A, a diffraction grating (diffractive optical part) 33 composed of one layer is provided on a substrate (transparent substrate) 32. FIG. 7B is an explanatory diagram showing the characteristics of the diffraction efficiency of the diffractive optical element 31. In FIG. 7B, the horizontal axis represents wavelength and the vertical axis represents diffraction efficiency. Note that the diffraction efficiency is the ratio of the amount of diffracted light to the total transmitted light beam, and the reflected light at the boundary surface of the grating portion 3a is not considered here because the explanation is complicated.

回折格子33の光学材料は、紫外線硬化樹脂(屈折率n=1.513、アッベ数ν=51.0)を用いている。格子部3aの格子厚dを1.03μmと設定し、波長530nm、+1次の回折光の回折効率が最も高くなるようにしている。すなわち設計次数が+1次で、設計波長が波長530nmである。図7(B)中において+1次の回折光の回折効率は実線で示している。さらに、図7(B)では設計次数近傍の回折次数(+1次±1次である0次と+2次)の回折効率も併記している。図から分かるように、設計次数での回折効率は設計波長近傍で最も高くなり、それ以外の波長では徐々に低くなる。 The optical material of the diffraction grating 33 is an ultraviolet curable resin (refractive index n d = 1.513, Abbe number ν d = 51.0). The grating thickness d 1 of the grating part 3a is set to 1.03 μm so that the diffraction efficiency of + 1st order diffracted light is the highest at a wavelength of 530 nm. That is, the design order is + 1st order and the design wavelength is 530 nm. In FIG. 7B, the diffraction efficiency of the + 1st order diffracted light is indicated by a solid line. Further, in FIG. 7B, the diffraction efficiencies of diffraction orders in the vicinity of the design order (0th order and + 2nd order of + 1st order ± 1st order) are also shown. As can be seen from the figure, the diffraction efficiency at the design order is highest near the design wavelength, and gradually decreases at other wavelengths.

この設計次数での回折効率の低下分が他の次数の回折光(不要光)となり、フレアの要因となる。また、回折光学素子31を光学系中の複数箇所に使用した場合には、設計波長以外の波長での回折効率の低下は透過率の低下にもつながることになる。   The decrease in diffraction efficiency at this design order becomes diffracted light of other orders (unnecessary light), which causes flare. When the diffractive optical element 31 is used at a plurality of locations in the optical system, a decrease in diffraction efficiency at a wavelength other than the design wavelength leads to a decrease in transmittance.

次に、異なる材料よりなる複数の回折格子を積層した積層型の回折光学素子について説明する。図8(A)は積層型の回折光学素子31の一部拡大断面図であり、図8(B)は図8(A)に示す回折光学素子31の+1次の回折光の回折効率の波長依存性を表す図である。   Next, a laminated diffractive optical element in which a plurality of diffraction gratings made of different materials are laminated will be described. 8A is a partially enlarged cross-sectional view of the laminated diffractive optical element 31, and FIG. 8B is the wavelength of the diffraction efficiency of the + 1st order diffracted light of the diffractive optical element 31 shown in FIG. 8A. It is a figure showing dependence.

図8(A)の回折光学素子31では、基板102上に紫外線硬化樹脂(屈折率n=1.499、アッベ数ν=54)からなる第1の回折格子104を形成している。更にその上に第2の回折格子105(屈折率n=1.598、アッベ数ν=28)を形成している。この材料の組み合わせにおいて、第1の回折格子104の格子部104aの格子厚dはd=13.8μm、第2の回折格子105の格子部105aの格子厚dはd=10.5μmとしている。 In the diffractive optical element 31 shown in FIG. 8A, a first diffraction grating 104 made of an ultraviolet curable resin (refractive index n d = 1.499, Abbe number ν d = 54) is formed on a substrate 102. Further, a second diffraction grating 105 (refractive index n d = 1.598, Abbe number ν d = 28) is formed thereon. In this combination of materials, the grating thickness d 1 of the grating portion 104 a of the first diffraction grating 104 is d 1 = 13.8 μm, and the grating thickness d 2 of the grating portion 105 a of the second diffraction grating 105 is d 2 = 10. 5 μm.

図8(B)からも分かるように、積層構造の回折格子104、105を備えた回折光学素子31にすることで、設計次数の回折光において使用波長全域(ここでは可視域)で95%以上という高い回折効率を得ている。なお、積層構造の回折光学素子31としては、図8(C)のように材料の組み合わせによっては2つの層104と105の格子厚を等しくしても良い。この場合は空気層を隔てて2つの回折格子の層を配置しても良い。   As can be seen from FIG. 8B, by using the diffractive optical element 31 including the diffraction gratings 104 and 105 having a laminated structure, 95% or more in the entire wavelength range (in this case, the visible region) in the diffracted light of the designed order. High diffraction efficiency is obtained. Note that, as the diffractive optical element 31 having a laminated structure, the grating thicknesses of the two layers 104 and 105 may be equal depending on the combination of materials as shown in FIG. In this case, two diffraction grating layers may be arranged with an air layer therebetween.

回折光学部は光学面の上に施されているが、そのベースは球面又は平面又は非球面でも良い。また、回折光学部は、それらの光学面にプラスチックなどの膜を回折光学部(回折面)として添付する方法である所謂レプリカ非球面で作成しても良い。回折格子の形状は、その2i次項の位相係数をC2iとした時、光軸からの距離Hにおける位相φ(H)は次式で表される。ただしmは回折次数、λは基準波長である。 The diffractive optical part is provided on the optical surface, but its base may be spherical, flat or aspheric. Further, the diffractive optical part may be made of a so-called replica aspherical surface, which is a method of attaching a film such as a plastic as a diffractive optical part (diffractive surface) to these optical surfaces. As for the shape of the diffraction grating, the phase φ (H) at the distance H from the optical axis is expressed by the following equation when the phase coefficient of the 2i-order term is C 2i . Where m is the diffraction order and λ 0 is the reference wavelength.

一般に、レンズ、プリズム等の屈折光学材料のアッベ数(分散値)νは、d、C、F線の各波長における屈折力をN、N、Nとした時、次式で表される。 In general, the Abbe number (dispersion value) ν d of a refractive optical material such as a lens or a prism is expressed by the following equation when the refractive power at each wavelength of d, C, and F lines is N d , N C , and N F. Is done.

ν=(N−1)/(N−N)>0 ・・・(b)
一方、回折光学部のアッベ数νはd、C、F線の各波長をλ、λ、λとした時
ν=λ/(λ−λ) ・・・(c)
と表され、ν=−3.45となる。これにより、任意波長における分散性は、屈折光学素子と逆作用を有する。
ν d = (N d −1) / (N F −N C )> 0 (b)
On the other hand, the Abbe number ν d of the diffractive optical unit is ν d = λ d / (λ F −λ C ) (c) when the wavelengths of the d, C, and F lines are λ d , λ C , and λ F. )
And ν d = −3.45. Thereby, the dispersibility at an arbitrary wavelength has an adverse effect on the refractive optical element.

また、回折光学部の基準波長における近軸的な一時回折光(m = 1)の屈折力φは、回折光学部の位相を表す前式(a)から2次項の係数をCとした時、φ= −2・Cと表される。さらに、任意波長をλ、基準波長をλとした時、任意波長の基準波長に対する屈折力変化は、次式となる。 Further, the refractive power φ of the paraxial temporary diffracted light (m = 1) at the reference wavelength of the diffractive optical part is obtained when the coefficient of the second order term is C 2 from the previous formula (a) representing the phase of the diffractive optical part. , Φ D = −2 · C 2 . Further, when the arbitrary wavelength is λ and the reference wavelength is λ 0 , the refractive power change with respect to the reference wavelength of the arbitrary wavelength is expressed by the following equation.

φ’=(λ/λ)×(−2・C) ・・・(d)
これにより、回折光学部の特徴として、前式(a)の位相係数Cを変化させることにより、弱い近軸屈折力変化で大きな分散性が得られる。 これは色収差以外の諸収差に大きな影響を与えることなく、色収差の補正を行うことを意味している。
φ D '= (λ / λ 0) × (-2 · C 2) ··· (d)
Thus, as a feature of the diffractive optical part, by varying the phase coefficients C 2 of Equation (a), large dispersion can be obtained by a weak paraxial refractive power change. This means that chromatic aberration is corrected without greatly affecting various aberrations other than chromatic aberration.

また位相係数C以降の高次数の係数については、回折光学部の光線入射高の変化に対する屈折力変化は非球面と類似した効果を得ることができる。それと同時に、光線入射高の変化に応じて基準波長に対し任意波長の屈折力変化を与えることができる。このため、倍率色収差の補正に有効である。さらに本発明の撮像光学系の第1レンズ群L1のように、軸上光線がレンズ面を通過する際、光軸からの高さが高い位置を通過する面に回折光学素子DOEを配置すれば、軸上色収差の補正にも有効である。 With respect to the higher order coefficients of the phase coefficient C 4 and later, the refractive power changes to the light incident height variation of the diffractive optical part can be obtained an effect similar to aspheric. At the same time, it is possible to change the refractive power at an arbitrary wavelength with respect to the reference wavelength according to the change in the incident light height. Therefore, it is effective for correcting lateral chromatic aberration. Further, as in the first lens unit L1 of the imaging optical system of the present invention, when the axial light beam passes through the lens surface, the diffractive optical element DOE is disposed on a surface that passes through a position where the height from the optical axis is high. It is also effective in correcting axial chromatic aberration.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

以下に本発明の実施例1〜5に対応する数値実施例1〜5を示す。各数値実施例において、iは物体側からの面の順序を示し、rは物体側より第i番目の面の曲率半径、dは物体側より第i番目と第i+1番目の間隔、ndとνdは第i番目の光学部材の屈折率とアッベ数である。焦点距離、Fナンバー、画角(度)はそれぞれ無限遠物体に焦点を合わせたときを表している。バックフォーカスBFは最終面(ガラスブロック面)から像面までの距離で表している。 Numerical examples 1 to 5 corresponding to the first to fifth embodiments of the present invention are shown below. In each numerical example, i indicates the order of the surfaces from the object side, r i is the radius of curvature of the i-th surface from the object side, d i is the i-th and i + 1-th distance from the object side, nd i and νd i are the refractive index and Abbe number of the i-th optical member. The focal length, the F number, and the angle of view (degree) each represent a time when the object is focused on an infinite object. The back focus BF is represented by the distance from the final surface (glass block surface) to the image surface.

回折光学素子(回折面)は前述(a)式の位相関数の位相係数を与えることで表している。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正、Rを近軸曲率半径、kを離心率、A4、A6、A8、A10、A12を各々非球面係数としたとき、   The diffractive optical element (diffractive surface) is expressed by giving a phase coefficient of the phase function of the above-described equation (a). Aspherical shape is X axis in the optical axis direction, H axis in the direction perpendicular to the optical axis, positive light traveling direction, R is paraxial radius of curvature, k is eccentricity, A4, A6, A8, A10, A12 When the aspheric coefficient is used,

なる式で表している。例えば「e−z」の表示は「10-Z」を意味している。前述の各条件式と数値実施例における諸数値との関係を表1に示す。 It is expressed by the following formula. For example, the display of “ ez ” means “10 −Z ”. Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.

(数値実施例1)
単位 mm

面データ
面番号 r d nd νd 有効径
1* 128.642 18.06 1.74000 28.3 135.15
2 426.327 59.42 133.08
3 105.039 20.08 1.43387 95.1 91.30
4 -209.070 0.12 87.60
5 -234.431 5.00 1.75520 27.5 86.44
6 53.610 0.78 73.93
8 734.607 39.61 73.18
9* 86.436 7.46 1.75520 27.5 58.96
10 551.632 5.00 57.47
11 2774.965 3.50 1.73800 32.3 53.84
12 59.115 63.70 49.76
13(絞り) ∞ 3.00 41.96
14 238.294 3.00 1.84666 23.8 41.43
15 97.968 6.54 1.72000 43.7 40.79
16 -115.489 6.38 40.44
17 169.643 5.50 1.80000 29.8 37.97
18 -129.634 3.00 1.49700 81.5 37.47
19 44.653 5.41 35.42
20 -98.393 2.50 1.62041 60.3 35.43
21 63.955 3.00 36.54
22 102.356 4.00 1.72047 34.7 38.03
23 -1201.392 0.10 38.49
24 56.158 8.00 1.51633 64.1 39.89
25 -107.572 3.00 1.74400 44.8 39.80
26 3138.611 5.00 39.90
27 ∞ 2.20 1.51633 64.1 40.12
28 ∞ 71.21 40.18
像面 ∞
(Numerical example 1)
Unit mm

Surface data surface number rd nd νd Effective diameter
1 * 128.642 18.06 1.74000 28.3 135.15
2 426.327 59.42 133.08
3 105.039 20.08 1.43387 95.1 91.30
4 -209.070 0.12 87.60
5 -234.431 5.00 1.75520 27.5 86.44
6 53.610 0.78 73.93
8 734.607 39.61 73.18
9 * 86.436 7.46 1.75520 27.5 58.96
10 551.632 5.00 57.47
11 2774.965 3.50 1.73800 32.3 53.84
12 59.115 63.70 49.76
13 (Aperture) ∞ 3.00 41.96
14 238.294 3.00 1.84666 23.8 41.43
15 97.968 6.54 1.72000 43.7 40.79
16 -115.489 6.38 40.44
17 169.643 5.50 1.80000 29.8 37.97
18 -129.634 3.00 1.49700 81.5 37.47
19 44.653 5.41 35.42
20 -98.393 2.50 1.62041 60.3 35.43
21 63.955 3.00 36.54
22 102.356 4.00 1.72047 34.7 38.03
23 -1201.392 0.10 38.49
24 56.158 8.00 1.51633 64.1 39.89
25 -107.572 3.00 1.74400 44.8 39.80
26 3138.611 5.00 39.90
27 ∞ 2.20 1.51633 64.1 40.12
28 ∞ 71.21 40.18
Image plane ∞

非球面データ
第1面
K = 0.00000e+000 A 4= 2.03636e-010 A 6= 1.90616e-013 A 8=-9.77158e-017 A10= 2.18671e-020 A12=-2.50375e-024

第9面
K = 0.00000e+000 A 4= 1.39478e-008 A 6= 1.54589e-012 A 8= 5.64272e-014 A10=-4.60026e-017 A12= 1.09187e-020

各種データ
ズーム比 1.00

焦点距離 392.00
Fナンバー 2.90
半画角(度) 3.16
像高 21.64
レンズ全長 372.96
BF 71.21

入射瞳位置 980.93
射出瞳位置 -46.60
前側主点位置 68.68
後側主点位置-320.79

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 172.10 168.91 133.97 -100.16
2 11 -81.89 3.50 2.06 0.04
3 13 118.88 12.54 6.78 -1.71
4 17 -50.45 16.41 11.97 -0.38
5 22 68.66 22.30 0.37 -15.41

単レンズデータ
レンズ 始面 焦点距離
1 1 242.70
2 3 164.32
3 5 -57.35
4 7 133.43
5 9 134.79
6 11 -81.89
7 14 -198.44
8 15 74.57
9 17 92.61
10 18 -66.45
11 20 -62.11
12 22 131.08
13 24 72.67
14 25 -139.74
15 27 0.00
Aspheric data 1st surface
K = 0.00000e + 000 A 4 = 2.03636e-010 A 6 = 1.90616e-013 A 8 = -9.77158e-017 A10 = 2.18671e-020 A12 = -2.50375e-024

9th page
K = 0.00000e + 000 A 4 = 1.39478e-008 A 6 = 1.54589e-012 A 8 = 5.64272e-014 A10 = -4.60026e-017 A12 = 1.09187e-020

Various data Zoom ratio 1.00

Focal length 392.00
F number 2.90
Half angle of view (degrees) 3.16
Statue height 21.64
Total lens length 372.96
BF 71.21

Entrance pupil position 980.93
Exit pupil position -46.60
Front principal point position 68.68
Rear principal point position -320.79

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 172.10 168.91 133.97 -100.16
2 11 -81.89 3.50 2.06 0.04
3 13 118.88 12.54 6.78 -1.71
4 17 -50.45 16.41 11.97 -0.38
5 22 68.66 22.30 0.37 -15.41

Single lens Data lens Start surface Focal length
1 1 242.70
2 3 164.32
3 5 -57.35
4 7 133.43
5 9 134.79
6 11 -81.89
7 14 -198.44
8 15 74.57
9 17 92.61
10 18 -66.45
11 20 -62.11
12 22 131.08
13 24 72.67
14 25 -139.74
15 27 0.00

(数値実施例2)
f= 391.99mm Fno= 2.89 2ω= 6.32°
面データ
面番号 r d nd νd 有効径
1* 163.873 17.25 1.71736 29.5 135.64
2 3022.122 50.00 134.36
3 228.252 8.00 1.48749 70.2 101.74
4* 726.256 29.80 99.40
5 -883.297 4.48 1.84666 23.8 79.41
6(回折) 75.756 15.70 1.48749 70.2 74.29
7 -350.562 23.43 73.62
8 101.045 9.71 1.73800 32.3 62.80
9 -546.387 1.00 60.95
10 481.627 2.50 1.84666 23.8 58.19
11* 56.655 70.00 53.52
12(絞り) ∞ 4.00 41.01
13 76.089 2.60 1.84666 23.8 39.71
14 38.026 10.00 1.74320 49.3 37.93
15 397.906 1.88 37.48
16 877.047 4.43 1.84666 23.8 37.36
17 -77.836 1.80 1.65844 50.9 37.24
18 66.096 4.06 36.42
19 -185.276 3.54 1.72000 46.0 36.53
20 90.701 1.50 37.71
21 123.242 3.48 1.73800 32.3 38.40
22 -191.063 0.10 38.63
23 -367.117 2.60 1.49700 81.5 38.77
24 51.731 7.35 1.69895 30.1 40.21
25 -314.722 4.50 40.40
26 ∞ 2.20 1.51633 64.1 50.00
27 ∞ 50.00
(Numerical example 2)
f = 391.99mm Fno = 2.89 2ω = 6.32 °
Surface data surface number rd nd νd Effective diameter
1 * 163.873 17.25 1.71736 29.5 135.64
2 3022.122 50.00 134.36
3 228.252 8.00 1.48749 70.2 101.74
4 * 726.256 29.80 99.40
5 -883.297 4.48 1.84666 23.8 79.41
6 (Diffraction) 75.756 15.70 1.48749 70.2 74.29
7 -350.562 23.43 73.62
8 101.045 9.71 1.73800 32.3 62.80
9 -546.387 1.00 60.95
10 481.627 2.50 1.84666 23.8 58.19
11 * 56.655 70.00 53.52
12 (Aperture) ∞ 4.00 41.01
13 76.089 2.60 1.84666 23.8 39.71
14 38.026 10.00 1.74320 49.3 37.93
15 397.906 1.88 37.48
16 877.047 4.43 1.84666 23.8 37.36
17 -77.836 1.80 1.65844 50.9 37.24
18 66.096 4.06 36.42
19 -185.276 3.54 1.72000 46.0 36.53
20 90.701 1.50 37.71
21 123.242 3.48 1.73800 32.3 38.40
22 -191.063 0.10 38.63
23 -367.117 2.60 1.49700 81.5 38.77
24 51.731 7.35 1.69895 30.1 40.21
25 -314.722 4.50 40.40
26 ∞ 2.20 1.51633 64.1 50.00
27 ∞ 50.00

非球面データ
第1面
K = 0.00000e+000 A 4=-1.15560e-008 A 6=-4.53533e-013 A 8= 8.83305e-019 A10=-6.93761e-021 A12= 5.45233e-025

第4面
K = 0.00000e+000 A 4= 6.12718e-008 A 6=-4.88171e-012 A 8= 3.47625e-016 A10=-2.35354e-019 A12= 4.96639e-023

第6面(回折面)
C 2=-6.60024e-005 C 4=-3.66616e-009 C 6=-1.78616e-012 C 8= 1.13567e-014
C10=-1.06293e-017 C12= 4.64679e-021 C14=-8.74708e-025

第11面
K = 0.00000e+000 A 4=-1.43713e-007 A 6=-5.90038e-011 A 8=-4.01550e-015 A10= 1.91590e-018 A12=-4.74095e-021

焦点距離 391.99
Fナンバー 2.89
半画角(度) 3.16
像高 21.64
レンズ全長 367.00
BF 81.09

入射瞳位置 926.99
射出瞳位置 -41.65
前側主点位置 67.10
後側主点位置-310.90

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 146.19 158.37 135.22 -84.47
2 10 -76.04 2.50 1.54 0.18
3 12 271.01 54.03 12.25 -28.82

単レンズデータ
レンズ 始面 焦点距離
1 1 240.93
2 3 679.24
3 5 -83.14
4 6 127.21
5 8 116.29
6 10 -76.04
7 13 -92.68
8 14 55.91
9 16 84.62
10 17 -54.02
11 19 -84.12
12 21 101.99
13 23 -91.04
14 24 64.09
Aspheric data 1st surface
K = 0.00000e + 000 A 4 = -1.15560e-008 A 6 = -4.53533e-013 A 8 = 8.83305e-019 A10 = -6.93761e-021 A12 = 5.45233e-025

4th page
K = 0.00000e + 000 A 4 = 6.12718e-008 A 6 = -4.88171e-012 A 8 = 3.47625e-016 A10 = -2.35354e-019 A12 = 4.96639e-023

6th surface (diffractive surface)
C 2 = -6.60024e-005 C 4 = -3.66616e-009 C 6 = -1.78616e-012 C 8 = 1.13567e-014
C10 = -1.06293e-017 C12 = 4.64679e-021 C14 = -8.74708e-025

11th page
K = 0.00000e + 000 A 4 = -1.43713e-007 A 6 = -5.90038e-011 A 8 = -4.01550e-015 A10 = 1.91590e-018 A12 = -4.74095e-021

Focal length 391.99
F number 2.89
Half angle of view (degrees) 3.16
Statue height 21.64
Total lens length 367.00
BF 81.09

Entrance pupil position 926.99
Exit pupil position -41.65
Front principal point position 67.10
Rear principal point position -310.90

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 146.19 158.37 135.22 -84.47
2 10 -76.04 2.50 1.54 0.18
3 12 271.01 54.03 12.25 -28.82

Single lens Data lens Start surface Focal length
1 1 240.93
2 3 679.24
3 5 -83.14
4 6 127.21
5 8 116.29
6 10 -76.04
7 13 -92.68
8 14 55.91
9 16 84.62
10 17 -54.02
11 19 -84.12
12 21 101.99
13 23 -91.04
14 24 64.09

(数値実施例3)
f= 392.00mm Fno= 2.89 2ω= 6.32°
面データ
面番号 r d nd νd 有効径
1* 216.521 13.58 1.84666 23.8 135.64
2 3022.122 76.40 134.59
3 105.338 17.00 1.48749 70.2 91.92
4* -252.532 3.80 89.98
5 -432.434 4.48 1.84666 23.8 83.40
6(回折) 66.885 14.50 1.48749 70.2 74.61
7 296.892 21.77 72.95
8 111.993 9.50 1.72825 28.5 64.73
9 -277.201 1.00 63.43
10 513.083 2.50 1.84666 23.8 59.50
11* 57.414 70.60 54.53
12(絞り) ∞ 4.00 39.55
13 76.948 2.60 1.84666 23.8 38.05
14 39.114 6.00 1.74320 49.3 36.37
15 312.248 1.88 36.20
16 309.797 4.43 1.84666 23.8 36.08
17 -100.056 1.80 1.65844 50.9 35.88
18 57.544 4.37 35.03
19 -149.184 3.54 1.72000 46.0 35.15
20 99.237 2.50 36.47
21 94.711 4.65 1.73800 32.3 38.37
22 -110.876 0.56 38.55
23 -85.310 2.60 1.49700 81.5 38.56
24 82.043 7.35 1.69895 30.1 39.98
25 -182.892 4.50 40.40
26 ∞ 2.20 1.51633 64.1 50.00
27 ∞ 50.00
(Numerical Example 3)
f = 392.00mm Fno = 2.89 2ω = 6.32 °
Surface data surface number rd nd νd Effective diameter
1 * 216.521 13.58 1.84666 23.8 135.64
2 3022.122 76.40 134.59
3 105.338 17.00 1.48749 70.2 91.92
4 * -252.532 3.80 89.98
5 -432.434 4.48 1.84666 23.8 83.40
6 (Diffraction) 66.885 14.50 1.48749 70.2 74.61
7 296.892 21.77 72.95
8 111.993 9.50 1.72825 28.5 64.73
9 -277.201 1.00 63.43
10 513.083 2.50 1.84666 23.8 59.50
11 * 57.414 70.60 54.53
12 (Aperture) ∞ 4.00 39.55
13 76.948 2.60 1.84666 23.8 38.05
14 39.114 6.00 1.74320 49.3 36.37
15 312.248 1.88 36.20
16 309.797 4.43 1.84666 23.8 36.08
17 -100.056 1.80 1.65844 50.9 35.88
18 57.544 4.37 35.03
19 -149.184 3.54 1.72000 46.0 35.15
20 99.237 2.50 36.47
21 94.711 4.65 1.73800 32.3 38.37
22 -110.876 0.56 38.55
23 -85.310 2.60 1.49700 81.5 38.56
24 82.043 7.35 1.69895 30.1 39.98
25 -182.892 4.50 40.40
26 ∞ 2.20 1.51633 64.1 50.00
27 ∞ 50.00

非球面データ
第1面
K = 0.00000e+000 A 4=-1.08292e-008 A 6=-2.39684e-013 A 8=-2.11946e-017 A10= 3.31560e-022 A12=-7.12321e-026

第4面
K = 0.00000e+000 A 4= 1.85199e-007 A 6=-2.05648e-011 A 8=-1.10002e-015 A10= 9.23235e-019 A12=-9.69362e-023

第6面(回折面)
C 2=-4.01382e-005 C 4=-2.11690e-009 C 6=-1.22963e-012 C 8=-1.45881e-015
C10= 3.40204e-018 C12=-9.44823e-022 C14=-1.04292e-025

第11面
K = 0.00000e+000 C 4=-1.54313e-007 C 6=-6.50718e-011 C 8= 6.03529e-014 C10=-9.95895e-017 C12= 4.40174e-020

焦点距離 392.00
Fナンバー 2.89
半画角(度) 3.16
像高 21.64
レンズ全長 367.00
BF 78.90

入射瞳位置 920.27
射出瞳位置 -43.41
前側主点位置 55.94
後側主点位置-313.10

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 139.52 161.04 129.95 -79.38
2 10 -76.55 2.50 1.53 0.17
3 12 315.14 52.97 24.16 -17.24

単レンズデータ
レンズ 始面 焦点距離
1 1 274.86
2 3 154.89
3 5 -68.51
4 6 171.09
5 8 110.67
6 10 -76.55
7 13 -97.01
8 14 59.61
9 16 89.77
10 17 -55.23
11 19 -82.28
12 21 69.88
13 23 -83.72
14 24 81.97
Aspheric data 1st surface
K = 0.00000e + 000 A 4 = -1.08292e-008 A 6 = -2.39684e-013 A 8 = -2.11946e-017 A10 = 3.31560e-022 A12 = -7.12321e-026

4th page
K = 0.00000e + 000 A 4 = 1.85199e-007 A 6 = -2.05648e-011 A 8 = -1.10002e-015 A10 = 9.23235e-019 A12 = -9.69362e-023

6th surface (diffractive surface)
C 2 = -4.01382e-005 C 4 = -2.11690e-009 C 6 = -1.22963e-012 C 8 = -1.45881e-015
C10 = 3.40204e-018 C12 = -9.44823e-022 C14 = -1.04292e-025

11th page
K = 0.00000e + 000 C 4 = -1.54313e-007 C 6 = -6.50718e-011 C 8 = 6.03529e-014 C10 = -9.95895e-017 C12 = 4.40174e-020

Focal length 392.00
F number 2.89
Half angle of view (degrees) 3.16
Statue height 21.64
Total lens length 367.00
BF 78.90

Entrance pupil position 920.27
Exit pupil position -43.41
Front principal point position 55.94
Rear principal point position-313.10

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 139.52 161.04 129.95 -79.38
2 10 -76.55 2.50 1.53 0.17
3 12 315.14 52.97 24.16 -17.24

Single lens Data lens Start surface Focal length
1 1 274.86
2 3 154.89
3 5 -68.51
4 6 171.09
5 8 110.67
6 10 -76.55
7 13 -97.01
8 14 59.61
9 16 89.77
10 17 -55.23
11 19 -82.28
12 21 69.88
13 23 -83.72
14 24 81.97

(数値実施例4)
f= 392.10mm Fno= 2.89 2ω= 6.32°
面データ
面番号 r d nd νd 有効径
1* 172.993 16.50 1.64769 33.8 135.64
2 4015.582 50.00 134.54
3 130.324 8.00 1.48749 70.2 104.01
4* 219.200 29.80 101.83
5 298.174 4.48 1.84666 23.8 84.15
6(回折) 83.891 15.30 1.43875 94.9 78.65
7 -1108.678 9.72 76.99
8 95.119 7.50 1.72000 46.0 68.10
9 1029.661 2.00 67.00
10 6816.800 2.50 1.72047 34.7 65.27
11* 54.342 94.24 58.79
12(絞り) ∞ 0.10 41.13
13 107.083 2.40 1.84666 23.8 40.70
14 43.824 6.21 1.74320 49.3 39.24
15 -502.587 1.88 38.94
16 129.128 3.91 1.84666 23.8 37.13
17 -107.119 2.40 1.69350 50.8 36.73
18 54.092 5.03 35.09
19 -138.717 2.40 1.76200 40.1 35.17
20 85.451 1.50 36.04
21 88.511 3.48 1.73800 32.3 37.05
22 -330.863 5.57 37.22
23 1514.471 2.50 1.49700 81.5 38.52
24 55.271 6.46 1.65412 39.7 39.30
25 -917.816 15.01 39.42
26 ∞ 2.20 1.51633 64.1 50.00
27 ∞ 50.00
(Numerical example 4)
f = 392.10mm Fno = 2.89 2ω = 6.32 °
Surface data surface number rd nd νd Effective diameter
1 * 172.993 16.50 1.64769 33.8 135.64
2 4015.582 50.00 134.54
3 130.324 8.00 1.48749 70.2 104.01
4 * 219.200 29.80 101.83
5 298.174 4.48 1.84666 23.8 84.15
6 (Diffraction) 83.891 15.30 1.43875 94.9 78.65
7 -1108.678 9.72 76.99
8 95.119 7.50 1.72000 46.0 68.10
9 1029.661 2.00 67.00
10 6816.800 2.50 1.72047 34.7 65.27
11 * 54.342 94.24 58.79
12 (Aperture) ∞ 0.10 41.13
13 107.083 2.40 1.84666 23.8 40.70
14 43.824 6.21 1.74320 49.3 39.24
15 -502.587 1.88 38.94
16 129.128 3.91 1.84666 23.8 37.13
17 -107.119 2.40 1.69350 50.8 36.73
18 54.092 5.03 35.09
19 -138.717 2.40 1.76200 40.1 35.17
20 85.451 1.50 36.04
21 88.511 3.48 1.73800 32.3 37.05
22 -330.863 5.57 37.22
23 1514.471 2.50 1.49700 81.5 38.52
24 55.271 6.46 1.65412 39.7 39.30
25 -917.816 15.01 39.42
26 ∞ 2.20 1.51633 64.1 50.00
27 ∞ 50.00

非球面データ
第1面
K = 0.00000e+000 A 4=-1.06948e-008 A 6=-5.32361e-013 A 8= 5.75618e-017 A10=-1.12738e-020 A12= 6.05156e-025

第4面
K = 0.00000e+000 A 4= 4.99233e-008 A 6=-1.53987e-012 A 8= 1.21213e-015 A10=-3.88266e-019 A12= 4.06199e-023

第6面(回折面)
C 2=-5.21738e-005 C 4= 4.53753e-009 C 6=-1.00852e-011 C 8= 1.44659e-014
C10=-1.08013e-017 C12= 4.09807e-021 C14=-6.24270e-025

第11面
K = 0.00000e+000 A 4=-2.58654e-007 A 6=-3.79517e-011 A 8=-1.39593e-013 A10= 1.03639e-016 A12=-3.94251e-020

