JP2002071244A - Heat pump - Google Patents

Heat pump

Info

Publication number
JP2002071244A
JP2002071244A JP2000257393A JP2000257393A JP2002071244A JP 2002071244 A JP2002071244 A JP 2002071244A JP 2000257393 A JP2000257393 A JP 2000257393A JP 2000257393 A JP2000257393 A JP 2000257393A JP 2002071244 A JP2002071244 A JP 2002071244A
Authority
JP
Japan
Prior art keywords
load
heat
heat exchanger
defrosting operation
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000257393A
Other languages
Japanese (ja)
Inventor
Yukihiro Yano
幸博 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000257393A priority Critical patent/JP2002071244A/en
Publication of JP2002071244A publication Critical patent/JP2002071244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump outputting heat to the load side in which the effect of defrost operation is minimized. SOLUTION: In a heat pump where switching can be made between load corresponding operation for outputting heat to the load side while collecting head from the atmospheric air A by operating an air heat exchanger 2 for exchanging heat between refrigerant R and the atmospheric air A as a refrigerant evaporator E, and defrost operation for defrosting the air heat exchanger 2 by operating it as a refrigerant condenser C, a control means 11 performing defrost operation when a load Z decreases below a set threshold load Zs due to variation of load during the load corresponding operation is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気空気から採熱
するヒートポンプ装置に関し、詳しくは、冷媒を大気空
気と熱交換させる対空気熱交換器を冷媒蒸発器として機
能させて大気空気から採熱しながら負荷側に温熱を出力
する負荷対応運転と、対空気熱交換器を冷媒凝縮器とし
て機能させてその対空気熱交換器における付着霜を除去
する除霜運転との切り換え実施を可能にしたヒートポン
プ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device for collecting heat from atmospheric air, and more particularly, to a heat pump device for exchanging heat between refrigerant and atmospheric air, which functions as a refrigerant evaporator to collect heat from atmospheric air. A heat pump that can switch between a load-adaptive operation that outputs heat to the load side and a defrosting operation that removes adhering frost in the air heat exchanger by using the air heat exchanger as a refrigerant condenser. Related to the device.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ装置では、
上記の負荷対応運転において大気空気からの採熱に伴う
空気中水分の冷却で対空気熱交換器の表面上に霜が発生
堆積すること(特に冬季)に対し、対空気熱交換器の着
霜状態を検出する検出手段を設け、この検出手段により
所定量以上の着霜が検出されたとき負荷対応運転から上
記除霜運転に運転を自動的に切り換えて除霜を行うよう
にしていた。
2. Description of the Related Art Conventionally, in this type of heat pump device,
In the above-mentioned load-compatible operation, frost formation on the surface of the air heat exchanger (especially in winter) due to the cooling of moisture in the air due to the heat collection from the atmospheric air (especially in winter) A detecting means for detecting the state is provided, and when the detecting means detects frost formation of a predetermined amount or more, the operation is automatically switched from the load corresponding operation to the defrosting operation to perform the defrosting.

【0003】なお、着霜状態の検出については、対空気
熱交換器の表面温度や冷媒蒸発温度が所定閾温度(固定
の閾温度ないし外気温に応じて変更される閾温度)より
も低下したとき着霜量が所定量以上になったものと判定
する方式が一般に採用されている。
[0003] With respect to the detection of the frost formation state, the surface temperature of the air heat exchanger and the refrigerant evaporation temperature have fallen below a predetermined threshold temperature (a fixed threshold temperature or a threshold temperature changed according to the outside air temperature). A method of judging that the amount of frost has become a predetermined amount or more is generally adopted.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の除霜運
転は、温熱を必要とする負荷側から採熱するため、ま
た、負荷側とは別の熱源から採熱するにしても負荷側へ
の温熱出力の停止や低下を伴うため、いずれにしても負
荷対応性の低下要因になるが、上記の如く着霜量が所定
量以上になったとき除霜運転を実施する従来装置では、
負荷対応運転中のどの時点で除霜運転が実施されるかが
不確定で、負荷対応運転中における負荷の大きいとき
(すなわち、負荷側の温熱要求量が大きいとき)に除霜
運転が実施されることも多く、また、負荷に応じて温熱
出力を調整する形式では、大負荷時に対空気熱交換器か
らの採熱量も大きくなることから、むしろ負荷の大きい
ときに除霜運転の実施に至り易い傾向もあり、これらの
点で、負荷対応性が除霜運転により大きく低下する問題
があった。
However, in the above-described defrosting operation, since heat is taken from the load side that requires heat, even if heat is taken from a heat source different from the load side, the heat is transferred to the load side. In any case, since the thermal output is stopped or decreased, the load responsiveness is reduced.However, in the conventional device that performs the defrosting operation when the frost amount is equal to or more than a predetermined amount as described above,
It is uncertain when the defrosting operation is to be performed during the load corresponding operation, and the defrost operation is performed when the load during the load corresponding operation is large (that is, when the heat demand on the load side is large). In the form of adjusting the thermal output according to the load, the amount of heat taken from the air heat exchanger increases when the load is large, and the defrost operation is performed when the load is large. There is also a problem that the load responsiveness is greatly reduced by the defrosting operation in these points.

【0005】この実情に鑑み、本発明の主たる課題は、
除霜運転を合理的に実施することにより、除霜運転に原
因する負荷対応性の低下を効果的に抑止する点にある。
[0005] In view of this situation, the main problems of the present invention are:
The reason is that by reasonably performing the defrosting operation, it is possible to effectively suppress a decrease in load responsiveness caused by the defrosting operation.

【0006】[0006]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、冷媒を大気空気と熱交換させる対空気熱交換器
を冷媒蒸発器として機能させて大気空気から採熱しなが
ら負荷側に温熱を出力する負荷対応運転と、前記対空気
熱交換器を冷媒凝縮器として機能させてその対空気熱交
換器における付着霜を除去する除霜運転との切り換え実
施を可能にしたヒートポンプ装置において、前記負荷対
応運転の実施中における負荷変化で負荷が設定閾負荷よ
りも小さくなったとき前記除霜運転を実施する制御手段
を設ける。
Means for Solving the Problems [1] In the invention according to claim 1, an air heat exchanger for exchanging heat between a refrigerant and atmospheric air functions as a refrigerant evaporator to extract heat from the atmospheric air to the load side. In a heat pump device that enables switching between a load corresponding operation that outputs heat and a defrosting operation that removes adhering frost in the air heat exchanger by functioning the air heat exchanger as a refrigerant condenser, A control unit is provided for performing the defrosting operation when the load becomes smaller than a set threshold load due to a load change during the execution of the load corresponding operation.

【0007】つまり、この構成によれば、負荷対応運転
において負荷が設定閾負荷よりも小さくなったとき(す
なわち、負荷側の温熱要求量が小さくなったとき)に除
霜運転を実施するから、負荷対応運転中のどの時点で除
霜運転が実施されるかが不確定で負荷側の温熱要求量の
大きい大負荷時に除霜運転が実施されることも多い先述
の従来ヒートポンプ装置に比べ、負荷側の温熱要求に対
しより適切に応じた状態で必要な温熱を負荷側へより安
定的かつ確実に供給することができて、除霜運転に原因
する負荷対応性の低下を効果的に抑止できる。
In other words, according to this configuration, the defrosting operation is performed when the load becomes smaller than the set threshold load (ie, when the required amount of heat on the load side becomes smaller) in the load corresponding operation. It is uncertain when the defrosting operation is to be performed during the load corresponding operation, and the defrosting operation is often performed at the time of a large load with a large thermal demand on the load side. The required heat can be more stably and reliably supplied to the load side in a state more appropriately responding to the heat demand on the side, and a reduction in load response caused by the defrosting operation can be effectively suppressed. .

【0008】また、負荷装置が融雪装置や凍結防止装置
などの場合、従来のヒートポンプ装置では、負荷対応運
転中の大負荷時(換言すれば、負荷側の温度が低いと
き)に負荷側から採熱する除霜運転が実施されること
で、負荷側の温度が更に低下して負荷側で凍結トラブル
を招く虞が生じるが、上記の如く負荷が小さいとき(す
なわち、負荷側の温度がある程度高いとき)に除霜運転
を実施すれば、その除霜運転を負荷側からの採熱により
行なうにしても、そのような負荷側での凍結トラブルを
効果的に防止でき、この点でも一層優れたヒートポンプ
装置になる。
In the case where the load device is a snow melting device or an anti-freezing device, the conventional heat pump device takes a load from the load side during a heavy load during a load operation (in other words, when the temperature on the load side is low). When the heating defrosting operation is performed, the temperature on the load side may be further reduced to cause a freezing trouble on the load side. However, when the load is small as described above (that is, when the temperature on the load side is somewhat high). If the defrosting operation is performed at (time), even if the defrosting operation is performed by collecting heat from the load side, it is possible to effectively prevent such a freezing trouble on the load side, and in this respect, it is even more excellent. It becomes a heat pump device.

【0009】なお、請求項1に係る発明の実施におい
て、除霜運転は、負荷側から採熱するもの、あるいは、
負荷側とは別の熱源から採熱するもの、あるいはまた、
それらを組み合わせたもののいずれであってもよい。
[0009] In the practice of the invention according to claim 1, the defrosting operation is performed by taking heat from the load side, or
Heat is taken from a heat source different from the load side, or
Any of those combinations may be used.

【0010】また、負荷の判定については種々の判定方
式を採用することができ、負荷対応運転で負荷の増減に
応じて負荷側への温熱出力を調整する形式では、その出
力調整で負荷側への温熱出力を所定閾出力よりも低下側
に調整する必要が生じたとき(運転停止による出力調整
を含む)に、負荷が設定閾負荷よりも小さくなったとし
て除霜運転を実施するようにしてもよい。
In addition, various types of determination can be adopted for the determination of the load. In the type in which the thermal output to the load is adjusted in response to the increase or decrease of the load in the load operation, the output is adjusted to the load. When it is necessary to adjust the thermal output of the engine to a lower side than the predetermined threshold output (including the output adjustment by stopping the operation), it is determined that the load has become smaller than the set threshold load, and the defrosting operation is performed. Is also good.

【0011】〔2〕請求項2に係る発明では、請求項1
に係る発明の実施にあたり、前記対空気熱交換器におけ
る着霜状態を検出する検出手段を設け、前記制御手段
を、この検出手段により所定量以上の着霜が検出された
とき、及び、負荷対応運転の実施中における負荷が前記
設定閾負荷よりも小さくなったときの夫々について前記
除霜運転を実施する構成にする。
[2] According to the invention according to claim 2, claim 1
In carrying out the invention according to the present invention, a detection unit for detecting a frost state in the air heat exchanger is provided, and the control unit is configured to detect when a predetermined amount or more of frost is detected by the detection unit, and The defrosting operation is performed each time the load during the operation is smaller than the set threshold load.

【0012】つまり、この構成では、先述の従来ヒート
ポンプ装置と同様、対空気熱交換器の着霜量が所定量以
上になったときに除霜運転を実施するが、着霜量が所定
量以上になることに対してのみ除霜運転を実施する従来
のヒートポンプ装置に比べ、負荷対応運転において負荷
が設定閾負荷よりも小さくなったときにも除霜運転を実
施することで、着霜量が所定量以上になることに対する
除霜運転の実施頻度を低減できて、そのことにより、着
霜量が所定量以上になることに対する除霜運転が負荷対
応運転中の大負荷時に実施されることを効果的に抑止で
き、この点で、請求項1に係る発明の効果を活かして、
除霜運転に原因する負荷対応性の低下を効果的に抑止で
きるとともに、負荷側での凍結トラブルを防止する機能
も高めることができる。
In other words, in this configuration, similar to the above-described conventional heat pump device, the defrosting operation is performed when the amount of frost of the air heat exchanger exceeds a predetermined amount. By performing the defrosting operation even when the load becomes smaller than the set threshold load in the load corresponding operation, compared to the conventional heat pump device that performs the defrosting operation only for the It is possible to reduce the frequency of performing the defrosting operation with respect to the predetermined amount or more, thereby making it possible to perform the defrosting operation with respect to the frosting amount being equal to or more than the predetermined amount at the time of a large load during the load corresponding operation. It can be effectively suppressed, and in this regard, taking advantage of the effect of the invention according to claim 1,
It is possible to effectively prevent the load responsiveness from being reduced due to the defrosting operation, and to enhance the function of preventing freezing trouble on the load side.

【0013】そして、負荷が設定閾負荷よりも小さくな
ることに対して除霜運転を実施することに加え、着霜量
が所定量以上になることに対しても除霜運転を実施する
ことで、負荷対応運転において外気条件(大気空気の温
湿度条件)などにより対空気熱交換器での着霜が促進さ
れて、それによる過大な着霜のために運転性能の大きな
低下や運転トラブルを招くといった事態も確実に回避す
ることができ、これらのことから全体として、負荷対応
性を効果的に高めながら運転の安定性の面でも一層優れ
たヒートポンプ装置にすることができる。
[0013] In addition to performing the defrosting operation when the load becomes smaller than the set threshold load, the defrosting operation is also performed when the frost amount exceeds a predetermined amount. In a load-compatible operation, frost formation in the air heat exchanger is promoted due to external air conditions (temperature and humidity conditions of atmospheric air) and the like, resulting in excessive frost formation, leading to a large decrease in operation performance and operation trouble. Such a situation can be reliably avoided, and as a result, a heat pump device can be obtained that is more excellent in operation stability while effectively improving load responsiveness as a whole.

【0014】〔3〕請求項3に係る発明では、請求項1
又は2に係る発明の実施にあたり、前記制御手段を、前
記除霜運転の実施の後、設定不実施時間の間は、負荷対
応運転の実施中における負荷が前記設定閾負荷よりも小
さくなることに対する前記除霜運転の実施を省略する構
成にする。
[3] According to the third aspect of the present invention, the first aspect
In the implementation of the invention according to the second or third aspect, after the defrosting operation is performed, the control unit may control the load during execution of the load corresponding operation to be smaller than the set threshold load during the set non-execution time. It is configured to omit the execution of the defrosting operation.

【0015】つまり、この構成によれば、除霜運転の実
施の後、負荷対応運転を再開してからの時間が未だ短く
て、対空気熱交換器での着霜に未だ至らない段階や着霜
が未だ軽微である段階において、負荷が設定閾負荷より
も小さくなることで除霜運転が無駄に再実施されること
を効果的に回避でき、その無駄な除霜運転の回避分だけ
除霜運転に原因する負荷対応性の低下をさらに効果的に
抑止して、負荷対応性を一層高めることができる。
That is, according to this configuration, after the defrosting operation is performed, the time after the load-response operation is restarted is still short, and the stage or the time when the frost formation in the air heat exchanger has not yet been achieved has been reached. At a stage where the frost is still slight, the load becomes smaller than the set threshold load, so that the defrosting operation can be effectively prevented from being wastefully re-executed. A decrease in load responsiveness caused by driving can be more effectively suppressed, and load responsiveness can be further enhanced.

【0016】〔4〕請求項4に係る発明では、請求項1
〜3のいずれか1項に係る発明の実施にあたり、前記制
御手段を、前記負荷対応運転において通常時は、負荷の
増減に応じ負荷側への温熱出力を調整するのに対し、負
荷対応運転で負荷が前記設定閾負荷よりも小さくなって
前記除霜運転を実施する際には、過剰出力状態での負荷
対応運転を設定延長時間だけ延長実施した上で前記除霜
運転を実施する構成にする。
[4] In the invention according to the fourth aspect, the first aspect is provided.
In practicing the invention according to any one of the above-described items 3, the control means normally adjusts the thermal output to the load side in accordance with the increase or decrease of the load in the load corresponding operation, whereas the load corresponding operation is performed in the load corresponding operation. When the load is smaller than the set threshold load and the defrosting operation is performed, the configuration is such that the load corresponding operation in the excessive output state is extended for a set extension time and then the defrosting operation is performed. .

【0017】つまり、この構成によれば、負荷が設定閾
負荷よりも小さくなることに対する除霜運転を、それに
先立つ上記の如き過剰出力状態での負荷対応運転の延長
実施により温熱を予め余分に負荷側に付与しておいた状
態で実施でき、これにより、除霜運転を負荷側への影響
の少ない小負荷時に実施することと相俟って、除霜運転
が負荷側に及ぼす温熱供給面での悪影響をさらに効果的
に軽減できて、負荷対応性を一層効果的に高めることが
でき、また特に、除霜運転を負荷側からの採熱により行
なう場合では、負荷側に余分に付与した温熱をもって、
負荷側からの採熱による負荷側での凍結トラブルを一層
確実に防止することができる。
In other words, according to this configuration, the defrosting operation for the load becoming smaller than the set threshold load is performed by extending the load handling operation in an excessive output state as described above, thereby preliminarily applying an extra heat. The defrosting operation can be performed in a state in which the defrosting operation is performed at a small load with little effect on the load side, and the defrosting operation can be performed in a state of supplying heat to the load side. The adverse effect of heat can be reduced more effectively, and the load responsiveness can be more effectively improved. In particular, when the defrosting operation is performed by collecting heat from the load side, extra heat applied to the load side With
Freezing trouble on the load side due to heat collection from the load side can be more reliably prevented.

【0018】[0018]

【発明の実施の形態】図1はヒートポンプ装置を用いた
融雪設備を示し、1は冷媒Rを熱源側熱媒液Wと熱交換
させる対液熱交換器、2は冷媒Rを大気空気Aと熱交換
させる対空気熱交換器、2aは対空気熱交換器2に対し
熱交換対象の空気Aを通風するファン、3は冷媒Rを負
荷側熱媒液Lと熱交換させる対負荷熱交換器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a snow melting facility using a heat pump device, 1 is a liquid heat exchanger for exchanging heat of a refrigerant R with a heat source side heat transfer fluid W, and 2 is a refrigerant R with atmospheric air A. A heat exchanger for heat exchange, 2a is a fan for passing air A to be exchanged with the air heat exchanger 2, and 3 is a heat exchanger for load, which exchanges the refrigerant R with the load side heat transfer fluid L. It is.

【0019】なお、熱源側熱媒液W及び負荷側熱媒液L
には夫々、水やブラインなど種々の熱媒液を使用でき
る。
The heat source side heat transfer fluid W and the load side heat transfer fluid L
, Various heat medium liquids such as water and brine can be used.

【0020】4は圧縮機、5は膨張弁、6は4つの逆止
弁6a〜6dをブリッジ回路状に組み合わせた冷媒案内
回路、7はレシーバ、V1〜V3は冷媒経路切換用の第
1〜第3の四方弁、V4,V5は同じく冷媒経路切換用
の第1及び第2の開閉弁であり、これらと上記3つの熱
交換器1,2,3を主要構成装置としてヒートポンプ回
路(冷凍回路)Hを形成してある。
4 is a compressor, 5 is an expansion valve, 6 is a refrigerant guide circuit in which four check valves 6a to 6d are combined in a bridge circuit, 7 is a receiver, and V1 to V3 are first to third refrigerant path switching. The third four-way valves V4 and V5 are first and second on-off valves for switching the refrigerant path, and the heat pump circuit (refrigeration circuit) includes these and the three heat exchangers 1, 2, and 3 as main constituent devices. ) H is formed.

【0021】また、8は負荷側熱媒液Lを熱源にして融
雪対象箇所の雪を融かす負荷装置としての融雪熱交換器
であり、9はこの融雪熱交換器8と対負荷熱交換器3と
の間で負荷側熱媒液Lを循環ポンプ10により循環させ
る負荷側循環路である。
Reference numeral 8 denotes a snow melting heat exchanger as a load device that melts snow at a target of snow melting using the load side heat transfer fluid L as a heat source, and 9 denotes a snow melting heat exchanger 8 and a load heat exchanger. 3 is a load-side circulating passage for circulating the load-side heat transfer fluid L by the circulation pump 10.

【0022】そして、この融雪設備では、上記四方弁V
1〜V3及び開閉弁V4,V5による冷媒経路の切り換
えで次の(イ)〜(ホ)の運転を選択的に実施する。
In this snow melting facility, the four-way valve V
The following operations (a) to (e) are selectively performed by switching the refrigerant paths by 1 to V3 and the on-off valves V4 and V5.

【0023】(イ)空気熱源の負荷対応運転 この運転では、図2に示す如くヒートポンプ回路Hにお
いて、冷媒Rを圧縮機4−第1四方弁V1−対負荷熱交
換器3−冷媒案内回路6−レシーバ7−膨張弁5−冷媒
案内回路6−第2四方弁V2−対空気熱交換器2−第1
四方弁V1−第3四方弁V3−圧縮機4の順に循環させ
る。
(A) Operation corresponding to load of air heat source In this operation, as shown in FIG. 2, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-pair load heat exchanger 3-refrigerant guide circuit 6 -Receiver 7-Expansion valve 5-Refrigerant guide circuit 6-Second four-way valve V2-Air heat exchanger 2- First
The four-way valve V1-the third four-way valve V3-the compressor 4 are circulated in this order.

【0024】すなわち、この冷媒循環より、対空気熱交
換器2を冷媒蒸発器Eとして機能させ、かつ、対負荷熱
交換器3を冷媒凝縮器Cとして機能させ、これにより、
空気Aから採熱する形態で、融雪熱交換器8へ送る負荷
側熱媒液Lを加熱して負荷側に温熱出力し、この温熱を
もって融雪を行なう。
That is, the refrigerant circulation causes the heat exchanger for air 2 to function as the refrigerant evaporator E and the heat exchanger for load 3 to function as the refrigerant condenser C.
In the form of collecting heat from the air A, the load-side heat transfer medium L sent to the snow-melting heat exchanger 8 is heated and heated to the load side, and the heat is used to melt snow.

【0025】(ロ)2熱源(空気→液)の負荷対応運転 この運転では、図3に示す如くヒートポンプ回路Hにお
いて、冷媒Rを圧縮機4−第1四方弁V1−対負荷熱交
換器3−冷媒案内回路6−レシーバ7−膨張弁5−冷媒
案内回路6−第2四方弁V2−対空気熱交換器2−第1
開閉弁V4−対液熱交換器1−第3四方弁V3−圧縮機
4の順に循環させる。
(B) Operation corresponding to the load of the two heat sources (air → liquid) In this operation, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-to-load heat exchanger 3 as shown in FIG. -Refrigerant guide circuit 6-receiver 7-expansion valve 5-refrigerant guide circuit 6-second four-way valve V2-air heat exchanger 2-first
The on-off valve V4-the liquid heat exchanger 1-the third four-way valve V3-the compressor 4 are circulated in this order.

【0026】すなわち、この冷媒循環により、対空気熱
交換器2及び対液熱交換器1をその順の直列配置で共に
冷媒蒸発器Eとして機能させ、かつ、対負荷熱交換器3
を冷媒凝縮器Cとして機能させ、これにより、空気A及
び熱源側熱媒液Wの両方から採熱する形態で、融雪熱交
換器8に送る負荷側熱媒液Lを加熱して負荷側に温熱出
力し、この温熱をもって融雪を行なう。
That is, by this refrigerant circulation, the heat exchanger for air 2 and the heat exchanger for liquid 1 are made to function as a refrigerant evaporator E in a serial arrangement in that order, and the heat exchanger for load 3
Function as a refrigerant condenser C, thereby heating the load-side heat medium liquid L sent to the snow-melting heat exchanger 8 in the form of collecting heat from both the air A and the heat-source-side heat medium liquid W to the load side. The heat is output, and the snow melts with this heat.

【0027】(ハ)液熱源の負荷対応運転 この運転では、図4に示す如くヒートポンプ回路Hにお
いて、冷媒Rを圧縮機4−第1四方弁V1−対負荷熱交
換器3−冷媒案内回路6−レシーバ7−膨張弁5−冷媒
案内回路6−第2四方弁V2−対液熱交換器1−第3四
方弁V3−圧縮機4の順に循環させる。
(C) Operation corresponding to load of liquid heat source In this operation, as shown in FIG. 4, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-to-load heat exchanger 3-refrigerant guide circuit 6 -Receiver 7-Expansion valve 5-Refrigerant guide circuit 6-Second four-way valve V2-Liquid heat exchanger 1-Third four-way valve V3-Compressor 4

【0028】すなわち、この冷媒循環により、対液熱交
換器1を冷媒蒸発器Eとして機能させ、かつ、対負荷熱
交換器3を冷媒凝縮器Cとして機能させ、これにより、
熱源側熱媒液Wから採熱する形態で、融雪熱交換器8に
送る負荷側熱媒液Lを加熱して負荷側に温熱出力し、こ
の温熱をもって融雪を行なう。
That is, by this refrigerant circulation, the liquid heat exchanger 1 functions as the refrigerant evaporator E and the load heat exchanger 3 functions as the refrigerant condenser C.
In a mode in which heat is taken from the heat source side heat medium liquid W, the load side heat medium liquid L sent to the snow melting heat exchanger 8 is heated to output heat to the load side, and the heat is used to melt snow.

【0029】(ニ)液熱源の除霜運転 この運転では、図5に示す如くヒートポンプ回路Hにお
いて、冷媒Rを圧縮機4−第1四方弁V1−対空気熱交
換器2−第2開閉弁V5−レシーバ7−膨張弁5−冷媒
案内回路6−第2四方弁V2−対液熱交換器1−第3四
方弁V3−圧縮機4の順に循環させる。
(D) Defrosting operation of liquid heat source In this operation, as shown in FIG. 5, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second on-off valve. V5-receiver 7-expansion valve 5-refrigerant guide circuit 6-second four-way valve V2-liquid heat exchanger 1-third four-way valve V3-compressor 4

【0030】すなわち、この冷媒循環により、対液熱交
換器1を冷媒蒸発器Eとして機能させ、かつ、対空気熱
交換器2を冷媒凝縮器Cとして機能させ、これにより、
熱源側熱媒液Wから採熱する形態で対空気熱交換器2の
除霜を行なう。
That is, by this refrigerant circulation, the liquid heat exchanger 1 functions as the refrigerant evaporator E and the air heat exchanger 2 functions as the refrigerant condenser C.
The defrosting of the air heat exchanger 2 is performed in such a manner that heat is taken from the heat source side heat medium liquid W.

【0031】(ホ)負荷側熱源の除霜運転 この運転では、図6に示す如くヒートポンプ回路Hにお
いて、冷媒Rを圧縮機4−第1四方弁V1−対空気熱交
換器2−第2四方弁V2−冷媒案内回路6−レシーバ7
−膨張弁5−冷媒案内回路6−対負荷熱交換器3−第1
四方弁V1−第3四方弁V3−圧縮機4の順に循環させ
る。
(E) Defrosting operation of load side heat source In this operation, as shown in FIG. 6, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second four-way valve. Valve V2-refrigerant guide circuit 6-receiver 7
-Expansion valve 5-refrigerant guide circuit 6-load heat exchanger 3-first
The four-way valve V1-the third four-way valve V3-the compressor 4 are circulated in this order.

【0032】すなわち、この冷媒循環により、対負荷側
熱交換器3を冷媒蒸発器Eとして機能させ、かつ、対空
気熱交換器2を冷媒凝縮器Cとして機能させ、これによ
り、負荷側から採熱する形態で対空気熱交換器2の除霜
を行なう。
That is, the refrigerant circulation causes the heat exchanger 3 on the load side to function as the refrigerant evaporator E and the heat exchanger 2 on the air to function as the refrigerant condenser C, thereby collecting the heat from the load side. The defrost of the air heat exchanger 2 is performed in a heated form.

【0033】S1は対液熱交換器1に供給する熱源側熱
媒液Wの温度t1を検出するセンサ、S2は対空気熱交
換器2に通風する空気Aの温度t2を検出するセンサ、
S3は融雪熱交換器8に送る負荷側熱媒液Lの温度t3
を検出するセンサである。
S 1 is a sensor for detecting the temperature t 1 of the heat source side heat transfer fluid W supplied to the liquid heat exchanger 1, S 2 is a sensor for detecting the temperature t 2 of the air A passing through the air heat exchanger 2,
S3 is the temperature t3 of the load side heat transfer fluid L sent to the snow melting heat exchanger 8.
Is a sensor that detects

【0034】11は各センサS1〜S3の検出温度に基
づき上記の各運転を自動的に選択実施する制御器であ
り、この制御器11は、(イ)〜(ハ)の負荷対応運転
の自動選択として、センサS1,S2により検出される
熱源側熱媒液Wの温度t1及び空気Aの温度t2をパラ
メータとする状態点P(t1,t2)が、予め設定され
た図7に示す如き選択基準D1上で領域K1にある状況
では、空気Aのみから採熱する(イ)の負荷対応運転を
選択実施し、同状態点P(t1,t2)が領域K2にあ
る状況では、空気A及び熱源側熱媒液Wの両方から採熱
する(ロ)の負荷対応運転を選択実施し、同状態点P
(t1,t2)が領域K3にある状況では、熱源側熱媒
液Wのみから採熱する(ハ)の負荷対応運転を選択実施
する。
A controller 11 automatically selects and executes each of the above-mentioned operations based on the temperatures detected by the sensors S1 to S3. This controller 11 automatically controls the operations corresponding to the loads (a) to (c). As a selection, a state point P (t1, t2) using the temperature t1 of the heat source side heat transfer fluid W detected by the sensors S1 and S2 and the temperature t2 of the air A as parameters is selected as shown in FIG. In the situation in the area K1 on the criterion D1, the load corresponding operation of (a) in which heat is taken only from the air A is selected and executed, and in the situation where the state point P (t1, t2) is in the area K2, The operation corresponding to the load (b) in which heat is taken from both the heat source side heat transfer fluid W is selected and executed, and the state point P
In a situation where (t1, t2) is in the region K3, the load corresponding operation of (c) in which heat is taken only from the heat source side heat transfer fluid W is selected and executed.

【0035】そして、これら(イ)〜(ハ)の負荷対応
運転の夫々において、制御器11は、融雪負荷Zに応じ
た温熱出力の調整として、センサS3の検出温度t3に
基づき圧縮機4の出力Gを容量制御やインバータ制御等
により図9に示す如く段階的にないし連続的に調整し
て、融雪熱交換器8に送る負荷側熱媒液Lの温度t3を
設定された適正温度範囲内に保つ。
In each of the load-aware operations (a) to (c), the controller 11 adjusts the thermal output according to the snow melting load Z based on the temperature t3 detected by the sensor S3. The output G is adjusted stepwise or continuously as shown in FIG. 9 by capacity control, inverter control, or the like, and the temperature t3 of the load-side heat transfer fluid L to be sent to the snow melting heat exchanger 8 falls within a set appropriate temperature range. To keep.

【0036】また、この制御器11は、空気Aからの採
熱を伴う(イ)又は(ロ)の負荷対応運転では、その運
転中に、対空気熱交換器2における着霜量が所定量以上
になったことが検出手段により検出されたとき、及び、
上記の出力調整で圧縮機4の出力Gを設定閾出力Gsよ
りも低下側に調整する必要が生じたとき(本実施形態で
は、容量制御等による図9に示す如き段階的な圧縮機4
の出力調整で圧縮機停止の必要が生じたとき)の夫々に
ついて、(ニ)又は(ホ)の除霜運転に運転を自動的に
切り換える。
In the load-response operation (a) or (b), which involves taking heat from the air A, the controller 11 reduces the amount of frost in the air heat exchanger 2 during the operation. When the above is detected by the detecting means, and
When it is necessary to adjust the output G of the compressor 4 to a lower side than the set threshold output Gs in the above-described output adjustment (in the present embodiment, the compressor 4 in a stepwise manner as shown in FIG.
The operation is automatically switched to the defrosting operation of (d) or (e) for each of the cases (when it is necessary to stop the compressor in the output adjustment of (1)).

【0037】そして、これら(ニ)又は(ホ)の除霜運
転の自動選択として、制御器11は、センサS1により
検出される熱源側熱媒液Wの温度t1、及び、(ホ)の
除霜運転の実施においてセンサS3により検出される負
荷側熱媒液Lの温度t3をパラメータとする状態点Q
(t1,t3)が、予め設定された図8に示す如き選択
基準D2上で領域M1にある状況では、熱源側熱媒液W
から採熱する(ニ)の除霜運転を選択実施し、同状態点
Q(t1,t3)が領域M2にある状況では、負荷側か
ら採熱する(ホ)の除霜運転を選択実施する。
Then, as an automatic selection of the defrosting operation of (d) or (e), the controller 11 removes the temperature t1 of the heat source side heat transfer fluid W detected by the sensor S1 and the (e). The state point Q in which the temperature t3 of the load-side heat transfer fluid L detected by the sensor S3 during execution of the frost operation is used as a parameter.
In the situation where (t1, t3) is in the region M1 on the preset selection criterion D2 as shown in FIG. 8, the heat source side heat transfer fluid W
In the situation where the state point Q (t1, t3) is in the region M2, the defrosting operation of (e) for collecting heat from the load side is selectively performed. .

【0038】なお、着霜量が所定量以上になったことに
対する(ニ),(ホ)の除霜運転や、圧縮機4の出力調
整で圧縮機停止の必要が生じたことに対する(ニ),
(ホ)の除霜運転は、除霜完了の検出時点で終了した
り、設定除霜時間の経過時点で終了するなど、夫々につ
いて決められた終了基準にしたがって自動的に終了し、
その後、(イ)〜(ハ)の負荷対応運転の選択実施に復
帰する。
It should be noted that (d) and (e) for the defrosting amount exceeding the predetermined amount and for the need to stop the compressor due to the output adjustment of the compressor 4 (d). ,
The defrosting operation of (e) automatically ends according to a termination criterion determined for each, such as terminating at the time of detection of completion of defrosting, terminating at the elapse of the set defrosting time, and the like.
Thereafter, the process returns to the selection execution of the load corresponding operation of (a) to (c).

【0039】図7において、taは負荷対応運転におい
て熱源側熱媒液Wからの採熱を行なうか否かの設定閾空
気温度、図8において、tb,tcは熱源側熱媒液Wの
側について設定した凍結危険温度と凍結注意温度、t
d,teは負荷側について設定した凍結危険温度と凍結
注意温度であり、上記除霜運転の自動選択では、センサ
S1,S3による熱源側及び負荷側の検出熱媒液温度t
1,t3が、ともに凍結危険温度と凍結注意温度との間
にある状況や、ともに凍結注意温度以上にある状況のと
きには(ニ)の除霜運転を選択実施することで、全体と
しては、熱源側熱媒液Wから採熱する(ニ)の除霜運転
の方を優先する形態にして、負荷側からの採熱を極力少
なくするようにしてある。
In FIG. 7, ta is a set threshold air temperature for determining whether or not to take heat from the heat source side heat transfer fluid W in the load corresponding operation, and tb, tc are heat source side heat transfer fluid W side in FIG. Freezing dangerous temperature and freezing caution temperature set for
d and te are the freezing dangerous temperature and the freezing caution temperature set for the load side, and in the automatic selection of the defrosting operation, the detected heat medium liquid temperature t on the heat source side and the load side by the sensors S1 and S3.
When the temperatures 1 and t3 are both between the freezing dangerous temperature and the freezing caution temperature, and when both of them are higher than the freezing caution temperature, the defrosting operation of (d) is selected and performed, so that the heat source as a whole is The defrosting operation of (d), in which heat is taken from the side heat medium liquid W, is prioritized, so that the heat taken from the load side is reduced as much as possible.

【0040】上記制御器11は、さらに図9に示す如
く、(イ)又は(ロ)の負荷対応運転における圧縮機4
の出力調整で圧縮機停止の必要が生じたときには、他の
段階への出力調整時に比べ、現状の圧縮機出力Gでの負
荷対応運転(すなわち、過剰出力状態での負荷対応運
転)を設定延長時間Te(例えば、30分〜2時間程
度)だけ延長実施した上で、(ニ)又は(ホ)の除霜運
転の実施に移行する。
As shown in FIG. 9, the controller 11 further controls the compressor 4 in the load corresponding operation (a) or (b).
When it is necessary to stop the compressor in the output adjustment, the load operation at the current compressor output G (that is, the load operation in the excessive output state) is set longer than when the output is adjusted to another stage. After extending for the time Te (for example, about 30 minutes to 2 hours), the process shifts to the execution of the defrosting operation (d) or (e).

【0041】すなわち、このことにより、温熱を予め余
分に負荷側に付与しておいた状態の下で除霜運転を行な
うようにし、これにより、除霜運転を前記の如く負荷側
への影響の少ない圧縮機停止の必要時(すなわち、融雪
負荷Zが小さいとき)に実施することと相俟って、除霜
運転が負荷側に及ぼす温熱供給面での悪影響をさらに効
果的に抑止するとともに、(ホ)の除霜運転の選択実施
において負荷側からの採熱に原因する負荷側での凍結ト
ラブルを一層確実に防止する。
That is, this allows the defrosting operation to be performed in a state in which extra heat is applied to the load side in advance, whereby the defrosting operation is affected by the influence on the load side as described above. Along with performing when a small amount of compressor stoppage is necessary (that is, when the snow melting load Z is small), it is possible to more effectively suppress the adverse effect on the heat supply side that the defrosting operation has on the load side, and (E) In the selective execution of the defrosting operation of (e), the freezing trouble on the load side caused by the heat collection from the load side is more reliably prevented.

【0042】また、制御器11は、図10,図11に示
す如く、前回の除霜運転の後、設定不実施時間Tx(例
えば、10時間〜24時間程度)の間は、負荷対応運転
における圧縮機4の出力調整で圧縮機停止の必要が生じ
ることに対する除霜運転(図11において破線で示す除
霜運転)の実施を省略し、これにより、除霜運転の実施
の後、負荷対応運転を再開してからの時間が未だ短く
て、対空気熱交換器2での着霜に未だ至らない段階や着
霜が未だ軽微である段階での無駄な除霜運転の実施を防
止する。
As shown in FIGS. 10 and 11, after the previous defrosting operation, the controller 11 performs the load corresponding operation during the non-setting time Tx (for example, about 10 to 24 hours). Execution of the defrosting operation (defrosting operation indicated by a broken line in FIG. 11) for the necessity of stopping the compressor due to the output adjustment of the compressor 4 is omitted, and thus, after the defrosting operation is performed, the load corresponding operation is performed. The time after restarting is still short, and the useless defrosting operation is prevented at a stage where frost formation in the air heat exchanger 2 has not yet been achieved or at a stage where frost formation is still slight.

【0043】以上、本実施形態において、制御器11
は、対空気熱交換器2を冷媒蒸発器Eとして機能させる
(イ)又は(ロ)の負荷対応運転で、負荷Zが設定閾負
荷Zs(前記した設定閾出力Gsに対応)よりも小さく
なったとき、及び、対空気熱交換器2における着霜量が
所定量以上になったことが検出されたときの夫々につい
て除霜運転を実施する制御手段である。
As described above, in the present embodiment, the controller 11
Indicates that the load Z is smaller than the set threshold load Zs (corresponding to the set threshold output Gs described above) in the (A) or (B) load operation in which the air heat exchanger 2 functions as the refrigerant evaporator E. Control means for performing a defrosting operation each time when it is detected and when it is detected that the amount of frost in the air heat exchanger 2 has exceeded a predetermined amount.

【0044】また、この制御器11は、除霜運転の実施
後、設定不実施時間Txの間は、(イ)又は(ロ)の負
荷対応運転において負荷Zが設定閾負荷Zsよりも小さ
くなることに対する除霜運転の実施を省略し、さらに、
(イ)又は(ロ)の負荷対応運転において通常時は負荷
Zの変動に応じ負荷側への温熱出力(圧縮機出力Gに対
応)を調整するのに対し、(イ)又は(ロ)の負荷対応
運転で負荷Zが設定閾負荷Zsよりも小さくなって除霜
運転を実施する際には、過剰出力状態での負荷対応運転
を設定延長時間Teだけ延長実施した上で除霜運転を実
施する構成にしてある。
After the defrosting operation is performed, the controller 11 sets the load Z smaller than the set threshold load Zs in the load corresponding operation (a) or (b) during the set non-execution time Tx. Omission of the defrosting operation for that,
In (a) or (b) load operation, the thermal output (corresponding to the compressor output G) to the load side is normally adjusted in accordance with the change in the load Z, whereas (b) or (b) When the load Z is smaller than the set threshold load Zs and the defrosting operation is performed in the load corresponding operation, the load corresponding operation in the excessive output state is extended for the set extension time Te and then the defrost operation is performed. Configuration.

【0045】なお、本実施形態の融雪設備では、上記し
た(イ)〜(ホ)の運転の他、必要に応じて次の(へ)
〜(チ)の運転を選択実施できる。
In the snow melting facility of the present embodiment, in addition to the above operations (a) to (e), the following (f)
(H) operation can be selected and executed.

【0046】(へ)逆2熱源(液→空気)の負荷対応運
転 この運転では、ヒートポンプ回路Hにおいて、冷媒Rを
圧縮機4−第1四方弁V1−対負荷熱交換器3−冷媒案
内回路6−レシーバ7−膨張弁5−冷媒案内回路6−第
2四方弁V2−対液熱交換器1−第3四方弁V3−第2
四方弁V2−対空気熱交換器2−第1四方弁V1−第3
四方弁V3−圧縮機4の順に循環させる。
(F) Operation corresponding to load of reverse two heat sources (liquid → air) In this operation, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-to-load heat exchanger 3-refrigerant guide circuit. 6-Receiver 7-Expansion valve 5-Refrigerant guide circuit 6-Second four-way valve V2-Liquid heat exchanger 1-Third four-way valve V3-Second
Four-way valve V2-to air heat exchanger 2-first four-way valve V1-third
Circulate in the order of the four-way valve V3-compressor 4.

【0047】すなわち、この冷媒循環により、対液熱交
換器1及び対空気熱交換器2をその順の直列配置で共に
冷媒蒸発器Eとして機能させ、かつ、対負荷熱交換器3
を冷媒凝縮器Cとして機能させ、これにより、熱源側熱
媒液W及び空気Aの両方から採熱する形態で、融雪熱交
換器8に送る負荷側熱媒液Lを加熱して負荷側へ温熱出
力し、この温熱をもって融雪を行なう。
That is, due to the refrigerant circulation, the liquid heat exchanger 1 and the air heat exchanger 2 are both arranged in series in this order to function as the refrigerant evaporator E, and the heat exchanger for load 3
Function as a refrigerant condenser C, thereby heating the load-side heat medium liquid L sent to the snow melting heat exchanger 8 in the form of collecting heat from both the heat-source-side heat medium liquid W and the air A to the load side. The heat is output, and the snow melts with this heat.

【0048】(ト)除霜・負荷対応併用運転 この運転では、ヒートポンプ回路Hにおいて、冷媒Rを
圧縮機4−第1四方弁V1−対空気熱交換器2−第2四
方弁V2−第3四方弁V3−第1四方弁V1−対負荷熱
交換器3−冷媒案内回路6−レシーバ7−膨張弁5−冷
媒案内回路6−第2四方弁V2−対液熱交換器1−第3
四方弁V3−圧縮機4の順に循環させる。
(G) Combined operation for defrost / load In this operation, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second four-way valve V2-third. Four-way valve V3-first four-way valve V1-load heat exchanger 3-refrigerant guide circuit 6-receiver 7-expansion valve 5-refrigerant guide circuit 6-second four-way valve V2-liquid heat exchanger 1-third
Circulate in the order of the four-way valve V3-compressor 4.

【0049】すなわち、この冷媒循環により、対液熱交
換器1を冷媒蒸発器Eとして機能させ、かつ、対空気熱
交換器2及び対負荷熱交換器3をその順の直列配置で共
に冷媒凝縮器Cとして機能させ、これにより、熱源側熱
媒液Wから採熱する形態で、融雪熱交換器8に送る負荷
側熱媒液Lを加熱して融雪を行なうとともに、それに並
行して対空気熱交換器2の除霜を行なう。
That is, by this refrigerant circulation, the liquid heat exchanger 1 functions as the refrigerant evaporator E, and the air heat exchanger 2 and the load heat exchanger 3 are condensed together in a serial arrangement in that order. The load-side heat medium liquid L sent to the snow melting heat exchanger 8 is heated and melted in the form of collecting heat from the heat source-side heat medium liquid W. The defrost of the heat exchanger 2 is performed.

【0050】(チ)2熱源除霜運転 この運転では、ヒートポンプ回路Hにおいて、冷媒Rを
圧縮機4−第1四方弁V1−対空気熱交換器2−第2四
方弁V2−冷媒案内回路6−レシーバ7−膨張弁5−冷
媒案内回路6−対負荷熱交換器3−第1四方弁V1−第
3四方弁V3−第2四方弁V2−対液熱交換器1−第3
四方弁V3−圧縮機4の順に循環させる。
(H) 2 heat source defrosting operation In this operation, in the heat pump circuit H, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second four-way valve V2-refrigerant guide circuit 6 -Receiver 7-Expansion valve 5-Refrigerant guide circuit 6-Load heat exchanger 3-First four-way valve V1-Third four-way valve V3-Second four-way valve V2-Liquid heat exchanger 1-Third
Circulate in the order of the four-way valve V3-compressor 4.

【0051】すなわち、この冷媒循環により、対負荷熱
交換器3及び対液熱交換器1をその順の直列配置で共に
冷媒蒸発器Eとして機能させ、かつ、対空気熱交換器2
を冷媒凝縮器Cとして機能させ、これにより、負荷側及
び熱源側熱媒液Wの両方から採熱する形態で対空気熱交
換器2の除霜を行なう。
That is, by this refrigerant circulation, the heat-to-load heat exchanger 3 and the liquid-to-liquid heat exchanger 1 are made to function as a refrigerant evaporator E in a serial arrangement in that order, and the heat-to-air heat exchanger 2
Function as a refrigerant condenser C, whereby the defrosting of the air heat exchanger 2 is performed in such a manner that heat is collected from both the load side and the heat source side heat transfer fluid W.

【0052】〔別実施形態〕次に別の実施形態を列記す
る。
[Another Embodiment] Next, another embodiment will be described.

【0053】前述の実施形態では、負荷側から採熱する
除霜運転と負荷側とは別の熱源から採熱する除霜運転と
を選択実施するようにしたが、いずれか一方の除霜運転
のみを実施する形式において本発明を適用してもよい。
In the above-described embodiment, the defrosting operation in which heat is taken from the load side and the defrosting operation in which heat is taken from a heat source different from the load side are selected and executed. The present invention may be applied in a form in which only the operation is performed.

【0054】また、前述の実施形態では、大気空気Aか
ら採熱する負荷対応運転と、熱源側熱媒液Wから採熱す
る負荷対応運転と、大気空気A及び熱源側熱媒液Wの両
方から採熱する負荷対応運転とを選択実施するようにし
たが、本発明は、大気空気A以外の熱源から採熱する負
荷対応運転を行なわないヒートポンプ装置にも適用でき
る。
Further, in the above-described embodiment, the load corresponding operation in which heat is taken from the atmospheric air A, the load corresponding operation in which heat is taken from the heat source side heat transfer fluid W, and both the atmospheric air A and the heat source side heat transfer fluid W are used. However, the present invention can also be applied to a heat pump apparatus that does not perform the load corresponding operation of collecting heat from a heat source other than the atmospheric air A.

【0055】前述の実施形態の如く熱源側熱媒液Wから
採熱する形態を採る場合、熱源側熱媒液Wには、河川
水、湖沼水、地下水、湧水などの自然水、あるいは、対
地熱交換器、対下水熱交換器、排熱回収熱交換器などの
他装置との間で循環させる水やブラインなど、採熱可能
なものであれば種々の液体を使用できる。
In the case where heat is taken from the heat source side heat transfer fluid W as in the above-described embodiment, the heat source side heat transfer fluid W includes natural water such as river water, lake water, groundwater, spring water, or the like. Various liquids can be used as long as they can collect heat, such as water or brine circulated with other devices such as a ground heat exchanger, a sewage heat exchanger, and a waste heat recovery heat exchanger.

【0056】前述の実施形態では、負荷対応運転での負
荷Zに応じた温熱出力の調整(圧縮機出力Gの調整)で
運転停止の必要が生じたとき、負荷Zが設定閾負荷Zs
よりも小さくなったとして除霜運転を実施するようにし
たが、設定閾負荷Zsには運転停止の必要が無い負荷値
(例えば、最大温熱出力の50%程度に相当する負荷値
など)を採用してもよい。
In the above-described embodiment, when it is necessary to stop the operation by adjusting the thermal output (adjustment of the compressor output G) according to the load Z in the load corresponding operation, the load Z is set to the set threshold load Zs.
Although the defrosting operation is performed assuming that the temperature has become smaller, a load value that does not need to be stopped (for example, a load value corresponding to about 50% of the maximum thermal output) is used as the set threshold load Zs. May be.

【0057】負荷対応運転の実施中における負荷変動で
負荷Zが設定閾負荷Zsよりも小さくなったことを検出
するには、例えば負荷側の温度や状況を検出するなど、
種々の負荷検出方式を採用でき、また、本発明は、負荷
Zに応じた温熱出力の調整を実施せず、設定された一定
の温熱出力で負荷対応運転を実施する形式のヒートポン
プ装置にも適用できる。
In order to detect that the load Z has become smaller than the set threshold load Zs due to a load change during the execution of the load-corresponding operation, for example, the temperature or condition on the load side is detected.
Various load detection methods can be adopted, and the present invention is also applied to a heat pump device that does not adjust the thermal output according to the load Z but performs a load-compatible operation at a set constant thermal output. it can.

【0058】前述の実施形態では、負荷対応運転中の負
荷Zが設定閾負荷Zsよりも小さくなったとき、及び、
対空気熱交換器2の着霜量が所定量以上になったことが
検出されたときの夫々について除霜運転を実施するよう
にしたが、着霜量が比較的少ない使用条件の場合などで
は、負荷対応運転中の負荷Zが設定閾負荷Zsよりも小
さくなることに対してのみ除霜運転を実施するようにし
てもよい。
In the above-described embodiment, when the load Z during the load corresponding operation becomes smaller than the set threshold load Zs, and
The defrosting operation is performed for each of the cases where the amount of frost of the air heat exchanger 2 is detected to be equal to or more than a predetermined amount. However, in the case of use conditions where the amount of frost is relatively small, Alternatively, the defrosting operation may be performed only when the load Z during the load corresponding operation becomes smaller than the set threshold load Zs.

【0059】負荷Zが設定閾負荷Zsよりも小さくなっ
たとき、及び、着霜量が所定量以上になったときの夫々
について除霜運転を実施する場合、除霜運転の後、設定
不実施時間Txの間は、負荷Zが設定閾負荷Zsよりも
小さくなることに対する除霜運転の実施のみを省略する
に代えて、着霜量が所定量以上になることに対する除霜
運転の実施も省略するようにしてもよい。
When the defrosting operation is performed when the load Z becomes smaller than the set threshold load Zs and when the frost amount exceeds a predetermined amount, the setting is not performed after the defrosting operation. During the time Tx, instead of only omitting the execution of the defrosting operation when the load Z becomes smaller than the set threshold load Zs, the execution of the defrosting operation when the frost amount becomes equal to or more than a predetermined amount is also omitted. You may make it.

【0060】上記の如き設定不実施時間Txの間の除霜
運転の省略を採用する場合、その設定不実施時間Txに
は、使用条件などに応じて適当な時間を選定すればよ
く、また、場合によっては、このような設定不実施時間
Txの間の除霜運転の省略を行なわないようにしてもよ
い。
In the case where the omission of the defrosting operation during the setting non-execution time Tx as described above is adopted, an appropriate time may be selected as the setting non-execution time Tx according to use conditions and the like. In some cases, the omission of the defrosting operation during the setting non-execution time Tx may not be performed.

【0061】負荷対応運転において通常時は、負荷Zの
増減に応じ負荷側への温熱出力を調整するのに対し、負
荷対応運転で負荷Zが設定閾負荷Zsよりも小さくなっ
て除霜運転を実施する際には、過剰出力状態での負荷対
応運転を設定延長時間Teだけ延長実施した上で除霜運
転を実施するようにする場合、その過剰出力は現状の出
力、あるいは、現状の出力よりも大きい出力のいずれで
あってもよく、また、設定延長時間Teには、使用条件
などに応じて適当な時間を選定すればよい。
Normally, in the load handling operation, the thermal output to the load side is adjusted in accordance with the increase or decrease of the load Z. On the other hand, in the load handling operation, the load Z becomes smaller than the set threshold load Zs, and the defrosting operation is started. When performing the defrosting operation after performing the load corresponding operation in the excess output state by the set extension time Te when performing the excess output, the excess output is the current output or the current output. The output may be any of large outputs, and an appropriate time may be selected as the set extension time Te in accordance with use conditions and the like.

【0062】対空気熱交換器2における着霜量が所定量
以上になったことを検出する検出手段には、対空気熱交
換器2の表面温度や冷媒蒸発温度、あるいは、冷媒蒸発
圧力に基づいて着霜量を検出する方式や、光学的ないし
電気的に着霜量を検出する方式など、種々の検出方式の
ものを採用できる。
The detecting means for detecting that the amount of frost in the air heat exchanger 2 has become equal to or more than a predetermined amount includes the surface temperature of the air heat exchanger 2, the refrigerant evaporation temperature, or the refrigerant evaporation pressure. Various types of detection methods, such as a method of detecting the amount of frost and a method of optically or electrically detecting the amount of frost, can be adopted.

【0063】本発明は融雪設備用のヒートポンプ装置に
限らず種々の用途のヒートポンプ装置に適用でき、負荷
対応運転で出力する温熱の用途は、融雪、凍結防止、暖
房、物品加熱など、どのようなものであってもよい。
The present invention can be applied not only to a heat pump apparatus for snow melting equipment but also to a heat pump apparatus for various uses. It may be something.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ヒートポンプ装置を用いた融雪設備の構成図FIG. 1 is a configuration diagram of a snow melting facility using a heat pump device.

【図2】空気熱源の負荷対応運転における冷媒の流れを
示す図
FIG. 2 is a diagram showing a flow of a refrigerant in a load operation of an air heat source.

【図3】2熱源の負荷対応運転における冷媒の流れを示
す図
FIG. 3 is a diagram illustrating a flow of a refrigerant in a load corresponding operation of two heat sources.

【図4】液熱源の負荷対応運転における冷媒の流れを示
す図
FIG. 4 is a diagram showing a flow of a refrigerant in a load operation of a liquid heat source.

【図5】液熱源の除霜運転における冷媒の流れを示す図FIG. 5 is a diagram illustrating a flow of a refrigerant in a defrosting operation of a liquid heat source.

【図6】負荷側熱源の除霜運転における冷媒の流れを示
す図
FIG. 6 is a diagram showing a flow of a refrigerant in a defrosting operation of a load-side heat source.

【図7】負荷対応運転の選択基準を示す図FIG. 7 is a diagram showing selection criteria for load-adaptive operation.

【図8】除霜運転の選択基準を示す図FIG. 8 is a diagram showing selection criteria for a defrosting operation.

【図9】出力調整形態を示すグラフFIG. 9 is a graph showing an output adjustment mode.

【図10】除霜運転実施制御のフローチャートFIG. 10 is a flowchart of defrosting operation execution control.

【図11】除霜運転の実施形態を示すグラフFIG. 11 is a graph showing an embodiment of a defrosting operation.

【符号の説明】[Explanation of symbols]

2 対空気熱交換器 11 制御手段 A 大気空気 C 冷媒凝縮器 E 冷媒蒸発器 R 冷媒 Te 設定延長時間 Tx 設定不実施時間 Z 負荷 Zs 設定閾負荷 2 Heat exchanger for air 11 Control means A Atmospheric air C Refrigerant condenser E Refrigerant evaporator R Refrigerant Te Setting extension time Tx Setting non-performing time Z Load Zs Setting threshold load

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を大気空気と熱交換させる対空気熱
交換器を冷媒蒸発器として機能させて大気空気から採熱
しながら負荷側に温熱を出力する負荷対応運転と、 前記対空気熱交換器を冷媒凝縮器として機能させてその
対空気熱交換器における付着霜を除去する除霜運転との
切り換え実施を可能にしたヒートポンプ装置であって、 前記負荷対応運転の実施中における負荷変化で負荷が設
定閾負荷よりも小さくなったとき前記除霜運転を実施す
る制御手段を設けてあるヒートポンプ装置。
1. A load-adaptive operation in which a heat exchanger for air that exchanges heat between a refrigerant and atmospheric air functions as a refrigerant evaporator to extract heat from the atmospheric air and output heat to the load side, and the heat exchanger for air. A heat pump device that functions as a refrigerant condenser and enables switching to be performed with a defrosting operation that removes adhering frost in the air heat exchanger, wherein the load changes due to a load change during the execution of the load corresponding operation. A heat pump device provided with control means for performing the defrosting operation when the load becomes smaller than a set threshold load.
【請求項2】 前記対空気熱交換器における着霜状態を
検出する検出手段を設け、 前記制御手段を、この検出手段により所定量以上の着霜
が検出されたとき、及び、負荷対応運転の実施中におけ
る負荷が前記設定閾負荷よりも小さくなったときの夫々
について前記除霜運転を実施する構成にしてある請求項
1記載のヒートポンプ装置。
2. A detecting means for detecting a frosting state in the air heat exchanger, wherein the controlling means detects when a predetermined amount or more of frosting is detected by the detecting means, and when the load handling operation is performed. The heat pump device according to claim 1, wherein the defrosting operation is performed each time the load during execution becomes smaller than the set threshold load.
【請求項3】 前記制御手段を、前記除霜運転の実施の
後、設定不実施時間の間は、負荷対応運転の実施中にお
ける負荷が前記設定閾負荷よりも小さくなることに対す
る前記除霜運転の実施を省略する構成にしてある請求項
1又は2記載のヒートポンプ装置。
3. The defrosting operation according to claim 2, wherein after the defrosting operation is performed, the load during the execution of the load corresponding operation becomes smaller than the set threshold load during a setting non-performing time. 3. The heat pump device according to claim 1, wherein the heat pump device is configured to omit the operation.
【請求項4】 前記制御手段を、前記負荷対応運転にお
いて通常時は、負荷の増減に応じ負荷側への温熱出力を
調整するのに対し、 負荷対応運転で負荷が前記設定閾負荷よりも小さくなっ
て前記除霜運転を実施する際には、過剰出力状態での負
荷対応運転を設定延長時間だけ延長実施した上で前記除
霜運転を実施する構成にしてある請求項1〜3のいずれ
か1項に記載のヒートポンプ装置。
4. The load control device according to claim 1, wherein the controller adjusts the thermal output to the load side in accordance with the increase or decrease of the load in the normal operation in the load corresponding operation, whereas the load in the load corresponding operation is smaller than the set threshold load. When performing the defrosting operation as described above, the load corresponding operation in an excessive output state is configured to perform the defrosting operation after performing the extension for a set extension time. Item 2. The heat pump device according to item 1.
JP2000257393A 2000-08-28 2000-08-28 Heat pump Pending JP2002071244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257393A JP2002071244A (en) 2000-08-28 2000-08-28 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257393A JP2002071244A (en) 2000-08-28 2000-08-28 Heat pump

Publications (1)

Publication Number Publication Date
JP2002071244A true JP2002071244A (en) 2002-03-08

Family

ID=18745857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257393A Pending JP2002071244A (en) 2000-08-28 2000-08-28 Heat pump

Country Status (1)

Country Link
JP (1) JP2002071244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161378A (en) * 2020-09-07 2021-01-01 珠海格力电器股份有限公司 Outdoor unit defrosting control method and device and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161378A (en) * 2020-09-07 2021-01-01 珠海格力电器股份有限公司 Outdoor unit defrosting control method and device and air conditioner

Similar Documents

Publication Publication Date Title
JP5363492B2 (en) Air conditioner
KR920000124B1 (en) Refrigerating circuit device
JP2008096033A (en) Refrigerating device
JP2007051805A (en) Air conditioner
JP7093236B2 (en) Air conditioner and control method
JP4694457B2 (en) Air conditioner
JP2009047344A (en) Air conditioning device
JP2015152266A (en) air-cooled heat pump unit
JP6529579B2 (en) Heat pump system
JP2002071244A (en) Heat pump
JP2021055931A (en) Heat pump cycle device
JP2006226568A (en) Air conditioner
JP2910849B1 (en) Air conditioner defrost control device
JP3416897B2 (en) Air conditioner
JP2003004262A (en) Heat source equipment
JP6896076B2 (en) Refrigeration cycle equipment
JP2009236346A (en) Refrigerating device
JP2020176732A (en) Air conditioner
KR100234080B1 (en) Air conditioner and defrosting method in heating mode therefor
JPH11132605A (en) Air conditioner
JPH0989415A (en) Heat source side operating method for heat pump and heat source apparatus
KR100525420B1 (en) method for controlling defrosting in heat pump
JP7415750B2 (en) heat pump cycle equipment
JPH08285393A (en) Air conditioner for multi-room
WO2022162730A1 (en) Outdoor unit for refrigeration device and refrigeration device equipped with same