JP2009127977A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2009127977A
JP2009127977A JP2007305875A JP2007305875A JP2009127977A JP 2009127977 A JP2009127977 A JP 2009127977A JP 2007305875 A JP2007305875 A JP 2007305875A JP 2007305875 A JP2007305875 A JP 2007305875A JP 2009127977 A JP2009127977 A JP 2009127977A
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
fin
fins
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007305875A
Other languages
Japanese (ja)
Other versions
JP5127418B2 (en
Inventor
Takayoshi Iwai
隆賀 岩井
Takumi Oikawa
巧 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Electronics Holdings Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Electronics Holdings Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2007305875A priority Critical patent/JP5127418B2/en
Publication of JP2009127977A publication Critical patent/JP2009127977A/en
Application granted granted Critical
Publication of JP5127418B2 publication Critical patent/JP5127418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0417Treating air flowing to refrigeration compartments by purification using an UV-lamp

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of reducing power consumption by deodorizing and sterilizing a refrigerating space by irradiating a cooler for refrigerating with visible light without using an ultraviolet ray irradiating means. <P>SOLUTION: In this refrigerator which has the refrigerating space and a freezing space, and includes coolers for exclusively cooling each of the storage spaces, and in which the cooler for refrigerating 23 cooling the refrigerating space is composed of a fin and tube-type heat exchanger, and has an evaporation temperature higher than that of the cooler for freezing, and the storage spaces are kept at prescribed temperatures by circulating the cold air by a fan, visible light response-type photocatalytic films are placed on surfaces of a number of fins 27 arranged in adjacent to each other over the width direction of the cooler for refrigerating, and a visible-light light source 32 is disposed at a position to irradiate the fin surfaces with visible light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、家庭用冷蔵庫に関し、特に冷蔵貯蔵空間を専用に冷却する冷却器を設けた冷蔵庫に関する。   The present invention relates to a household refrigerator, and more particularly to a refrigerator provided with a cooler for cooling a refrigerated storage space exclusively.

従来より、冷蔵庫の冷却器として一般に用いられるフィンアンドチューブ型の熱交換器は、アルミニウムで形成したフィン表面に耐食性処理を施すとともに、冷却運転時に空気中の水分が表面に霜となって付着し氷塊に成長することで、冷却器の通風量が減少し冷却力を低下させることを抑制するために、フィン表面に親水化処理を施している。   Conventionally, fin-and-tube heat exchangers commonly used as refrigerator coolers perform corrosion resistance treatment on the fin surface formed of aluminum, and moisture in the air adheres to the surface as frost during cooling operation. The fin surface is subjected to a hydrophilization treatment in order to prevent the cooling capacity from being reduced by reducing the cooling capacity by growing into ice blocks.

一方、冷蔵庫内の臭気を除去し、且つ清浄に保持するために脱臭機能や浮遊菌の除菌機能を備えたものが供されており、前記脱臭装置としては、活性炭、ゼオライトなどの吸着剤で臭い分子を吸着し除去する方法、オゾンと脱臭触媒との組み合わせで酸化分解する方法、白金などの貴金属触媒によって分解する方法、光触媒に紫外線を照射することによって分解する方法などが実用化されている。   On the other hand, in order to remove the odor in the refrigerator and keep it clean, a device having a deodorizing function and a sterilizing function of floating bacteria is provided, and the deodorizing device is an adsorbent such as activated carbon or zeolite. A method of adsorbing and removing odorous molecules, a method of oxidizing and decomposing with a combination of ozone and a deodorizing catalyst, a method of decomposing with a noble metal catalyst such as platinum, a method of decomposing by irradiating ultraviolet rays on a photocatalyst, etc. are put into practical use. .

このうち、前記光触媒を用いる方法のひとつとして、高電圧放電による放電光(紫外光)と酸化チタンなどの光触媒とを組み合わせたユニットにより、臭気物質やエチレンなどの老化ホルモンを分解するとともに浮遊菌を除菌することで、貯蔵室内を快適、且つ清浄に保持して食材の鮮度低下を抑制する装置を搭載した冷蔵庫が販売されている。   Among them, as one of the methods using the photocatalyst, a unit combining discharge light (ultraviolet light) by high voltage discharge and a photocatalyst such as titanium oxide decomposes aging hormones such as odorous substances and ethylene and removes floating bacteria. Refrigerators equipped with a device that keeps the storage room comfortable and clean and suppresses a decrease in freshness of food by sterilization are being sold.

そして、特許文献1には、酸化チタンなどの常温酸化光触媒とイオン交換した特定の合成ゼオライトの吸着剤から構成される脱臭層に、自然光などの室内光を導入して熱交換器の表面に照射する構成が記載されているが、通常の冷蔵庫構成では冷蔵用冷却器への自然光の導入は困難であるとともに、一般的な酸化チタン触媒では、自然光による所定の脱臭性能、すなわち臭気物質の分解性能を得ることはできないものであり、その請求項5に記載のごとく、現実的には、エネルギーの高い紫外線の照射が必要となる。   And in patent document 1, indoor light, such as natural light, is introduced into the deodorizing layer comprised of the adsorbent of the specific synthetic zeolite ion-exchanged with room temperature oxidation photocatalysts, such as titanium oxide, and is irradiated on the surface of a heat exchanger. However, it is difficult to introduce natural light into a refrigerator for refrigeration in a normal refrigerator configuration, and a general titanium oxide catalyst has a predetermined deodorizing performance by natural light, that is, a decomposition performance of odorous substances. Therefore, as described in claim 5, in reality, irradiation with ultraviolet rays having high energy is required.

また、特許文献2には、冷蔵庫の冷却器におけるフィンに酸化チタンなどの光触媒を直接塗布し、冷却器の下部に設けた紫外線発生手段からの紫外線を前記光触媒に照射することで脱臭、除菌をおこなう技術思想が示されており、特許文献3には、自動製氷装置における給水タンクの内面に、可視光応答型の光触媒塗料を塗布することによって、紫外線照射手段を使用せずとも製氷用の水の浄化をおこない消費電力の低減をはかった冷蔵庫が記載されている。
特許第3093953号公報 特開2002−257461号公報 特開2005−308283号公報
Further, in Patent Document 2, a photocatalyst such as titanium oxide is directly applied to fins in a refrigerator cooler, and the photocatalyst is irradiated with ultraviolet rays from an ultraviolet ray generating means provided at the lower part of the cooler to deodorize and disinfect bacteria. Patent Document 3 discloses a technique for making ice without using an ultraviolet irradiation means by applying a visible light responsive photocatalyst coating to the inner surface of a water supply tank in an automatic ice making apparatus. A refrigerator that purifies water and reduces power consumption is described.
Japanese Patent No. 3093953 JP 2002-257461 A JP-A-2005-308283

したがって、上記特許文献1記載の構成による光触媒は、光源として400nm以下の紫外線領域が必要であり、この光触媒を励起するための放電灯である紫外線ランプ(ブラックライト)は、寿命が短く高価であってサイズ的にも大きすぎる問題がある。また、特許文献2は、前記特許文献1と同様に、光触媒を励起する紫外線発生手段が必要であり、新たに紫外線照射手段の追加設置が必要になることから、コスト高に繋がるとともに紫外線の照射時間が長くなると消費電力が大きくなり、省エネルギー化に逆行するばかりか食品への悪影響も懸念される。   Therefore, the photocatalyst having the structure described in Patent Document 1 requires an ultraviolet region of 400 nm or less as a light source, and an ultraviolet lamp (black light) that is a discharge lamp for exciting the photocatalyst has a short life and is expensive. There is a problem that is too large in size. In addition, Patent Document 2 requires an ultraviolet generation means for exciting the photocatalyst as in Patent Document 1, and requires additional installation of an ultraviolet irradiation means, leading to high costs and ultraviolet irradiation. As time goes on, power consumption increases, which not only goes against energy savings but also has a negative impact on food.

これに対して、特許文献3は、可視光応答型の光触媒塗料を使用することから紫外線照射手段を使用しなくても光触媒を励起させることができるものであるが、光触媒を塗布する対象は給水タンクであり、またこの給水タンクは光透過性材料を使用して、タンクの外方からの庫内灯の点灯により給水タンク内面の光触媒を励起して、給水タンク内の水を浄化するものであって、冷蔵空間に収納した多くの貯蔵食品から発生する臭気物質の脱臭や浮遊菌の除去を意図したものではない。   On the other hand, Patent Document 3 uses a visible light responsive photocatalyst paint, so that the photocatalyst can be excited without using ultraviolet irradiation means. This water tank uses a light-transmitting material to excite the photocatalyst on the inner surface of the water tank by turning on the interior lamp from the outside of the tank to purify the water in the water tank. Therefore, it is not intended to deodorize odorous substances generated from many stored foods stored in a refrigerated space or to remove floating bacteria.

本発明は上記点に着目してなされたものであり、紫外線照射手段を使用しなくとも、冷蔵用冷却器への可視光の照射によって冷蔵空間内の脱臭、除菌をおこない、消費電力の低減を可能にした冷蔵庫を提供するものである。   The present invention has been made paying attention to the above points, and deodorizing and sterilizing the refrigerated space by irradiating visible light to the refrigeration cooler without using ultraviolet irradiation means, thereby reducing power consumption. The refrigerator which made it possible is provided.

上記課題を解決するため本発明は、冷蔵空間と冷凍空間とを有してそれぞれの貯蔵空間を専用に冷却する冷却器を設け、前記冷蔵空間を冷却する冷蔵用冷却器は、フィンアンドチューブ型の熱交換器として冷凍用冷却器より蒸発温度を高くし、ファンによる冷気循環で貯蔵空間内を所定温度に保持する冷蔵庫において、前記冷蔵用冷却器の幅方向に亙って隣接するように多数配置したフィン表面に可視光応答型の光触媒皮膜を施すとともに、前記フィン表面を照射可能な位置に可視光光源を設けたことを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a cooler that has a refrigeration space and a refrigeration space and cools each storage space exclusively, and the refrigeration cooler that cools the refrigeration space is a fin-and-tube type. As a heat exchanger, a refrigerator that has a higher evaporation temperature than a refrigeration cooler and keeps the inside of the storage space at a predetermined temperature by circulating cold air with a fan is arranged so as to be adjacent in the width direction of the refrigeration cooler. A visible light responsive photocatalytic film is applied to the arranged fin surface, and a visible light source is provided at a position where the fin surface can be irradiated.

本発明の冷蔵庫によれば、紫外線照射手段を設置せずとも冷蔵用冷却器への可視光の照射によって、小さいエネルギーで光触媒を励起して冷却器部を通過する貯蔵室内循環冷気の脱臭と除菌を効果的におこなうとともに、冷却器のフィン表面を親水化して付着する霜や融解水を平滑化することで光触媒作用を保持するとともに除霜効率を向上させ、フィン表面の水分の蒸発を促進することで冷蔵室内への冷気を高湿化し、食材の鮮度を長期に亙って保持することができる。   According to the refrigerator of the present invention, it is possible to deodorize and remove circulating cold air in the storage room that passes through the cooler part by exciting the photocatalyst with small energy by irradiating visible light to the refrigeration cooler without installing ultraviolet irradiation means. In addition to effectively carrying out bacteria, the frost and melt water adhering to the surface of the cooler by smoothening the fin surface retains photocatalytic action and improves defrosting efficiency and promotes evaporation of moisture on the fin surface. By doing so, the cold air into the refrigerator compartment can be humidified and the freshness of the food can be maintained over a long period of time.

以下、本発明の1実施形態につき図面を参照して説明する。図1に全体の縦断面図を示す冷蔵庫本体(1)は、外箱(2)と内箱(3)との間に発泡断熱材(4)を充填して断熱箱体を形成し、貯蔵室内部を断熱仕切壁(5)によって上部の冷蔵空間(6)と下部の冷凍空間(7)とに区画している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The refrigerator main body (1) which shows the whole longitudinal cross-sectional view in FIG. 1 is filled with a foam heat insulating material (4) between the outer box (2) and the inner box (3) to form a heat insulating box, and stored. The indoor part is partitioned into an upper refrigerated space (6) and a lower refrigerated space (7) by a heat insulating partition wall (5).

前記冷蔵空間(6)の前面開口部は観音開き式の左右の扉(8)によって閉塞するとともに、内部の上方部は複数段の載置棚(9)を設けた冷蔵室(10)とし、その下方を透明樹脂製の載置棚を兼ねたの天井仕切板(12)で仕切ることで独立空間を形成し、その内部に引き出し式の野菜容器(13)を配置することで野菜室(11)とし、さらに冷蔵空間(6)内の最下部には、同様に前記野菜室(11)の底面を形成する底面仕切板(14)を介して室内を0〜−3℃程度に冷却する低温容器を設けた低温室(15)を区画配設している。   The front opening of the refrigerated space (6) is closed by a double door left and right door (8), and the upper part inside is a refrigerated room (10) provided with a plurality of mounting shelves (9). An independent space is formed by dividing the lower part by a ceiling partition plate (12) that also serves as a mounting shelf made of transparent resin, and a drawer-type vegetable container (13) is placed inside the vegetable compartment (11) Furthermore, at the lowermost part in the refrigerated space (6), a low-temperature container that cools the room to about 0 to −3 ° C. via a bottom partition plate (14) that similarly forms the bottom of the vegetable room (11) A low temperature chamber (15) provided with a compartment is arranged.