焦点距離 392.01
Fナンバー 2.89
半画角(度) 3.16
像高 21.64
レンズ全長 369.01
BF 67.92

入射瞳位置 969.91
射出瞳位置 -50.28
前側主点位置 61.85
後側主点位置-324.08

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 133.21 141.30 97.25 -70.02
2 10 -76.04 2.50 1.46 0.01
3 12 306.79 61.05 5.08 -45.11

単レンズデータ
レンズ 始面 焦点距離
1 1 278.65
2 3 640.45
3 5 -141.25
4 6 175.20
5 8 145.07
6 10 -76.04
7 13 -89.17
8 14 54.50
9 16 69.68
10 17 -51.51
11 19 -69.07
12 21 94.96
13 23 -115.49
14 24 79.91
Aspheric data 1st surface
K = 0.00000e + 000 A 4 = -1.06948e-008 A 6 = -5.32361e-013 A 8 = 5.75618e-017 A10 = -1.12738e-020 A12 = 6.05156e-025

4th page
K = 0.00000e + 000 A 4 = 4.99233e-008 A 6 = -1.53987e-012 A 8 = 1.21213e-015 A10 = -3.88266e-019 A12 = 4.06199e-023

6th surface (diffractive surface)
C 2 = -5.21738e-005 C 4 = 4.53753e-009 C 6 = -1.00852e-011 C 8 = 1.44659e-014
C10 = -1.08013e-017 C12 = 4.09807e-021 C14 = -6.24270e-025

11th page
K = 0.00000e + 000 A 4 = -2.58654e-007 A 6 = -3.79517e-011 A 8 = -1.39593e-013 A10 = 1.03639e-016 A12 = -3.94251e-020

Focal length 392.01
F number 2.89
Half angle of view (degrees) 3.16
Statue height 21.64
Total lens length 369.01
BF 67.92

Entrance pupil position 969.91
Exit pupil position -50.28
Front principal point 61.85
Rear principal point position -324.08

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 133.21 141.30 97.25 -70.02
2 10 -76.04 2.50 1.46 0.01
3 12 306.79 61.05 5.08 -45.11

Single lens Data lens Start surface Focal length
1 1 278.65
2 3 640.45
3 5 -141.25
4 6 175.20
5 8 145.07
6 10 -76.04
7 13 -89.17
8 14 54.50
9 16 69.68
10 17 -51.51
11 19 -69.07
12 21 94.96
13 23 -115.49
14 24 79.91

(数値実施例5)
f= 778.931mm Fno= 5.80 2ω= 3.18°
面データ
面番号 r d nd νd 有効径
1* 176.164 13.00 1.63980 34.5 134.61
2 574.915 85.00 133.39
3 154.275 7.00 1.48749 70.2 100.46
4* 523.687 44.10 99.93
5(回折) -830.164 5.00 1.74000 28.3 76.49
6 89.334 11.47 1.49700 81.5 72.69
7 -313.391 71.79 72.39
8 90.298 2.77 1.48749 70.2 38.00
9 -1241.073 1.80 1.73800 32.3 37.74
10* 68.557 46.77 36.15
11(絞り) ∞ 0.10 25.83
12 158.106 1.60 1.84666 23.8 25.71
13 22.120 10.00 1.62588 35.7 24.73
14 -82.695 2.00 24.46
15 -162.739 4.00 1.80809 22.8 23.78
16 -62.491 1.60 1.83481 42.7 23.59
17 45.627 1.00 23.87
18 38.510 4.00 1.48749 70.2 24.91
19 59.950 2.10 25.57
20 70.095 4.00 1.66680 33.0 26.65
21 513.845 8.59 27.08
22 -133.189 6.00 1.69895 30.1 29.29
23 -26.016 3.00 1.43875 94.9 29.84
24 181.038 13.51 30.38
25 -163.464 1.60 1.43875 94.9 32.43
26 46.849 1.00 33.41
27 50.137 10.00 1.71736 29.5 34.00
28 -28.613 3.00 1.80809 22.8 34.06
29 -210.355 24.93 34.95
30 ∞ 2.20 1.51633 64.1 50.00
31 ∞ 50.00
(Numerical example 5)
f = 778.931mm Fno = 5.80 2ω = 3.18 °
Surface data surface number rd nd νd Effective diameter
1 * 176.164 13.00 1.63980 34.5 134.61
2 574.915 85.00 133.39
3 154.275 7.00 1.48749 70.2 100.46
4 * 523.687 44.10 99.93
5 (Diffraction) -830.164 5.00 1.74000 28.3 76.49
6 89.334 11.47 1.49700 81.5 72.69
7 -313.391 71.79 72.39
8 90.298 2.77 1.48749 70.2 38.00
9 -1241.073 1.80 1.73800 32.3 37.74
10 * 68.557 46.77 36.15
11 (Aperture) ∞ 0.10 25.83
12 158.106 1.60 1.84666 23.8 25.71
13 22.120 10.00 1.62588 35.7 24.73
14 -82.695 2.00 24.46
15 -162.739 4.00 1.80809 22.8 23.78
16 -62.491 1.60 1.83481 42.7 23.59
17 45.627 1.00 23.87
18 38.510 4.00 1.48749 70.2 24.91
19 59.950 2.10 25.57
20 70.095 4.00 1.66680 33.0 26.65
21 513.845 8.59 27.08
22 -133.189 6.00 1.69895 30.1 29.29
23 -26.016 3.00 1.43875 94.9 29.84
24 181.038 13.51 30.38
25 -163.464 1.60 1.43875 94.9 32.43
26 46.849 1.00 33.41
27 50.137 10.00 1.71736 29.5 34.00
28 -28.613 3.00 1.80809 22.8 34.06
29 -210.355 24.93 34.95
30 ∞ 2.20 1.51633 64.1 50.00
31 ∞ 50.00

非球面データ
第1面
K = 0.00000e+000 A 4=-3.45280e-011 A 6= 4.75067e-014 A 8= 1.45809e-018 A10=-2.66402e-021 A12= 2.61793e-025

第4面
K = 0.00000e+000 A 4= 3.04821e-008 A 6= 6.61574e-013 A 8=-1.16903e-016 A10=-1.25055e-019 A12= 3.19811e-023

第5面(回折面)
C 2=-4.41908e-005 C 4= 3.38675e-009 C 6=-2.45408e-012 C 8= 2.12494e-015
C 10=-4.99016e-019 C 12=-5.84869e-023

第10面
K = 0.00000e+000 A 4= 6.89746e-009 A 6=-2.35869e-010 A 8= 6.62241e-013 A10=-5.49000e-016 A12=-2.07792e-018 A14= 3.51982e-021

焦点距離 778.93
Fナンバー 5.80
半画角(度) 1.59
像高 21.60
レンズ全長 485.99
BF 93.05

入射瞳位置 1708.47
射出瞳位置 -102.61
前側主点位置-613.55
後側主点位置-685.88

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 313.99 165.57 -14.81 -152.47
2 8 -185.19 4.57 5.85 2.86
3 11 -4942.82 104.24 -1190.94 -1671.58

単レンズデータ
レンズ 始面 焦点距離
1 1 392.00
2 3 445.86
3 5 -109.82
4 6 141.21
5 8 172.79
6 9 -87.98
7 12 -30.54
8 13 28.95
9 15 123.34
10 16 -31.38
11 18 208.15
12 20 121.29
13 22 45.22
14 23 -51.62
15 25 -82.80
16 27 26.82
17 28 -41.29
Aspheric data 1st surface
K = 0.00000e + 000 A 4 = -3.45280e-011 A 6 = 4.75067e-014 A 8 = 1.45809e-018 A10 = -2.66402e-021 A12 = 2.61793e-025

4th page
K = 0.00000e + 000 A 4 = 3.04821e-008 A 6 = 6.61574e-013 A 8 = -1.16903e-016 A10 = -1.25055e-019 A12 = 3.19811e-023

5th surface (diffractive surface)
C 2 = -4.41908e-005 C 4 = 3.38675e-009 C 6 = -2.45408e-012 C 8 = 2.12494e-015
C 10 = -4.99016e-019 C 12 = -5.84869e-023

10th page
K = 0.00000e + 000 A 4 = 6.89746e-009 A 6 = -2.35869e-010 A 8 = 6.62241e-013 A10 = -5.49000e-016 A12 = -2.07792e-018 A14 = 3.51982e-021

Focal length 778.93
F number 5.80
Half angle of view (degrees) 1.59
Statue height 21.60
Total lens length 485.99
BF 93.05

Entrance pupil position 1708.47
Exit pupil position -102.61
Front principal point position-613.55
Rear principal point position -685.88

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 313.99 165.57 -14.81 -152.47
2 8 -185.19 4.57 5.85 2.86
3 11 -4942.82 104.24 -1190.94 -1671.58

Single lens Data lens Start surface Focal length
1 1 392.00
2 3 445.86
3 5 -109.82
4 6 141.21
5 8 172.79
6 9 -87.98
7 12 -30.54
8 13 28.95
9 15 123.34
10 16 -31.38
11 18 208.15
12 20 121.29
13 22 45.22
14 23 -51.62
15 25 -82.80
16 27 26.82
17 28 -41.29

次に本発明の撮像光学系を撮像装置(カメラシステム)に適用した実施例を図9を用いて説明する。図9は一眼レフカメラの要部概略図である。   Next, an embodiment in which the imaging optical system of the present invention is applied to an imaging apparatus (camera system) will be described with reference to FIG. FIG. 9 is a schematic view of the main part of a single-lens reflex camera.

図9において、10は実施例1〜5のいずれか1つの撮像光学系1を有する撮像レンズである。撮影光学系1は保持部材である鏡筒2に保持されている。20はカメラ本体である。カメラ本体は撮像レンズ10からの光束を上方に反射するクイックリターンミラー3、撮像レンズ10の像形成位置に配置された焦点板4、焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5を有している。更に、その正立像を観察するための接眼レンズ6等によって構成されている。   In FIG. 9, reference numeral 10 denotes an imaging lens having the imaging optical system 1 of any one of the first to fifth embodiments. The photographing optical system 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body. The camera body includes a quick return mirror 3 that reflects the light beam from the imaging lens 10 upward, a focusing plate 4 that is disposed at an image forming position of the imaging lens 10, and a pentagon that converts an inverted image formed on the focusing plate 4 into an erect image. A roof prism 5 is provided. Further, it is constituted by an eyepiece 6 for observing the erect image.

7は感光面であり、CCDセンサやCMOSセンサ等の撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。このように実施例1〜5の撮像光学系を写真用カメラや、ビデオカメラ、デジタルスチルカメラ等の撮像装置に適用することにより、軽量で高い光学性能を有する撮像装置を実現している。   Reference numeral 7 denotes a photosensitive surface, on which an image pickup device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, or a silver salt film is arranged. At the time of photographing, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the photographing lens 10. In this manner, by applying the imaging optical system of Embodiments 1 to 5 to an imaging apparatus such as a photographic camera, a video camera, or a digital still camera, a lightweight imaging apparatus having high optical performance is realized.

尚、本発明の撮影光学系はクイックリターンミラーのない撮像装置にも適用することができる。   Note that the photographing optical system of the present invention can also be applied to an image pickup apparatus without a quick return mirror.

L0 撮影光学系 L1 第1レンズ群 L2 第2レンズ群
L3 第3レンズ群 L11 第11レンズ群 L12 第12レンズ群
L31 第31レンズ群 L32は第32レンズ群 L33 第33レンズ群
DOE 回折光学素子
D 回折光学部
L0 photographing optical system L1 first lens group L2 second lens group L3 third lens group L11 eleventh lens group L12 twelfth lens group L31 thirty-first lens group L32 is thirty-second lens group L33 thirty-third lens group DOE diffractive optical element D Diffraction optics

Claims (9)

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成され、フォーカシングに際して、前記第1レンズ群および前記第3レンズ群は不動であり、前記第2レンズ群が移動し、前記第1レンズ群は、最も広い空気間隔を境に、物体側に正の屈折力の第11レンズ群、像側に第12レンズ群を有し、前記第11レンズ群は1つの正レンズG1より構成され、前記正レンズG1の材料の屈折率をNG1、比重をdG1、焦点距離をfG1、全系の焦点距離をfとするとき、
dG1<−3.1×(NG1)+14.7×NG1−12.8
0.4<fG1/f<0.8
なる条件式を満たすことを特徴とする撮像光学系。
In order from the object side to the image side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, and a third lens group are configured. During focusing, the first lens group and the first lens group The three lens groups are stationary, the second lens group moves, and the first lens group has an eleventh lens group having a positive refractive power on the object side and a twelfth lens on the image side with the widest air interval as a boundary. The eleventh lens group is composed of one positive lens G1, and the refractive index of the material of the positive lens G1 is NG1, the specific gravity is dG1, the focal length is fG1, and the focal length of the entire system is f. and when,
dG1 <−3.1 × (NG1) 2 + 14.7 × NG1-12.8
0.4 <fG1 / f <0.8
An imaging optical system characterized by satisfying the following conditional expression:
1.5<NG1
なる条件式を満たすことを特徴とする請求項1に記載の撮像光学系。
1.5 <NG1
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第11レンズ群と前記第12レンズ群の光軸上の間隔をD1ab、最も物体側のレンズ面から像面までの距離をLとするとき、
0.05<D1ab/L<0.40
なる条件式を満たすことを特徴とする請求項1又は2に記載の撮像光学系。
When the distance on the optical axis between the eleventh lens group and the twelfth lens group is D1ab, and the distance from the lens surface closest to the object side to the image plane is L,
0.05 <D1ab / L <0.40
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第12レンズ群は少なくとも1つの負レンズを含み、前記第12レンズ群に含まれる負レンズについて物体側から数えたときの第j番目の負レンズGnjの焦点距離をfnj、材料のアッベ数をνdnjとするとき、
−0.251≦Σ(f/(fnj×νdnj))<−0.15
なる条件式を満たすことを特徴とする請求項1乃至3のいずれか1項に記載の撮像光学系。
The twelfth lens group includes at least one negative lens. When the negative lenses included in the twelfth lens group are counted from the object side, the focal length of the jth negative lens Gnj is fnj, and the Abbe number of the material is When νdnj,
−0.251 ≦ Σ (f / (fnj × νdnj)) <− 0.15
The imaging optical system according to claim 1, wherein the conditional expression is satisfied.
前記第12レンズ群は少なくとも1つの正レンズを含み、該正レンズの材料のアッベ数をνd12pとするとき、
80<νd12p
なる条件式を満たすことを特徴とする請求項1乃至4のいずれか1項の撮像光学系。
The twelfth lens group includes at least one positive lens, and when the Abbe number of the material of the positive lens is νd12p,
80 <νd12p
The imaging optical system according to claim 1, wherein the conditional expression is satisfied.
瞳近軸光線が光軸と交わる位置よりも物体側に少なくとも1つの回折光学素子を有することを特徴とする請求項1乃至5のいずれか1項に記載の撮像光学系。 6. The imaging optical system according to claim 1, further comprising at least one diffractive optical element closer to the object side than a position where the pupil paraxial ray intersects the optical axis. 物体側から像側へ順に、前記第3レンズ群は正の屈折力の第31レンズ群、像ぶれ補正に際して光軸に対して垂直方向の成分を持つように移動する負の屈折力の第32レンズ群、正の屈折力の第33レンズ群より構成されることを特徴とする請求項1乃至6のいずれか1項に記載の撮像光学系。 In order from the object side to the image side, the third lens group is a thirty-first lens group having a positive refracting power, and a thirty-second lens having a negative refracting power that moves so as to have a component perpendicular to the optical axis in correcting image blur. The imaging optical system according to claim 1, comprising a lens group and a 33rd lens group having a positive refractive power. 前記第2レンズ群は、単一の負レンズ、または、正レンズと負レンズを接合した接合レンズより構成されることを特徴とする請求項1乃至7のいずれか1項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 7, wherein the second lens group includes a single negative lens or a cemented lens in which a positive lens and a negative lens are cemented. . 請求項1乃至8のいずれか1項に記載の撮像光学系と、該撮像光学系によって形成される像を受光する撮像素子を有することを特徴とする撮像装置。 An imaging apparatus comprising: the imaging optical system according to claim 1; and an imaging element that receives an image formed by the imaging optical system.
JP2012202182A 2012-09-14 2012-09-14 Imaging optical system and imaging apparatus having the same Expired - Fee Related JP5639625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012202182A JP5639625B2 (en) 2012-09-14 2012-09-14 Imaging optical system and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202182A JP5639625B2 (en) 2012-09-14 2012-09-14 Imaging optical system and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2014056196A JP2014056196A (en) 2014-03-27
JP2014056196A5 JP2014056196A5 (en) 2014-05-29
JP5639625B2 true JP5639625B2 (en) 2014-12-10

Family

ID=50613525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202182A Expired - Fee Related JP5639625B2 (en) 2012-09-14 2012-09-14 Imaging optical system and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP5639625B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366347B2 (en) * 2014-05-09 2018-08-01 キヤノン株式会社 Imaging optical system and imaging apparatus having the same
CN107076966B (en) * 2014-09-29 2022-05-24 Asml控股股份有限公司 High numerical aperture objective system
JP6622486B2 (en) * 2015-05-21 2019-12-18 キヤノン株式会社 Imaging optical system and imaging apparatus having the same
JP6628242B2 (en) * 2015-08-21 2020-01-08 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6452645B2 (en) * 2016-06-01 2019-01-16 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6239040B1 (en) * 2016-06-01 2017-11-29 キヤノン株式会社 Lens apparatus and imaging apparatus having the same
JP6701150B2 (en) * 2017-10-25 2020-05-27 キヤノン株式会社 Lens device and imaging device having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152972B2 (en) * 2012-07-20 2017-06-28 パナソニックIpマネジメント株式会社 Inner focus lens system, interchangeable lens device and camera system

Also Published As

Publication number Publication date
JP2014056196A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
US10215972B2 (en) Optical system and image pickup apparatus including the same
JP5885518B2 (en) Imaging optical system and imaging apparatus having the same
JP5606171B2 (en) Imaging optical system and imaging apparatus having the same
US8542447B2 (en) Photographic optical system and image pickup apparatus having the same
JP4829590B2 (en) Imaging optical system and imaging apparatus having the same
JP6366347B2 (en) Imaging optical system and imaging apparatus having the same
JP5639625B2 (en) Imaging optical system and imaging apparatus having the same
JP5602577B2 (en) Optical system and optical equipment
JP2013156405A5 (en)
JP6012349B2 (en) Imaging optical system and imaging apparatus having the same
US10746977B2 (en) Optical system and image pickup apparatus including the same
JP6622486B2 (en) Imaging optical system and imaging apparatus having the same
JP2018004726A (en) Optical system and image capturing device having the same
JP6025440B2 (en) Zoom lens and imaging apparatus having the same
JP5900057B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP6253379B2 (en) Optical system and imaging apparatus having the same
US10527825B2 (en) Image pickup optical system and image pickup apparatus having the same
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP6921617B2 (en) Imaging optical system and imaging equipment having it
JP6579843B2 (en) Optical system and imaging apparatus
JP6971760B2 (en) Imaging optical system and an imaging device having it
JP6584184B2 (en) Optical system and imaging apparatus
JP5903937B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2012123152A (en) Optical system using diffraction optical device
JP5159941B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140410

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140410

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141024

R151 Written notification of patent or utility model registration

Ref document number: 5639625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees