JP2002071297A - Photocatalytic heat exchanger - Google Patents
Photocatalytic heat exchangerInfo
- Publication number
- JP2002071297A JP2002071297A JP2000260388A JP2000260388A JP2002071297A JP 2002071297 A JP2002071297 A JP 2002071297A JP 2000260388 A JP2000260388 A JP 2000260388A JP 2000260388 A JP2000260388 A JP 2000260388A JP 2002071297 A JP2002071297 A JP 2002071297A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- photocatalytic
- photocatalyst
- titanium oxide
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 47
- 239000011941 photocatalyst Substances 0.000 claims abstract description 48
- 239000011230 binding agent Substances 0.000 claims abstract description 36
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 27
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims abstract description 26
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 239000000919 ceramic Substances 0.000 claims abstract description 8
- 239000007769 metal material Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 23
- 239000000377 silicon dioxide Substances 0.000 abstract description 11
- 239000011248 coating agent Substances 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 abstract description 9
- 230000001877 deodorizing effect Effects 0.000 abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 22
- 239000000843 powder Substances 0.000 description 9
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004568 cement Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000004332 deodorization Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 102100024522 Bladder cancer-associated protein Human genes 0.000 description 1
- 101150110835 Blcap gene Proteins 0.000 description 1
- 101100493740 Oryza sativa subsp. japonica BC10 gene Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/20—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
- F24F8/22—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Air-Conditioning For Vehicles (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はエアコンの熱交換器
に関するものであり、家庭用や自動車用などのエアコン
において優れた脱臭機能を実現する光触媒熱交換器に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for an air conditioner, and more particularly, to a photocatalytic heat exchanger which realizes an excellent deodorizing function in an air conditioner for home use or automobile use.
【0002】[0002]
【従来の技術】従来のエアコンにおける脱臭には、活性
炭、オゾン、貴金属系の酸化触媒などが用いられてき
た。しかしいずれの方法においても、エアコン本来の機
能である冷房や暖房の妨げにならないように、熱交換器
に出入りする空気の流路を妨げないような位置に設置す
る必要がある。そのため、臭気ガスとの接触面積が小さ
くなり、十分な脱臭性能が得られないのが現状である。2. Description of the Related Art Activated carbon, ozone, noble metal-based oxidation catalysts, and the like have been used for deodorization in conventional air conditioners. However, in either method, it is necessary to install the air conditioner at a position that does not obstruct the flow path of the air flowing into and out of the heat exchanger so as not to obstruct the cooling and heating functions inherent to the air conditioner. For this reason, the contact area with the odorous gas is small, and at present, sufficient deodorizing performance cannot be obtained.
【0003】上述した課題を解決する方法として、光触
媒である酸化チタン粉末をシリカ系無機バインダーとと
もに熱交換器のアルミフィン上に形成した構成の光触媒
熱交換器が提案されている(特開平8−296992号
公報)。具体的には、図4に示すように、アルミニウム
フィンの本体部41の表面に、耐食性被膜42と、酸化
チタン微粒子43およびシリカ系無機バインダー44か
ら成る被膜45とが順に形成され、酸化チタン微粒子4
3に紫外光を照射した際に、酸化チタン微粒子43の表
面で発生する光触媒作用により、接触した臭気ガスの分
解による脱臭が行われる。すなわち、臭気ガスとの接触
面積の大きな熱交換器に光触媒をコートした構成である
ため、従来の貴金属系の酸化触媒などを用いた脱臭方法
と比較して、優れた脱臭性能が得られるといった特徴を
有する。As a method for solving the above-mentioned problem, there has been proposed a photocatalytic heat exchanger in which a titanium oxide powder as a photocatalyst is formed on an aluminum fin of a heat exchanger together with a silica-based inorganic binder (Japanese Patent Application Laid-Open No. Hei 8-8). No. 296992). Specifically, as shown in FIG. 4, a corrosion-resistant coating 42 and a coating 45 composed of titanium oxide fine particles 43 and a silica-based inorganic binder 44 are sequentially formed on the surface of the main body portion 41 of the aluminum fin. 4
By irradiating the ultraviolet light 3 with the ultraviolet light, deodorization is performed by decomposition of the odor gas contacted by the photocatalytic action generated on the surface of the titanium oxide fine particles 43. In other words, since the heat exchanger has a large contact area with odor gas and is coated with a photocatalyst, superior deodorization performance can be obtained compared to the conventional deodorization method using a noble metal-based oxidation catalyst. Having.
【0004】また、酸化チタンは紫外ランプを照射する
ことにより、超親水性も発揮する。従来の熱交換器で問
題となっていた、熱交換器表面付近に存在する水分がア
ルミフィン表面で水滴となり、風にのって冷房風の吹き
出し口より室内に吹き出し床をぬらすと言ったことを防
ぐこともできる。[0004] Titanium oxide also exhibits superhydrophilicity when irradiated with an ultraviolet lamp. It was said that moisture existing near the heat exchanger surface became water droplets on the aluminum fin surface, which was a problem with the conventional heat exchanger, and that the air was blown into the room from the air outlet of the cooling air and the floor was wetted by the wind Can also be prevented.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記光
触媒熱交換器においては、バインダーにシリカ系無機物
を用いているため、冷暖運転の開始直後に、不快なセメ
ント臭が発生するといった課題がある。However, in the photocatalytic heat exchanger, since a silica-based inorganic substance is used as the binder, there is a problem that an unpleasant cement odor is generated immediately after the start of the cooling / heating operation.
【0006】また、従来の光触媒熱交換器は、製造の際
にも課題を有する。光触媒熱交換器は、まずアルミニウ
ムフィン上に酸化チタン光触媒粉末シリカ系無機バイン
ダーで光触媒皮膜を形成した後、揮発性プレス油を用い
てフィン材料をプレス加工して所定の形状のフィンを形
成し、さらにこのフィンを冷媒用チューブに組み合わせ
た後、所定の温度で加熱乾燥することにより、揮発性プ
レス油を脱脂し、製造される。この時、光触媒被膜を構
成する酸化チタンと無機系のバインダーは、いずれも硬
質材料であるため、プレス時に形成した皮膜が剥離した
り、プレス加工の際に用いるプレス工具の摩耗が激しく
なる、などと言ったプレス成形性に問題があった。[0006] The conventional photocatalytic heat exchanger also has a problem in production. The photocatalytic heat exchanger first forms a titanium oxide photocatalyst powder silica-based inorganic binder on an aluminum fin to form a photocatalytic film, and then presses the fin material using a volatile press oil to form a fin of a predetermined shape. Further, after the fins are combined with the refrigerant tube, the fins are heated and dried at a predetermined temperature to degrease volatile press oil to produce the fins. At this time, since the titanium oxide and the inorganic binder constituting the photocatalytic film are both hard materials, the film formed at the time of pressing is peeled off, and the wear of a press tool used at the time of press working becomes severe. There was a problem in press formability.
【0007】これらの課題を解決するためには、有機系
バインダーを用いることが有効である。しかし、有機系
バインダーを用いると、酸化チタンの光触媒作用で、接
触した臭気ガスを分解するだけでなく、有機系バインダ
ーも分解してしまうため、紫外ランプを照射して長時間
使用すると酸化チタン粉末が剥離してしまうと言った欠
点があった。To solve these problems, it is effective to use an organic binder. However, when an organic binder is used, the photocatalytic action of titanium oxide not only decomposes the odorous gas that has come into contact, but also decomposes the organic binder. However, there was a defect that it was peeled off.
【0008】本発明は、このような従来の問題点を解決
するものであり、家庭用や自動車用などのエアコンにお
いて優れた脱臭機能を実現する光触媒熱交換器を提供す
ることを目的とする。An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a photocatalytic heat exchanger which realizes an excellent deodorizing function in an air conditioner for home use or automobile use.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に本発明の光触媒熱交換器は、熱伝導性金属材料から成
るフィン表面を、酸化チタン粒子の表面に微細な細孔を
有する光触媒として不活性なセラミック膜をコートした
光触媒粒子と、有機系バインダーで被覆した構成である
ことを特徴とする。In order to achieve the above object, a photocatalyst heat exchanger of the present invention uses a fin surface made of a heat conductive metal material as a photocatalyst having fine pores on the surface of titanium oxide particles. The photocatalyst particles coated with an inert ceramic film are coated with an organic binder.
【0010】上記の如く、バインダーに有機系バインダ
ーを用いるため、シリカ系無機バインダーを用いた場合
の不快なセメント臭の発生をなくすことができる。また
光触媒に、酸化チタン粒子の表面に微細な細孔を有する
光触媒として不活性なセラミック膜をコートした光触媒
粒子を用いることにより、酸化チタンと有機系バインダ
ーが直接接触することがなくなるため、紫外光照射時の
酸化チタンの光触媒作用により、有機系バインダーが分
解・劣化することを防ぐことができる。As described above, since an organic binder is used as a binder, it is possible to eliminate generation of an unpleasant cement odor when a silica-based inorganic binder is used. In addition, by using photocatalyst particles having titanium oxide particles coated with an inert ceramic film as a photocatalyst having fine pores on the surface of titanium oxide particles, the titanium oxide and the organic binder do not come into direct contact with each other. The photocatalytic action of titanium oxide at the time of irradiation can prevent the organic binder from decomposing and deteriorating.
【0011】ここで、熱伝導性金属材料は、アルミニウ
ムまたはアルミニウム合金であることが望ましい。Here, the heat conductive metal material is desirably aluminum or an aluminum alloy.
【0012】また、請求項2の発明は、請求項1の発明
において、上記有機系バインダーが親水性を有すること
を特徴とする。The invention of claim 2 is characterized in that, in the invention of claim 1, the organic binder has hydrophilicity.
【0013】このように、有機系バインダーに親水性を
有する構成としたのは、用いる光触媒粒子が、酸化チタ
ン粒子の表面に微細な細孔を有する光触媒として不活性
なセラミック膜をコートした構造であるため、従来の酸
化チタン粉末を用いた場合と比較して、光触媒粒子表面
での超親水性の効果が低下してしまうことを、バインダ
ーの親水性で補うためである。As described above, the structure in which the organic binder has hydrophilicity is a structure in which the photocatalyst particles to be used are formed by coating the surface of titanium oxide particles with an inert ceramic film as a photocatalyst having fine pores. This is because the decrease in the superhydrophilic effect on the surface of the photocatalyst particles as compared with the case of using the conventional titanium oxide powder is compensated for by the hydrophilicity of the binder.
【0014】このとき、有機系バインダーとしては、
(メタ)アクリル酸またはビニルアルコールを重合単位
として含む重合体、セルロース系化合物もしくはそれら
の混合物であることが望ましい。At this time, as the organic binder,
It is desirable to use a polymer containing (meth) acrylic acid or vinyl alcohol as a polymerization unit, a cellulose compound, or a mixture thereof.
【0015】[0015]
【発明の実施の形態】本発明の一形態を、図1〜図3に
基づいて、以下に説明する。図1は本発明の光触媒熱交
換器を用いたエアコンの室内ユニット内部の側面概略
図、図2は本発明の光触媒熱交換器の斜視図、図3は本
発明の光触媒熱交換器のアルミニウムフィンの断面図で
ある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. 1 is a schematic side view of the inside of an indoor unit of an air conditioner using the photocatalytic heat exchanger of the present invention, FIG. 2 is a perspective view of the photocatalytic heat exchanger of the present invention, and FIG. 3 is an aluminum fin of the photocatalytic heat exchanger of the present invention. FIG.
【0016】図1に示すように、室内ユニット11内に
は、光触媒熱交換器12と、紫外線ランプ(15W;ピ
ーク波長365nm)13と、送風機14とが設けられ
ている。上記光触媒熱交換器12は、図2に示すよう
に、冷媒の通路である金属製パイプ22にアルミニウム
フィン21が一定間隔を置いて平行に多数取り付けられ
た構造である。また、図3に示すように、上記アルミニ
ウムフィン21は、アルミニウムから成る本体部31の
表面に、酸化チタン粒子の表面に微細な細孔を有する光
触媒として不活性なセラミック膜をコートした光触媒粒
子32と、有機系バインダー33からなる被膜34が形
成された構造である。As shown in FIG. 1, a photocatalytic heat exchanger 12, an ultraviolet lamp (15 W; peak wavelength 365 nm) 13, and a blower 14 are provided in the indoor unit 11. As shown in FIG. 2, the photocatalyst heat exchanger 12 has a structure in which a large number of aluminum fins 21 are attached in parallel at regular intervals to a metal pipe 22 which is a passage for a refrigerant. As shown in FIG. 3, the aluminum fins 21 are made of a photocatalyst particle 32 formed by coating a surface of a main body 31 made of aluminum with an inert ceramic film as a photocatalyst having fine pores on the surface of titanium oxide particles. And a film 34 formed of an organic binder 33.
【0017】ここで、上記室内ユニット11において、
室内の空気は矢印に示したように、室内ユニット11の
上部から光触媒熱交換器12を通り、さらに送風機14
を通った後、室内ユニット11の下部から室内に吐出さ
れる。また、紫外線ランプ13を点灯させておくことに
より、光触媒熱交換器12のアルミニウムフィン21表
面に形成した被膜25内の光触媒粒子23に接触した室
内の空気に含まれる臭気ガスが、光触媒作用により分解
され脱臭が行われる。更に、有機系バインダー33は親
水性を有するため、アルミニウムフィン21表面に水滴
が生成し、そのまま風にのって吹き出し口より室内に吹
き出し床を濡らすという問題が発生するのを阻止でき
る。Here, in the indoor unit 11,
As shown by the arrow, the indoor air passes through the photocatalytic heat exchanger 12 from above the indoor unit 11 and further passes through the blower 14.
After passing through, the air is discharged from the lower part of the indoor unit 11 into the room. Further, by turning on the ultraviolet lamp 13, the odor gas contained in the room air in contact with the photocatalyst particles 23 in the coating 25 formed on the surface of the aluminum fin 21 of the photocatalyst heat exchanger 12 is decomposed by photocatalysis. It is deodorized. Further, since the organic binder 33 has hydrophilicity, it is possible to prevent a problem that water droplets are generated on the surface of the aluminum fin 21 and the floor is wet as it is from the outlet and wets the floor.
【0018】[0018]
【実施例】以下、本発明の光触媒熱交換器についてその
製造方法とともに説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The photocatalyst heat exchanger of the present invention will be described below together with its manufacturing method.
【0019】(実施例)アルミニウムフィン材料とし
て、あらかじめ脱脂および水洗したアルミニウム板(材
質:1330、厚さ0.1mm、質別:H26)を用い
た。また光触媒粉末には、粒径約40nmのアナターゼ
型酸化チタン粒子の表面を、10nmの細孔をもつ多孔
質アルミナでコートした粉末(例えば、特許公報:第2
945926号)を用いた。さらに、バインダーには、
親水性を有する高分子化合物であるポリビニルアルコー
ルを用いた。(Example) As an aluminum fin material, an aluminum plate (material: 1330, thickness: 0.1 mm, temper: H26) previously degreased and washed with water was used. The photocatalyst powder is a powder obtained by coating the surface of anatase-type titanium oxide particles having a particle size of about 40 nm with porous alumina having pores of 10 nm (for example, Patent Publication: No. 2).
945926) was used. In addition, the binder
Polyvinyl alcohol which is a polymer compound having hydrophilicity was used.
【0020】上述した、多孔質アルミナでコートした酸
化チタン光触媒粉末を、親水性を有する有機系バインダ
ーとしてのポリビニルアルコールとともに、アルミニウ
ム板上に塗布し、200℃で30秒間加熱乾燥させ、ア
ルミニウムフィン上に厚さ0.5μmの光触媒皮膜を形
成した。そして、揮発性プレス油を用いて上記フィン材
料をプレス加工し、所定の形状のフィンを形成した。さ
らに、このフィンを冷媒用チューブに組み合わせた後、
所定の温度で加熱乾燥することにより、揮発性プレス油
を脱脂し、光触媒熱交換器Aを作製した。The titanium oxide photocatalyst powder coated with porous alumina is coated on an aluminum plate together with polyvinyl alcohol as a hydrophilic organic binder, and dried by heating at 200 ° C. for 30 seconds. A photocatalytic film having a thickness of 0.5 μm was formed thereon. Then, the fin material was pressed using a volatile press oil to form fins having a predetermined shape. Furthermore, after assembling this fin to the refrigerant tube,
By heating and drying at a predetermined temperature, the volatile press oil was degreased, and a photocatalytic heat exchanger A was produced.
【0021】(比較例)次に、比較例として、光触媒粉
末に粒径約7nmのアナターゼ型酸化チタン粒子(石原
産業:ST−01)を、バインダーにはシリカ系無機物
を用い、アルミニウムフィン上に塗布した後150℃で
30分間加熱乾燥させ、厚さ0.5μmの光触媒被膜を
形成した。そして、上述した方法と同様に光触媒熱交換
器Bを作製した。Comparative Example Next, as a comparative example, anatase-type titanium oxide particles (ST-01, Ishihara Sangyo) having a particle size of about 7 nm were used as a photocatalyst powder, and a silica-based inorganic material was used as a binder. After the application, it was dried by heating at 150 ° C. for 30 minutes to form a photocatalytic film having a thickness of 0.5 μm. And the photocatalyst heat exchanger B was produced like the above-mentioned method.
【0022】(実験1)得られた光触媒熱交換器Aおよ
び光触媒熱交換器Bについて、臭気の評価を行った。臭
気評価は、パネラーにより、息を吹きかけた後の官能評
価を行った。その結果、従来の光触媒熱交換器Bにはか
なり強い臭気が感じられたのに対し、本発明の光触媒熱
交換器Aにはほとんど感じられなかった。(Experiment 1) The odor of the obtained photocatalyst heat exchanger A and photocatalyst heat exchanger B was evaluated. The odor was evaluated by a panelist after performing a breath blow. As a result, the photocatalyst heat exchanger B of the present invention felt a rather strong odor, while the photocatalyst heat exchanger A of the present invention hardly felt it.
【0023】(実験2)次に、光触媒熱交換器を製造す
る際の加工性に関して評価を行った。評価は、しごき方
式であるドローレス金型(しごき率52%)を用いて加
工を行った場合のカラー内面剥離状況を観察して行っ
た。(Experiment 2) Next, the workability in producing the photocatalytic heat exchanger was evaluated. The evaluation was performed by observing the state of peeling of the inner surface of the collar when processing was performed using a drawless die (ironing rate: 52%) which is an ironing method.
【0024】その結果、本発明の多孔質アルミナでコー
トした酸化チタン光触媒粉末と親水性を有する有機系バ
インダーとしてのポリビニルアルコールによる光触媒皮
膜をアルミニウムフィン上に形成した場合は、熱交換器
を形成するためにプレス加工を行っても全く剥離が見ら
れなかった。しかし、従来の酸化チタン光触媒粉末とシ
リカ系無機バインダーにより光触媒皮膜を形成した場合
は、プレス加工により、所々に皮膜の剥離が見られた。As a result, when a titanium oxide photocatalyst powder coated with the porous alumina of the present invention and a photocatalytic film of polyvinyl alcohol as a hydrophilic organic binder are formed on aluminum fins, a heat exchanger is formed. For this reason, no peeling was observed even when pressing was performed. However, when the photocatalyst film was formed by the conventional titanium oxide photocatalyst powder and the silica-based inorganic binder, peeling of the film was observed in some places by press working.
【0025】以上の結果から、本発明の構成の光触媒熱
交換器Aは、従来の構成の光触媒熱交換器Bと比較し
て、製造の際の加工性に優れていることがわかる。本発
明において、有機系バインダーを用いているたることに
より、アルミニウムフィンと光触媒皮膜との密着性が向
上したこと、さらに従来のシリカ系無機バインダーと比
較して有機系バインダーが柔らかく加工性が良いこと、
などが原因であると考えられる。From the above results, it can be seen that the photocatalytic heat exchanger A having the configuration of the present invention is more excellent in workability at the time of production than the photocatalytic heat exchanger B having the conventional configuration. In the present invention, by using an organic binder, the adhesion between the aluminum fin and the photocatalyst film is improved, and the organic binder is softer and has better processability than the conventional silica-based inorganic binder. ,
It is thought that this is the cause.
【0026】(実験3)また、得られた光触媒熱交換器
Aおよび光触媒熱交換器Bについて、フィンの一部を切
り出して(サイズ:5mm角)、各試料を作製した後、
これら試料の水滴の接触角を測定することにより、親水
性の評価を行った。なお、親水性の評価は、紫外線領域
の蛍光灯光源(15W;ピーク波長365nm)を用い
て、照射距離25cmで各試料を10分間照射した後、
一定時間経過ごとに、各試料の平滑な表面の上部にマイ
クロシリンダを用いて超純水1マイクロリットル(μ
l)を滴下し、超純水の接触角を接触角計を用いて測定
するというものである。(Experiment 3) Further, with respect to the obtained photocatalyst heat exchanger A and photocatalyst heat exchanger B, a part of the fin was cut out (size: 5 mm square) to prepare each sample.
The hydrophilicity was evaluated by measuring the contact angles of water drops of these samples. The hydrophilicity was evaluated by irradiating each sample for 10 minutes at an irradiation distance of 25 cm using a fluorescent lamp light source (15 W; peak wavelength 365 nm) in the ultraviolet region.
After a certain period of time, 1 microliter of ultrapure water (μ
1) is dropped, and the contact angle of ultrapure water is measured using a contact angle meter.
【0027】その結果、本発明の光触媒熱交換器Aにお
けるフィンの接触角は経過時間測定開始の直後が8゜で
あり、12時間後が11゜、36時間後でも12゜であ
った。また、比較の光触媒熱交換器Bにおけるフィンの
接触角は経過時間測定開始の直後が7゜であり、12時
間後が12゜、36時間後には14゜であった。As a result, the contact angle of the fins in the photocatalytic heat exchanger A of the present invention was 8 ° immediately after the start of the elapsed time measurement, 11 ° after 12 hours, and 12 ° after 36 hours. The contact angle of the fins in the comparative photocatalytic heat exchanger B was 7 ° immediately after the start of the elapsed time measurement, 12 ° after 12 hours, and 14 ° after 36 hours.
【0028】以上の結果から、本発明の光触媒熱交換A
は、従来の光触媒熱交換器Bと同程度の親水性を有して
いることがわかった。From the above results, the photocatalytic heat exchange A of the present invention
Was found to have the same level of hydrophilicity as the conventional photocatalytic heat exchanger B.
【0029】(実験4)上記本発明の光触媒熱交換器A
を用いたエアコンの室内機及び上記比較例の光触媒熱交
換器Bを用いて、エアコンの室内機(共に、図1に示す
構造のもの)による脱臭性能の評価を行った。具体的な
評価方法は、光触媒熱交換器Aおよび光触媒熱交換器B
を用いたエアコンの室内機、それぞれ、高さ2m、幅4
m、奥行4mの大きさで室温28℃の気密実験室(20
ppmの濃度のアセトアルデヒドを充填)内に設置し
て、温度を20℃に設定し、湿度を40%に保持しつつ
冷房運転を行い、アセトアルデヒドの光触媒分解性能を
測定することにより行った。なお、通常室外の出す除湿
の結露水のドレインは、実験室の気密を確実にするため
に、気密実験室内にもうけたポリタンク内にドレインの
ホースを導いた。(Experiment 4) The photocatalytic heat exchanger A of the present invention described above.
The deodorizing performance of the air conditioner indoor unit (both having the structure shown in FIG. 1) was evaluated using the air conditioner indoor unit using the photocatalyst heat exchanger B of the comparative example. The specific evaluation method is a photocatalyst heat exchanger A and a photocatalyst heat exchanger B
Air conditioner indoor units, each with a height of 2m and a width of 4
m, an airtight laboratory (20 m in room temperature, 4 m in depth)
(filled with acetaldehyde having a concentration of ppm), the temperature was set to 20 ° C., the cooling operation was performed while maintaining the humidity at 40%, and the photocatalytic decomposition performance of acetaldehyde was measured. In addition, the drain hose of the dehumidified dew condensation water which is usually taken out of the room was guided into a plastic tank provided in the airtight laboratory in order to ensure the airtightness of the laboratory.
【0030】その結果、比較の光触媒熱交換器Bを用い
たエアコンの室内機では、約30分後のアセトアルデヒ
ドの濃度は10ppm、1時間後に3ppmであった。
本発明の光触媒熱交換器Aは、約30分後のアセトアル
デヒドの濃度は9ppmであり、1時間後に3ppmで
あった。すなわち、本発明の光触媒熱交換器Aは、従来
の光触媒熱交換器Bと同じように優れた脱臭性を有する
ことがわかった。As a result, in the indoor unit of the air conditioner using the comparative photocatalytic heat exchanger B, the concentration of acetaldehyde after about 30 minutes was 10 ppm and 3 ppm after 1 hour.
In the photocatalyst heat exchanger A of the present invention, the concentration of acetaldehyde after about 30 minutes was 9 ppm, and was 3 ppm after 1 hour. That is, it was found that the photocatalyst heat exchanger A of the present invention had excellent deodorizing properties as in the case of the conventional photocatalyst heat exchanger B.
【0031】以上の実験1および実験2の結果から、本
発明の光触媒熱交換器Aは、従来の光触媒熱交換器Bの
有するセメント臭および加工性の課題を解決するもので
あり、実験3および実験4の結果から、従来の光触媒熱
交換器と同等な親水特性および脱臭特性を有しているこ
とがわかる。From the results of Experiments 1 and 2, the photocatalytic heat exchanger A of the present invention solves the problems of cement odor and workability of the conventional photocatalytic heat exchanger B. From the results of Experiment 4, it can be seen that they have hydrophilic properties and deodorizing properties equivalent to those of the conventional photocatalytic heat exchanger.
【0032】なお、本発明の実施例の光触媒粒子におい
て、酸化チタン粒子の表面にコートする微細な細孔を有
する光触媒不活性なセラミック膜としてアルミナを用い
たが、これに限るものではなく、アモルファスの酸化チ
タン、酸化ジルコニウム、酸化シリコン、酸化マグネウ
ム、酸化カルシウムでも同様の結果が得られた。なお、
本発明の実施例における有機系バインダーにポリビニル
アルコールを用いたが、これに限るものではなく、(メ
タ)アクリル酸またはビニルアルコールを重合単位とし
て含む重合体、セルロース系化合物もしくはそれらの混
合物であれば同様の結果が得られた。具体的には、ポリ
(メタ)アクリル酸、ポリ(メタ)アクリル酸とポリ酢
酸ビニルとの共重合体、ポリ(メタ)アクリル酸とポリ
ビニルアルコールとの共重合体、ポリ(メタ)アクリル
酸とセルロースの共重合体、ポリ(メタ)アクリル酸と
デンプンとの共重合体、ポリ(メタ)アクリルアミド、
ポリ(メタ)アクリルアミドメチルプロパンスルホン
酸、(メタ)アクリル酸とポリアミドとの共重合体、ポ
リビニルアルコール、ポリ酢酸ビニルの部分ケン化物、
セルロース系樹脂である。In the photocatalyst particles of the embodiment of the present invention, alumina was used as the photocatalytically inactive ceramic film having fine pores coated on the surface of the titanium oxide particles. However, the present invention is not limited to this. Similar results were obtained with titanium oxide, zirconium oxide, silicon oxide, magnesium oxide and calcium oxide. In addition,
Although polyvinyl alcohol was used as the organic binder in the examples of the present invention, the present invention is not limited thereto, and any polymer containing (meth) acrylic acid or vinyl alcohol as a polymerization unit, a cellulose compound, or a mixture thereof may be used. Similar results were obtained. Specifically, poly (meth) acrylic acid, a copolymer of poly (meth) acrylic acid and polyvinyl acetate, a copolymer of poly (meth) acrylic acid and polyvinyl alcohol, and poly (meth) acrylic acid Cellulose copolymer, poly (meth) acrylic acid and starch copolymer, poly (meth) acrylamide,
Poly (meth) acrylamidomethylpropanesulfonic acid, copolymer of (meth) acrylic acid and polyamide, polyvinyl alcohol, partially saponified polyvinyl acetate,
It is a cellulosic resin.
【0033】なお、本発明の実施例において、アルミニ
ウムなどのフィン上に直接光触媒皮膜を形成した構成と
したが、これに限るものではなく、アルミニウムフィン
上に耐食性皮膜としてクロメート処理層を設け、その上
に光触媒暇くっを形成した構成においても同様の効果が
得られた。In the embodiment of the present invention, the photocatalyst film is formed directly on the fins of aluminum or the like. However, the present invention is not limited to this. A chromate treatment layer is provided on the aluminum fins as a corrosion-resistant film. The same effect was obtained in the configuration in which the photocatalyst was formed above.
【0034】[0034]
【発明の効果】以上の説明から明らかなように、本発明
の光触媒熱交換器は、熱交換器のフィン表面を酸化チタ
ン粒子の表面に微細な細孔を有する光触媒として不活性
なセラミック膜をコートした光触媒粒子と有機系バイン
ダーで被覆した構成であるため、従来の酸化チタン粒子
とシリカ系無機バインダーで被覆した場合と比較して、
優れた脱臭性能および親水性能を有するだけでなく、セ
メント臭の発生がなく、さらに優れたプレス加工性を有
するといった効果を奏する。As is clear from the above description, the photocatalyst heat exchanger of the present invention uses the fin surface of the heat exchanger with an inactive ceramic film as a photocatalyst having fine pores on the surface of titanium oxide particles. Because it is a configuration coated with the coated photocatalyst particles and the organic binder, compared with the conventional titanium oxide particles and the case of coating with the silica-based inorganic binder,
In addition to having excellent deodorizing performance and hydrophilic performance, there is an effect that there is no generation of cement odor and further excellent press workability.
【図1】本発明の光触媒熱交換器を用いたエアコンの室
内ユニット内部の側面概略図FIG. 1 is a schematic side view of the interior of an indoor unit of an air conditioner using the photocatalytic heat exchanger of the present invention.
【図2】本発明の光触媒熱交換器の斜視図FIG. 2 is a perspective view of the photocatalytic heat exchanger of the present invention.
【図3】本発明のアルミニウムフィンの断面図FIG. 3 is a cross-sectional view of the aluminum fin of the present invention.
【図4】従来の光触媒熱交換器の断面図FIG. 4 is a cross-sectional view of a conventional photocatalytic heat exchanger.
11 エアコンの室内機ユニット 12 光触媒熱交換器 13 紫外線ランプ 14 送風機 21 光触媒被膜を形成したアルミニウムフィン 22 金属性パイプ 31 アルミニウムフィン 32 表面を微細な細孔を有する光触媒として不活性な
アルミナ膜をコートした光触媒粒子 33 有機系バインダー(ポリビニルアルコール) 34 光触媒被膜 41 アルミニウムフィン 42 酸化チタン粒子 43 シリカ系無機バインダー 44 光触媒被膜Reference Signs List 11 Indoor unit of air conditioner 12 Photocatalytic heat exchanger 13 Ultraviolet lamp 14 Blower 21 Aluminum fin with photocatalytic coating 22 Metallic pipe 31 Aluminum fin 32 The surface was coated with an inert alumina film as a photocatalyst having fine pores Photocatalyst particles 33 Organic binder (polyvinyl alcohol) 34 Photocatalytic film 41 Aluminum fin 42 Titanium oxide particles 43 Silica-based inorganic binder 44 Photocatalytic film
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B60H 3/00 F25B 39/00 P F24F 1/00 F28F 13/18 B F25B 39/00 B01D 53/36 H F28F 13/18 F24F 1/00 371Z (72)発明者 友澤 淳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 久保 晶子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L051 BC05 BC10 4C080 AA07 BB02 CC01 HH05 JJ04 KK08 LL02 LL03 MM02 NN02 4D048 AA22 AB01 AB03 BA03X BA07X BA39X BB03 BC07 CC33 CC34 CC42 EA01 4G069 AA03 AA08 AA09 BA01B BA04A BA04B BA04C BA17 BA48A BA48C CA01 CA07 CA10 CA17 DA06 EA11 EC22Y EE01 EE07 FA04 FB23 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B60H 3/00 F25B 39/00 P F24F 1/00 F28F 13/18 B F25B 39/00 B01D 53/36 H F28F 13/18 F24F 1/00 371 Z F-term (reference) 3L051 BC05 BC10 4C080 AA07 BB02 CC01 HH05 JJ04 KK08 LL02 LL03 MM02 NN02 4D048 AA22 AB01 AB03 BA03X BA07X BA39X BB03 BC07 CC33 CC34 CC42 EA01 4G069 AA03 BA04 CA07 BA01 BA01 CA04 EC22Y EE01 EE07 FA04 FB23
Claims (2)
が、酸化チタン粒子の表面に微細な細孔を有する光触媒
として不活性なセラミック膜をコートした光触媒粒子
と、有機系バインダーで被覆した構成であることを特徴
とする光触媒熱交換器。1. A structure in which a fin surface made of a heat conductive metal material is coated with a photocatalyst particle having a surface of titanium oxide particles coated with an inert ceramic film as a photocatalyst having fine pores, and an organic binder. A photocatalytic heat exchanger.
を特徴とする請求項1記載の光触媒熱交換器。2. The photocatalytic heat exchanger according to claim 1, wherein the organic binder has a hydrophilic property.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000260388A JP2002071297A (en) | 2000-08-30 | 2000-08-30 | Photocatalytic heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000260388A JP2002071297A (en) | 2000-08-30 | 2000-08-30 | Photocatalytic heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002071297A true JP2002071297A (en) | 2002-03-08 |
Family
ID=18748407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000260388A Pending JP2002071297A (en) | 2000-08-30 | 2000-08-30 | Photocatalytic heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002071297A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009127977A (en) * | 2007-11-27 | 2009-06-11 | Toshiba Corp | Refrigerator |
JP2010255992A (en) * | 2009-04-28 | 2010-11-11 | Tokyo Electric Power Co Inc:The | Heat exchanger and humidifier |
WO2019163978A1 (en) * | 2018-02-26 | 2019-08-29 | 国立大学法人名古屋大学 | Heat exchanger, refrigerating machine and sintered body |
CN110939988A (en) * | 2019-12-13 | 2020-03-31 | 宁波奥克斯电气股份有限公司 | Air conditioner and air purification control method |
-
2000
- 2000-08-30 JP JP2000260388A patent/JP2002071297A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009127977A (en) * | 2007-11-27 | 2009-06-11 | Toshiba Corp | Refrigerator |
JP2010255992A (en) * | 2009-04-28 | 2010-11-11 | Tokyo Electric Power Co Inc:The | Heat exchanger and humidifier |
WO2019163978A1 (en) * | 2018-02-26 | 2019-08-29 | 国立大学法人名古屋大学 | Heat exchanger, refrigerating machine and sintered body |
US11796228B2 (en) | 2018-02-26 | 2023-10-24 | National University Corporation Tokai National Higher Education And Research System | Heat exchanger, refrigerating machine and sintered body |
CN110939988A (en) * | 2019-12-13 | 2020-03-31 | 宁波奥克斯电气股份有限公司 | Air conditioner and air purification control method |
CN110939988B (en) * | 2019-12-13 | 2024-02-27 | 宁波奥克斯电气股份有限公司 | Air conditioner and air purification control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9468699B2 (en) | Air conditioner having air purifying module | |
KR20060053988A (en) | Heat exchanger and method of making the same | |
JP2002071298A (en) | Photocatalytic heat exchanger | |
CN1190633C (en) | Manufacturing method of super hydrophili finned sheet and air conditioning heat exchanger | |
JP2002071297A (en) | Photocatalytic heat exchanger | |
JP2001280879A (en) | Photo catalyst heat exchanger and manufacturing method thereof | |
JP4058210B2 (en) | Photocatalyst member | |
JP2001314491A (en) | Air purifying filter | |
JP3991776B2 (en) | Photocatalytic filter | |
JP2000210534A (en) | Photocatalyst deodorizing filter | |
JP6615136B2 (en) | Honeycomb core photocatalyst system | |
JPH1191024A (en) | Water repellent material and manufacture thereof | |
JPH11114048A (en) | Air purifying device | |
JPH10290933A (en) | Deodorization catalyst, deodorization filter using the same and deodorizer using the same | |
JP3689751B2 (en) | Photocatalyst and air conditioner using the same | |
JP3719356B2 (en) | Deodorizing filter, method for manufacturing the same, and air conditioner | |
JP2000126609A (en) | Photocatalytic corrugated structure and photocatalytic deodorization member and photocatalytic deodorization unit using the same | |
JP3312132B2 (en) | Air purification fan and method of manufacturing the same | |
JP2001201288A (en) | Fin-and-tube type heat exchanger for air conditioner | |
JP4321912B2 (en) | Gas processing element | |
CN112503749A (en) | Antibacterial and antiviral honeycomb rotating wheel with copper ion dissolving agent surface coating for air conditioner | |
JP2002301336A (en) | Gas phase reaction method and apparatus therefor | |
JP2001218820A (en) | Deodorizing device | |
KR20210082287A (en) | Deodorizing unit for clean room and method for manufacturing the same | |
JP2000093807A (en) | Photocatalyst body, and heat exchanger and purifying device using the same |