冷凍空間(7)については、前記断熱仕切壁(5)の直下に比較的小容積の冷却貯蔵室、例えば、−18℃や−9℃のソフト冷凍温度帯などの冷凍温度に冷却することができる温度切替室(16)と、図示しないが、同様に比較的小容積の自動製氷装置を備えた製氷室とを左右に区分し、各前面開口部に設けた扉とともに引き出し式で併置し、これら温度切替室(16)と製氷室の下部には、前面を横仕切板で上下に区画し、前記同様に引き出し扉式とした冷凍室(17)を本体の全幅に亙って設けている。   The refrigeration space (7) may be cooled to a refrigeration temperature such as a soft freezing temperature zone of −18 ° C. or −9 ° C., for example, a cooling storage chamber having a relatively small volume immediately below the heat insulating partition wall (5). The temperature switching chamber (16) that can be made and the ice making chamber equipped with a relatively small-volume automatic ice making device are divided into left and right in the same way, and they are juxtaposed together with a door provided at each front opening, At the bottom of these temperature switching chambers (16) and ice making chambers, the front is partitioned up and down by horizontal partition plates, and a freezing chamber (17) that has a drawer door type is provided over the entire width of the main body. .

冷凍室(17)は、その前面開口部を開閉自在に閉塞する扉(18)の内側に、左右一対の、図示しない支持枠を固着しており、この支持枠とともに冷凍室(17)内の両側壁面に前後方向に亙って配置したレール部材によって、冷凍食品を収納する収納容器(19)を保持し、前後に摺動可能な引き出し方式としている。   The freezer compartment (17) has a pair of left and right support frames (not shown) fixed to the inside of the door (18) that closes its front opening so that it can be opened and closed. The storage container (19) for storing the frozen food is held by rail members arranged on the both side wall surfaces in the front-rear direction, and the drawer system is slidable back and forth.

収納容器(19)は、上面を開口した底の深い箱状をなしており、その上面開口の周縁にはフランジ部を形成し、このフランジ部を利用して前記開口をほとんど覆うように、比較的底の浅い皿状の中段容器(20)を載置している。   The storage container (19) has a deep box shape with an open top, and a flange is formed on the periphery of the top opening, and the flange is used to cover the opening. A dish-shaped middle container (20) with a shallow bottom is placed.

そして、冷凍室扉(18)を引き出した際には、レール部材によって収納容器(19)とともに中段容器(20)の後端が冷凍室(17)の前面開口部より前方に出るまでフルオープン状態で大きく引き出されるものであり、中段容器(20)は収納容器(19)のフランジ部上を前後方向に摺動可能として収納容器(19)の上面開口を開閉し、また中段容器(20)自体の引き出し収納ができるように設けている。前記収納容器(19)および中段容器(20)の上方には、これら容器(19)(20)および冷凍室扉(18)の開閉とは関連なく、独立して引き出し、また庫内に収納される上段容器(21)を設置している。   When the freezer compartment door (18) is pulled out, it is fully open until the rear end of the middle container (20) comes out from the front opening of the freezer compartment (17) together with the storage container (19) by the rail member. The middle container (20) is slidable in the front-rear direction on the flange of the storage container (19), opens and closes the top opening of the storage container (19), and the middle container (20) itself It is provided so that the drawer can be stored. Above the storage container (19) and the middle container (20), they are independently pulled out and stored in the storage regardless of the opening and closing of the containers (19) (20) and the freezer compartment door (18). The upper container (21) is installed.

前記冷蔵室(6)の背面部には、カバー体(22)を介して冷蔵用冷却器(23)およびこの冷却器に対応するファン(24)を配設し、冷蔵用冷却器(23)で生成された冷気をファン(24)により、ダクトを介して冷蔵空間(6)内に導入し各室内を冷却するようにしている。   A refrigeration cooler (23) and a fan (24) corresponding to the cooler are disposed on the back surface of the refrigerator compartment (6) via a cover body (22), and the refrigeration cooler (23) The cool air generated in step 1 is introduced into the refrigerated space (6) through a duct by a fan (24) to cool each room.

前記冷蔵用冷却器(23)は、図2に示すように、直線部と曲線部とで蛇行状に形成した銅管からなる冷媒パイプ(25)を保持する端板(26)間に、前記冷媒パイプ(25)と熱交換関係にその長手方向の直線部に亙って多数のアルミニウム製の小片のフィン(27)を隣接して固着した、いわゆるフィンアンドチューブ型の熱交換器である。冷凍空間(7)を冷却する冷凍用冷却器(28)についても基本的構成は前記冷蔵用冷却器(23)と同様にフィンアンドチューブ型であり、これは冷凍室(17)の背面部に設置されており、上方に設置したファン(29)により冷気を冷凍空間(7)に吹き出して冷却する。   As shown in FIG. 2, the refrigeration cooler (23) is provided between an end plate (26) holding a refrigerant pipe (25) made of a copper pipe formed in a meandering manner with a straight portion and a curved portion. This is a so-called fin-and-tube heat exchanger in which a large number of aluminum small fins (27) are fixedly adjacent to each other over a straight line portion in the longitudinal direction in a heat exchange relationship with the refrigerant pipe (25). The basic structure of the refrigeration cooler (28) for cooling the refrigeration space (7) is also a fin-and-tube type, similar to the refrigeration cooler (23). Cooling air is blown out to the freezing space (7) by the fan (29) installed above and cooled.

前記冷蔵用および冷凍用冷却器(23)(28)は、冷蔵庫本体(1)の下部に設けた冷凍サイクルの一環をなす圧縮機(30)の吐出側からの冷媒を、凝縮器や毛細管を介して交互に導き冷却されるように制御されており、冷蔵空間(6)の冷却をおこなう冷蔵運転モードの際には、熱交換により低温化された冷気を冷蔵用のファン(24)の運転で冷蔵室(10)内に吐出することによって、冷蔵室(10)と野菜室(11)を適温に冷却する。また、冷蔵用冷却器(23)から冷気の一部を低温室(15)内に直接導入してこれを上部の冷蔵室(6)内より低温に冷却する。   The refrigerators (23) and (28) for refrigeration and freezing use the refrigerant and the capillaries from the discharge side of the compressor (30) that forms part of the refrigeration cycle provided in the lower part of the refrigerator body (1). In the refrigerating operation mode in which the refrigerating space (6) is cooled, the refrigerating air cooled at a low temperature by the heat exchange is operated in the refrigerating fan (24). Then, the refrigerator compartment (10) and the vegetable compartment (11) are cooled to an appropriate temperature by discharging into the refrigerator compartment (10). A part of the cold air is directly introduced into the low temperature chamber (15) from the refrigerating cooler (23) and cooled to a lower temperature than in the upper refrigerating chamber (6).

冷蔵室(10)が設定温度まで冷却されると、冷媒流路が切り替えられて冷凍運転モードになり、冷媒は切替弁により冷凍用冷却器(28)に導入されて−30℃以下の低い蒸発温度で蒸発し、熱交換により低温となった冷気を冷凍用のファン(29)で冷凍空間(7)である冷凍室(17)や温度切替室(16)などに導入し、強制循環させることによって各室を−20℃以下の所定温度になるように冷却するものであり、この冷蔵運転モードと冷凍運転モードとを交互に運転するように制御されている。   When the refrigerator compartment (10) is cooled to the set temperature, the refrigerant flow path is switched to enter the refrigeration operation mode, and the refrigerant is introduced into the refrigeration cooler (28) by the switching valve and has a low evaporation of −30 ° C. or lower. The cold air that evaporates at the temperature and becomes a low temperature due to heat exchange is introduced into the freezer compartment (17) or the temperature switching chamber (16), which is the freezer space (7), and forcedly circulated by the freezing fan (29). Thus, each chamber is cooled to a predetermined temperature of −20 ° C. or less, and is controlled to operate alternately between the refrigeration operation mode and the freezing operation mode.

したがって、冷凍運転においては冷蔵用冷却器(23)に冷媒は流れないが、冷蔵用のファン(24)はその回転を継続させるようにしており、冷却運転後で着霜状態にあることからその表面温度が−3℃程度である冷蔵用冷却器(23)に、0℃以上である冷蔵空間(6)内の空気を流し、循環させることによって冷蔵用冷却器(23)に付着している霜を融かし、同時に霜の融解による水分を多く含んだ高湿低温の冷気を冷蔵室(10)から野菜室(11)内に流入させるようにしている。   Therefore, in the refrigeration operation, the refrigerant does not flow into the refrigeration cooler (23), but the refrigeration fan (24) keeps rotating and is in a frosting state after the cooling operation. The air in the refrigerating space (6) having a surface temperature of about −3 ° C. is attached to the refrigerating cooler (23) by flowing and circulating the air in the refrigerating space (6) having a temperature of 0 ° C. or higher. The frost is melted, and at the same time, high-humidity and low-temperature air containing a large amount of moisture due to melting of the frost is allowed to flow from the refrigerator compartment (10) into the vegetable compartment (11).

これにより、冷蔵空間(6)は、冷却運転停止後も温度上昇が抑制されて比較的低温度に冷却保持されるとともに、霜の昇華による加湿冷気が流入することで、冷蔵室(10)および野菜室(11)内の湿度は80%程度まで高くなるものであり、さらに収納されている野菜の蒸散作用によって湿度は90〜95%まで上昇することから、野菜容器(13)内の野菜が乾燥しない雰囲気を保持することができる。   As a result, the refrigerated space (6) is kept at a relatively low temperature even after the cooling operation is stopped and is kept at a relatively low temperature, and humidified cold air due to frost sublimation flows into the refrigerated room (10) and The humidity in the vegetable compartment (11) increases to about 80%, and the humidity rises to 90-95% due to the transpiration of the stored vegetables, so that the vegetables in the vegetable container (13) An atmosphere that does not dry can be maintained.

しかして、前記冷蔵用冷却器(23)の幅方向に亙ってそれぞれ隣接するように多数配置したフィン(27)の表面には、従来電食を防ぐための皮膜を設けているが、本発明においては、図3の概念図に示すように、さらにその表面に可視光応答型の光触媒皮膜(31)を形成している。   Thus, the surface of the fin (27), which is arranged so as to be adjacent to each other in the width direction of the refrigeration cooler (23), is conventionally provided with a film for preventing electrolytic corrosion. In the present invention, as shown in the conceptual diagram of FIG. 3, a visible light responsive photocatalytic film (31) is further formed on the surface.

前記可視光応答型の光触媒とは、酸化チタン、酸化亜鉛、チタン酸ストロンチウム、酸化タングステンおよび炭化珪素からなる群より選択される少なくとも一種類に、バナジウム、クロム、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも一種類の不純物元素をドーパントとして加えたものや、光触媒粒子の表面にハロゲン化白金化合物を含有させて光触媒としたものであって、1〜360nmである紫外線の波長で触媒活性を示す通常の光触媒、例えば、最も一般的な光触媒である酸化チタンは270nmの紫外線で活性化するのに対して、それより低エネルギーの360〜760nmの可視光量域の光でも活性化する光触媒であり、例えば、窒素ドープによる酸化チタン可視光応答型光触媒や、白金担持酸化チタンなどが知られている。   The visible light responsive photocatalyst is at least one selected from the group consisting of titanium oxide, zinc oxide, strontium titanate, tungsten oxide and silicon carbide, vanadium, chromium, manganese, iron, cobalt, nickel and copper And a photocatalyst obtained by adding a halogenated platinum compound to the surface of the photocatalyst particles as a photocatalyst, wherein the wavelength of the ultraviolet light is 1 to 360 nm. Ordinary photocatalysts exhibiting catalytic activity at, for example, titanium oxide, which is the most common photocatalyst, is activated by UV light at 270 nm, whereas it is also activated by light having a lower energy of 360 to 760 nm in the visible light range. For example, titanium oxide visible light responsive photocatalyst by nitrogen doping or platinum support Such as are known titanium.

また、臭気物質や浮遊菌との接触効率を上げ、反応の場を提供するため、適切な接着剤、例えば、ゼオライトとの併用が可能であり、これらは、冷蔵用冷却器(23)の冷媒パイプ(25)およびフィン(27)の表裏全面に亙って被覆されているものであって、後述する光源からの可視光の照射で活性化するものである。   Also, in order to increase the contact efficiency with odorous substances and airborne bacteria and provide a place for reaction, it can be used in combination with an appropriate adhesive, for example, zeolite. The pipe (25) and the fin (27) are covered over the entire front and back, and are activated by irradiation with visible light from a light source to be described later.

図4に示すように、前記冷蔵用冷却器(23)に多数配置したフィン(27)の上方には、前記フィン(27)の隣接する長手方向に沿って複数の可視光光源、例えば、6個の青色の発光ダイオード(以下、LEDという。)(32)を支持部材(33)により設置し、それぞれの照射方向をフィン(27)間に指向させるように配置することで、例えば、冷蔵運転の終了時点から次の冷蔵運転モードまでの間LED(32)を点灯させるようにし、点灯した場合には、隣接するフィン(27)間に可視光が進入して冷蔵用冷却器(23)を全体に亙って広く照射できるようにしている。   As shown in FIG. 4, a plurality of visible light sources, for example, 6 along the longitudinal direction adjacent to the fins (27) are disposed above the fins (27) arranged in large numbers in the refrigeration cooler (23). The blue light emitting diodes (hereinafter referred to as LEDs) (32) are installed by the support member (33) and arranged so that the respective irradiation directions are directed between the fins (27). The LED (32) is lit from the end of the period until the next refrigeration operation mode, and when lit, visible light enters between adjacent fins (27) and the refrigeration cooler (23) is turned on. Wide irradiation is possible over the whole.

このとき、前記各LED(32)を、フィン(27)間を照射するように指向させるとともに、正面図である図5や側面図の図6に示すように、それぞれを相互に異なる照射角度を設けて取り付けるようにすれば、照射範囲を広くすることができ、光触媒を励起する充分な光量を確保してフィン(27)の表面を広くむらなく照射することができる。   At this time, each LED (32) is directed so as to irradiate between the fins (27), and as shown in FIG. 5 which is a front view and FIG. 6 which is a side view, each has a different irradiation angle. If provided and attached, the irradiation range can be widened, and a sufficient amount of light to excite the photocatalyst can be secured, and the surface of the fin (27) can be uniformly and uniformly irradiated.

前記冷蔵用冷却器(23)は、冷蔵室(10)、野菜室(11)、低温室(15)からなる冷蔵空間(6)を循環して導入した冷気を、フィン(27)間を通過させることで冷却し、再びファン(24)によって冷蔵室(10)に吹き出すことで室内の冷却作用をおこなうが、−18℃以下の冷凍温度に冷却され、臭気や浮遊菌の発生が抑制される低温空気が循環する冷凍用冷却器(28)とは異なり、概ね0℃以上のプラス温度に保持される冷蔵空間(6)においては、室内に貯蔵された食品などの臭気物質や、浮遊菌の量が多くなるものである。   The refrigeration cooler (23) passes between the fins (27) through the cold air introduced through circulation in the refrigerated space (6) consisting of the refrigerator compartment (10), the vegetable compartment (11), and the cold room (15). It cools by making it cool, and it cools the room by blowing it out to the refrigerator compartment (10) again by the fan (24), but it is cooled to a freezing temperature of -18 ° C or lower, and the generation of odors and airborne bacteria is suppressed. Unlike refrigeration coolers (28) in which low-temperature air circulates, in refrigerated spaces (6) maintained at a positive temperature of approximately 0 ° C or higher, odorous substances such as food stored indoors and airborne bacteria The amount increases.

これに対し、上記構成によるLED(32)の可視光照射によって、フィン(27)表面に担持された可視光応答型光触媒(31)は励起され、循環冷気に含まれる脱臭すべき臭気物質や除菌すべき浮遊菌は必然的に冷蔵用冷却器のフィン(27)部分を通過することから、大きな表面積を有するフィン(27)に被覆された光触媒作用によってこれらを効果的に分解除去し、冷蔵空間(6)内を脱臭し、また除菌機能を作用させて衛生的環境を保持することができる。   On the other hand, the visible light responsive photocatalyst (31) carried on the surface of the fin (27) is excited by the visible light irradiation of the LED (32) having the above-described configuration, and the odorous substances to be deodorized and removed from the circulating cold air are removed. The floating bacteria to be sterilized inevitably pass through the fin (27) part of the refrigeration cooler, so these are effectively decomposed and removed by the photocatalytic action covered with the fin (27) having a large surface area, and refrigerated. The inside of the space (6) can be deodorized and a sanitizing function can be operated to maintain a sanitary environment.

光触媒による脱臭、除菌効果は上記のとおりであるが、光触媒の別の機能として、被膜を施した表面の親水化がある。すなわち、前記LED(32)の照射による可視光応答型光触媒の励起によって、光触媒被膜(31)が施された冷蔵用冷却器(23)のフィン(27)は、循環冷気と接触して脱臭、除菌作用をおこなうのみでなく、その表面は親水化されることになる。   Although the deodorizing and sterilizing effects by the photocatalyst are as described above, another function of the photocatalyst is to make the coated surface hydrophilic. That is, by the excitation of the visible light responsive photocatalyst by irradiation of the LED (32), the fin (27) of the refrigeration cooler (23) provided with the photocatalyst coating (31) comes into contact with the circulating cold air to deodorize, Not only does it perform sterilization, but also the surface becomes hydrophilic.

冷却運転により、前記冷蔵用冷却器(23)のフィン(27)表面が着霜あるいは氷結していると光が透過しないため光触媒効果は低下するが、前記親水化により、フィン(27)の表面は濡れやすくなり、フィン(27)に付着する循環冷気中の水分が滴状化することを抑制する。そして、着霜しても平滑な薄い膜状となるため、冷蔵用冷却器(23)の冷却運転が終了した場合には、温度上昇によりすみやかに着霜状態や氷結状態は融解し除去されるので、可視光による光触媒作用を効果的に再び実行することができる。   If the surface of the fin (27) of the refrigeration cooler (23) is frosted or frozen due to the cooling operation, light is not transmitted and the photocatalytic effect is reduced. However, due to the hydrophilicity, the surface of the fin (27) Becomes easy to get wet and suppresses the water in the circulating cold air adhering to the fin (27) from dropping. And even if it forms frost, it becomes a smooth thin film, so when the cooling operation of the refrigeration cooler (23) is finished, the frosted state and the frozen state are quickly melted and removed by the temperature rise. Therefore, the photocatalytic action by visible light can be effectively performed again.

また、霜は、前記フィン(27)表面の親水化によって薄膜状に付着することから、冷却運転終了時のファン(24)の運転による温度上昇ですみやかに融解して液膜状になる。そして、融解した水分は循環冷気に含まれて冷蔵室(10)内に戻ることになり、冷蔵空間(6)内の高湿度化に寄与させることができる。   Moreover, since frost adheres in the form of a thin film due to the hydrophilization of the surface of the fin (27), it quickly melts by the temperature rise due to the operation of the fan (24) at the end of the cooling operation and becomes a liquid film. And the melt | dissolved water | moisture content will be contained in circulating cold air, and will return in the refrigerator compartment (10), and it can be made to contribute to the high humidity in the refrigerator compartment (6).

したがって、前記可視光応答型光触媒とすることで、高価で寿命が短い紫外線ランプを使用せずに、一般的な可視光光源、例えば、上記のように、小型で安価、且つ長寿命で消費電力量の少ない可視光LED(32)を使用することができ、これを冷蔵用冷却器(23)のフィン(27)近傍に配設して照射することで、フィン(27)の表面に被覆した光触媒皮膜(31)を励起し、効果的な脱臭、除菌作用を得ることができる。   Therefore, by using the visible light responsive photocatalyst, a general visible light source, for example, as described above, is small, inexpensive, and has a long life without using an expensive and short-lived ultraviolet lamp. A small amount of visible light LED (32) can be used, and this is disposed near the fin (27) of the refrigeration cooler (23) and irradiated to coat the surface of the fin (27). The photocatalytic film (31) can be excited to obtain an effective deodorizing and sterilizing action.

LED(32)としては、一般的な砲弾型、あるいは表面実装型のいずれも使用可能であり、循環風路に対して冷気流通を阻害しない形状や配設構造にするとよい。   As the LED (32), either a general bullet type or a surface mount type can be used, and it is preferable that the LED (32) has a shape or an arrangement structure that does not impede the cold air flow with respect to the circulation air path.

また、前記LED(32)の配設位置としては、図7に示すように、照射方向を冷蔵用冷却器(23)のフィン(27)間に指向させるとともに、図示しないモーターやプーリー、ベルトなどによる摺動装置によって、前記フィン(27)の隣接方向に沿って幅方向に往復移動させるように構成し、照射しながら所定速度で移動させるようにしてもよい。このように構成すれば、少ないLED(32)の個数であってもフィン(27)への照射距離を短くでき、上下幅方向に亙ってフィン(27)の全体を効果的に照射することができる。   As shown in FIG. 7, the LED (32) is disposed at a position where the irradiation direction is directed between the fins (27) of the refrigeration cooler (23), and a motor, pulley, belt, etc. (not shown). The sliding device may be configured to reciprocate in the width direction along the adjacent direction of the fin (27), and may be moved at a predetermined speed while irradiating. If comprised in this way, even if the number of LED (32) is few, the irradiation distance to a fin (27) can be shortened, and the whole fin (27) can be irradiated effectively over the up-and-down width direction. Can do.

そしてまた、図8に示すように、冷蔵用冷却器(23)の冷気の流れ方向、図においては上下方向のほぼ中央部に位置するフィン(27)の上下の間隔を幅方向に亙って少し拡げ、この拡開部(23a)に沿う前面側にフィン端部から所定間隔を有して複数のLED(32)を配設し、その照射方向を上下のフィン(27)間の相互に異なる方向に指向させ、且つ幅方向の照射角度を適宜変えるようにしてもよい。   Further, as shown in FIG. 8, the flow direction of the cold air in the refrigeration cooler (23), in the figure, the vertical distance between the fins (27) located at the substantially central portion in the vertical direction is extended in the width direction. A plurality of LEDs (32) are arranged on the front side along the widened portion (23a) with a predetermined distance from the fin end, and the direction of irradiation is defined between the upper and lower fins (27). You may make it point to a different direction and may change the irradiation angle of the width direction suitably.

このとき、前記LED(32)は冷蔵用冷却器(23)の前面を覆う前記カバー体(22)に設けた透孔部に取り付け、冷蔵用冷却器(23)側のみでなく、前方の冷蔵室(10)側も照射するようにすれば、冷蔵空間(6)内の照明装置を兼用でき、LEDの使用個数を減少させることができる。   At this time, the LED (32) is attached to a through hole provided in the cover body (22) that covers the front surface of the refrigeration cooler (23), and the front refrigeration is performed not only on the refrigeration cooler (23) side. If the chamber (10) side is also irradiated, the lighting device in the refrigerated space (6) can also be used, and the number of LEDs used can be reduced.

さらに、これに加えて、上記図7に示した実施例のように、前記LED(32)を前記フィン(27)の隣接方向に沿って幅方向に往復移動させるように構成し、照射しながら移動させるようにしてもよく、このように形成すれば、フィン(27)を照射する光量をより多く確保することができ、フィン表面への照射効率を向上して、光触媒機能を充分に引き出すことができる。   Further, in addition to this, as in the embodiment shown in FIG. 7, the LED (32) is configured to reciprocate in the width direction along the adjacent direction of the fin (27) while irradiating. If it is formed in this way, it is possible to secure more light to irradiate the fin (27), improve the irradiation efficiency to the fin surface, and fully extract the photocatalytic function Can do.

本発明は以上のように構成されており、冷蔵用冷却器(23)のフィン(27)表面に可視光応答型の光触媒の皮膜(31)を形成したので、紫外線照射手段を設置せずともLED(32)による可視光の照射により多数設けたフィン(27)の広い面積を光触媒の担持面としてこれを励起し、このフィン(27)間を流れることで、冷蔵空間(6)内の循環空気に含まれる臭気物質や浮遊菌を効果的に脱臭分解することができる。   The present invention is configured as described above, and the visible light responsive photocatalyst film (31) is formed on the surface of the fin (27) of the refrigeration cooler (23). A large area of the fins (27) provided by irradiation of visible light by the LED (32) is used as a photocatalyst carrying surface to excite it and flow between the fins (27), thereby circulating in the refrigerated space (6). It is possible to effectively deodorize and decompose odorous substances and airborne bacteria contained in the air.

また、光触媒の励起によるフィン(27)表面の親水化により、付着する霜を平滑化することで光触媒作用の低下を抑制し、除霜効率の向上とともに昇華作用を促進して冷蔵空間の高湿化を助長させる効果を奏することができる。   In addition, the hydrophilization of the fin (27) surface by photocatalytic excitation smoothes the adhering frost and suppresses the decrease in photocatalytic action, and improves the defrosting efficiency and promotes sublimation to increase the humidity of the refrigerated space. The effect which promotes conversion can be show | played.

本発明の1実施形態を示す冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator which shows one Embodiment of this invention. 図1における冷蔵用冷却器の斜視図である。It is a perspective view of the refrigerator for refrigeration in FIG. 図2におけるフィン部分の拡大断面図である。It is an expanded sectional view of the fin part in FIG. 図1の冷蔵用冷却器にLED光源を設けた斜視図である。It is the perspective view which provided the LED light source in the cooler for refrigeration of FIG. 図4のフィンに対するLEDの照射状態の例を示す拡大正面図である。It is an enlarged front view which shows the example of the irradiation state of LED with respect to the fin of FIG. 図5に対してLED照射状態の他の例を示す拡大側面図である。FIG. 6 is an enlarged side view showing another example of the LED irradiation state with respect to FIG. 5. 本発明の他の実施例におけるLED照射状態を示す斜視図である。It is a perspective view which shows the LED irradiation state in the other Example of this invention. 本発明のさらに他の実施例のLED照射状態を示す斜視図である。It is a perspective view which shows the LED irradiation state of the further another Example of this invention.

符号の説明Explanation of symbols

1 冷蔵庫本体 6 冷蔵空間 7 冷凍空間
10 冷蔵室 11 野菜室 13 野菜容器
15 低温室 16 温度切替室 17 冷凍室
23 冷蔵用冷却器 23a 拡開部 24、29 ファン
25 冷媒パイプ 26 端板 27 フィン
28 冷凍用冷却器 31 可視光応答型光触媒被膜
32 発光ダイオード(LED) 33 支持部材
1 Refrigerator body 6 Refrigerated space 7 Refrigerated space
10 Cold room 11 Vegetable room 13 Vegetable container
15 Low greenhouse 16 Temperature switching room 17 Freezer room
23 Refrigerator 23a Expander 24, 29 Fan
25 Refrigerant pipe 26 End plate 27 Fin
28 Refrigeration cooler 31 Visible light responsive photocatalytic coating
32 Light Emitting Diode (LED) 33 Support Member

Claims (5)

冷蔵空間と冷凍空間とを有してそれぞれの貯蔵空間を専用に冷却する冷却器を設け、前記冷蔵空間を冷却する冷蔵用冷却器は、フィンアンドチューブ型の熱交換器として冷凍用冷却器より蒸発温度を高くし、ファンによる冷気循環で貯蔵空間内を所定温度に保持する冷蔵庫において、前記冷蔵用冷却器の幅方向に亙って隣接するように多数配置したフィン表面に可視光応答型の光触媒皮膜を施すとともに、前記フィン表面を照射可能な位置に可視光光源を設けたことを特徴とする冷蔵庫。   A cooler having a refrigeration space and a freezing space for cooling each storage space is provided, and the refrigerating cooler for cooling the refrigerating space is a fin-and-tube heat exchanger than a freezing cooler. In a refrigerator that raises the evaporation temperature and keeps the inside of the storage space at a predetermined temperature by circulating cold air with a fan, a visible light responsive type is provided on the surface of the fin that is arranged so as to be adjacent in the width direction of the refrigeration cooler. A refrigerator having a photocatalytic film and a visible light source provided at a position where the fin surface can be irradiated. 可視光光源をフィンの隣接方向に沿わせるとともに前記フィンの端部から所定長離間して配置した複数の発光ダイオードとし、照射方向をフィン間に指向させたことを特徴とする請求項1記載の冷蔵庫。   2. The light emitting diode according to claim 1, wherein the visible light source is arranged along a direction adjacent to the fins, and is a plurality of light emitting diodes arranged at a predetermined distance from an end of the fin, and the irradiation direction is directed between the fins. refrigerator. 発光ダイオードの照射方向をフィン間に指向させるとともに相互に異なる角度で取り付けたことを特徴とする請求項2記載の冷蔵庫。   3. The refrigerator according to claim 2, wherein the light emitting diode is directed at the irradiation direction between the fins and attached at different angles. 発光ダイオードの照射方向をフィン間に指向させるとともに冷蔵用冷却器の前記フィンの隣接方向に沿って照射しながら移動させることを特徴とする請求項2記載の冷蔵庫。   3. The refrigerator according to claim 2, wherein the irradiation direction of the light emitting diode is directed between the fins and is moved while being irradiated along the adjacent direction of the fins of the refrigeration cooler. 可視光光源を複数の発光ダイオードとして冷蔵用冷却器の冷気の流れ方向のほぼ中央部に配置するとともに照射方向をフィン間の相互に異なる方向に指向させ、冷蔵用冷却器の前記フィンの隣接方向に沿って照射しながら移動することを特徴とする請求項1記載の冷蔵庫。   The visible light source is arranged as a plurality of light-emitting diodes at substantially the center of the cooling air flow direction of the refrigeration cooler, and the irradiation direction is directed to different directions between the fins, and the adjacent direction of the fins of the refrigeration cooler The refrigerator according to claim 1, wherein the refrigerator moves while irradiating the refrigerator.
JP2007305875A 2007-11-27 2007-11-27 refrigerator Expired - Fee Related JP5127418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305875A JP5127418B2 (en) 2007-11-27 2007-11-27 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305875A JP5127418B2 (en) 2007-11-27 2007-11-27 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012231605A Division JP2013050300A (en) 2012-10-19 2012-10-19 Refrigerator

Publications (2)

Publication Number Publication Date
JP2009127977A true JP2009127977A (en) 2009-06-11
JP5127418B2 JP5127418B2 (en) 2013-01-23

Family

ID=40819087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305875A Expired - Fee Related JP5127418B2 (en) 2007-11-27 2007-11-27 refrigerator

Country Status (1)

Country Link
JP (1) JP5127418B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590688A1 (en) * 2010-05-26 2013-05-15 Airvention ApS Method and device for the control of formation and propagation of bacterial cultures, viral, fungal cultures, mildew, and micro organisms etc. on the condenser coil in larger refrigeration systems
JP2013167424A (en) * 2012-02-16 2013-08-29 Toshiba Corp Refrigerator
WO2014079892A1 (en) * 2012-11-23 2014-05-30 Peter Immerath Refrigerating device, and method for operating a refrigerating device
CN105758068A (en) * 2016-04-19 2016-07-13 合肥太通制冷科技有限公司 Six-layer stacked dense denoising and defrosting finned evaporator
WO2024079607A1 (en) * 2022-10-10 2024-04-18 Laboratori Fabrici Srl Air purifier for a refrigerator

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137955A (en) * 1995-11-15 1997-05-27 Sharp Corp Deodorizing device
JPH10277367A (en) * 1997-04-04 1998-10-20 Sanyo Electric Co Ltd Apparatus for deodorization-sterilization
JPH11118333A (en) * 1997-10-15 1999-04-30 Toshiba Corp Purifying device for refrigerator
JP3093953B2 (en) * 1995-04-24 2000-10-03 シャープ株式会社 Heat exchanger with deodorizing function
JP2001041485A (en) * 1999-07-16 2001-02-13 Carrier Corp Air-conditioning device
JP2001141383A (en) * 1999-11-18 2001-05-25 Sharp Corp Heat exchanger
JP2001248951A (en) * 2000-03-03 2001-09-14 Hitachi Ltd Refrigerator, and manufacturing method for evaporator for refrigerator chamber for use in former
JP2001280879A (en) * 2000-01-28 2001-10-10 Matsushita Electric Ind Co Ltd Photo catalyst heat exchanger and manufacturing method thereof
JP2001317854A (en) * 2000-05-08 2001-11-16 Matsushita Refrig Co Ltd Refrigerator
JP2002071297A (en) * 2000-08-30 2002-03-08 Matsushita Electric Ind Co Ltd Photocatalytic heat exchanger
JP2002239395A (en) * 2001-02-15 2002-08-27 Ishihara Sangyo Kaisha Ltd Photocatalyst, method for manufacturing the same and photocatalyst body using the same
JP2002257461A (en) * 2002-01-17 2002-09-11 Toshiba Ave Co Ltd Refrigerator with deep freezer
JP2002333266A (en) * 2001-05-07 2002-11-22 Matsushita Refrig Co Ltd Refrigerator
JP2004073910A (en) * 2002-08-09 2004-03-11 Ishihara Sangyo Kaisha Ltd Visible light-responsive photocatalyst, method of producing the same, and photocatalytic body using the same
JP2004166996A (en) * 2002-11-20 2004-06-17 Toshiba Lighting & Technology Corp Photocatalyst unit, deodorizer and refrigerator
JP3601532B2 (en) * 1999-08-05 2004-12-15 株式会社豊田中央研究所 Photocatalyst substance, photocatalyst body and production method thereof
JP2005308283A (en) * 2004-04-20 2005-11-04 Toshiba Corp Refrigerator
JP2007120926A (en) * 2005-10-31 2007-05-17 Mitsubishi Electric Corp Refrigerator with free amino acid increasing function
JP2007139230A (en) * 2005-11-15 2007-06-07 Keiji Iimura Refrigerator having photocatalyst
JP2007146041A (en) * 2005-11-29 2007-06-14 Sanyo Electric Co Ltd Solvent-based coating material containing visible light-reactive photocatalyst and laminate structure using the same and freezing device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093953B2 (en) * 1995-04-24 2000-10-03 シャープ株式会社 Heat exchanger with deodorizing function
JPH09137955A (en) * 1995-11-15 1997-05-27 Sharp Corp Deodorizing device
JPH10277367A (en) * 1997-04-04 1998-10-20 Sanyo Electric Co Ltd Apparatus for deodorization-sterilization
JPH11118333A (en) * 1997-10-15 1999-04-30 Toshiba Corp Purifying device for refrigerator
JP2001041485A (en) * 1999-07-16 2001-02-13 Carrier Corp Air-conditioning device
JP3601532B2 (en) * 1999-08-05 2004-12-15 株式会社豊田中央研究所 Photocatalyst substance, photocatalyst body and production method thereof
JP2001141383A (en) * 1999-11-18 2001-05-25 Sharp Corp Heat exchanger
JP2001280879A (en) * 2000-01-28 2001-10-10 Matsushita Electric Ind Co Ltd Photo catalyst heat exchanger and manufacturing method thereof
JP2001248951A (en) * 2000-03-03 2001-09-14 Hitachi Ltd Refrigerator, and manufacturing method for evaporator for refrigerator chamber for use in former
JP2001317854A (en) * 2000-05-08 2001-11-16 Matsushita Refrig Co Ltd Refrigerator
JP2002071297A (en) * 2000-08-30 2002-03-08 Matsushita Electric Ind Co Ltd Photocatalytic heat exchanger
JP2002239395A (en) * 2001-02-15 2002-08-27 Ishihara Sangyo Kaisha Ltd Photocatalyst, method for manufacturing the same and photocatalyst body using the same
JP2002333266A (en) * 2001-05-07 2002-11-22 Matsushita Refrig Co Ltd Refrigerator
JP2002257461A (en) * 2002-01-17 2002-09-11 Toshiba Ave Co Ltd Refrigerator with deep freezer
JP2004073910A (en) * 2002-08-09 2004-03-11 Ishihara Sangyo Kaisha Ltd Visible light-responsive photocatalyst, method of producing the same, and photocatalytic body using the same
JP2004166996A (en) * 2002-11-20 2004-06-17 Toshiba Lighting & Technology Corp Photocatalyst unit, deodorizer and refrigerator
JP2005308283A (en) * 2004-04-20 2005-11-04 Toshiba Corp Refrigerator
JP2007120926A (en) * 2005-10-31 2007-05-17 Mitsubishi Electric Corp Refrigerator with free amino acid increasing function
JP2007139230A (en) * 2005-11-15 2007-06-07 Keiji Iimura Refrigerator having photocatalyst
JP2007146041A (en) * 2005-11-29 2007-06-14 Sanyo Electric Co Ltd Solvent-based coating material containing visible light-reactive photocatalyst and laminate structure using the same and freezing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590688A1 (en) * 2010-05-26 2013-05-15 Airvention ApS Method and device for the control of formation and propagation of bacterial cultures, viral, fungal cultures, mildew, and micro organisms etc. on the condenser coil in larger refrigeration systems
EP2590688A4 (en) * 2010-05-26 2015-02-25 Airvention Aps Method and device for the control of formation and propagation of bacterial cultures, viral, fungal cultures, mildew, and micro organisms etc. on the condenser coil in larger refrigeration systems
JP2013167424A (en) * 2012-02-16 2013-08-29 Toshiba Corp Refrigerator
WO2014079892A1 (en) * 2012-11-23 2014-05-30 Peter Immerath Refrigerating device, and method for operating a refrigerating device
DE102012221471B4 (en) * 2012-11-23 2014-06-26 Peter Immerath Cooling device and method for operating a cooling device
CN105758068A (en) * 2016-04-19 2016-07-13 合肥太通制冷科技有限公司 Six-layer stacked dense denoising and defrosting finned evaporator
WO2024079607A1 (en) * 2022-10-10 2024-04-18 Laboratori Fabrici Srl Air purifier for a refrigerator

Also Published As

Publication number Publication date
JP5127418B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
TWI407067B (en) Refrigerator
CN101663551A (en) Refrigerator, and disinfecting device
JP4752975B2 (en) refrigerator
JP5127418B2 (en) refrigerator
CN102200367A (en) Refrigerator, and disinfecting device
JP5390089B2 (en) refrigerator
JP5615784B2 (en) refrigerator
JP2005201542A (en) Refrigerator
JP2013050300A (en) Refrigerator
JP2009030922A (en) Direct cooling-type refrigerator
JP2009063280A (en) Refrigerator
JP5211574B2 (en) refrigerator
JP2009030917A (en) Direct cooling type refrigerator, and disinfecting device
JP2012078054A (en) Refrigerator
JP2012078053A (en) Refrigerator
CN1820172A (en) Refrigerator
JP2009030918A (en) Direct cooling type refrigerator, and disinfecting device
JP2013007562A (en) Refrigerator
RU2445558C2 (en) Refrigerator and sterilisation device
JP2008292152A (en) Refrigerator
JP5261970B2 (en) refrigerator
JP2009030919A (en) Direct cooling-type refrigerator, and disinfecting device
JP5145761B2 (en) refrigerator
JP2005009784A (en) Cooling storage cabinet
RU2444684C2 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees