JP2004091886A - Steel for machine structural use having excellent machinability and high chip-breakability - Google Patents
Steel for machine structural use having excellent machinability and high chip-breakability Download PDFInfo
- Publication number
- JP2004091886A JP2004091886A JP2002256778A JP2002256778A JP2004091886A JP 2004091886 A JP2004091886 A JP 2004091886A JP 2002256778 A JP2002256778 A JP 2002256778A JP 2002256778 A JP2002256778 A JP 2002256778A JP 2004091886 A JP2004091886 A JP 2004091886A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- inclusions
- less
- sulfide
- mns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、超硬工具による切削を行なったときの被削性がすぐれ、しかも切屑の破砕性が高い機械構造用鋼と、その製造方法に関する。本発明はまた、被削性および切屑破砕性に加えて、すぐれた疲労強度および曲げ矯正性を示す機械構造用鋼と、その製造方法にも関する。
【0002】
本発明において、「二重構造介在物」の語は、酸化物を主体とする介在物が芯となり、その周囲を、硫化物を主体とする介在物が取囲んでいる構造の介在物をいう。「工具寿命比」および「寿命比」の語は、超硬工具による切削、とくに旋削において、同一のS含有量をもつ在来のイオウ快削鋼の工具寿命と本発明の快削鋼の工具寿命との比を意味する。MnS介在物に関して、「微細に分散した」とは、在来の鋼中におけるMnS介在物よりは微細な粒であり、かつ、凝集あるいは集中することなく、鋼中に平均的に分布している状態を意味する。
【0003】
【従来の技術】
被削性が高い機械構造用鋼に関する研究は長年にわたって行なわれており、出願人もこれまでに多数の提案をしてきた。最近のものとしては、特開平10−287953号「機械的性質とドリル穴あけ加工性に優れた機械構造用鋼」が、ひとつの代表である。この快削鋼は、CaOを8〜62%含むカルシウムアルミネート酸化物介在物を内部に包み込んだ、長径/短径比が5以下であるような紡錘型の、Caを1%以上含むカルシウム・マンガン硫化物介在物を含有することを特徴とするものである。この発明は、すぐれた被削性を実現したが、実施に当たって、ときにより被削性にバラツキが見られることが経験された。これは、カルシウム・マンガン硫化物介在物の存在形態が種々あり得るためと解される。
【0004】
続いて出願人は、特開2000−34538号「旋削加工性に優れた機械構造用鋼」において、Ca含有硫化物をCa含有量に従って三区分し、観察視野の面積に占める面積率を、Ca含有量が40%を超えるものをA、0.3〜40%のものをB、0.3%未満のものをCとするとき、A/(A+B+C)≦0.3、かつB/(A+B+C)≧0.1の条件を満たすとき、旋削工具寿命が著しく延びることを開示した。
【0005】
さらに研究を進めた出願人は、特開2000−219936号「快削鋼」に至って、介在物の存在すべき個数を明らかにして、被削性のバラツキを軽減することに成功した。この発明の鋼は、0.1〜1%のCaを含有する円相当直径5μm以上の硫化物を3.3mm2当たり5個以上含有することを特徴とする。しかし、被削性のバラツキに関して、なお改善の余地があった。
【0006】
そこで出願人は、被削性のバラツキを改善した機械構造用鋼であって、とくに超硬工具切削性が高く、前記した工具寿命比にして5倍以上の被削性を達成した快削鋼を開発して、これも提案した(特願2001−174606「超硬工具旋削性にすぐれた機械構造用の快削鋼」)。この快削鋼は、介在物の存在形態に特徴があって、はじめに言及した「二重構造介在物」すなわち、「CaO含有量が8〜62重量%の酸化物系介在物と接して存在する、1.0重量%以上のCaを含有する硫化物系介在物」が一定量以上、具体的には、「その占有面積が、視野面積3.5mm2当たり2.0×10−4mm2以上」となるように存在することが特徴である。
【0007】
上記のような二重構造介在物を確実に生成させることができる快削鋼の製造方法は、鋼の溶製に当たって下記の条件を満たす操業を行なうことであると、上記特許出願において開示した。
[S]/[O]:8〜40
[Ca]×[S]:1×10−5〜1×10−3
[Ca]/[S]:0.01〜20 かつ
[Al]:0.001〜0.020%
【0008】
最近の研究成果に基づき、出願人は、単に工具寿命が長いだけでなく、切屑の破砕性が高く、したがって自動化された機械加工により加工するのに適した快削鋼を開発して、これもすでに提案した(特願2001−362733)。その快削鋼は、基本的な合金組成として、重量%で、C:0.05〜0.8%、Si:0.01〜2.5%、Mn:0.1〜3.5%、S:0.01〜0.2%、Al:0.001〜0.020%、Ca:0.0005〜0.02%、O:0.0005〜0.01%およびN:0.001〜0.04%に加えて、Ti:0.002〜0.010%およびZr:0.002〜0.025%の1種または2種を含有し、残部が不可避の不純物およびFeからなる合金組成を有し、CaO含有量が0.2〜62重量%の酸化物系介在物と接して存在する、1.0重量%以上のCaを含有する硫化物系介在物の占有面積が、視野面積3.5mm2当たり2.0×10−4mm2以上であり、MnS介在物が微細に分散している機械構造用鋼である。
【0009】
この発明が前の発明にくらべて新しいところは、ひとつは二重構造介在物を形成する酸化物系介在物のCaO含有量の下限が拡大されたことであるが、いまひとつの、そしてより重要な差異は、「MnS介在物が微細に分散している」ことであって、これが高い切屑破砕性をもたらし、結果として工具寿命と切屑破砕性との適切なバランスを実現するものである。MnS介在物の微細な分散は、Tiおよび(または)Zrを所定量添加して、微細なTi酸化物、Zr酸化物または(Ti+Zr)酸化物を形成させ、それを核としてMnSを析出させることによってもたらされる。
【0010】
この快削鋼は、機械構造用鋼に分類される多くの鋼種をカバーしているが、その適用範囲において具体的な合金組成を確立する過程において、比較的高S領域においても有用であることがわかった。すなわち前記操業条件のうちの、[S]/[O]:8〜40の上限が80程度まで高められることが明らかになった。一方、広い範囲の実験を重ねた結果、工具寿命と切屑破砕性とのバランスにおいて、ときにバラツキが、なお認められることを経験した。
【0011】
【発明が解決しようとする課題】
本発明の目的は、上述した二重構造介在物の形態を利用することにより被削性のバラツキを改善し、工具寿命比にして5倍以上の被削性改善を可能にし、かつ切屑の破砕性を高めた機械構造用の快削鋼において、さらなる改良を加え、高い切屑破砕性が確実に得られるようにした、機械加工とくに旋削に適した鋼を提供することにある。被削性および切屑破砕性のバランスと切屑破砕性の確保とに加えて、すぐれた疲労強度および曲げ矯正性を示す機械構造用の快削鋼を提供することも、本発明の目的に含まれる。
【0012】
【課題を解決するための手段】
上記の目的を達成する、本発明の被削性にすぐれるとともに切屑破砕性が高い機械構造用の快削鋼は、基本的な合金成分として、重量%で、C:0.05〜0.8%、Si:0.01〜2.0%、Mn:0.1〜3.5%、S:0.01〜0.2%、Al:0.001〜0.020%、Ca:0.0005〜0.02%、O:0.0005〜0.01%およびN:0.001〜0.04%に加えて、Ti:0.002〜0.010%およびZr:0.002〜0.025%の1種または2種を含有し、残部が不可避の不純物およびFeからなる合金組成を有し、CaO含有量が0.2〜62重量%であって融点が1500〜1750℃である酸化物系介在物と接して存在する、1〜45重量%のCaを含有する硫化物系介在物の占有面積が、視野面積3.5mm2当たり2.0×10−4mm2以上であり、上記の硫化物系介在物以外の硫化物系介在物がMnSとして微細に分散していることにより、上記の特性を発揮した機械構造用の快削鋼である。
【0013】
上記の、被削性にすぐれるとともに切屑破砕性の高い機械構造用の快削鋼を製造する本発明の方法は、重量%で、C:0.05〜0.8%、Si:0.01〜2.0%、Mn:0.1〜3.5%、S:0.01〜0.2%、Al:0.001〜0.020%、Ca:0.0005〜0.02%、O:0.0005〜0.01%およびN:0.001〜0.04%を含有し、残部が不可避の不純物およびFeからなる組成の鋼を溶製し、その際、下記の条件を満たす操業を行なうことにより調整された脱酸を行ない、
[S]/[O]:8〜80
[Ca]×[S]:1×10−5〜1×10− 3 かつ
[Ca]/[S]:0.01〜20
CaO含有量が0.2〜62%で、融点が1500〜1750℃である酸化物系介在物と接して存在する、1〜45%のCaを含有する硫化物系介在物の占有面積が、視野面積3.5mm2当たり2.0×10−4mm2以上としたのち、Ti:0.002〜0.010%およびZr:0.002〜0.025%の1種または2種を添加して、調整された脱酸後の鋼中のOとTiおよび(または)Zrとの反応により微細なTi酸化物および(または)Zr酸化物を形成させ、これを含む複合酸化物を核としてMnS介在物を析出させることにより、微細に分散したMnS介在物を得ることからなる。
【0014】
【発明の実施形態】
本発明の機械構造用鋼において、基本的な合金組成の鋼の組成を上記のように限定した理由は、つぎのとおりである。
【0015】
C:0.05〜0.8%
Cは強度を確保するために必要な成分であり、0.05%未満の含有量では、機械構造用鋼としての強度が不足である。一方、CはSの活量を増大させるので、多量になると、上記した[S]/[O]、[Ca]×[S]、[Ca]/[S]および特定の[Al]量のバランスの下で、二重構造介在物を得ることが難しくなる。Cを多量にすると、靱性や被削性も低くなるので、0.8%という上限を設けた。
【0016】
Si:0.01〜2.0%
Siは溶製時の脱酸剤として鋼の成分となり、焼入性を高める働きもある。この効果は、0.01%に達しない少量では期待できない。SiもまたSの活量を増大させるので、多量のSiの存在は、多量のCと同じ問題を生じ、二重構造介在物の生成を妨げるおそれがある。多量のSiはまた、延性を損ない、塑性加工時に割れが発生しやすくなることもあって、2.0%が添加量の上限である。
【0017】
Mn:0.1〜3.5%
Mnは、硫化物を生成する重要な元素である。0.1%未満の量では、介在物の量が足りないが、3.5%を超える過大な含有量になると、鋼を硬くして被削性を低下させる。
【0018】
S:0.01〜0.2%
Sは被削性の向上にとって、有用というより、不可欠な成分であって、0.01%以上を存在させる。本発明の目標である工具寿命比5以上を達成するには、0.01%以上のSを必要とする。S量が0.2%を超えると、靱性と延性を悪くするばかりか、CaとともにCaSを生成する。CaSは融点が高いため、鋳造工程の障害になる。
【0019】
Al:0.001〜0.020%
酸化物系介在物の組成を適切に調整する上で必要であり、少なくとも0.001%を添加する。0.20%を超えると硬質のアルミナクラスターを生成し、これが鋼の被削性を損なう。Al量の調整は、本発明の快削鋼の製造過程で、CaやTiおよび(または)Zrの添加に先だって行なわなければならない。この点については後述する。
【0020】
Ca:0.0005〜0.02%
Caは、本発明の鋼にとってきわめて重要な成分である。硫化物中にCaを含有させるために、0.0005%以上の添加を必須とする。一方、0.02%を上回る過剰のCaの添加は、前記した高融点のCaSの生成を招き、鋳造の障害になる。
【0021】
O:0.0005〜0.01%
Oは酸化物の生成に必要な元素である。過度に脱酸した鋼においては高融点のCaSが多量に生成し、鋳造の支障になるから、少なくとも0.0005%、好ましくは0.0015%を超えるOが必要である。一方、0.01%を超えるOは、多量の硬質な酸化物をもたらし、その結果、被削性が損われるとともに、所望のカルシウム硫化物の生成が困難になる。CaおよびAlを使用して複合脱酸を行なうと、CaO−Al2O3系の複合酸化物が生成し、これは低融点の介在物であって被削性にとっては好ましいが、切屑破砕性に関しては効果がない。それゆえ、CaO−Al2O3系の複合酸化物の生成は最小限に抑える方がよく、このために、まずAl量を前記した範囲に調節することにより脱酸の程度を適切にし、その後にCaなどを添加するという手順を踏むべきである。
【0022】
複合酸化物の生成に加えて、Oは、下に述べるように、Tiおよび(または)Zrと微細な酸化物を形成してこれがMnSの析出核となることで、MnSを微細化する。この作用を期待するには、ある最低量のTi酸化物、Zr酸化物または(Ti+Zr)酸化物を生成させなければならないから、
[O]/[N]:0.06以上
の条件を与える必要がある。よく知られているように、NはTiやZrと結合しやすく、これらの窒化物が生成すると、酸化物の生成量が不足する。
【0023】
N:0.001〜0.04%
Nは結晶粒の粗大化を防止するのに有効な成分であり、また、Tiと結合してTiNを生成する上で、重要である。こうした観点から、0.001%以上のNの存在が必要である。過大なN量は鋳造欠陥などを引き起こすから、0.04%を上限とした。
【0024】
Ti:0.002〜0.010%およびZr:0.002〜0.025%の1種または2種
微量のTiまたはZrは、CaおよびAlで脱酸された鋼中のOと結合して、微細な酸化物を形成する。これがMnSの析出に対し、核としてはたらくので、MnSを微細に分散させるのに役立つ。TiとZrとは、2種併用(たとえば、Ti:0.005%+Zr:0.015%)することが、MnSの微細化効果が高く、有利である。二重構造介在物およびその他の酸化物の生成に影響を与えずに、適量のTi酸化物またはZr酸化物を生成させるためには、TiおよびZrの量を、上記した0.002〜0.010%および0.002〜0.025%の範囲に調整する必要がある。本発明の構造用鋼において必須である二重構造介在物を確実に生成させるには、上述のように、調整された脱酸を実施したのちに、Tiおよび(または)Zrの添加を行なうことが肝要である。
【0025】
Tiはまた、微細なTi(CN)を生成した場合、熱間鍛造時の旧オーステナイト結晶粒度の成長を抑制する作用がある。これを期待するには、上記の下限量である0.002%以上のTiの存在と、
[Ti]×[N]:5×10− 6〜2×10− 4
の条件とを与える必要がある。本発明の鋼においてこのバランスを達成したものは、被削性および切屑破砕性に加えて、すぐれた疲労強度および曲げ矯正性を示し、この性質が要求されるクランクシャフトやコンロッドの材料として好適である。
【0026】
不純物として不可避なPについていえば、これは靱性にとっては有害な成分であって、0.2%を超えて存在させることはできないが、一方でPは、被削性とくに仕上面性状を改善する成分でもある。この効果は、0.001%以上の存在で認められる。
【0027】
本発明の機械構造用の快削鋼は、上記した基本的な合金組成に加えて、鋼の用途により必要となるところに従い、つぎのグループに属する元素の1種または2種以上を、下に規定する組成範囲内で、追加的に含有することができる。それらの変更態様において、任意に添加することができる各合金成分の働きと組成範囲の限定理由を、つぎに述べる。
【0028】
Cr:3.5%以下、Mo:2.0%以下
CrおよびMoは、焼入性を高めるので、適量を添加するとよい。しかし、多量に添加すると熱間加工性を損ねて、割れを招く。コスト面の配慮もあって、それぞれの上限を、Crは3.5%、Moは2.0%と定めた。
【0029】
Cu:2.0%以下
Cuは、組織を緻密にし、強度を高める。多量の添加は、熱間加工性にとっても、被削性にとっても好ましくないから、2.0%以下の添加に止める。
【0030】
Ni:4.0%以下
Niも、CrおよびMoと同様に焼入性を高めるが、被削性にはマイナスの存在である。それと、コストを考えて、4.0%を上限とした。
【0031】
B:0.0005〜0.01%
Bは微量の添加で焼入性を高める。この効果を得るには、0.0005%以上の添加を必要とする。0.01%を超える添加は、熱間加工性を損ねて有害である。
【0032】
Mg:0.2%以下
Mgは、二重構造介在物の核となる酸化物系介在物をつくる作用がある。過剰のMgの添加はMgSの生成を招く。MgSはCaOと反応してCaSを生成させ、これが鋳造の障害となる。そこで、添加量は0.2%を限界とする。
【0033】
Nb:0.2%以下
Nbは、高温における結晶粒の粗大化を防ぐ上で有用である。その効果は量の増大につれて飽和するので、0.2%以下の範囲で添加するのが得策である。
【0034】
V:0.5%以下
VはCやNと結合して炭窒化物をつくり、結晶粒を微細化する。この効果は、0.5%を超えると飽和する。
【0035】
Pb:0.4%以下、Bi:0.4%以下
どちらも、被削性改善元素である。Pbは、単独で、または硫化物の外周に付着する形で存在し、それ自身が被削性を高める。0.4%という上限は、これ以上のPbを添加しても鋼に溶解せず、凝集・沈殿して鋼の欠陥になることを理由に設けた。Biも同様である。
【0036】
Se:0.4%以下、Te:0.2%以下
これらも、被削性改善元素である。それぞれの上限0.4%、0.2%、0.1%および0.05%は、熱間加工性への悪影響を考慮して定めた。
【0037】
本発明にしたがう機械構造用の快削鋼の内部に存在する介在物は、図1に見るように、二重構造介在物とMnS介在物とである。二重構造介在物は、EPMA分析によれば、芯部がCa,Mg,SiおよびAlの酸化物であり、その周囲を、CaSを含有するMnSが取囲んでいる。MnS介在物は、微細に分散している。これに対し、単にMnSの被削性改善効果を求めた従来の快削鋼の中におけるMnS介在物は、図2に見るように大型であって、鋼が圧延されたときは、圧延により伸張されている。
【0038】
二重構造介在物の形態およびその存在量は、後に論じる機構を通じて、本発明で目標とした、工具寿命比5という被削性を達成するとともに、高い切屑破砕性を実現し、両者を好適にバランスさせるために必要なものである。その意義については、さきの発明の開示に当たって一部は述べたところであるが、新しい知見も加わったことでもあり、以下に説明する。
【0039】
CaO含有量が0.2〜62重量%の酸化物系介在物と接して存在する、1.0重量%以上のCaを含有する硫化物系介在物、すなわち特定の組成をもった二重構造介在物の占有面積が、視野面積3.5mm2当たり2.0×10−4mm2以上であること:
上記の条件を満たす介在物の占有面積と、超硬工具による旋削を行なったときに得られる工具寿命と、同一S含有量のイオウ快削鋼が示す工具寿命に対する比との相関を、図3のグラフに示す。このデータは、本発明に従うS45C系の快削鋼に対して旋削を行なって得たものであって、工具寿命比5以上の結果は、二重構造介在物が2.0×10−4mm2以上を占めたときに達成できることを示している。
【0040】
硫化物系介在物の占有面積のうち、微細に分散した、平均粒径が1.0μm以上のMnS介在物の占有面積の割合が60〜85%に相当し、CaO含有量が0.2〜62重量%であって融点が1500〜1750℃である酸化物系介在物と接して存在する、1〜45重量%のCaを含有する硫化物系介在物、すなわち二重構造介在物の占有面積の割合が40〜15%に相当すること:
工具寿命にとっては、全硫化物系介在物のうち、二重構造をもつものが多いほど有利である。本発明で目標とした工具寿命比5を達成するには、二重構造の硫化物系介在物が全硫化物系介在物の少なくとも15%を占める必要がある。この関係を図4のグラフに示す。一方、切屑破砕性を高くするという観点からは、二重構造でない単なる硫化物系介在物の割合が、ある限度を下回ってはならないことがわかった。それが、二重構造の硫化物系介在物が全硫化物系介在物の40%を超えない、という条件である。この裏付けは、図5のグラフに求めることができる。
【0041】
図5のグラフは、回転曲げ疲労限に関しても、二重構造介在物の面積率が40%以下であることの意義を示している。すなわち、クランクシャフトやコンロッドのように、繰り返し曲げ応力を受ける部品には、回転曲げ疲労限(それ以下の応力であれば、繰り返し加わっても疲労破壊を起こさないという限界の応力値)が高いことが要求される。二重構造介在物が優勢となって、その面積率が40%を超えるレベルになると、巨大な二重構造介在物が生成し、それを起点としてクラックが生じ破壊に至る、という機構によって回転曲げ疲労限が低下する。そこで、二重構造介在物の面積率は40%以下であることが望ましいわけである。
【0042】
上述したような介在物の形態を実現するための条件が、これも前記した操業条件である。それらの条件がもつ意義についても、さきに開示した発明に関してすでに説明したところであるが、本発明にとっても重要であるから、以下にその説明を再掲する。
【0043】
[S]/[O]:8〜80
種々のS含有量およびO含有量をもつ機械構造用の快削鋼において、工具寿命比5以上の目標を達成できるか否かを、異なるプロットにより区別したのが、図7のグラフである。目標を達成したもの(●プロット)は、[S]/[O]=8の直線と[S]/[O]=80の直線とに挟まれた三角形の領域内にあり、そうでないもの(×プロット)は領域外にあることがわかる。
【0044】
[Ca]/[S]:0.01〜20
[Ca]×[S]:1×10−5〜1×10−3
上記と同様に、種々のS含有量およびCa含有量をもつ機械構造用の快削鋼において、工具寿命比5以上の目標を達成できるか否かを示したのが、図8のグラフである。目標を達成したもの(●プロット)は、[Ca]/[S]が0.01である直線と0.20である直線とに挟まれ、かつ、[Ca]×[S]が1×10−5である直線と1×10−3である直線とに挟まれた四辺形の領域に集中していることがわかる。上記の[S]/[O]、[Ca]/[S]および[Ca]×[S]の条件を同時にみたすものは、すべて工具寿命比5以上の目標を達成している。
【0045】
本発明の機械構造用鋼がすぐれた被削性を示す理由として発明者らが考えているのは、二重構造介在物による、工具表面のよりよい保護および潤滑という機構である。これもさきの発明の開示に含めてあるが、再度説明する。
【0046】
二重構造介在物は、芯部がCaO−Al2O3系の複合酸化物であり、その周りを(Ca,Mn)S系の複合硫化物が取り巻いている。この酸化物は、CaO−Al2O3系の中では低融点のものであり、一方、複合硫化物は、単純な硫化物MnSよりも高融点である。この二重構造介在物は、酸化物をCaO−Al2O3系の低融点のものにすることにより、確実に硫化物が酸化物を取り巻く形で析出する。切削にあたって硫化物系介在物が軟化して工具表面を被覆し、保護するという作用はよく知られているが、硫化物だけしか存在しないと、この被膜の生成および維持は安定しない。さきの発明の発明者らが見出したところでは、硫化物系介在物にCaO−Al2O3系の低融点酸化物が共存すると、被膜が安定に生成する上、(Ca,Mn)S系の複合硫化物は、単純なMnSよりも、潤滑性能が高い。
【0047】
(Ca,Mn)S系の複合硫化物が工具表面に被膜を形成する意義は、「熱拡散摩耗」とよばれる超硬工具の摩耗を抑制する効果にある。熱拡散摩耗は、工具が切削対象から生じる切り屑に高温で接すると、工具材料を構成するタングステン・カーバイドWCに代表される炭化物が熱分解して、Cが切り屑金属中に拡散して失われる結果、工具が脆くなって進む摩耗である。潤滑性の高い被膜が工具表面に生成すると、工具の温度上昇が防がれて、Cの拡散が抑制される。
【0048】
本発明の快削鋼の二重構造介在物CaO−Al2O3/(Ca,Mn)Sは、観点を変えてみれば、従来のイオウ快削鋼の介在物であるMnSと、従来のカルシウム快削鋼の介在物であるアノルサイトCaO・Al2O3・2SiO2との、それぞれの利点を併せもつものということができる。MnSは、工具表面において潤滑性を示すが、被膜の安定性がいまひとつであり、熱拡散摩耗に対しては無力である。一方、CaO・Al2O3・2SiO2は、安定な被膜を形成して熱拡散摩耗を防ぐが、潤滑性に乏しい。これに対し本発明の二重構造介在物は、安定な被膜を形成して熱拡散摩耗を効果的に防止するとともに、よりよい潤滑性を示す。
【0049】
このような二重構造介在物の生成は、前述のように低融点の複合酸化物を用意することから始まるので、まず[Al]量が重要であって、少なくとも0.001%の存在が必要である。[Al]が多量に過ぎると、複合酸化物の融点が高くなってしまうから、0.020%以内にする。つぎに、CaSの生成量を調節するために、[Ca]×[S]および[Ca]/[S]を、前記した値にコントロールするわけである。
【0050】
上述した機構は仮説ではなく、事実に即したものであることが、さきの発明において、その快削鋼を旋削した後の超硬工具表面の状態と、そこに付着した溶融介在物の分析結果とを、在来のイオウ快削鋼を旋削した場合との対比によって明らかになった。
【0051】
本発明の機械構造用の快削鋼を特徴づける切屑破砕性のよさは、前述のようにMnS介在物の微細化によってもたらされる。介在物量が一定であることを前提にすると、微細化は介在物の数の増大を意味する。本発明の鋼におけるMnS介在物の量は、主としてS含有量によって決定される。S量は0.01〜0.2%にわたって変化するから、MnS量もまたそれに伴って変化し、微細化した介在物の個数も増減する。本発明の鋼の中では、MnS介在物は、在来の鋼中のMnS介在物よりは微細であるが、それらの中で、存在が切屑破砕性に影響するものは、やはり平均粒径が1.0μm以上のものである。(ここで、「平均粒径」とは、顕微鏡視野に表われた粒子断面の長径と短径との平均値をいう。)
【0052】
S含有量は異なるが、いずれも切屑破砕性の高い本発明の鋼について、平均粒径1.0μm以上のMnS介在物の単位断面積(mm2)あたりの存在個数を、倍率400倍の光学顕微鏡を用いて調査したところ、下記の表1に示す介在物数が得られ、S量との関係も、ほぼ一定であることがわかった。
【0053】
表1
【0054】
このデータから、さまざまなS含有量の範囲にわたって、MnS介在物の個数がS含有量0.01%あたり5個/mm2以上であれば、良好な切屑破砕性が確保できることが結論された。この事実を明確に示すのが、図9のグラフである。このグラフは、MnS介在物のうちで、上記した、平均粒径は1.0μm以上であるが在来の鋼中のMnS介在物よりは微細であるものが、全体の何%を占めるかと、切屑破砕性との関係をプロットしたグラフであって、微細なMnS介在物の割合が高くなると、切屑破砕性指数が高くなることを示している。
【0055】
【実施例】
下記の実施例および比較例の表において、番号が大文字(A,B,…)で始まるものは実施例であり、小文字(a,b,…)で始まるものは比較例である。溶製した合金はインゴットに鋳造し、このインゴットから径72mmの丸棒型の試験片を採取して、試験に供した。各試験の方法と評価は、つぎのとおりである。
【0056】
[硫化物系介在物の占有面積]
CaO含有量が0.2〜62重量%であって融点が1500〜1750℃である酸化物系介在物と接して存在する、1〜45重量%のCaを含有する硫化物系介在物の占有面積を調べ、視野面積3.5mm2当たり2.0×10−4mm2以上の占有面積を有する場合を良好(○印)、そうでない場合を不良(×印)とした。
【0057】
[二重構造介在物の面積率]
顕微鏡写真(倍率200倍)を撮り、全硫化物系介在物を単純な硫化物と二重構造介在物とに分け、全硫化物系介在物の面積の中で二重構造介在物が占める割合(%)を算出した。
【0058】
[被削性]
超硬工具を用いた、つぎの条件の旋削を行なって、
速度:200m/分
送り:0.2mm/回転
深さ:2.0mm
S含有量が0.01〜0.2%の範囲にあるイオウ快削鋼の工具寿命を標準として、つぎのようにランク付けをした。工具寿命は、横逃げ面平均摩耗幅が0.2mmになるまでの加工時間で評価した。
その5倍の工具寿命が達成できたとき被削性良好(○印)
2倍以上5倍未満のとき被削性可(△印)
2倍未満のとき被削性不良(×印)
【0059】
[保護被膜]
切削時に工具の表面に保護被膜が形成されるか否かを観察し、つぎのように評価した。
被膜形成が十分であるとき:○印
被膜形成は認められるが不十分なとき:△
被膜形成がほとんど認められないとき:×
【0060】
[切屑の破砕性]
下記の条件で切削した場合の切屑を採取し、
速度:150m/分
送り:0.025〜0.200mm/回転
深さ:0.3〜1.0mm
工具:DNMG150480−MA
その長さによって0〜4点の点数をつけ、30切削条件の合計点数を「切屑破砕性指数」とした。同一イオウ含有量のイオウ快削鋼の切屑破砕性指数と比較した結果に従って、つぎのように評価した。
より高い場合を良好(○印)
同点または低い場合を不良(×印)
【0061】
[実施例1]
S45C系の鋼に対して本発明を適用した。鋼の合金組成を表2(実施例)および表3(比較例)に示した。各快削鋼の製造条件、特定成分の比率、ならびに工具寿命および切屑破砕性など、成績に関するデータを、まとめて表4(実施例)および表5(比較例)に示した。
【0062】
[実施例2]
S15C系の快削鋼について、実施例1と同様に、合金の溶製および被削性の試験を行なった。合金組成を表6(実施例および比較例)に、成績のデータを表7(実施例および比較例)に、それぞれ示す。
【0063】
[実施例3]
S55C系快削鋼について、実施例1と同様に、合金の溶製および被削性の試験を行なった。合金組成を表8(実施例および比較例)に、成績のデータを表9(実施例および比較例)に、それぞれ示す。
【0064】
[実施例4]
SCR415系快削鋼について、実施例1と同様に合金の溶製および被削性の試験を行なった。合金組成を表10(実施例および比較例)に、成績のデータを表11(実施例および比較例)に、それぞれ示す。
【0065】
[実施例5]
SCM440系快削鋼について、実施例1と同様に合金の溶製および被削性の試験を行なった。合金組成を表12(実施例および比較例)に、試験結果を表13(実施例および比較例)に、それぞれ示す。
【0066】
【0067】
【0068】
【0069】
【0070】
【0071】
【0072】
【0073】
【0074】
【0075】
【0076】
【0077】
【0078】
【発明の効果】
本発明の機械構造用の快削鋼においても、さきに開示した快削鋼と同じ被削性が実現している。すなわち、高い被削性をもたらす介在物である二重構造介在物が最適の形態で存在するから、切削とくに超硬工具旋削において、在来のイオウ快削鋼に対して工具寿命が5倍以上という目標を容易に達成することができる。
【0079】
さきに開示した快削鋼において可能になった高い切屑破砕性は、微量のTi(またはZr)を添加して、微細に分散したMnS介在物を形成させたことによりもたらされたものであり、この効果もまた、本発明の機械構造用の快削鋼において実現している。切屑破砕性が高いことは、いうまでもなく、旋削にとってとりわけ好都合である。鋼中に微細なTi(CN)を生成させた製品は、熱間鍛造時の旧オーステナイト結晶粒の成長を抑制することができるから、被削性および切屑破砕性に加えて、疲労強度や曲げ矯正性が高く、このような性質が要求される用途にとって有用である。
【0080】
本発明の製造方法は、上記のような機械構造用の快削鋼を確実に製造できる方法であって、Caなどの添加に先立ってAl量を調整することにより、調整された脱酸を行なって二重構造介在物を有利に形成させ、さらに適切なタイミングで、つまり調整脱酸により二重構造介在物が形成させたのちに適量のTiを添加することにより、MnS介在物が微細に分散している上に、二重構造介在物が全硫化物系介在物の一定量を占めることにより、工具寿命と切屑破砕性とのバランスが好ましい快削鋼を得ることができる。Ti量とともにO量およびN量を適切にえらんでこの製造方法を実施すれば、鋼中に微細なTi(CN)が生成し、疲労強度や曲げ矯正性が改善された機械構造用の快削鋼が製造できる。
【図面の簡単な説明】
【図1】本発明にしたがう機械構造用の快削鋼中の、介在物の形状を示す顕微鏡写真。
【図2】在来のイオウ快削鋼中の、介在物の形状を示す顕微鏡写真。
【図3】機械構造用の快削鋼中において、「二重構造介在物」が占める面積と工具寿命比との関係を示すグラフ。
【図4】機械構造用の快削鋼中において、「二重構造介在物」が全硫化物系介在物の面積に占める率と工具寿命比との関係を示すグラフ。
【図5】機械構造用の快削鋼中において、「二重構造介在物」が全硫化物系介在物の面積に占める率と、ドリル加工能率および回転曲げ疲労限との関係を示すグラフ。
【図6】機械構造用の快削鋼における、Al含有量と工具寿命比との関係をプロットしたグラフ。
【図7】種々のS含有量およびO含有量をもつ機械構造用の快削鋼において、「二重構造介在物」が得られたか否かを示したグラフ。
【図8】種々のS含有量およびCa含有量をもつ機械構造用の快削鋼において、工具寿命比5以上の目標が達成できたか否かを示したグラフ。
【図9】機械構造用の快削鋼中において、MnS介在物中の微細MnSが占める割合と切屑破砕性指数との関係を示したグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to steel for machine structural use which has excellent machinability when cutting with a carbide tool and has high chip crushability, and a method for producing the same. The present invention also relates to a steel for machine structural use exhibiting excellent fatigue strength and bend straightening in addition to machinability and chip friability, and a method for producing the same.
[0002]
In the present invention, the term “double-structure inclusion” refers to an inclusion having a structure in which an oxide-based inclusion is the core, and the periphery thereof is surrounded by a sulfide-based inclusion. . The terms "tool life ratio" and "life ratio" refer to the tool life of a conventional sulfur free-cutting steel having the same S content and the free-cutting steel tool of the present invention in cutting with a carbide tool, especially turning. It means the ratio to life. Regarding MnS inclusions, “finely dispersed” means finer grains than MnS inclusions in conventional steel, and is averagely distributed in steel without agglomeration or concentration. Means state.
[0003]
[Prior art]
Research on high machinability steel for machine structural use has been carried out for many years, and the applicant has made many proposals so far. As a recent example, Japanese Patent Application Laid-Open No. Hei 10-287953 “Steel for machine structural use excellent in mechanical properties and drilling workability” is one typical example. This free-cutting steel is a spindle-type having a major axis / minor axis ratio of 5 or less, in which a calcium aluminate oxide inclusion containing 8 to 62% of CaO is wrapped. It is characterized by containing manganese sulfide inclusions. Although the present invention has achieved excellent machinability, it has been experienced that the machinability sometimes fluctuates upon implementation. This is understood to be due to various possible forms of calcium-manganese sulfide inclusions.
[0004]
Subsequently, in Japanese Patent Application Laid-Open No. 2000-34538, entitled "Steel for Machine Structure with Excellent Turning Processability", Ca-containing sulfides are classified into three according to the Ca content, and the area ratio of the observation visual field to the area is Ca When the content exceeds 40% is A, 0.3 to 40% is B, and less than 0.3% is C, A / (A + B + C) ≦ 0.3 and B / (A + B + C) ) Discloses that turning tool life is significantly extended when the condition of ≧ 0.1 is satisfied.
[0005]
The applicant who further advanced the research has succeeded in reducing the variation in machinability by clarifying the number of inclusions that should be present in Japanese Unexamined Patent Application Publication No. 2000-219936 “Free-cutting steel”. The steel of the present invention has a sulfide having a circle equivalent diameter of 5 μm or more containing 0.1 to 1% of Ca of 3.3 mm or more.2It is characterized by containing 5 or more per unit. However, there is still room for improvement in the variation in machinability.
[0006]
Accordingly, the applicant has proposed a free-cutting steel which is a machine structural steel having improved machinability variation, and particularly has high machinability of carbide tools and achieves machinability of 5 times or more in terms of the tool life ratio described above. (Japanese Patent Application No. 2001-174606, "Free-cutting Steel for Machine Structures with Excellent Carbide Tool Turning Properties"). This free-cutting steel is characterized by the existence form of inclusions, and is referred to at the beginning of the “double-structure inclusions”, that is, “exists in contact with oxide-based inclusions having a CaO content of 8 to 62% by weight. , A sulfide-based inclusion containing 1.0% by weight or more of Ca "is a certain amount or more, specifically," the occupied area is 3.5 mm in view area.22.0 × 10 per-4mm2It is a feature of the present invention to exist as described above.
[0007]
The above-mentioned patent application discloses that a method for producing free-cutting steel capable of reliably producing the above-described double-structure inclusion is to perform an operation satisfying the following conditions in melting steel.
[S] / [O]: 8 to 40
[Ca] × [S]: 1 × 10-5~ 1 × 10-3
[Ca] / [S]: 0.01 to 20 ° and
[Al]: 0.001 to 0.020%
[0008]
Based on recent research results, the Applicant has developed a free-cutting steel that not only has a long tool life, but also has high friability of chips and is therefore suitable for machining by automated machining. It has already been proposed (Japanese Patent Application No. 2001-362733). The free-cutting steel has the following basic alloy composition: C: 0.05-0.8%, Si: 0.01-2.5%, Mn: 0.1-3.5%, by weight%. S: 0.01 to 0.2%, Al: 0.001 to 0.020%, Ca: 0.0005 to 0.02%, O: 0.0005 to 0.01%, and N: 0.001 to Alloy composition containing, in addition to 0.04%, one or two types of Ti: 0.002 to 0.010% and Zr: 0.002 to 0.025%, with the balance being unavoidable impurities and Fe And the occupation area of the sulfide-based inclusions containing 1.0% by weight or more of Ca and present in contact with the oxide-based inclusions having a CaO content of 0.2 to 62% by weight 3.5mm22.0 × 10 per-4mm2This is a steel for machine structural use in which MnS inclusions are finely dispersed.
[0009]
What is new about this invention compared to the previous invention is that the lower limit of the CaO content of oxide-based inclusions forming double-structured inclusions has been expanded, but another, and more important, The difference is that "MnS inclusions are finely dispersed", which results in high chip friability and consequently achieves an appropriate balance between tool life and chip friability. Fine dispersion of MnS inclusions is achieved by adding a predetermined amount of Ti and / or Zr to form fine Ti oxides, Zr oxides or (Ti + Zr) oxides, and to precipitate MnS using them as nuclei. Brought by.
[0010]
This free-cutting steel covers many types of steel classified as mechanical structural steel, but is useful even in the relatively high S region in the process of establishing a specific alloy composition within its applicable range. I understood. That is, it became clear that the upper limit of [S] / [O]: 8 to 40 in the above operating conditions was increased to about 80. On the other hand, as a result of repeated experiments over a wide range, it was found that the balance between the tool life and the chip friability was sometimes still uneven.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to improve the variability of machinability by using the form of the above-described double-structure inclusion, to enable the machinability to be improved by 5 times or more in tool life ratio, and to crush chips. An object of the present invention is to provide a steel suitable for machining, especially turning, in which free-cutting steel for machine structures with improved properties is further improved to ensure high chip friability. It is also an object of the present invention to provide a free-cutting steel for machine structures showing excellent fatigue strength and bending straightness, in addition to the balance between machinability and chip crushing property and ensuring chip crushing property. .
[0012]
[Means for Solving the Problems]
The free-cutting steel for machine structures according to the present invention, which achieves the above objects and has excellent machinability and high chip crushability, has a basic alloying component of C: 0.05 to 0. 8%, Si: 0.01 to 2.0%, Mn: 0.1 to 3.5%, S: 0.01 to 0.2%, Al: 0.001 to 0.020%, Ca: 0 0.0005 to 0.02%, O: 0.0005 to 0.01%, and N: 0.001 to 0.04%, and Ti: 0.002 to 0.010% and Zr: 0.002 to 0.002%. It contains an alloy composition consisting of 0.025% of one or two kinds, the balance being unavoidable impurities and Fe, having a CaO content of 0.2 to 62% by weight and a melting point of 1500 to 1750 ° C. The occupied area of the sulfide-based inclusions containing 1 to 45% by weight of Ca existing in contact with a certain oxide-based inclusion is Field area 3.5mm22.0 × 10 per-4mm2As described above, the sulfide-based inclusions other than the above-described sulfide-based inclusions are finely dispersed as MnS, and thus are free-cutting steels for machine structures exhibiting the above-described characteristics.
[0013]
The method of the present invention for producing a free-cutting steel for a machine structure having excellent machinability and high chip crushing ability is as follows: C: 0.05 to 0.8% by weight; 01-2.0%, Mn: 0.1-3.5%, S: 0.01-0.2%, Al: 0.001-0.020%, Ca: 0.0005-0.02% , O: 0.0005 to 0.01% and N: 0.001 to 0.04%, and the balance is made of a steel having a composition consisting of unavoidable impurities and Fe. Performing adjusted deoxidation by performing operations that satisfy
[S] / [O]: 8 to 80
[Ca] × [S]: 1 × 10-5~ 1 × 10− 3 And
[Ca] / [S]: 0.01 to 20
The occupation area of the sulfide-based inclusion containing Ca of 1 to 45%, which is in contact with the oxide-based inclusion having a CaO content of 0.2 to 62% and a melting point of 1500 to 1750 ° C, Viewing area 3.5mm22.0 × 10 per-4mm2After the above, one or two of Ti: 0.002 to 0.010% and Zr: 0.002 to 0.025% are added, and O and Ti in the steel after the deoxidization adjusted are added. And / or Zr reacts to form fine Ti oxides and / or Zr oxides and precipitates MnS inclusions with a composite oxide containing them as nuclei, thereby providing finely dispersed MnS inclusions Consisting of
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the steel composition of the basic alloy composition as described above in the steel for machine structural use of the present invention are as follows.
[0015]
C: 0.05-0.8%
C is a component necessary for ensuring strength, and if the content is less than 0.05%, the strength as steel for machine structural use is insufficient. On the other hand, since C increases the activity of S, when it becomes large, the amount of [S] / [O], [Ca] × [S], [Ca] / [S], and the specific [Al] amount is increased. Under balance, it is difficult to obtain dual structure inclusions. If the amount of C is increased, the toughness and machinability also decrease, so the upper limit of 0.8% was set.
[0016]
Si: 0.01 to 2.0%
Si becomes a component of steel as a deoxidizing agent at the time of smelting, and also has a function of improving hardenability. This effect cannot be expected with a small amount of less than 0.01%. Since Si also increases the activity of S, the presence of a large amount of Si may cause the same problem as the large amount of C, and may prevent the formation of double structure inclusions. A large amount of Si also impairs ductility and may easily cause cracking during plastic working, so 2.0% is the upper limit of the addition amount.
[0017]
Mn: 0.1-3.5%
Mn is an important element that generates sulfide. If the content is less than 0.1%, the amount of inclusions is insufficient, but if the content is excessively more than 3.5%, the steel is hardened and the machinability is reduced.
[0018]
S: 0.01-0.2%
S is an essential component rather than useful for improving machinability, and is present in an amount of 0.01% or more. To achieve the tool life ratio of 5 or more which is the target of the present invention, 0.01% or more of S is required. When the amount of S exceeds 0.2%, not only the toughness and the ductility are deteriorated, but also CaS is generated together with Ca. Since CaS has a high melting point, it hinders the casting process.
[0019]
Al: 0.001 to 0.020%
Necessary for properly adjusting the composition of the oxide-based inclusions, at least 0.001% is added. If it exceeds 0.20%, hard alumina clusters are formed, which impairs machinability of the steel. The adjustment of the amount of Al must be performed prior to the addition of Ca, Ti, and / or Zr in the production process of the free-cutting steel of the present invention. This will be described later.
[0020]
Ca: 0.0005 to 0.02%
Ca is a very important component for the steel of the present invention. In order to contain Ca in the sulfide, 0.0005% or more must be added. On the other hand, if Ca is added in excess of 0.02%, the above-mentioned CaS having a high melting point is generated, which hinders casting.
[0021]
O: 0.0005 to 0.01%
O is an element necessary for forming an oxide. In excessively deoxidized steel, CaS having a high melting point is generated in a large amount, which hinders casting. Therefore, O is required to be at least 0.0005%, preferably more than 0.0015%. On the other hand, O exceeding 0.01% results in a large amount of a hard oxide, which impairs machinability and makes it difficult to form a desired calcium sulfide. When complex deoxidation is performed using Ca and Al, CaO-Al2O3A composite oxide of the system is formed, which is a low melting point inclusion and is preferred for machinability, but has no effect on chip friability. Therefore, CaO-Al2O3It is better to minimize the generation of the complex oxide of the system. For this purpose, the procedure of first adjusting the amount of Al to the above-mentioned range to make the degree of deoxidation appropriate, and then adding Ca or the like is followed. You should step on it.
[0022]
In addition to the formation of the composite oxide, O forms a fine oxide with Ti and / or Zr and serves as a precipitation nucleus of MnS, as described below, thereby miniaturizing MnS. In order to expect this effect, a certain minimum amount of Ti oxide, Zr oxide or (Ti + Zr) oxide must be generated.
[O] / [N]: 0.06 or more
Condition must be given. As is well known, N easily bonds with Ti and Zr, and when these nitrides are formed, the amount of oxides generated becomes insufficient.
[0023]
N: 0.001 to 0.04%
N is an effective component for preventing coarsening of crystal grains, and is important in forming TiN by combining with Ti. From such a viewpoint, 0.001% or more of N must be present. An excessive N content causes casting defects and the like, so the upper limit was made 0.04%.
[0024]
One or two of Ti: 0.002 to 0.010% and Zr: 0.002 to 0.025%
Trace amounts of Ti or Zr combine with O in steel deoxidized with Ca and Al to form fine oxides. This serves as a nucleus for the precipitation of MnS, and thus helps to finely disperse MnS. It is advantageous to use two kinds of Ti and Zr together (for example, Ti: 0.005% + Zr: 0.015%) because the effect of miniaturizing MnS is high. In order to form an appropriate amount of Ti oxide or Zr oxide without affecting the formation of double-structure inclusions and other oxides, the amounts of Ti and Zr should be set to 0.002 to 0. It needs to be adjusted to the range of 010% and 0.002 to 0.025%. To ensure the formation of double structural inclusions which are essential in the structural steel of the present invention, as described above, after performing the adjusted deoxidation, the addition of Ti and / or Zr is performed. Is essential.
[0025]
When Ti forms fine Ti (CN), Ti also has the effect of suppressing the growth of the prior austenite grain size during hot forging. In order to expect this, the presence of 0.002% or more of the above-mentioned lower limit amount of Ti,
[Ti] × [N]: 5 × 10− 6~ 2 × 10− 4
Condition and need to give. The steel of the present invention which achieves this balance exhibits excellent fatigue strength and bend straightenability in addition to machinability and chip crushability, and is suitable as a material for a crankshaft or a connecting rod which requires this property. is there.
[0026]
As for P, which is inevitable as an impurity, it is a harmful component for toughness and cannot be present in excess of 0.2%, while P improves machinability, especially the surface finish. It is also a component. This effect is observed in the presence of 0.001% or more.
[0027]
The free-cutting steel for a machine structure of the present invention further comprises, in addition to the basic alloy composition described above, one or more elements belonging to the following groups according to the requirements of the steel application. It can be additionally contained within the defined composition range. In these modified embodiments, the function of each alloy component that can be arbitrarily added and the reason for limiting the composition range will be described below.
[0028]
Cr: 3.5% or less, Mo: 2.0% or less
Since Cr and Mo enhance the hardenability, it is advisable to add an appropriate amount. However, when added in a large amount, hot workability is impaired and cracks are caused. Due to cost considerations, the upper limits were set at 3.5% for Cr and 2.0% for Mo.
[0029]
Cu: 2.0% or less
Cu densifies the structure and increases the strength. Addition of a large amount is not preferable for both hot workability and machinability. Therefore, the addition is limited to 2.0% or less.
[0030]
Ni: 4.0% or less
Ni also enhances hardenability similarly to Cr and Mo, but has a negative effect on machinability. In addition, considering the cost, the upper limit is set to 4.0%.
[0031]
B: 0.0005 to 0.01%
B enhances hardenability with a small amount of addition. To obtain this effect, 0.0005% or more must be added. Addition of more than 0.01% is harmful by impairing hot workability.
[0032]
Mg: 0.2% or less
Mg has an effect of forming oxide-based inclusions serving as nuclei of double-structure inclusions. Addition of excess Mg leads to formation of MgS. MgS reacts with CaO to generate CaS, which is an obstacle to casting. Therefore, the addition amount is limited to 0.2%.
[0033]
Nb: 0.2% or less
Nb is useful for preventing crystal grains from becoming coarse at high temperatures. Since the effect saturates as the amount increases, it is advisable to add it in the range of 0.2% or less.
[0034]
V: 0.5% or less
V combines with C and N to form carbonitrides and to refine crystal grains. This effect saturates above 0.5%.
[0035]
Pb: 0.4% or less, Bi: 0.4% or less
Both are machinability improving elements. Pb exists alone or in a form adhering to the outer periphery of the sulfide, and itself enhances machinability. The upper limit of 0.4% is set because even if more Pb is added, it does not dissolve in the steel, but coagulates and precipitates to become a defect of the steel. The same applies to Bi.
[0036]
Se: 0.4% or less, Te: 0.2% or less
These are also machinability improving elements. The upper limits of 0.4%, 0.2%, 0.1% and 0.05% were determined in consideration of the adverse effect on hot workability.
[0037]
The inclusions present inside the free-cutting steel for machine structures according to the present invention are double-structure inclusions and MnS inclusions as shown in FIG. According to the EPMA analysis, the core of the double-structure inclusion is an oxide of Ca, Mg, Si, and Al, and MnS containing CaS is surrounded around the core. The MnS inclusions are finely dispersed. On the other hand, the MnS inclusions in the conventional free-cutting steel, which simply required the effect of improving the machinability of MnS, were large as shown in FIG. 2, and when the steel was rolled, it was elongated by rolling. Have been.
[0038]
The form and abundance of the double-structured inclusions achieve the machinability of the tool life ratio of 5, which is the target of the present invention, and achieve high chip crushability, and achieve both of them through the mechanism to be discussed later. It is necessary to balance. The significance of this has been described in part in the disclosure of the above invention, but also includes new findings, which will be described below.
[0039]
A sulfide-based inclusion containing 1.0% by weight or more of Ca, which is present in contact with an oxide-based inclusion having a CaO content of 0.2 to 62% by weight, that is, a double structure having a specific composition The occupied area of the inclusion is 3.5 mm22.0 × 10 per-4mm2That is all:
FIG. 3 shows the correlation between the occupied area of inclusions satisfying the above conditions, the tool life obtained when turning with a carbide tool, and the ratio to the tool life of a sulfur free-cutting steel having the same S content. Is shown in the graph. This data was obtained by turning the S45C-based free-cutting steel according to the present invention.-4mm2The above shows that this can be achieved.
[0040]
Of the occupied area of the sulfide-based inclusions, the proportion of the occupied area of the finely dispersed MnS inclusions having an average particle diameter of 1.0 μm or more corresponds to 60 to 85%, and the CaO content is 0.2 to 85%. Occupied area of sulfide-based inclusions containing 1 to 45% by weight of Ca, which are present in contact with oxide-based inclusions having a melting point of 62% by weight and a melting point of 1500 to 1750 ° C, that is, double-structured inclusions Is equivalent to 40 to 15%:
For the tool life, the more sulfide-based inclusions having a double structure are more advantageous. In order to achieve the target tool life ratio of 5 according to the present invention, it is necessary that the sulfide-based inclusion having a double structure occupies at least 15% of the total sulfide-based inclusion. This relationship is shown in the graph of FIG. On the other hand, from the viewpoint of increasing the chip friability, it was found that the ratio of mere sulfide inclusions not having a double structure should not fall below a certain limit. That is the condition that the double-structured sulfide-based inclusions do not exceed 40% of the total sulfide-based inclusions. This support can be obtained from the graph of FIG.
[0041]
The graph of FIG. 5 also shows the significance of the area ratio of the dual structure inclusion being 40% or less with respect to the rotational bending fatigue limit. In other words, components that are subjected to repeated bending stress, such as crankshafts and connecting rods, must have a high rotational bending fatigue limit (a stress value less than that limit will not cause fatigue failure even after repeated application). Is required. When the double-structured inclusion becomes dominant and its area ratio exceeds 40%, a huge double-structured inclusion is generated, and cracks occur from the starting point, leading to destruction. The fatigue limit is reduced. Therefore, it is desirable that the area ratio of the double structure inclusion is 40% or less.
[0042]
The conditions for realizing the form of the inclusion as described above are also the operating conditions described above. The significance of those conditions has already been described with respect to the invention disclosed above, but since it is important for the present invention, the description is repeated below.
[0043]
[S] / [O]: 8 to 80
FIG. 7 is a graph showing whether or not a target of a tool life ratio of 5 or more can be achieved in free-cutting steels for machine structures having various S contents and O contents by different plots. Those that achieved the target (● plots) are in the triangular region between the straight line of [S] / [O] = 8 and the straight line of [S] / [O] = 80, and those that are not ( X plot) is outside the region.
[0044]
[Ca] / [S]: 0.01 to 20
[Ca] × [S]: 1 × 10-5~ 1 × 10-3
Similarly to the above, FIG. 8 is a graph showing whether or not a target of a tool life ratio of 5 or more can be achieved in a free-cutting steel for a machine structure having various S contents and Ca contents. . What achieved the target (● plot) is sandwiched between a straight line with [Ca] / [S] of 0.01 and a straight line with 0.20, and [Ca] × [S] is 1 × 10-5A straight line and 1 × 10-3It can be seen that they are concentrated in the quadrilateral region sandwiched between the straight lines. Those satisfying the above conditions [S] / [O], [Ca] / [S] and [Ca] × [S] all achieve the tool life ratio of 5 or more.
[0045]
What the inventors consider as the reason why the steel for machine structural use of the present invention exhibits excellent machinability is the mechanism of better protection and lubrication of the tool surface by the dual structure inclusion. This is also included in the disclosure of the invention, but will be described again.
[0046]
The core of the dual structure inclusion is CaO-Al2O3Composite oxide, and a (Ca, Mn) S-based composite sulfide surrounds the composite oxide. This oxide is CaO-Al2O3Among the systems, they have a low melting point, whereas composite sulfides have a higher melting point than the simple sulfide MnS. This double-structure inclusion contains oxides of CaO-Al2O3By making the system have a low melting point, it is ensured that sulfides precipitate in a form surrounding the oxide. It is well known that the sulfide inclusions soften during cutting to cover and protect the tool surface, but the formation and maintenance of this coating is not stable if only sulfide is present. The inventors of the present invention have found that CaO-Al2O3When a low-melting oxide of the system coexists, a film is stably formed, and the (Ca, Mn) S-based composite sulfide has higher lubricating performance than simple MnS.
[0047]
The significance of forming a coating on the tool surface by the (Ca, Mn) S-based composite sulfide is in the effect of suppressing wear of a carbide tool called "thermal diffusion wear". In thermal diffusion wear, when a tool comes in contact with chips generated from a cutting object at a high temperature, carbides typified by tungsten carbide WC constituting the tool material are thermally decomposed, and C is diffused into the chip metal and lost. As a result, the tool becomes brittle and wear progresses. When a film having high lubricity is formed on the tool surface, a rise in the temperature of the tool is prevented, and the diffusion of C is suppressed.
[0048]
Dual structure inclusion CaO-Al of free-cutting steel of the present invention2O3In other words, / (Ca, Mn) S is MnS which is an inclusion of conventional sulfur free-cutting steel and Anorsite CaO.Al which is an inclusion of conventional calcium free-cutting steel.2O3・ 2SiO2It can be said that they have both advantages. MnS shows lubricity on the tool surface, but has poor coating stability and is ineffective against thermal diffusion wear. On the other hand, CaO.Al2O3・ 2SiO2Forms a stable film to prevent thermal diffusion wear, but has poor lubricity. On the other hand, the dual structure inclusion of the present invention forms a stable film to effectively prevent thermal diffusion wear and shows better lubricity.
[0049]
Since the formation of such double-structure inclusions starts from preparing a low-melting-point composite oxide as described above, the amount of [Al] is important first, and the presence of at least 0.001% is necessary. It is. If the amount of [Al] is too large, the melting point of the composite oxide becomes high. Next, in order to adjust the amount of CaS generated, [Ca] × [S] and [Ca] / [S] are controlled to the values described above.
[0050]
The mechanism described above is not a hypothesis, but it is based on the fact that, in the invention of the present invention, the state of the surface of the carbide tool after turning the free-cutting steel and the analysis result of the molten inclusions attached to it This was clarified by comparison with the case where conventional sulfur free-cutting steel was turned.
[0051]
The excellent chip friability, which characterizes the free-cutting steel for machine structures of the present invention, is brought about by the miniaturization of MnS inclusions as described above. Assuming that the amount of inclusions is constant, miniaturization means an increase in the number of inclusions. The amount of MnS inclusions in the steel of the present invention is mainly determined by the S content. Since the amount of S varies from 0.01% to 0.2%, the amount of MnS also changes accordingly, and the number of fine inclusions increases or decreases. In the steels of the present invention, MnS inclusions are finer than MnS inclusions in conventional steel, but among them, the presence of which affects chip friability, also has an average particle size. It is 1.0 μm or more. (Here, “average particle size” refers to the average value of the major axis and minor axis of the particle cross section shown in the field of view of the microscope.)
[0052]
Although the S content is different, all of the steels of the present invention having a high chip crushing property have a unit cross-sectional area (mm2The number of inclusions was examined using an optical microscope with a magnification of 400. The number of inclusions shown in Table 1 below was obtained, and the relationship with the S amount was found to be almost constant.
[0053]
Table 1
[0054]
From this data, the number of MnS inclusions was found to be 5 / mm per 0.01% S content over various ranges of S content.2It was concluded that good chip crushability could be secured if it was above. This fact is clearly shown in the graph of FIG. This graph shows that, among the MnS inclusions, those having an average particle size of 1.0 μm or more but smaller than the MnS inclusions in conventional steel account for the total percentage, It is the graph which plotted the relationship with chip friability, and shows that the chip friability index increases as the ratio of fine MnS inclusions increases.
[0055]
【Example】
In the following tables of Examples and Comparative Examples, those whose numbers start with uppercase letters (A, B,...) Are Examples, and those whose numbers start with lowercase letters (a, b,...) Are Comparative Examples. The melted alloy was cast into an ingot, and a round bar-shaped test piece having a diameter of 72 mm was sampled from the ingot and subjected to a test. The method and evaluation of each test are as follows.
[0056]
[Occupation area of sulfide inclusions]
Occupation of sulfide-based inclusions containing 1 to 45% by weight of Ca and present in contact with oxide-based inclusions having a CaO content of 0.2 to 62% by weight and a melting point of 1500 to 1750 ° C Check the area, view area 3.5mm22.0 × 10 per-4mm2A case having the above occupied area was evaluated as good (○), and a case having no occupied area was evaluated as poor (印).
[0057]
[Area ratio of double structure inclusion]
Take a micrograph (magnification: 200x) and divide all sulfide-based inclusions into simple sulfides and double-structured inclusions, and the proportion of double-structured inclusions in the area of total sulfide-based inclusions (%) Was calculated.
[0058]
[Machinability]
Turning with a carbide tool under the following conditions
Speed: 200m / min
Feed: 0.2mm / rotation
Depth: 2.0mm
The tool life of a free-cutting sulfur steel having an S content in the range of 0.01 to 0.2% was ranked as a standard, as follows. The tool life was evaluated by the processing time until the average lateral flank wear width became 0.2 mm.
Good machinability when 5 times tool life is achieved (marked with ○)
Machinability is possible when it is 2 times or more and less than 5 times (△ mark)
Poor machinability when less than twice (x mark)
[0059]
[Protective coating]
Whether or not a protective coating was formed on the surface of the tool during cutting was observed and evaluated as follows.
When film formation is sufficient: ○
When film formation is observed but insufficient: △
When film formation is hardly recognized: ×
[0060]
[Crushability of chips]
Collect chips when cutting under the following conditions,
Speed: 150m / min
Feed: 0.025 to 0.200 mm / rotation
Depth: 0.3-1.0mm
Tool: DNMG150480-MA
A score of 0 to 4 points was given according to the length, and a total score of 30 cutting conditions was defined as a “chip crushability index”. Evaluation was made as follows according to the result of comparison with the chip friability index of a free-cutting sulfur steel having the same sulfur content.
Higher case is better (○ mark)
Bad if the score is tied or low (x mark)
[0061]
[Example 1]
The present invention was applied to S45C steel. The alloy composition of the steel is shown in Table 2 (Example) and Table 3 (Comparative Example). Table 4 (Examples) and Table 5 (Comparative Examples) collectively show the production conditions of each free-cutting steel, the ratio of specific components, and the results regarding the tool life and chip crushability.
[0062]
[Example 2]
For S15C-based free-cutting steel, in the same manner as in Example 1, an alloy smelting and machinability test were performed. The alloy compositions are shown in Table 6 (Examples and Comparative Examples), and the results data are shown in Table 7 (Examples and Comparative Examples).
[0063]
[Example 3]
For the S55C-based free-cutting steel, in the same manner as in Example 1, an alloy smelting and machinability test were performed. The alloy compositions are shown in Table 8 (Examples and Comparative Examples), and the results data are shown in Table 9 (Examples and Comparative Examples).
[0064]
[Example 4]
With respect to the SCR415-based free-cutting steel, an alloy smelting and machinability test were performed in the same manner as in Example 1. The alloy compositions are shown in Table 10 (Examples and Comparative Examples), and the results data are shown in Table 11 (Examples and Comparative Examples).
[0065]
[Example 5]
With respect to the SCM440-based free-cutting steel, an alloy smelting and machinability test were performed in the same manner as in Example 1. The alloy compositions are shown in Table 12 (Examples and Comparative Examples), and the test results are shown in Table 13 (Examples and Comparative Examples).
[0066]
[0067]
[0068]
[0069]
[0070]
[0071]
[0072]
[0073]
[0074]
[0075]
[0076]
[0077]
[0078]
【The invention's effect】
In the free-cutting steel for a machine structure according to the present invention, the same machinability as the free-cutting steel disclosed above is realized. In other words, since the inclusion of double structure inclusions that provide high machinability exists in the optimal form, the tool life is more than five times that of conventional sulfur free-cutting steel in cutting, especially in carbide tool turning. Can easily be achieved.
[0079]
The high chip friability made possible by the free-cutting steel disclosed above is the result of the addition of traces of Ti (or Zr) to form finely dispersed MnS inclusions. This effect is also realized in the free-cutting steel for machine structures according to the present invention. The high chip friability is, of course, particularly advantageous for turning. A product in which fine Ti (CN) is generated in steel can suppress the growth of old austenite crystal grains during hot forging. Therefore, in addition to machinability and chip crushability, fatigue strength and bending It has high straightening properties and is useful for applications requiring such properties.
[0080]
The production method of the present invention is a method capable of reliably producing the free-cutting steel for a mechanical structure as described above, and performs the adjusted deoxidation by adjusting the amount of Al prior to the addition of Ca or the like. MnS inclusions are finely dispersed by adding a suitable amount of Ti at an appropriate timing, that is, after forming the double structure inclusions by controlled deoxidation, in a favorable manner. In addition, since the double-structure inclusion occupies a certain amount of the total sulfide-based inclusion, a free-cutting steel having a favorable balance between tool life and chip crushability can be obtained. If this production method is carried out by appropriately selecting the amount of O and the amount of N together with the amount of Ti, fine Ti (CN) is generated in the steel, and the free cutting for a machine structure having improved fatigue strength and bending straightenability. Steel can be manufactured.
[Brief description of the drawings]
FIG. 1 is a photomicrograph showing the shape of inclusions in free-cutting steel for machine structures according to the present invention.
FIG. 2 is a micrograph showing the shape of inclusions in a conventional sulfur free-cutting steel.
FIG. 3 is a graph showing the relationship between the area occupied by “double structural inclusions” and the tool life ratio in free-cutting steel for machine structures.
FIG. 4 is a graph showing the relationship between the ratio of the “double structure inclusions” to the area of all sulfide-based inclusions and the tool life ratio in free-cutting steel for mechanical structures.
FIG. 5 is a graph showing the relationship between the ratio of “double structure inclusions” to the total sulfide inclusions in the free-cutting steel for machine structures, the drilling efficiency, and the rotational bending fatigue limit.
FIG. 6 is a graph plotting the relationship between the Al content and the tool life ratio in free-cutting steel for machine structures.
FIG. 7 is a graph showing whether or not “double structure inclusions” were obtained in free-cutting steels for machine structures having various S contents and O contents.
FIG. 8 is a graph showing whether or not a target of a tool life ratio of 5 or more has been achieved in free-cutting steels for machine structures having various S contents and Ca contents.
FIG. 9 is a graph showing a relationship between a ratio of fine MnS in MnS inclusions in a free-cutting steel for a mechanical structure and a chip crushing index.
Claims (9)
[S]/[O]:8〜80
[Ca]×[S]:1×10−5〜1×10− 3 かつ
[Ca]/[S]:0.01〜20
CaO含有量が0.2〜62%で、融点が1500〜1750℃である酸化物系介在物と接して存在する、1〜45%のCaを含有する硫化物系介在物の占有面積が、視野面積3.5mm2当たり2.0×10−4mm2以上としたのち、Ti:0.002〜0.010%およびZr:0.002〜0.025%の1種または2種を添加して、調整された脱酸後の鋼中のOとTiおよび(または)Zrとの反応により微細なTi酸化物および(または)Zr酸化物を形成させ、これを含む複合酸化物を核としてMnS介在物を析出させることにより、微細に分散したMnS介在物を得ることからなる、被削性にすぐれるとともに切屑破砕性が高い機械構造用鋼の製造方法。The method for producing a steel for machine structural use according to claim 1, wherein, by weight%, C: 0.05 to 0.8%, Si: 0.01 to 2.0%, Mn: 0.1 to 0.1%. 3.5%, S: 0.01 to 0.2%, Al: 0.001 to 0.020%, Ca: 0.0005 to 0.02%, O: 0.0005 to 0.01%, and N : A steel having a composition of 0.001 to 0.04%, with the balance being unavoidable impurities and Fe, is melted, and at this time, the deoxidation is adjusted by performing an operation satisfying the following conditions. ,
[S] / [O]: 8 to 80
[Ca] × [S]: 1 × 10 -5 ~1 × 10 - 3 and [Ca] / [S]: 0.01~20
The occupation area of the sulfide-based inclusion containing Ca of 1 to 45%, which is in contact with the oxide-based inclusion having a CaO content of 0.2 to 62% and a melting point of 1500 to 1750 ° C, After making the visual field area 3.5 mm 2 2.0 × 10 −4 mm 2 or more, one or two kinds of Ti: 0.002 to 0.010% and Zr: 0.002 to 0.025% are added. Then, fine Ti oxides and / or Zr oxides are formed by the reaction between O and Ti and / or Zr in the steel after the adjusted deoxidation, and a composite oxide containing these is used as a core. A method for producing a steel for machine structural use having excellent machinability and high chip crushability, comprising obtaining finely dispersed MnS inclusions by precipitating MnS inclusions.
[Ti]×[N]:5×10− 6〜2×10− 4
[O]/[N]:0.06以上
TiOを核として微細に分散析出させるMnSの量を確保するとともに、熱間加工時の旧オーステナイト結晶粒度を微細に保つことにより、被削性および切屑破砕性に加えて、すぐれた疲労強度および曲げ矯正性を示す機械構造用鋼を得る請求項8の製造方法。When Ti is added, the average particle size distribution of Ti (C, N) and TiO is adjusted by adjusting the Ti amount, N amount, and O amount so as to satisfy the following conditions.
[Ti] × [N]: 5 × 10 - 6 ~2 × 10 - 4
[O] / [N]: 0.06 or more The amount of MnS to be finely dispersed and precipitated with TiO as a nucleus is ensured, and the machinability and chips are maintained by keeping the austenite crystal grain size during hot working fine. 9. The production method according to claim 8, wherein a steel for machine structural use which exhibits excellent fatigue strength and bendability in addition to friability is obtained.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002256778A JP4013706B2 (en) | 2002-09-02 | 2002-09-02 | Machine structural steel with excellent machinability and high chip crushability |
US10/305,064 US6764645B2 (en) | 2001-11-28 | 2002-11-27 | Steel for machine structural use having good machinability and chip-breakability |
DE60213743T DE60213743T2 (en) | 2001-11-28 | 2002-11-28 | Steel with good machinability and chip breaking for engineering applications |
EP02026499A EP1316624B1 (en) | 2001-11-28 | 2002-11-28 | Steel for machine structural use having good machinability and chip-breakability |
CNB021518653A CN1276114C (en) | 2001-11-28 | 2002-11-28 | Steel with good cutting and cutting breaking performance for physical construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002256778A JP4013706B2 (en) | 2002-09-02 | 2002-09-02 | Machine structural steel with excellent machinability and high chip crushability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004091886A true JP2004091886A (en) | 2004-03-25 |
JP4013706B2 JP4013706B2 (en) | 2007-11-28 |
Family
ID=32061906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002256778A Expired - Lifetime JP4013706B2 (en) | 2001-11-28 | 2002-09-02 | Machine structural steel with excellent machinability and high chip crushability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4013706B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009007643A (en) * | 2007-06-28 | 2009-01-15 | Kobe Steel Ltd | Steel for machine structure having excellent machinability |
JP2009046722A (en) * | 2007-08-17 | 2009-03-05 | Kobe Steel Ltd | Steel for machine structure superior in strength-anisotropy and machinability, and component for machine structure |
WO2009096260A1 (en) | 2008-01-28 | 2009-08-06 | Kabushiki Kaisha Kobe Seiko Sho | Steel for machine structural use with excellent machinability |
WO2018212196A1 (en) * | 2017-05-15 | 2018-11-22 | 新日鐵住金株式会社 | Steel and component |
JP2021155766A (en) * | 2020-03-25 | 2021-10-07 | 日本製鉄株式会社 | STRETCHABLE MnS LOW STEEL MATERIAL, STEEL SLAB, AND METHOD FOR MANUFACTURING THEM |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102103382B1 (en) * | 2018-10-29 | 2020-04-22 | 주식회사 포스코 | Steel material and manufacturing method thereof |
-
2002
- 2002-09-02 JP JP2002256778A patent/JP4013706B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009007643A (en) * | 2007-06-28 | 2009-01-15 | Kobe Steel Ltd | Steel for machine structure having excellent machinability |
JP2009046722A (en) * | 2007-08-17 | 2009-03-05 | Kobe Steel Ltd | Steel for machine structure superior in strength-anisotropy and machinability, and component for machine structure |
WO2009096260A1 (en) | 2008-01-28 | 2009-08-06 | Kabushiki Kaisha Kobe Seiko Sho | Steel for machine structural use with excellent machinability |
US8273292B2 (en) | 2008-01-28 | 2012-09-25 | Kobe Steel, Ltd. | Steel for machine and structural use having excellent machinability |
WO2018212196A1 (en) * | 2017-05-15 | 2018-11-22 | 新日鐵住金株式会社 | Steel and component |
JPWO2018212196A1 (en) * | 2017-05-15 | 2020-03-26 | 日本製鉄株式会社 | Steel and parts |
JP2021155766A (en) * | 2020-03-25 | 2021-10-07 | 日本製鉄株式会社 | STRETCHABLE MnS LOW STEEL MATERIAL, STEEL SLAB, AND METHOD FOR MANUFACTURING THEM |
JP7492118B2 (en) | 2020-03-25 | 2024-05-29 | 日本製鉄株式会社 | Steel product with low ductile MnS, steel slab, and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4013706B2 (en) | 2007-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4473928B2 (en) | Hot-worked steel with excellent machinability and impact value | |
KR101162743B1 (en) | Steel for machine structure excelling in machinability and strength property | |
EP1316624B1 (en) | Steel for machine structural use having good machinability and chip-breakability | |
WO2004050932A1 (en) | Steel excellent in machinability and method for production thereof | |
JP3753054B2 (en) | Free-cutting steel for machine structures with excellent carbide tool machinability | |
JP3671688B2 (en) | Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting | |
JP2001131684A (en) | Steel for machine structure excellent in treatment of chip | |
JP3558889B2 (en) | Hot-forged machine structural steel with excellent machinability | |
JP4264329B2 (en) | Steel with excellent machinability | |
JP4041413B2 (en) | Machine structural steel having excellent chip disposal and manufacturing method thereof | |
JP4013706B2 (en) | Machine structural steel with excellent machinability and high chip crushability | |
JP4023196B2 (en) | Machine structural steel with excellent machinability | |
JP2003034840A (en) | Steel for machine structure superior in machinability | |
JP2004068128A (en) | Steel for machine structural use having excellent chip crushability | |
JP3912308B2 (en) | Steel for machine structure | |
WO2003064715A1 (en) | Bainite type non-refined steel for nitriding, method for production thereof and nitrided product | |
JP2005307241A (en) | High-sulfur free-cutting steel | |
JP3901582B2 (en) | Free cutting steel for mold | |
JP4148311B2 (en) | Lead-free mechanical structural steel with excellent machinability and small strength anisotropy | |
JP4310800B2 (en) | High sulfur free cutting steel | |
CN115349026B (en) | Free-cutting steel and method for producing same | |
JP4222112B2 (en) | High sulfur free cutting steel | |
JP2003055743A (en) | Steel for cold die having excellent machinability | |
JP7024922B1 (en) | Free-cutting steel and its manufacturing method | |
JP4348164B2 (en) | Steel with excellent machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070903 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4013706 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110921 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110921 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120921 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |