JP2002069570A - Free cutting steel for machine structure having excellent mechanical property and partibility of chip - Google Patents

Free cutting steel for machine structure having excellent mechanical property and partibility of chip

Info

Publication number
JP2002069570A
JP2002069570A JP2000263999A JP2000263999A JP2002069570A JP 2002069570 A JP2002069570 A JP 2002069570A JP 2000263999 A JP2000263999 A JP 2000263999A JP 2000263999 A JP2000263999 A JP 2000263999A JP 2002069570 A JP2002069570 A JP 2002069570A
Authority
JP
Japan
Prior art keywords
sulfide
free
steel
cutting steel
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000263999A
Other languages
Japanese (ja)
Other versions
JP4041274B2 (en
Inventor
Hiroshi Kako
浩 家口
Yosuke Shinto
陽介 新堂
Takehiro Tsuchida
武広 土田
Takahiro Kudo
高裕 工藤
Masato Shikaiso
正人 鹿礒
Masami Somekawa
雅実 染川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000263999A priority Critical patent/JP4041274B2/en
Publication of JP2002069570A publication Critical patent/JP2002069570A/en
Application granted granted Critical
Publication of JP4041274B2 publication Critical patent/JP4041274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide Pb free cutting steel for machine structure capable of stably and securely exhibiting mechanical properties and partibility of chips equal to those of the conventional Pb-added steel. SOLUTION: In this free cutting steel for machine structure in which sulfide inclusions are present, operation is performed so that the following inequalities are satisfied: -7×Af-0.03×Aav+5.6/aspect ratio+9.2μF1-3.2>=1.5 (1), and 5.8×Af+0.18×Aav-32/aspect ratio-87×F1+61>=10 (2); wherein, as to the explanation of the variables (Af, Aav, aspect ratio and F1) in the relationships, refer to the text. The operation is preferably performed so as to be incorporated with, by mass, 0.01 to 0.7% C, 0.01 to 2.5% Si, 0.1 to 3% Mn, 0.01 to 0.16% S, 0.05% P (including 0%) and 0.1% Al (including 0%) respectively as the chemical components in the steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業機械や自動
車、電気製品等の部品の様に、切削加工を施すことが予
定されている機械構造用快削鋼に関し、より具体的には
機械的特性(特に横方向衝撃性)に優れるとともに切削
加工時の被削性(特に切り屑分断性)にも優れる機械構
造用快削鋼に関するものであり、特に所謂Pbフリーの下
でこれらの特性を満足する鋼材を提供しようというもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-cutting steel for a machine structure to be subjected to a cutting process, such as a part of an industrial machine, an automobile, an electric product, etc. It relates to a free-cutting steel for machine structures that has excellent properties (especially lateral impact properties) and excellent machinability during cutting (especially chip breaking properties). The aim is to provide satisfactory steel materials.

【0002】[0002]

【従来の技術】近年の切削加工の高速化、自動化の発展
に伴って、機械構造用部品に使用される鋼材の被削性が
重要視されるようになり、被削性を改善した快削鋼の需
要が高まっている。一方では、鋼材の必要強度は厳しく
なりつつあり、この場合鋼材が高強度化するのに反比例
して被削性が劣化傾向を示す。このことから高強度化と
被削性という相反する特性の両方を満足する鋼材の提供
が要求されている。
2. Description of the Related Art With the recent increase in the speed and automation of cutting, the machinability of steel materials used for machine structural parts has become more important, and free cutting has been improved in machinability. Demand for steel is growing. On the other hand, the required strength of steel materials is becoming stricter, and in this case, machinability tends to deteriorate in inverse proportion to the increase in strength of steel materials. For this reason, there is a demand for providing a steel material that satisfies both conflicting properties of high strength and machinability.

【0003】機械的性質及び被削性の両方を満足する機
械構造用快削鋼自体については、これまでにも多くの提
案がなされ、また実用化されている。例えば、快削鋼中
の硫化物や酸化物に注目して提案されたものとしては、
特開昭59-205453号公報、同62-23970号公報、特開2000-
87179号公報が、また快削鋼ではないが、鋼中の硫化物
や酸化物に注目して提案されたものとしては特開平7-18
8853号公報、同7-238342号公報などがある。
Many free cutting steels for machine structures satisfying both mechanical properties and machinability have been proposed and put to practical use. For example, proposals focusing on sulfides and oxides in free-cutting steel include:
JP-A-59-205453, JP-A-62-23970, JP-A-2000-205453
No. 87179, which is not a free-cutting steel, but has been proposed focusing on sulfides and oxides in steel as disclosed in JP-A-7-18
Nos. 8853 and 7-238342.

【0004】特開昭59-205453号公報には、低炭素イオ
ウ快削鋼を対象として、SにTe,PbおよびBiの全てを複
合添加するとともに、Alの含有率を下げて酸化物系介在
物中のAl系化合物を少なくし、更に長径が5μ以上、短
径が2μ以上で、且つ長径/短径の比が5以下のMnS系介
在物が全MnS系介在物の50%以上を占める快削鋼が提案さ
れている。この快削鋼では、被削性の改善は期待される
ものの、大きいMnS系介在物の短径サイズ(短径が2μm
以上)のばらつきを抑制することが困難で、このため、
横方向衝撃性が必ずしも十分に得られないことが懸念さ
れる。
Japanese Patent Application Laid-Open No. 59-205453 discloses a low-carbon sulfur free-cutting steel in which Te, Pb and Bi are all added to S in combination, and the content of Al is reduced to reduce oxide-based intercalation. MnS-based inclusions whose major axis is 5μ or more, minor axis is 2μ or more, and the ratio of major axis / minor axis is 5 or less account for 50% or more of all MnS-based inclusions. Free cutting steel has been proposed. Although the machinability is expected to be improved in this free-cutting steel, the minor axis size of the large MnS-based inclusions (minor axis is 2 μm
Above) is difficult to suppress,
There is a concern that sufficient lateral impact properties may not always be obtained.

【0005】特開昭62-23970号公報には、低炭素硫黄-
鉛快削鋼を改良する目的で、鋼中のC,Mn,P,S,Pb,
O,Si,Alの各含有量を規定するとともに、MnS系介在物
の平均サイズや酸化物と結合していない硫化物系介在物
の割合を規定することによって、被削性を改善すること
が提案されている。この快削鋼では、切削時の切削仕上
げ面粗さを著しく向上させる効果が期待できるものの、
MnSを主成分とする硫化物のサイズについては何ら言及
されておらず、短径サイズのばらつきが大きくなって、
横方向衝撃性が必ずしも十分に得られないことが懸念さ
れる。
[0005] JP-A-62-23970 discloses a low-carbon sulfur-
In order to improve lead free-cutting steel, C, Mn, P, S, Pb,
By specifying the respective contents of O, Si, and Al, the average size of MnS-based inclusions, and the ratio of sulfide-based inclusions that are not bonded to oxides, the machinability can be improved. Proposed. In this free-cutting steel, although the effect of significantly improving the finished surface roughness during cutting can be expected,
No mention is made of the size of the sulfide containing MnS as a main component, and the variation in the minor axis size increases,
There is a concern that sufficient lateral impact properties may not always be obtained.

【0006】これらの技術は、いずれもPbとSを複合添
加した快削鋼であるが、Pbによる環境汚染の問題がクロ
ーズアップされるに従い、鉄鋼材料においてもPbの使用
が制限される傾向にあり、所謂Pbフリーで被削性を改善
する技術の研究が積極的に進められている。
[0006] All of these technologies are free-cutting steels to which Pb and S are added in a combined manner. However, as the problem of environmental pollution due to Pb has been highlighted, the use of Pb in steel materials tends to be restricted. Yes, research on so-called Pb-free technology for improving machinability is being actively pursued.

【0007】特開2000-87179号公報には、機械構造用炭
素鋼や機械構造用合金鋼を対象とし、Ca、Mg、REM(希
土類元素)を複合添加することで超硬工具としての耐磨
耗性や切粉処理性に優れた機械構造用鋼が提案されてい
る。しかし、硫化物系介在物の組成だけしか記載されて
おらず、機械的性質や被削性に重要な影響を与える硫化
物系介在物のサイズや形態については詳細に考慮されて
いない。
[0007] Japanese Patent Application Laid-Open No. 2000-87179 is directed to carbon steel for machine structure and alloy steel for machine structure, which is combined with Ca, Mg, and REM (rare earth element) to provide abrasion resistance as a cemented carbide tool. There has been proposed a steel for machine structural use which is excellent in abrasion property and chip processing property. However, only the composition of sulfide-based inclusions is described, and the size and form of sulfide-based inclusions that have an important effect on mechanical properties and machinability are not considered in detail.

【0008】特開平7-188853号公報には、C,Si,Mn,C
r,P,S,T.O,を基本成分とし、更にT.Mgとして0.0015
〜0.0350%含有する歯車用浸炭用鋼が提案されている。
当該発明では、鋼材中にMgを含有させることによって酸
化物系介在物(主にアルミナ)のサイズが微細化される
と共にMnSの延伸性が抑制され、面疲労強度の飛躍的な
向上及び歯曲げ疲労度の向上が期待できるとされている
が、横方向衝撃性や被削性を改善することについては何
ら言及されておらない。
[0008] JP-A-7-188853 discloses that C, Si, Mn, C
r, P, S, TO, as basic components, and 0.0015 as T.Mg
Gear carburizing steels containing up to 0.0350% have been proposed.
In the present invention, the inclusion of Mg in the steel material reduces the size of the oxide-based inclusions (mainly alumina), suppresses the extensibility of MnS, dramatically improves surface fatigue strength, and reduces tooth bending. It is said that improvement in the degree of fatigue can be expected, but there is no mention of improving the lateral impact resistance or machinability.

【0009】特開平7-238342号公報には、上記特開平7-
188853号公報に記載の歯車用浸炭用鋼を更に改善する目
的で、鋼材中に含有される酸化物及び硫化物が、個数比
として次式 (MgO+MgO・Al2O3)個数/全酸化物個数 ≧0.80 ・・・・ 0.20≦(Mn・Mg)Sの個数/全硫化物個数 ≦0.70 ・・・・ を満たす高強度歯車用浸炭用鋼が提案されている。この
鋼では、酸化物と硫化物の個数比を前記式とで規定
することにより、面疲労強度の飛躍的な向上及び歯曲げ
疲労強度の向上が期待できるとされているが、横方向衝
撃性や被削性を改善することについては何ら言及されて
いない。
JP-A-7-238342 discloses the above-mentioned JP-A-7-238342.
In order to further improve the steel for carburizing of gears described in Japanese Patent No. 188853, oxides and sulfides contained in the steel material are expressed by the following formula as the number ratio (MgO + MgO.Al 2 O 3 ) number / total oxide number ≧ 0.80... 0.20 ≦ (Mn · Mg) S number / total sulfide number ≦ 0.70... In this steel, it is said that by defining the number ratio of oxide and sulfide by the above formula, a dramatic improvement in surface fatigue strength and an improvement in tooth bending fatigue strength can be expected. No mention is made of improving the machinability.

【0010】S快削鋼におけるこれまでの研究では、上
述した様にMnS等の硫化物系介在物の大きさや形状等の
形態制御によって被削性を改善する技術が主流をなして
いるが、Pb快削鋼に匹敵する被削性を発揮する快削鋼は
実現されていない。また、硫化物系介在物の形態制御に
よって被削性を改善する技術では、鋼材を圧延したり鍛
造する際に母材の塑性変形に伴って硫化物系介在物が長
く変形し、これが原因となって部品の機械的特性に異方
性を生じ、或る方向における衝撃値が低下するという問
題も指摘されている。
[0010] In the past research on S free-cutting steels, as described above, the technology of improving the machinability by controlling the size and shape of sulfide-based inclusions such as MnS has been mainstream. Free cutting steel that exhibits machinability comparable to Pb free cutting steel has not been realized. In the technology to improve machinability by controlling the form of sulfide-based inclusions, when rolling or forging steel, the sulfide-based inclusions are deformed long with the plastic deformation of the base material. It has also been pointed out that anisotropic mechanical properties of components cause impact values in certain directions to decrease.

【0011】ところで被削性は、(1)切削抵抗、(2)
工具寿命、(3)仕上げ面粗さ等の項目によって評価さ
れるものであり、従来ではこれらの項目のうち工具寿命
と仕上げ面粗さが重要視されてきたが、近年機械加工の
自動化や無人化が進められる中で、作業効率や安全性の
観点から(4)切り屑分断性も軽視できない重要な課題
となっている。即ち、切り屑分断性は、切削時に切り屑
が短尺に分断されることを評価する特性であるが、この
特性が悪くなると切り屑が螺旋状に長く伸びて切削工具
に絡まる等の障害が生じ、切削の安全操業を阻害する。
従来のPb添加鋼ではこうした切り屑分断性の点において
も、比較良好な被削性が発揮されていたのであるが、Pb
フリーの鋼材においてはこの特性が良好であるものは実
現されていない。
The machinability is (1) cutting resistance, (2)
The tool life and finished surface roughness are evaluated based on items such as tool life and (3) finished surface roughness. Conventionally, tool life and finished surface roughness have been regarded as important among these items. In the midst of the progress of swarfing, (4) chip breaking is an important issue that cannot be neglected from the viewpoint of work efficiency and safety. That is, the chip breaking property is a property that evaluates that the chip is cut into short lengths during cutting, but when this property is deteriorated, obstacles such as the chip being elongated helically long and becoming entangled with the cutting tool occur. Hinders safe operation of cutting.
In conventional Pb-added steels, comparatively good machinability was also exhibited in terms of chip breaking properties.
No free steel material with good properties has been realized.

【0012】[0012]

【発明が解決しようとする課題】本発明は、こうした状
況の下でなされたものであって、その目的は、Pbフリー
で、従来のPb添加鋼に匹敵する機械的特性と切り屑分断
性を安定して確実に発揮することのできる機械構造用快
削鋼を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made under such a circumstance, and the object of the present invention is to provide a Pb-free mechanical property and a chip breaking property comparable to those of conventional Pb-added steel. An object of the present invention is to provide a free-cutting steel for machine structures that can be stably and surely exerted.

【0013】[0013]

【課題を解決するための手段】上記目的を達成し得た本
発明の機械構造用快削鋼とは、硫化物系介在物が存在す
る機械構造用快削鋼において、次式を満足する点に要旨
を有するものである。 −0.7×Af−0.03×Aav+5.6/アスペクト比+9.2×F1−3.2≧1.5 (1) 5.8×Af+0.18×Aav−32/アスペクト比−87×F1+61≧10 (2) 但し、Af=硫化物系介在物の平均面積率(%) Aav=硫化物系介在物1個あたりの平均面積(μm2) アスペクト比=硫化物介在物の長径と短径の比(長径/
短径)の平均値F1=X1/(A/n)1/2 X1:観察視野内の各粒子毎に該粒子に最も近接して存在
する別の粒子との距離を、観察視野に存在する全粒子に
ついて実測して、これを平均して求められる値(μm) A:観察面積(mm2) n:上記観察面積内で観察される硫化物粒子数(個)
The free-cutting steel for machine structures according to the present invention, which has achieved the above object, is a free-cutting steel for machine structures in which sulfide-based inclusions are present and satisfies the following expression. It has a gist. −0.7 × Af−0.03 × Aav + 5.6 / aspect ratio + 9.2 × F1−3.2 ≧ 1.5 (1) 5.8 × Af + 0.18 × Aav−32 / aspect ratio−87 × F1 + 61 ≧ 10 (2) where Af = Average area ratio of sulfide inclusions (%) Aav = average area per sulfide inclusion (μm 2 ) Aspect ratio = ratio of major axis to minor axis of sulfide inclusions (major axis /
Average value of minor axis) F1 = X 1 / (A / n) 1/2 X 1 : For each particle in the observation field, the distance to another particle that is closest to the particle is set in the observation field. A value measured by averaging all particles present (μm) A: Observed area (mm 2 ) n: Number of sulfide particles observed in the above-mentioned observed area (pieces)

【0014】本発明の機械構造用快削鋼においては、機
械構造用快削鋼として求められる物性などを確保する意
味からして、鋼材の化学成分として、C:0.01〜0.7%
(質量%の意味、以下同じ。)、Si:0.01〜2.5%、Mn:
0.1〜3%、S:0.01〜0.16%、P:0.05%以下(0%を含
む)、及びAl:0.1%以下(0%を含む)を夫々含有するも
のであることが好ましい。また、必要に応じて更にMg:
0.0005〜0.02%、Ca:0.0005〜0.02%のうち少なくとも1
種を含有すると一層優れた効果を発揮することができ
る。
In the free-cutting steel for machine structures of the present invention, C: 0.01 to 0.7% as a chemical component of the steel material from the viewpoint of securing physical properties required for the free-cutting steel for machine structures.
(The meaning of mass%, the same applies hereinafter.), Si: 0.01 to 2.5%, Mn:
It is preferable that each contains 0.1 to 3%, S: 0.01 to 0.16%, P: 0.05% or less (including 0%), and Al: 0.1% or less (including 0%). Also, if necessary, further Mg:
0.0005 to 0.02%, Ca: at least 1 of 0.0005 to 0.02%
If a seed is contained, more excellent effects can be exhibited.

【0015】[0015]

【発明の実施の形態】本発明者らは、上記課題を解決す
べく、「機械的特性及び切り屑分断性」と「快削鋼中の
硫化物系介在物」との関係について、様々な角度から検
討した。その結果、MnS等の硫化物系介在物の大きさや
形状(形態)と分布状態をバランス良く制御できたとき
には、機械的特性及び切り屑分断性の両方に優れた機械
構造用快削鋼を得ることを明らかにした。以下、本発明
の作用効果について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the present inventors have made various studies on the relationship between "mechanical properties and chip breaking properties" and "sulfide-based inclusions in free-cutting steel". Considered from an angle. As a result, when the size and shape (morphology) and distribution of sulfide-based inclusions such as MnS can be controlled in a well-balanced manner, a free-cutting steel for machine structures with excellent mechanical properties and chip breaking properties can be obtained. It revealed that. Hereinafter, the operation and effect of the present invention will be described in detail.

【0016】機械化された切削加工においては、切削時
の切り屑が細かく分断することが被削性の評価項目の一
つとして求められていることは前述した通りである。そ
してこの切り屑の分断は、鋼中に存在する介在物付近へ
の応力の集中が原因となって亀裂が発生して起こること
を本発明者らは確認している。また、介在物が鋼中に細
長く伸びた状態であれば、或る一定方向の切削に対して
は良好な切り屑分断性が得られるものの、切削方向が変
わると急に切り屑分断性が低下するという問題があるこ
とも確認された。一方、球状の介在物の場合には、切削
方向によって被削性が変わるという様な異方性はないも
のの、切り屑分断性は必ずしも良好であるとは言えない
ことも分かった。
As described above, in the mechanized cutting work, it is required that one of the evaluation items of the machinability is to cut chips at the time of cutting finely. The present inventors have confirmed that the cutting of the chips is caused by the occurrence of cracks due to the concentration of stress near the inclusions present in the steel. In addition, if the inclusions are elongated in the steel, good chip breaking properties can be obtained for cutting in a certain direction, but the chip cutting properties suddenly decrease when the cutting direction changes. It was also confirmed that there was a problem of doing so. On the other hand, in the case of spherical inclusions, it was also found that although there is no anisotropy such that the machinability changes depending on the cutting direction, the chip breaking property is not always good.

【0017】そこで本発明者らは、快削鋼中の硫化物系
介在物の大きさや形状の他に、新たにそれらの分布状態
についても検討する必要があると考え種々検討した。そ
の結果、細かい介在物がクラスターを形成することによ
って、それが互いに連携して切り屑の分断を促すという
事実が解明された。これらのクラスタ状態、介在物の面
積率、サイズと展伸性を制御することで、横方向の衝撃
値も良好な状態となり得ることを見出した。尚、上記ク
ラスターとは、介在物の分布状態が空間的に均一ではな
く、分布状態が不均一に凝集領域を形成した状態を意味
する。
Therefore, the present inventors have considered variously that it is necessary to newly examine not only the size and shape of the sulfide-based inclusions in the free-cutting steel but also their distribution. As a result, it was revealed that fine inclusions form clusters, which work together to promote chip separation. By controlling the state of these clusters, the area ratio, the size, and the extensibility of inclusions, it has been found that the impact value in the lateral direction can also be improved. The above-mentioned cluster means a state in which the distribution state of the inclusions is not spatially uniform and the distribution state is non-uniform to form the aggregation region.

【0018】本発明者らは、上記の着想に基づいて様々
な角度から検討したところ、機械的特性及び切り屑分断
性の両方に優れた快削鋼を得るには下記式を満たす様な
形態のクラスターが分布し、介在物の面積率、サイズと
アスペクト比を制御すれば、上記目的が見事に達成され
ることを見出し本発明を完成した。以下、便宜上、式
(1)の左辺をF(1)、式(2)の左辺をF(2)とする。 F(1)=−0.7×Af−0.03×Aav+5.6/アスペクト比+9.2×F1−3.2≧1.5 (1) F(2)=5.8×Af+0.18×Aav−32/アスペクト比−87×F1+61≧10 (2)
The present inventors have studied from various angles based on the above idea. As a result, to obtain a free-cutting steel excellent in both mechanical properties and chip breaking property, a form satisfying the following equation is required. It has been found that the above object can be achieved satisfactorily if the clusters are distributed and the area ratio, size, and aspect ratio of the inclusions are controlled. Hereinafter, for convenience, the left side of equation (1) is F (1) and the left side of equation (2) is F (2) . F (1) = − 0.7 × Af−0.03 × Aav + 5.6 / aspect ratio + 9.2 × F1−3.2 ≧ 1.5 (1) F (2) = 5.8 × Af + 0.18 × Aav−32 / aspect ratio−87 × F1 + 61 ≧ 10 (2)

【0019】ここで、Afとは硫化物系介在物の平均面積
率(%)であり、Aavとは硫化物系介在物の1個あたりの
平均面積(μm2)である。また、本発明の機械構造用快
削鋼においては、硫化物系介在物の長径と短径の比(長
径/短径:アスペクト比)を制御すると優れた横方向衝
撃特性と切り屑分断性が発揮される。更に、F1は硫化物
系介在物粒子の分布指数を意味し、観察視野の各介在物
粒子毎に該粒子に最も近接して存在する粒子との距離
を、観察視野に存在する全粒子について実測し、その平
均値X1(μm)と、観察した全粒子を均一に格子点に整
列させた場合の粒子間距離(A/n)1/2[但し、A:観察
面積(mm2)、n:上記観察面積内で観察される硫化物粒
子数(個)]との比の値[X1/(A/n)1/2]である。
Here, Af is the average area ratio (%) of sulfide-based inclusions, and Aav is the average area (μm 2 ) per sulfide-based inclusion. Further, in the free-cutting steel for machine structures of the present invention, when the ratio of the major axis to the minor axis (major axis / minor axis: aspect ratio) of the sulfide-based inclusions is controlled, excellent lateral impact characteristics and chip breaking properties are obtained. Be demonstrated. Further, F1 means the distribution index of the sulfide-based inclusion particles, and for each inclusion particle in the observation visual field, the distance from the particle closest to the particle is measured for all the particles present in the observation visual field. And the average value X 1 (μm) and the distance between particles (A / n) 1/2 when all the observed particles are uniformly aligned at lattice points [where A: observation area (mm 2 ), n: it is the observation area in the sulfide particles number observed in (number) ratio of the values of [X 1 / (a / n ) 1/2].

【0020】例として、観察視野内の硫化物系介在物粒
子が12個の場合について、図1を用いて説明する。実際
の観察視野には図1の(a)に示した様に硫化物系介在物
粒子が分布しており、各硫化物系介在物毎の最近接距離
をx1〜x12とすると、その平均値X1は、 X1=(x1+x2+・・・+x12)/12 となる。また、図1の(b)の様に該硫化物系介在物粒子
が均一に分布していると仮定すると、各硫化物系介在物
粒子毎の最近接距離は x1=x2=・・・・=x12 となり、観察面積をAとすると、最近接距離X2は、 X2=(x1+x2+・・・+x12)/12 =(A/12)1/2 と表すことができる。X1とX2の比を硫化物系介在物粒子
の分布指数F1とする。
As an example, a case where there are 12 sulfide-based inclusion particles in the observation visual field will be described with reference to FIG. The actual observation field and sulfide type inclusion particles are distributed as shown in (a) of FIG. 1, when the closest distance for each sulfide inclusions and x 1 ~x 12, the mean value X 1 becomes X 1 = (x 1 + x 2 + ··· + x 12) / 12. Assuming that the sulfide-based inclusion particles are uniformly distributed as shown in FIG. 1 (b), the closest distance of each sulfide-based inclusion particle is x 1 = x 2 = ··· · · = x 12 becomes, when the observation area and a, closest distance X 2 is the X 2 = (x 1 + x 2 + ··· + x 12) / 12 = (a / 12) 1/2 Can be represented. The ratio of X 1 and X 2 and distribution index F1 for the sulfide type inclusion particles.

【0021】上記の様にして規定される硫化物系介在物
粒子の分布指数F1は、硫化物が完全に均一なときには1
に近い値をとり、不均一なときには1から外れて1よりも
小さい値となる。
The distribution index F1 of the sulfide-based inclusion particles defined as described above is 1 when the sulfide is completely uniform.
And when it is not uniform, it deviates from 1 and becomes a value smaller than 1.

【0022】機械的特性(横方向衝撃性)に優れた快削
鋼を得るには、F(1)≧1.5を満足する必要がある。つま
り、F(1)≧1.5を満足する硫化物系介在物とは、1個あた
りの平均面積が小さく、且つ全体に占める硫化物系介在
物の平均面積率が低く、球状に近い硫化物が均一に分布
している快削鋼である。
In order to obtain a free-cutting steel having excellent mechanical properties (lateral impact properties), it is necessary to satisfy F (1) ≧ 1.5. In other words, sulfide-based inclusions satisfying F (1) ≧ 1.5 are those in which the average area of each sulfide-based inclusion is small, the average area ratio of sulfide-based inclusions in the whole is low, and sulfides that are nearly spherical are included. Free-cutting steel uniformly distributed.

【0023】一方、切り屑処理性に優れた快削鋼を得る
には、F(2)≧10を満足すれば良い。つまり、1個あたり
の平均面積が大きく、且つ全体に占める硫化物系介在物
の平均面積率が高く、帯状に延びた硫化物系介在物が不
均一に分布している方が良い。
On the other hand, in order to obtain a free-cutting steel excellent in chip controllability, it suffices to satisfy F (2) ≧ 10. That is, it is preferable that the average area per one piece is large, the average area ratio of the sulfide-based inclusions in the whole is high, and the sulfide-based inclusions extending in a band shape are unevenly distributed.

【0024】よって、機械的特性及び切り屑分断性の両
特性に優れた快削鋼を得る為には、F(1)≧1.5 且つF(2)
≧10を満足するような形態及び分布状態に制御すれば良
い。
Therefore, in order to obtain a free-cutting steel excellent in both mechanical properties and chip breaking properties, F (1) ≧ 1.5 and F (2)
What is necessary is just to control to the form and distribution state which satisfy ≧ 10.

【0025】本発明の機械構造用快削鋼は、上記の様に
硫化物系介在物の形態と分布状態を規定したところに特
徴があり、鋼材の種類については特に限定するものでは
ないが、機械構造用快削鋼としての要求特性を満足させ
るという観点から、C:0.01〜0.7%、Si:0.01〜2.5%、M
n:0.1〜3%、S:0.01〜0.16%、P:0.05%以下(0%を含
む)およびAl:0.1%以下(0%を含む)を夫々含有するも
のであることが好ましく、この様に化学成分組成を調整
することによって、機械構造用快削鋼として必要な引張
強度で更に良好な特性が得られ、硫化物系介在物の分布
や形状も良好になり、機械的特性及び被削性のいずれも
優れたものとなる。これらの各成分の作用は、下記の通
りである。
The free-cutting steel for machine structures of the present invention is characterized in that the form and distribution of the sulfide inclusions are specified as described above, and the type of steel is not particularly limited. From the viewpoint of satisfying the required characteristics as a free-cutting steel for machine structures, C: 0.01 to 0.7%, Si: 0.01 to 2.5%, M
n: 0.1 to 3%, S: 0.01 to 0.16%, P: 0.05% or less (including 0%) and Al: 0.1% or less (including 0%). By adjusting the chemical composition of the steel, better properties can be obtained with the tensile strength required for free-cutting steel for machine structures, the distribution and shape of sulfide-based inclusions can be improved, and mechanical properties and machinability can be improved. Both properties are excellent. The action of each of these components is as follows.

【0026】C:0.01〜0.7% Cは、最終製品の強度を確保するのに最も重要な元素で
あり、こうした観点からC含有量は0.01%以上であること
が好ましい。しかしながら、C含有量が過剰になると、
靭性が低下すると共に工具寿命などの被削性にも悪影響
を与えるので0.7%以下とすることが好ましい。尚、C含
有量のより好ましい下限は、0.05%であり、より好まし
い上限は0.5%である。
C: 0.01 to 0.7% C is the most important element for securing the strength of the final product, and from such a viewpoint, the C content is preferably 0.01% or more. However, when the C content becomes excessive,
Since toughness is reduced and machinability such as tool life is adversely affected, the content is preferably 0.7% or less. Note that a more preferable lower limit of the C content is 0.05%, and a more preferable upper limit is 0.5%.

【0027】Si:0.01〜2.5% Siは、脱酸性元素として有効である他、固溶強化によっ
て機械的部品の高強度化に寄与する元素であり、こうし
た効果を発揮させる為には、0.01%以上含有させること
が好ましく、より好ましくは0.1%以上とするのが良い。
しかしながら、過剰に含有させると、被削性に悪影響が
現れてくるので、2.5%以下とすることが好ましく、より
好ましくは2%以下とするのが良い。
Si: 0.01-2.5% In addition to being effective as a deacidifying element, Si is an element that contributes to increasing the strength of mechanical parts by solid solution strengthening. It is preferable that the content is not less than 0.1%, more preferably 0.1% or more.
However, if it is contained excessively, the machinability will be adversely affected. Therefore, the content is preferably 2.5% or less, more preferably 2% or less.

【0028】Mn:0.1〜3% Mnは、鋼材の焼入れ性を高めて強度増大に寄与するだけ
でなく、硫化物系介在物を形成して切り屑分断性の向上
にも寄与する元素であり、これらの効果を有効に発揮さ
せる為には0.1%以上含有させることが好ましい。しかし
ながら、過剰に含有させると、被削性を却って低下させ
るので、3%以下とするのが好ましく、より好ましくは2%
以下に抑えるのが良い。
Mn: 0.1-3% Mn is an element that not only enhances the hardenability of the steel material and contributes to the increase in strength, but also forms sulfide-based inclusions and contributes to the improvement in chip breaking performance. In order to exhibit these effects effectively, it is preferable to contain 0.1% or more. However, if contained excessively, the machinability is rather reduced, so it is preferably 3% or less, more preferably 2%
It is better to keep it below.

【0029】S:0.01〜0.16% Sは硫化物系介在物を形成して、被削性を向上させるの
に有効な元素であり、こうした効果を発揮させる為には
0.01%以上含有させることが好ましい。しかしながら、S
の含有量が過剰になるとMnSなどの硫化物を起点として
割れが生じ易くなることから、0.16%以下とすることが
好ましい。
S: 0.01 to 0.16% S is an element effective for forming sulfide-based inclusions and improving machinability.
It is preferable to contain 0.01% or more. However, S
Is excessive, the cracks tend to occur starting from sulfides such as MnS, so that the content is preferably 0.16% or less.

【0030】P:0.05%以下(0%を含む) Pは、粒界偏析を起こして耐衝撃特性を劣化させる傾向
があるので、0.05%以下、より好ましくは0.02%以下に抑
えるべきである。
P: 0.05% or less (including 0%) Since P tends to cause grain boundary segregation and deteriorate impact resistance, it should be suppressed to 0.05% or less, more preferably 0.02% or less.

【0031】Al:0.1%以下(0%を含む) Alは、鋼材を溶製する際の脱酸性元素として重要である
他、窒化物を形成してオーステナイト結晶粒の微細化に
も有効であるが、過剰になると逆に結晶粒が粗大化して
靭性に悪影響を及ぼすので、0.1%以下に抑えるのが良
く、より好ましくは0.05%以下に抑えるのが良い。
Al: 0.1% or less (including 0%) Al is important as a deacidifying element when smelting steel, and is also effective for forming nitrides and refining austenite crystal grains. However, when it becomes excessive, the crystal grains become coarser and adversely affect the toughness. Therefore, the content is preferably suppressed to 0.1% or less, more preferably 0.05% or less.

【0032】本発明に係る機械構造用快削鋼における好
ましい化学成分組成は上記の通りであり、残部は基本的
に鉄および不可避不純物からなるものであるが、本発明
では上記の様に硫化物系介在物の形態及び分布状態の相
互バランスを規定したところに技術思想としての特徴を
有するものであるから、該化学成分組成は本発明を限定
するものではなく、機械構造用快削鋼の用途や要求特性
によって、上記好ましい化学成分組成から若干外れるこ
とがあってもかまわない。また、上記以外にも、必要に
よって更に、下記の元素を含有させることも有効であ
る。
The preferred chemical composition of the free-cutting steel for machine structural use according to the present invention is as described above, and the balance is basically composed of iron and unavoidable impurities. The chemical composition is not limited to the present invention because it has characteristics as a technical idea in defining the mutual balance between the form and the distribution state of the system inclusions. Depending on the required characteristics, the composition may slightly deviate from the above preferable composition of the chemical component. In addition to the above, it is also effective to further include the following elements as necessary.

【0033】Mg:0.0005〜0.02% Mg含有酸化物は硫化物系介在物の形成の核となる元素で
あり、また、Mgが介在物中に固溶することで形態を制御
する作用がある。Mg含有量が0.0005%未満では、固溶Mg
量が不十分で硫化物系介在物の形態を十分に制御できな
い。よって、横方向衝撃性と被削性(切り屑分断性)の
両特性に優れた機械構造用快削鋼を得るには、Mgを0.00
05%以上含有することが好ましく、より好ましくは0.001
%以上含有すると良い。しかしながら、過剰に含有する
と硫化物系介在物が固くなり切り屑分断性が低下するの
で、含有量は0.02%以下とすることが好ましく、より好
ましくは0.01%以下に抑えるのが良い。
Mg: 0.0005 to 0.02% Mg-containing oxide is an element serving as a nucleus for the formation of sulfide-based inclusions, and has an action of controlling the form by dissolving Mg in the inclusions. If the Mg content is less than 0.0005%, solid solution Mg
Insufficient amount makes it impossible to control the morphology of sulfide inclusions. Therefore, in order to obtain a free-cutting steel for machine structures that is excellent in both transverse impact properties and machinability (chip breaking properties), Mg must be 0.00
It is preferable to contain not less than 05%, more preferably 0.001
%. However, if it is contained excessively, the sulfide-based inclusions are hardened and the chip breaking performance is reduced. Therefore, the content is preferably set to 0.02% or less, more preferably 0.01% or less.

【0034】Ca:0.0005〜0.02% Caも上記Mgと同様の効果を発揮する元素であり、含有量
の上限は0.02%とするのが好ましく、より好ましくは0.0
1%が良い。また、下限は0.0005%が好ましく、より好ま
しくは0.001%が良い。
Ca: 0.0005 to 0.02% Ca is also an element that exerts the same effect as Mg, and the upper limit of the content is preferably 0.02%, more preferably 0.02%.
1% is good. The lower limit is preferably 0.0005%, more preferably 0.001%.

【0035】本発明の機械構造用快削鋼の製造法につい
ては、粉末法、溶製法のいずれも採用でき、特に限定す
るものではないが、圧延・鍛造温度、圧下率、鋳造時の
冷却速度、各元素の添加順序などバランス良く制御する
ことが重要であり、硫化物系介在物の形態と分布状態が
上記の要件を満足するようにすれば良い。また、本発明
で対象とする硫化物は、その種類については特定するも
のではなく、Mn,Ca,Mg,Zr,REMの硫化物、あるいは
その他の元素(Ni,Cr,Cu,Mo,V,Nb,Ti,Zr,Pb,B
i,B等)やその硫化物、更にこれらの複合硫化物、炭硫
化物、酸硫化物等であっても良い。
The method for producing the free-cutting steel for machine structures of the present invention may be any of a powder method and a melting method, and is not particularly limited, but includes rolling / forging temperature, rolling reduction, cooling rate during casting. It is important to control the addition order of each element in a well-balanced manner, and the form and distribution of the sulfide inclusions may satisfy the above requirements. The type of the sulfide targeted in the present invention is not specified, and the sulfide of Mn, Ca, Mg, Zr, REM, or other elements (Ni, Cr, Cu, Mo, V, Nb, Ti, Zr, Pb, B
i, B, etc.) and their sulfides, as well as their complex sulfides, carbosulfides, oxysulfides and the like.

【0036】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any change in the design based on the above and following points is not limited to the present invention. It is included in the technical range of.

【0037】[0037]

【実施例】表1及び表2に示した化学成分組成を有する機
械構造用快削鋼を以下の様に圧延・鍛造温度、圧下率、
鋳造時の冷却速度、各元素の添加順序などバランス良く
制御しながら製造し、硫化物系介在物の形態及び分布状
態を測定すると共に横方向衝撃値と切屑個数を測定し
た。
EXAMPLE Free-cutting steel for machine structures having the chemical composition shown in Tables 1 and 2 was rolled and forged at the following temperatures, reduction ratios,
Production was performed while controlling the cooling rate during casting and the order of addition of each element in a well-balanced manner. The morphology and distribution of sulfide-based inclusions were measured, and the transverse impact value and the number of chips were measured.

【0038】溶製炉には、転炉、20kgVIF、150kgVIFの
いずれかを用い(VIFとは真空高周波誘導溶解炉のこと
である。)、圧下比が73〜96%の範囲で熱間圧延(1100
℃加熱)あるいは熱間鍛造(1100℃あるいは1200℃)
し、直径80-50mmの丸棒を作成した。該丸棒は適当な寸
法に切断し、焼入れ・焼戻しを実施してビッカース硬さ
を270±10に揃えた。そして、硫化物系介在物の形態測
定用、衝撃試験用、及び切削試験用の素材を作成した。
As the smelting furnace, one of a converter, a 20 kg VIF and a 150 kg VIF is used (VIF is a vacuum high frequency induction melting furnace), and hot rolling is performed at a reduction ratio of 73 to 96%. 1100
℃ heating) or hot forging (1100 ℃ or 1200 ℃)
Then, a round bar having a diameter of 80 to 50 mm was prepared. The round bar was cut to an appropriate size, quenched and tempered, and the Vickers hardness was adjusted to 270 ± 10. Then, materials for morphological measurement, impact test, and cutting test of sulfide-based inclusions were prepared.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】硫化物系介在物の形態測定試験片は、圧延
もしくは鍛造して展伸した方向に平行な断面について、
光学顕微鏡を用いて倍率:100倍で、1視野当たり0.5mm
×0.5mmの面積を100視野ずつ観察し、硫化物系介在物の
形状と分布状態を以下の要領で画像解析した。
The morphological measurement test piece of the sulfide-based inclusions has a cross section parallel to the direction in which it is rolled or forged and expanded.
Using an optical microscope, magnification: 100 times, 0.5 mm per visual field
An area of × 0.5 mm was observed in 100 visual fields at a time, and the shape and distribution of the sulfide-based inclusions were image-analyzed as follows.

【0042】(硫化物系介在物の形状)介在物の形状に
ついては、観察した100視野の全てに対して、面積が1.0
μm2以上の硫化物について長径、短径、面積および個数
を測定した。尚、介在物粒子が2つの観察視野にまたが
って存在する場合は、個数を重複してカウントしない様
に、視野の4辺の内、隣接する画像と接する2辺に重なる
介在物粒子は計測しない。つまり、図2の(a)の様に右
辺と底辺に接する介在物粒子(白で示した)はカウント
せず、次の観察視野の介在物としてカウントする。具体
的には、図2の(b)に示した様に視野内の硫化物系介在
物粒子の個数をカウントした。
(Shape of sulfide-based inclusion) The shape of the inclusion was 1.0 area for all 100 visual fields observed.
The major axis, minor axis, area, and number of sulfides of μm 2 or more were measured. When the inclusion particles are present over two observation fields, the inclusion particles that overlap the two sides that are in contact with the adjacent image are not measured out of the four sides of the field of view so that the number is not counted repeatedly. . That is, the inclusion particles (shown in white) in contact with the right side and the bottom side as shown in FIG. 2A are not counted, but are counted as inclusions in the next observation field. Specifically, the number of sulfide-based inclusion particles in the visual field was counted as shown in FIG. 2 (b).

【0043】(硫化物系介在物の分布状態)介在物の分
布状態の評価は、下記の様にして硫化物粒子分布指数F1
で評価した。 [F1] 面積:0.5mm×0.5mmの各視野について、面積:1.0μm2
以上の硫化物系介在物の重心を求め、各硫化物について
他の硫化物との重心間距離を測定し、各粒子について最
も近接して存在する粒子との距離を求めた。そして、各
視野の最近接粒子間距離の実測値の平均値X1と、同一面
積に同数の硫化物粒子を格子状に均一分散させた場合の
最近接粒子間距離[(A/n)1/2]との比[X1/(A/
n)1/2]をとって、硫化物粒子分布指数F1とした。これ
を、5視野について測定して平均値を求めた。尚、対象
とする硫化物の面積を1.0μm2以上としたのは、これよ
り小さな硫化物を制御してもあまり効果がないからであ
る。
(Distribution state of sulfide-based inclusions) The distribution state of the inclusions was evaluated in the following manner.
Was evaluated. [F1] Area: For each visual field of 0.5 mm × 0.5 mm, area: 1.0 μm 2
The center of gravity of the above sulfide-based inclusions was determined, the distance between the centers of gravity of each sulfide and other sulfides was measured, and the distance of each particle to the closest particle was determined. Then, the average value X 1 measured value for the distance between nearest grains for each field, nearest distance between particles in the case where the same number of sulfide particles are uniformly dispersed in a grid in the same area [(A / n) 1 / 2] and the ratio of [X 1 / (a /
n) 1/2 ] to obtain the sulfide particle distribution index F1. This was measured for five visual fields and the average value was determined. The area of the target sulfide was set to 1.0 μm 2 or more because controlling a sulfide smaller than this has little effect.

【0044】衝撃試験には、圧延もしくは鍛造で展伸さ
せた方向と直角に切り出した試験片を用い、シャルピー
衝撃試験を実施し、横方向の衝撃値を求めた。また、切
削試験はハイス製(直径:10mm)のストレートドリルを
用いて行ない、2穴分の切り屑の個数をカウントした。
また、切削条件は、速度:20m/s、送り速度:0.2mm/r
evおよび穴深さ:10mmとし、乾式切削を実施した。
In the impact test, a Charpy impact test was carried out using a test piece cut at a right angle to the direction of expansion by rolling or forging, and the impact value in the lateral direction was determined. The cutting test was performed using a straight drill made of HSS (diameter: 10 mm), and the number of chips for two holes was counted.
The cutting conditions were as follows: speed: 20 m / s, feed rate: 0.2 mm / r
ev and hole depth: 10 mm, and dry cutting was performed.

【0045】表3に、硫化物系介在物の形態及び分布状
態を測定した結果と、該結果から求めたF(1)、F(2)の値
を示す。また、上記の様に測定した横方向衝撃値と切屑
個数も合わせて示す。
Table 3 shows the results of measurement of the form and distribution of the sulfide inclusions, and the values of F (1) and F (2) obtained from the results. The transverse impact value and the number of chips measured as described above are also shown.

【0046】[0046]

【表3】 [Table 3]

【0047】F(1)の値に対して横方向衝撃値を図3に、F
(2)の値に対して切屑個数を図4にグラフとして夫々示
す。ここで、式(1)又は式(2)を満足するものを●で
示し、式を満足しないものを○で示した。
FIG. 3 shows the impact value in the lateral direction with respect to the value of F (1) .
FIG. 4 is a graph showing the number of chips with respect to the value of (2) . Here, those satisfying the expression (1) or (2) are indicated by ●, and those not satisfying the expression are indicated by ○.

【0048】図3を見て分かるように、式(1)を満たす
快削鋼(つまり、F(1)が1.5以上)は横方向衝撃値が高
く、機械的特性(特に、横方向衝撃性)に優れている。
また、図4を見て分かるように、式(2)を満たす快削鋼
(つまり、F(2)が10以上)は切り屑個数が多く、被削性
(特に、切り屑分断性)に優れている。
As can be seen from FIG. 3, the free-cutting steel satisfying the formula (1) (ie, F (1) is 1.5 or more) has a high lateral impact value and a high mechanical property (particularly, a lateral impact property). ) Is excellent.
In addition, as can be seen from FIG. 4, the free-cutting steel satisfying the formula (2) (that is, F (2) is 10 or more) has a large number of chips, and has a high machinability (particularly, chip breaking). Are better.

【0049】また、式(1)及び(2)の両方を満足する
本発明の機械構造用快削鋼を●、どちらか一方の式を満
足せず、本発明の範囲外のもの(比較例)を○とし、横
方向衝撃値と切屑個数をグラフにすると図5に示す様に
なる、図5を見て分かるように、本発明要件を満たす快
削鋼は、機械的特性(横方向衝撃性)及び被削性(切屑
分断性)の両方に優れたものであるが、本発明要件を外
れるものは、両特性のバランスがとれておらず、少なく
ともどちらかの特性に劣る快削鋼であった。
Further, the free-cutting steel for machine structure of the present invention satisfying both the formulas (1) and (2) is represented by ●, which does not satisfy one of the formulas and is out of the range of the present invention (Comparative Example). ) Is marked with ○, and the transverse impact value and the number of chips are graphed as shown in FIG. 5. As can be seen from FIG. 5, the free-cutting steel satisfying the requirements of the present invention has mechanical properties (lateral impact ) And machinability (chip breaking property), but those that do not meet the requirements of the present invention are free-cutting steels in which both properties are not balanced and at least one of the properties is inferior. there were.

【0050】[0050]

【発明の効果】本発明は以上の様に構成されており、快
削鋼中の硫化物系介在物の大きさや形態と分布状態をバ
ランス良く制御すると、機械的特性及び切り屑分断性の
両方に優れた機械構造用快削鋼を安定して提供すること
ができた。
The present invention is configured as described above. If the size and form and distribution of sulfide-based inclusions in free-cutting steel are controlled in a well-balanced manner, both mechanical properties and chip breaking properties are improved. Excellent stable free-cutting steel for machine structures could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】硫化物系介在物粒子の分布指数F1の算出方法を
具体的に説明するための図である。
FIG. 1 is a diagram for specifically explaining a method of calculating a distribution index F1 of sulfide-based inclusion particles.

【図2】観察視野に存在する硫化物系介在物の個数をカ
ウントする方法を説明する為の図である。
FIG. 2 is a diagram for explaining a method of counting the number of sulfide-based inclusions present in an observation visual field.

【図3】F(1)の値に対し横方向衝撃値をグラフにしたも
のである。
FIG. 3 is a graph of a lateral impact value with respect to a value of F (1) .

【図4】F(2)の値に対し切屑個数をグラフにしたもので
ある。
FIG. 4 is a graph showing the number of chips with respect to the value of F (2) .

【図5】機械的特性(横方向衝撃性)と被削性(切り屑
分断性)の関係をグラフにしたものである。
FIG. 5 is a graph showing the relationship between mechanical properties (lateral impact properties) and machinability (chip breaking properties).

フロントページの続き (72)発明者 土田 武広 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 工藤 高裕 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 鹿礒 正人 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内 (72)発明者 染川 雅実 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内Continued on the front page (72) Inventor Takehiro Tsuchida 1-5-5 Takatsukadai, Nishi-ku, Kobe City Inside Kobe Steel Research Institute Kobe Steel Co., Ltd. (72) Inventor Takahiro Kudo 1-5-5 Takatsukadai, Nishi-ku, Kobe City No. Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Masato Kaiso 2nd Nadahama-cho, Nada-ku, Kobe-shi Kobe Steel Works, Ltd.Kobe Works (72) Inventor Masami Somegawa 2, Nadahama-cho, Nada-ku, Kobe Address Kobe Steel Works Kobe Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】硫化物系介在物が存在する機械構造用快削
鋼において、次式を満足することを特徴とする機械的特
性と切り屑分断性に優れた機械構造用快削鋼。 −0.7×Af−0.03×Aav+5.6/アスペクト比+9.2×F1−3.2≧1.5 (1) 5.8×Af+0.18×Aav−32/アスペクト比−87×F1+61≧10 (2) 但し、Af=硫化物系介在物の平均面積率(%) Aav=硫化物系介在物1個あたりの平均面積(μm2) アスペクト比=硫化物系介在物の長径と短径の比(長径
/短径)の平均値F1=X1/(A/n)1/2 X1:観察視野内の各粒子毎に該粒子に最も近接して存在
する別の粒子との距離を、観察視野に存在する全粒子に
ついて実測して、これを平均して求められる値(μm) A:観察面積(mm2) n:上記観察面積内で観察される硫化物粒子数(個)
Claims: 1. A free-cutting steel for a machine structure having sulfide-based inclusions, wherein the free-cutting steel for a machine structure is excellent in mechanical properties and chip breaking characteristics, characterized by satisfying the following expression. −0.7 × Af−0.03 × Aav + 5.6 / aspect ratio + 9.2 × F1−3.2 ≧ 1.5 (1) 5.8 × Af + 0.18 × Aav−32 / aspect ratio−87 × F1 + 61 ≧ 10 (2) where Af = Average area ratio of sulfide-based inclusions (%) Aav = Average area per sulfide-based inclusion (μm 2 ) Aspect ratio = Ratio of major axis to minor axis of sulfide-based inclusions (major axis / minor axis) F1 = X 1 / (A / n) 1/2 X 1 : For each particle in the observation field, the distance to another particle closest to the particle is determined by the total A value measured by averaging the particles (μm) A: Observed area (mm 2 ) n: Number of sulfide particles observed in the above observed area (pieces)
【請求項2】 質量%で、 C : 0.01〜0.7% Si : 0.01〜2.5% Mn : 0.1〜3% S : 0.01〜0.16% P : 0.05%以下(0%を含む) Al : 0.1%以下(0%を含む) を夫々含有するものである請求項1に記載の機械構造用
快削鋼。
2. In mass%, C: 0.01 to 0.7% Si: 0.01 to 2.5% Mn: 0.1 to 3% S: 0.01 to 0.16% P: 0.05% or less (including 0%) Al: 0.1% or less ( 2. The free-cutting steel for machine structures according to claim 1, wherein the free-cutting steel contains 0%.
【請求項3】 質量%で、Mg:0.0005〜0.02%、Ca:0.00
05〜0.02%のうち少なくとも1種を含有するものである請
求項1または2に記載の機械構造用快削鋼。
3. A mass%, Mg: 0.0005 to 0.02%, Ca: 0.00
3. The free-cutting steel for machine structures according to claim 1, wherein the steel contains at least one of 05 to 0.02%.
JP2000263999A 2000-08-31 2000-08-31 Free-cutting steel for machine structures with excellent mechanical properties and chip breaking Expired - Lifetime JP4041274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263999A JP4041274B2 (en) 2000-08-31 2000-08-31 Free-cutting steel for machine structures with excellent mechanical properties and chip breaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263999A JP4041274B2 (en) 2000-08-31 2000-08-31 Free-cutting steel for machine structures with excellent mechanical properties and chip breaking

Publications (2)

Publication Number Publication Date
JP2002069570A true JP2002069570A (en) 2002-03-08
JP4041274B2 JP4041274B2 (en) 2008-01-30

Family

ID=18751474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263999A Expired - Lifetime JP4041274B2 (en) 2000-08-31 2000-08-31 Free-cutting steel for machine structures with excellent mechanical properties and chip breaking

Country Status (1)

Country Link
JP (1) JP4041274B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052099A (en) * 2002-05-31 2004-02-19 Jfe Steel Kk Steel member for machine structural
CN112063916A (en) * 2020-05-12 2020-12-11 上海大学 Preparation method of magnesium-based high-sulfur free-cutting steel
CN115581201A (en) * 2022-08-26 2023-01-10 云南省农业科学院花卉研究所 Diploid rose F induced by stem segment as explant 1 -61 plant regeneration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052099A (en) * 2002-05-31 2004-02-19 Jfe Steel Kk Steel member for machine structural
CN112063916A (en) * 2020-05-12 2020-12-11 上海大学 Preparation method of magnesium-based high-sulfur free-cutting steel
CN115581201A (en) * 2022-08-26 2023-01-10 云南省农业科学院花卉研究所 Diploid rose F induced by stem segment as explant 1 -61 plant regeneration method

Also Published As

Publication number Publication date
JP4041274B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP3524479B2 (en) Free-cutting steel for machine structures with excellent mechanical properties
KR20120126131A (en) Hot-worked steel material having excellent machinability and impact value
JP2003226939A (en) Hot tool steel
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
KR20050075019A (en) Steel excellent in machinability and method for production thereof
AU2007326255A1 (en) Free-cutting steel excellent in manufacturability
JP6504330B2 (en) Wire for cutting
EP1270757A1 (en) Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
JP2001131684A (en) Steel for machine structure excellent in treatment of chip
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP3437079B2 (en) Machine structural steel with excellent chip control
JP2000282172A (en) Steel for machine structure excellent in machinability and toughness, and machine structural parts
KR20070021189A (en) Component for Machine Structure, Method for Producing Same, and Material for High-Frequency Hardening
JP5459197B2 (en) Alloy steel for machine structural use
JP2017203190A (en) Ferritic free cutting stainless steel and production process therefor
AU2006241390B2 (en) Free-cutting steel having excellent high temperature ductility
JP2002069570A (en) Free cutting steel for machine structure having excellent mechanical property and partibility of chip
JP3270035B2 (en) Lead-free mechanical structural steel with excellent machinability and low strength anisotropy
JP3507723B2 (en) Bi free cutting steel
JP3901582B2 (en) Free cutting steel for mold
JPH05171373A (en) Powder high speed tool steel
JP3740042B2 (en) Method for controlling the morphology of sulfide inclusions
JP2000282171A (en) Steel for machine structure excellent in parting property of chip and mechanical property
JP2004091886A (en) Steel for machine structural use having excellent machinability and high chip-breakability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050627

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4041274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

EXPY Cancellation because of completion of term