JP2002069557A - Ni BASED HIGH STRENGTH ALLOY - Google Patents

Ni BASED HIGH STRENGTH ALLOY

Info

Publication number
JP2002069557A
JP2002069557A JP2000261636A JP2000261636A JP2002069557A JP 2002069557 A JP2002069557 A JP 2002069557A JP 2000261636 A JP2000261636 A JP 2000261636A JP 2000261636 A JP2000261636 A JP 2000261636A JP 2002069557 A JP2002069557 A JP 2002069557A
Authority
JP
Japan
Prior art keywords
less
alloy
phase
strength
rust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000261636A
Other languages
Japanese (ja)
Other versions
JP4419298B2 (en
Inventor
Shigenori Ueda
茂紀 植田
Toshiharu Noda
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000261636A priority Critical patent/JP4419298B2/en
Publication of JP2002069557A publication Critical patent/JP2002069557A/en
Application granted granted Critical
Publication of JP4419298B2 publication Critical patent/JP4419298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonmagnetic alloy material having high strength exceeding 2,000 MPa at room temperature and high temperature stability, having high hardness and high corrosion resistance, also good in workability and high in versatile applicability in an Ni based alloy. SOLUTION: This Ni based high strength alloy has an alloy composition containing, by weight, <=0.1% C, <=2.0% Si, <=2.0% Mn, 30 to 45% Cr and 1.5 to 5% Al, and the balance Ni with inevitable impurities as a fundamental composition and strengthened by the composite precipitation of a γ' phase and an α phase. One or more kinds selected from the elements in the following groups may be added tehreto: (I) one or more kinds selected from Ti, Zr and Hf (in total in the case of two or more kinds): <=3.0%, (II) one or more kinds selected from Nb, Ta and V (in total in the case of two or more kinds): <=3.0%, (III) <=10% Co, <=10% Mo and/or <=10% W so as to satisfy Mo+0.5W: <=10% and (IV) one or more kinds selected from <=5% Cu, <=0.015% B, <=0.01% Mg, <=0.01% Ca and <=0.1% rare earth metals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni基の高強度合
金の改良に関する。本発明により、高強度とともに高温
安定性および耐高温腐食性を要求されるエンジン排気系
やガスタービン周辺の耐熱部品、高硬度と高耐食性を要
求される軸受けなどの部品、高強度で非磁性を要求され
るシャフトやボルトなどの部品の材料として好適な、N
i基合金が提供される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a Ni-based high-strength alloy. According to the present invention, heat-resistant parts around engine exhaust systems and gas turbines that require high strength and high-temperature stability and high-temperature corrosion resistance, bearings that require high hardness and high corrosion resistance, parts that require high hardness and high corrosion resistance, N, which is suitable as a material for required parts such as shafts and bolts
An i-based alloy is provided.

【0002】[0002]

【従来の技術】たとえば上記したエンジン排気系やガス
タービン周辺の部品のように、高温にさらされる部分で
使用され、高強度と耐高温腐食性とを長時間維持できる
ことが必要な部品の材料としては、γ’相すなわちNi
3(Al,Ti,Nb)やγ”相すなわちNi3Nbの析
出強化合金であるInconelX−750や、Inc
onel−718などのNi基超合金が採用されてき
た。しかしながら、この種のNi基合金の室温硬さは高
々HRC40程度であり、引張り強度もせいぜい150
0MPa止まりである。
2. Description of the Related Art As a material for parts which are required to be able to maintain high strength and high-temperature corrosion resistance for a long period of time, for example, in parts exposed to high temperatures, such as parts for engine exhaust systems and gas turbines described above. Is the γ 'phase, ie, Ni
3 (Al, Ti, Nb) or γ ″ phase, ie, Inconel X-750, which is a precipitation strengthened alloy of Ni 3 Nb, Inc.
Ni-based superalloys such as onel-718 have been employed. However, the room-temperature hardness of this type of Ni-based alloy is at most about HRC40 and the tensile strength is at most 150.
It stops at 0 MPa.

【0003】高硬度と高耐食性を要求される軸受けなど
の部品には、JISのSUS440Cなど、HRC58
を超えるマルテンサイト系のステンレス鋼が用いられて
いるが、この鋼の耐食性は低いため腐食性環境には向か
ず、また当然に非磁性ではないことから、非磁性を要求
される用途には使えない。
[0003] Parts such as bearings that require high hardness and high corrosion resistance include HRC58 such as JIS SUS440C.
Stainless steel is used for applications requiring non-magnetism because it has low corrosion resistance and is not suitable for corrosive environments, and is naturally non-magnetic. Absent.

【0004】高強度で非磁性を要求されるシャフトやボ
ルトなどの材料には、特開昭62−20855に開示さ
れた加工硬化型オーステナイト系ステンレス鋼が使用さ
れていて、引張り強度は強加工材で1800MPaのレ
ベルに達するが、高温になると加工硬化が回復してしま
い、強度が低下する。
A work hardening type austenitic stainless steel disclosed in Japanese Patent Application Laid-Open No. 62-20855 is used for materials such as shafts and bolts that require high strength and non-magnetism. , The level of 1800 MPa is reached, but when the temperature rises, work hardening recovers and the strength decreases.

【0005】このようなわけで、室温で2000MPa
を超える高強度および高温安定性、高硬度、高耐食性お
よび非磁性の要求のすべてを満たす合金は、まだ実現し
ていない。
For this reason, at room temperature, 2000 MPa
Alloys that meet all of the requirements of high strength and high temperature stability, high hardness, high corrosion resistance and non-magnetic properties which have not been realized yet.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
した諸特性すなわち室温で2000MPaを超える高強
度および高温安定性、高硬度、高耐食性および非磁性の
すべてを兼ね備えている上に、加工性も良好で、汎用性
の高い合金材料を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide not only the above-mentioned properties, that is, high strength exceeding 2000 MPa at room temperature, high temperature stability, high hardness, high corrosion resistance and non-magnetic properties, but also An object of the present invention is to provide an alloy material having good versatility and high versatility.

【0007】[0007]

【課題を解決するための手段】この目的を達成すること
ができる本発明のNi基高強度合金は、基本的な合金組
成として、重量%で、C:0.1%以下,Si:2.0
%以下,Mn:2.0%以下,Cr:30〜45%およ
びAl:1.5〜5%を含有し、残部が不可避的不純物
およびNiからなる合金組成を有し、γ’相およびα相
の複合析出により強化されているNi基高強度合金であ
る。
The Ni-based high-strength alloy of the present invention, which can achieve this object, has a basic alloy composition in which, by weight%, C: 0.1% or less, Si: 2.% or less. 0
%, Mn: 2.0% or less, Cr: 30 to 45% and Al: 1.5 to 5%, the balance being an alloy composition consisting of unavoidable impurities and Ni, γ ′ phase and α It is a Ni-based high-strength alloy that is strengthened by complex precipitation of phases.

【0008】Ni基超合金の析出強化には、前述のよう
にγ´相が利用されているが、これに加えてCrを主体
とするα相を複合析出させることにより、高強度および
高温安定性、高硬度、高耐食性および非磁性の兼備が可
能になった。この合金は熱間加工が可能であり、また固
溶化熱処理をすればHRB95以下に軟化するため、冷
間加工性にもすぐれており、製造性がよく汎用性が高い
材料である。
[0008] As described above, the γ 'phase is used for strengthening the precipitation of a Ni-based superalloy. In addition to this, a composite precipitation of an α phase mainly composed of Cr provides high strength and high temperature stability. , High hardness, high corrosion resistance and non-magnetic properties. This alloy can be hot-worked, and if it is subjected to a solution heat treatment, it is softened to an HRB of 95 or less. Therefore, it is excellent in cold workability, and is a material with good manufacturability and high versatility.

【0009】[0009]

【発明の実施形態】本発明のNi基高強度合金は、上記
の基本的な合金成分に加えて、下記のグループに属する
任意添加元素のひとつまたはふたつ以上を含有すること
ができる。 I)Ti,ZrおよびHfの1種または2種以上(2種
以上の場合は合計で):3.0%以下、 II)Nb,TaおよびVの1種または2種以上(2種以
上の場合は合計で):3.0%以下、 III)Co:10%以下、Mo:10%以下および(ま
たは)W:10%以下を、Mo+0.5W:10%以
下、ならびに IV)Cu:5%以下、B:0.015%以下、Mg:
0.01%以下、REM:0.1%以下、Ca:0.0
1%以下およびREM:0.1%以下の1種または2種
以上。
BEST MODE FOR CARRYING OUT THE INVENTION The Ni-based high-strength alloy of the present invention may contain one or more optional elements belonging to the following groups in addition to the above basic alloy components. I) One or more of Ti, Zr and Hf (in the case of two or more, in total): 3.0% or less; II) One or more of Nb, Ta and V (two or more) III) Co: 10% or less, Mo: 10% or less, and / or W: 10% or less, Mo + 0.5W: 10% or less, and IV) Cu: 5 %, B: 0.015% or less, Mg:
0.01% or less, REM: 0.1% or less, Ca: 0.0
1% or less and REM: one or more of 0.1% or less.

【0010】以下に、本発明のNi基高強度合金の基本
的な態様を構成する各合金成分の作用と、組成範囲の限
定理由を説明する。
Hereinafter, the operation of each alloy component constituting the basic embodiment of the Ni-based high-strength alloy of the present invention and the reason for limiting the composition range will be described.

【0011】C:0.1%以下、好ましくは0.08%
以下 Cは溶製時に脱酸剤として作用するほか、Ti,Zrお
よびHfのグループに属する元素、またはNb,Taお
よびVのグループに属する元素が存在する場合は、それ
らと炭化物を形成して、固溶化熱処理時の結晶粒粗大化
を防止するとともに、粒界の強化に寄与する。0.1%
を超える添加は、強度および靭性を低下させる。好まし
い含有量の上限界は0.08%である。
C: 0.1% or less, preferably 0.08%
In the following, C acts as a deoxidizing agent at the time of melting, and when there is an element belonging to the group of Ti, Zr and Hf, or an element belonging to the group of Nb, Ta and V, forms a carbide with them. This prevents crystal grain coarsening during solution heat treatment and contributes to strengthening of grain boundaries. 0.1%
The addition exceeding the above lowers the strength and toughness. The upper limit of the preferred content is 0.08%.

【0012】Si:2.0%以下 Siは脱酸剤として必要であるが、多量の添加は、強度
および靭性の低下を招く。その限界は2.0%である。
1.0%以下が好ましい。
Si: 2.0% or less Si is necessary as a deoxidizing agent, but a large amount of Si causes a decrease in strength and toughness. Its limit is 2.0%.
1.0% or less is preferable.

【0013】Mn:2.0%以下 MnもSiと同様、脱酸剤として有用であるが、過大な
添加はやはり強度および靭性の低下を招く。上限とし
て、2.0%を設定した。これも、1.0%以下が好ま
しい。
Mn: 2.0% or less Mn, like Si, is also useful as a deoxidizing agent, but excessive addition again causes a decrease in strength and toughness. 2.0% was set as the upper limit. This is also preferably 1.0% or less.

【0014】Cr:30〜45% Crはα相を形成する主要な元素であり、α相がγ’相
と複合析出することで高強度と高硬度が得られるという
点で、重要な元素である。もちろん、耐食性にも寄与す
る。これらの効果は、30%に満たない量では十分に得
られず、一方で45%を超える添加は、加工性の低下を
招く。より好適な範囲は、32〜42%である。
Cr: 30 to 45% Cr is a main element that forms the α phase, and is an important element in that high strength and high hardness can be obtained by complex precipitation of the α phase with the γ ′ phase. is there. Of course, it also contributes to corrosion resistance. These effects cannot be sufficiently obtained with an amount of less than 30%, while an addition of more than 45% causes a reduction in workability. A more preferred range is 32-42%.

【0015】Al:1.5〜5.0% Alはγ’相を形成する重要な元素であり、さらに耐高
温腐食性の向上にも役立つ。この効果は1.5%に達し
ない添加では得られず、また添加量が5.0%を超える
と、加工性が悪くなる。好ましい範囲は、2.0〜4.
5%である。
Al: 1.5 to 5.0% Al is an important element for forming the γ 'phase, and is also useful for improving high-temperature corrosion resistance. This effect cannot be obtained when the addition does not reach 1.5%, and when the addition amount exceeds 5.0%, the workability deteriorates. The preferred range is 2.0-4.
5%.

【0016】本発明のNi基高強度合金の変更態様にお
いて任意に添加する各グループの合金成分の作用と、組
成範囲の限定理由はつぎのとおりである。
In the modified embodiment of the Ni-based high-strength alloy of the present invention, the action of the alloy components of each group arbitrarily added and the reason for limiting the composition range are as follows.

【0017】Ti,ZrおよびHfの1種または2種以上
(2種以上の場合は合計で):3.0%以下 これらの元素は、γ’相を形成するAlと置換すること
によりγ’相の固溶強化に寄与し、合金の強度をさらに
高める働きがあるから、Alと複合して添加するとよ
い。ただし、Alとの合計量が7%を超えると、加工性
を悪くする。3種の元素のうちで、強度の向上に最も効
果的なものはTiであり、その添加量の最適な範囲は2
%以下である。ZrおよびHfには、結晶粒界に偏析し
て粒界を強化する効果もある。ZrおよびHfの添加量
は、0.1%以下のところに最適範囲がある。
One or more of Ti, Zr and Hf (in the case of two or more, in total): not more than 3.0% These elements are replaced by Al which forms the γ 'phase to form γ'. Since it contributes to solid solution strengthening of the phase and has a function of further increasing the strength of the alloy, it is preferable to add it in combination with Al. However, if the total amount with Al exceeds 7%, the workability deteriorates. Of the three elements, the one that is most effective in improving the strength is Ti.
% Or less. Zr and Hf also have the effect of segregating at crystal grain boundaries and strengthening the grain boundaries. There is an optimum range of the addition amount of Zr and Hf at 0.1% or less.

【0018】Nb,TaおよびVの1種または2種以上
を(2種以上の場合は合計で):3.0%以下 Nb,TaおよびVも、Ti,ZrおよびHfと同様な
機構で、すなわちγ’相を形成するAlと置換すること
によりγ’相の固溶強化に寄与し、合金の強度をさらに
高める作用がある。しかし、3%を超える添加は、加工
性を悪くする。これら3種の元素のうちで、添加効果が
最も高いものはNbおよびTaであり、その添加量の最
適な範囲は2%以下である。Vの最適な添加量は、0.
5%以下である。
One or more of Nb, Ta and V (total of two or more): 3.0% or less Nb, Ta and V also have the same mechanism as Ti, Zr and Hf. In other words, by substituting Al for forming the γ 'phase, it contributes to solid solution strengthening of the γ' phase, and has the effect of further increasing the strength of the alloy. However, addition exceeding 3% deteriorates processability. Among these three elements, Nb and Ta have the highest addition effects, and the optimum range of the addition amount is 2% or less. The optimal addition amount of V is 0.
5% or less.

【0019】Co:10%以下、Mo:10%以下およ
び(または)W:10%以下を、Mo+0.5W:10
%以下 Coは、固溶強化により合金の強度を高める。γ’相の
析出量を増大させる存在でもある。しかしCoは高価な
材料であるから、多量の添加は得策といえず、現実的な
上限は、10%である。MoおよびWもまた、固溶強化
により合金の強度を高める。Moには、耐食性を向上さ
せる働きもある。Mo+0.5Wが10%を超えると、
加工性や耐高温腐食性を損なう。MoもWも高価な材料
であるから、多量の添加は合金のコストを高めて不利で
ある。
Co: 10% or less, Mo: 10% or less and / or W: 10% or less, Mo + 0.5W: 10
% Or less Co enhances the strength of the alloy by solid solution strengthening. It is also present to increase the precipitation amount of the γ 'phase. However, since Co is an expensive material, it is not advisable to add a large amount of Co, and the practical upper limit is 10%. Mo and W also increase the strength of the alloy by solid solution strengthening. Mo also has a function of improving corrosion resistance. When Mo + 0.5W exceeds 10%,
Impairs workability and hot corrosion resistance. Since both Mo and W are expensive materials, adding a large amount is disadvantageous because it increases the cost of the alloy.

【0020】Cu:5%以下、B:0.015%以下、
Mg:0.01%以下、Ca:0.01%以下およびR
EM:0.1%以下の1種または2種以上 Cuは冷間加工性を改善する。さらに、耐硫酸腐食性を
顕著に向上させる高価もある。多量の添加は熱間加工性
にとって好ましくないから、5%以内の添加に止めるべ
きである。B,MgおよびCaは、いずれも熱間加工性
を改善する。Bは、これに加えて結晶粒界に偏析して粒
界を強化し、クリープ強度を高めるのにも役立つ。Mg
およびCaは、溶解時に脱酸および脱硫を意図して添加
することもある。いずれも過大な添加は、かえって熱間
加工性を低下させる。そこで添加量の限界として、Bに
ついては0.015%、MgおよびCaについては0.
01%を設けた。REMは、高温で使用する部品の耐酸
化性を高める。この効果は、主として、密着したスケー
ルの剥離を抑制するという機構を通じて得られる。しか
し、熱間加工性にとっては好ましくない存在であるか
ら、0.1%以下の添加に止める。
Cu: 5% or less, B: 0.015% or less,
Mg: 0.01% or less, Ca: 0.01% or less and R
EM: One or more of 0.1% or less Cu improves cold workability. In addition, there is a cost that significantly improves the sulfuric acid corrosion resistance. Large additions are undesirable for hot workability and should be limited to no more than 5%. B, Mg and Ca all improve hot workability. B additionally segregates at crystal grain boundaries to strengthen the grain boundaries and also serves to increase creep strength. Mg
And Ca may be added for the purpose of deoxidation and desulfurization during dissolution. In any case, excessive addition lowers the hot workability. Therefore, as a limit of the addition amount, 0.015% for B, and 0.1% for Mg and Ca.
01%. REM increases the oxidation resistance of components used at high temperatures. This effect is mainly obtained through a mechanism of suppressing peeling of the scale that has been in close contact. However, since it is unfavorable for hot workability, the addition is limited to 0.1% or less.

【0021】不純物として混入してくる物質のうち、も
っとも可能性が高いのは、Feである。Feは合金の強
度、高温および常温の耐食性を低くする傾向があるの
で、原料を吟味するなどして、なるべく混入量を低く抑
える。許容できる限界は5%であるが、できれば3%以
下に止めたい。
Among the substances that are mixed as impurities, the most likely substance is Fe. Since Fe tends to lower the strength of the alloy and the corrosion resistance at high and normal temperatures, the amount of Fe is reduced as much as possible by examining the raw materials. The acceptable limit is 5%, but we would like to keep it below 3% if possible.

【0022】[0022]

【実施例】表1(実施例)および表2(比較例)に示す
合金組成をもつNi基合金を各50kg、真空誘導炉で溶
製し、インゴットに鋳造した。
EXAMPLES Ni-base alloys having the alloy compositions shown in Table 1 (Example) and Table 2 (Comparative Example) were each melted in a vacuum induction furnace in an amount of 50 kg and cast into ingots.

【0023】 表1(その1) 合金組成(実施例、残部Ni)No. C Si Mn Cr Al Cu,Co Mo,W Ti,Zr,Hf Nb,Ta,V その他 1 0.01 0.12 0.22 37.7 3.9 - - - - - 2 0.02 0.20 0.18 39.6 3.1 - - Ti:1.2 - - Zr:0.01 3 0.08 0.15 0.23 31.5 4.5 - - Ti:0.2 Nb:0.2 - Hf:0.06 4 0.05 0.04 0.06 38.2 3.7 - Mo:3.8 Ti:0.6 Nb:0.2 - Ta:0.1 V:0.2 5 0.02 1.61 0.32 36.8 3.6 - Mo:2.4 Zr:0.02 V:0.1 B:0.003 W:2.6 6 0.03 0.17 0.15 42.9 2.1 - - Ti:0.1 - B:0.003 Mg:0.002 7 0.01 0.14 1.50 37.6 4.0 Cu:2.1 - Ti:0.2 - B:0.003 Hf:0.05 8 0.01 0.06 0.04 33.4 3.4 Co:2.1 Mo:1.1 Ti:0.8 Nb:0.4 Mg:0.002 Ta:0.2 Ca:0.001 9 0.06 0.09 0.11 34.6 3.4 Cu:1.9 Mo:2.0 - Nb:0.8 B:0.005 W:2.2 REM:0.013 10 0.02 0.13 0.21 35.1 3.8 - W:2.2 Zr:0.02 Fe:1.2 B:0.002 Hf:0.01 Mg:0.001 Ca:0.001 11 0.01 0.12 0.11 36.9 3.5 Cu:1.6 Mo:1.9 V:0.3 Ca:0.002 Co:1.2 Table 1 (Part 1) Alloy composition (Example, balance Ni) No. C Si Mn Cr Al Cu, Co Mo, W Ti, Zr, Hf Nb, Ta, V Other 1 0.01 0.12 0.22 37.7 3.9-- ---2 0.02 0.20 0.18 39.6 3.1--Ti: 1.2--Zr: 0.01 3 0.08 0.15 0.23 31.5 4.5--Ti: 0.2 Nb: 0.2-Hf: 0.06 4 0.05 0.04 0.06 38.2 3.7-Mo: 3.8 Ti: 0.6 Nb: 0.2-Ta: 0.1 V: 0.2 5 0.02 1.61 0.32 36.8 3.6-Mo: 2.4 Zr: 0.02 V: 0.1 B: 0.003 W: 2.6 6 0.03 0.17 0.15 42.9 2.1--Ti: 0.1-B: 0.003 Mg: 0.002 7 0.01 0.14 1.50 37.6 4.0 Cu: 2.1-Ti: 0.2-B: 0.003 Hf: 0.05 8 0.01 0.06 0.04 33.4 3.4 Co: 2.1 Mo: 1.1 Ti: 0.8 Nb: 0.4 Mg: 0.002 Ta: 0.2 Ca: 0.001 9 0.06 0.09 0.11 34.6 3.4 Cu: 1.9 Mo: 2.0-Nb: 0.8 B: 0.005 W: 2.2 REM: 0.013 10 0.02 0.13 0.21 35.1 3.8-W: 2.2 Zr: 0.02 Fe: 1.2 B: 0.002 Hf: 0.01 Mg: 0.001 Ca: 0.001 11 0.01 0.12 0.11 36.9 3.5 Cu: 1.6 Mo: 1.9 V: 0.3 Ca: 0.002 Co: 1.2

【0024】 表1(その2) 合金組成(実施例、残部Ni)No. C Si Mn Cr Al Cu,Co Mo,W Ti,Zr,Hf Nb,Ta,V その他 12 0.03 0.25 0.19 32.0 2.3 - Mo:3.2 - Nb:1.8 Fe:2.1 Ta:0.3 Ca:0.002 13 0.02 0.33 0.29 31.8 2.5 Co:2.5 - Ti:1.5 V:0.1 B:0.003 Zr:0.01 Ca:0.002 14 0.01 0.18 0.15 34.3 3.1 Cu:1.2 - Ti:0.7 Nb:0.1 Mg:0.002 15 0.01 0.08 0.07 38.1 3.2 - Mo:1.5 Ti:0.6 Nb:0.2 Fe:1.6 W:1.0 B:0.002 16 0.05 0.21 0.19 35.6 3.6 - - Ti:0.2 B:0.001 Ca:0.001 Zr:0.02 Hf:0.01 REM:0.013 17 0.02 0.11 0.12 36.0 3.5 - Mo:2.8 Ti:0.2 B:0.003 Hf:0.01 Mg:0.001 18 0.03 0.20 0.19 32.5 4.1 Cu:3.6 - Fe:0.5 19 0.01 0.45 0.36 38.2 3.8 Co:0.9 - Zr:0.01 Nb:0.3 Fe:0.6 V:0.1 B:0.002 20 0.01 0.04 0.06 39.3 3.4 - Mo:3.3 Ti:0.5 Ta:0.2 B:0.004 W:1.7 Mg:0.002 REM:0.02 21 0.02 0.06 0.13 34.7 3.4 - Mo:2.9 Ti:0.6 Nb:0.4 B:0.002 Mg:0.001 Ca0.003 Table 1 (Part 2) Alloy composition (Example, balance Ni) No. C Si Mn Cr Al Cu, Co Mo, W Ti, Zr, Hf Nb, Ta, V Others 12 0.03 0.25 0.19 32.0 2.3-Mo : 3.2-Nb: 1.8 Fe: 2.1 Ta: 0.3 Ca: 0.002 13 0.02 0.33 0.29 31.8 2.5 Co: 2.5-Ti: 1.5 V: 0.1 B: 0.003 Zr: 0.01 Ca: 0.002 14 0.01 0.18 0.15 34.3 3.1 Cu: 1.2- Ti: 0.7 Nb: 0.1 Mg: 0.002 15 0.01 0.08 0.07 38.1 3.2-Mo: 1.5 Ti: 0.6 Nb: 0.2 Fe: 1.6 W: 1.0 B: 0.002 16 0.05 0.21 0.19 35.6 3.6--Ti: 0.2 B: 0.001 Ca: 0.001 Zr: 0.02 Hf: 0.01 REM: 0.013 17 0.02 0.11 0.12 36.0 3.5-Mo: 2.8 Ti: 0.2 B: 0.003 Hf: 0.01 Mg: 0.001 18 0.03 0.20 0.19 32.5 4.1 Cu: 3.6-Fe: 0.5 19 0.01 0.45 0.36 38.2 3.8 Co: 0.9-Zr: 0.01 Nb: 0.3 Fe: 0.6 V: 0.1 B: 0.002 20 0.01 0.04 0.06 39.3 3.4-Mo: 3.3 Ti: 0.5 Ta: 0.2 B: 0.004 W: 1.7 Mg: 0.002 REM: 0.02 21 0.02 0.06 0.13 34.7 3.4-Mo: 2.9 Ti: 0.6 Nb: 0.4 B: 0.002 Mg: 0.001 Ca0.003

【0025】 表 2 合金組成(比較例、残部Fe)No. C Si Mn Ni Cr Al Mo Fe Ti,Zr,Hf Nb,Ta,V その他 1 0.03 0.15 0.16 42.3 19.1 0.5 2.9 残 Ti:0.8 Nb:4.9 - Ta:0.3 2 0.05 0.23 0.56 残 16.1 0.9 - 7.9 Ti:2.7 Nb:0.9 B:0.003 3 0.06 0.51 0.48 残 20.2 1.4 - Ti:0.2 Nb:0.2 - Hf:0.06 4 0.36 0.54 0.60 - 13.3 - - 残 - - - 5 1.11 0.42 0.56 - 17.4 - - 残 - - - 6 0.09 0.29 1.41 12.2 18.3 - - 残 - V:0.1 N:0.247 0.08 0.38 18.5 2.4 17.8 - - 残 - N:0.35 比較例は、それぞれ下記した、既知の合金である。 No.1:Inconel 718 No.2:Inconel X-750 No.3:Nimonic 80A No.4:JIS SUS420J2 No.5:JIS SUS440CTable 2 Alloy composition (comparative example, balance Fe) No. C Si Mn NiCrAlMoFeTi, Zr, HfNb, Ta, V Other 1 0.03 0.15 0.16 42.3 19.1 0.5 2.9 Balance Ti: 0.8 Nb: 4.9 -Ta: 0.3 2 0.05 0.23 0.56 remaining 16.1 0.9-7.9 Ti: 2.7 Nb: 0.9 B: 0.003 3 0.06 0.51 0.48 remaining 20.2 1.4-Ti: 0.2 Nb: 0.2-Hf: 0.06 4 0.36 0.54 0.60-13.3--remaining- --5 1.11 0.42 0.56-17.4--Remain---6 0.09 0.29 1.41 12.2 18.3--Remain-V: 0.1 N: 0.24 7 0.08 0.38 18.5 2.4 17.8--Remain-N: 0.35 , A known alloy. No.1: Inconel 718 No.2: Inconel X-750 No.3: Nimonic 80A No.4: JIS SUS420J2 No.5: JIS SUS440C

【0026】各インゴットを1200〜950℃の範囲
の温度で鍛造、圧延して、直径18mmの丸棒にした。た
だし、比較例No.6および7は、直径30mmの丸棒にし
た。つづいて、それぞれの丸棒を、表3の条件で熱処理
または熱処理+塑性加工を施した。
Each ingot was forged and rolled at a temperature in the range of 1200 to 950 ° C. to form a round bar having a diameter of 18 mm. However, Comparative Examples Nos. 6 and 7 were round bars having a diameter of 30 mm. Subsequently, each round bar was subjected to heat treatment or heat treatment + plastic working under the conditions shown in Table 3.

【0027】 表 3区 分 No. 熱処理または熱処理+塑性加工 実施例1〜21 固溶化熱処理(1150℃×1時間−水冷)− 時効熱処理(700℃×16時間−空冷) 比較例 1 熱処理(1000℃×0.5時間−空冷)−(720℃×8時間−炉冷) −(620℃×8時間−空冷) 2 熱処理(1050℃×0.5時間−水冷)−(750℃×16時間−空冷) 3 熱処理(1050℃×0.5時間−水冷)−(750℃×16時間−空冷) 4 熱処理( 950℃×0.5時間−油冷)−(200℃×1時間−空冷) 5 熱処理(1000℃×0.5時間−油冷)−サブゼロ処理− (200℃×1時間−空冷) 6 熱処理(1050℃×1時間−水冷)−減面率80%の冷間スエージング 7 熱処理(1050℃×1時間−水冷)−減面率80%の冷間スエージング Table 3 Category No. Heat treatment or heat treatment + plastic working Examples 1 to 21 Solution heat treatment (1150 ° C x 1 hour-water cooling) -aging heat treatment (700 ° C x 16 hours-air cooling) Comparative Example 1 Heat treatment (1000 ℃ ℃ 0.5 hours-air cooling)-(720 ℃ x 8 hours-furnace cooling)-(620 ℃ x 8 hours-air cooling) 2 Heat treatment (1050 ℃ x 0.5 hours-water cooling)-(750 ℃ x 16 hours-air cooling) 3 Heat treatment (1050 ° C x 0.5 hours-water cooling)-(750 ° C x 16 hours-air cooling) 4 Heat treatment (950 ° C x 0.5 hours-oil cooling)-(200 ° C x 1 hour-air cooling) 5 Heat treatment (1000 ° C x 0.5 hours) -Oil cooling)-Subzero treatment-(200 ° C x 1 hour-Air cooling) 6 Heat treatment (1050 ° C x 1 hour-Water cooling)-Cold swaging with 80% reduction in area 7 Heat treatment (1050 ° C x 1 hour-Water cooling) -Cold swaging with 80% reduction in area

【0028】実施例No.2の合金について、X線回折分
析を行なった。得られたチャートを図1に示す。このチ
ャートには、γ相のピークに加えてγ’相およびα相の
ピークが認められ、複合析出による強化が行なわれてい
ることを裏付けている。
The alloy of Example No. 2 was subjected to X-ray diffraction analysis. The obtained chart is shown in FIG. In this chart, in addition to the peak of the γ phase, the peaks of the γ ′ phase and the α phase were recognized, confirming that the reinforcement by the composite precipitation was performed.

【0029】各合金のサンプルに対し、室温および70
0℃における引張試験、硬さの測定、室温における透磁
率の測定、塩水噴霧による耐食性評価および900℃に
おける連続酸化試験を行なった。試験条件はそれぞれ下
記のとおりである。 [室温引張試験]試験片の平行部径8mm、評点間距離3
0mm JIS Z2201に準拠 [高温引張試験]試験片の平行部径8mm、評点間距離4
0mm JIS Z0567に準拠 [硬 さ]ビッカース硬度計使用、測定荷重5kgf [透磁率]試験片のサイズ5×5×5mm、振動試料型磁
力計 外部磁界100Oe [塩水噴霧]試験片は幅15mm×長さ25mm×厚さ2m
m、表面を#320のサンドペーパーで研摩し、JIS Z2371に
準拠して100時間塩水噴霧した後、発錆の有無で評価 [高温連続酸化]試験片は幅15mm×長さ25mm×厚さ
2mm、表面を#320のサンドペーパーで研摩し、JIS Z228
1に準拠して900℃で100時間保持後、酸化増量で評価試
験結果は、表4および表5に示すとおりである。
For each alloy sample, room temperature and 70
Tensile test at 0 ° C., measurement of hardness, measurement of magnetic permeability at room temperature, evaluation of corrosion resistance by spraying with salt water, and continuous oxidation test at 900 ° C. were performed. The test conditions are as follows. [Temperature test at room temperature] Diameter of parallel part of test piece 8mm, distance between evaluation points 3
0mm Conforms to JIS Z2201 [High temperature tensile test] Diameter of parallel part of test piece 8mm, distance between evaluation points 4
0mm Conforms to JIS Z0567 [Hardness] Vickers hardness tester used, Measurement load 5kgf [Permeability] Test specimen size 5 × 5 × 5mm, Vibration sample type magnetometer External magnetic field 100Oe [Salt spray] Specimen width 15mm × Length 25mm x 2m thick
m, the surface is polished with # 320 sandpaper, sprayed with salt water for 100 hours in accordance with JIS Z2371, and evaluated for rusting. [High-temperature continuous oxidation] The test piece is 15 mm wide x 25 mm long x 2 mm thick. , Polish the surface with # 320 sandpaper, JIS Z228
After holding at 900 ° C. for 100 hours in accordance with 1 and the results of evaluation test by weight increase by oxidation are shown in Tables 4 and 5.

【0030】 表 4 試験結果(実施例) No. 引張り強度 硬 さ 透磁率μ-1 塩水噴霧 酸化増量 室温 700℃ 室温 700℃ (emu) 後の外観 (mg/cm2) 1 2153 1842 647 542 0.001未満 発錆なし 0.2 2 2213 1922 663 568 0.001未満 発錆なし 0.2 3 2198 1823 650 538 0.001未満 発錆なし 0.1 4 2251 1906 672 566 0.001未満 発錆なし 0.5 5 2170 1891 654 551 0.001未満 発錆なし 0.4 6 2148 1814 642 523 0.001未満 発錆なし 0.3 7 2166 1882 653 549 0.001未満 発錆なし 0.1 8 2125 1817 635 538 0.001未満 発錆なし 0.2 9 2164 1875 646 547 0.001未満 発錆なし 0.2 10 2137 1838 641 542 0.001未満 発錆なし 0.3 11 2202 1889 658 550 0.001未満 発錆なし 0.3 12 2076 1743 615 505 0.001未満 発錆なし 0.6 13 2081 1755 619 511 0.001未満 発錆なし 0.4 14 2103 1801 624 522 0.001未満 発錆なし 0.2 15 2179 1908 657 556 0.001未満 発錆なし 0.5 16 2130 1810 639 532 0.001未満 発錆なし 0.2 17 2142 1346 642 544 0.001未満 発錆なし 0.3 18 2159 1817 651 533 0.001未満 発錆なし 0.1 19 2185 1898 658 557 0.001未満 発錆なし 0.2 20 2198 1905 660 565 0.001未満 発錆なし 0.5 21 2173 1886 648 551 0.001未満 発錆なし 0.4 Table 4 Test results (Examples) No. Tensile strength Hardness Permeability μ-1 Salt water spray Oxidation weight increase Room temperature 700 ° C Room temperature 700 ° C (emu) After appearance (mg / cm2) 1 2153 1842 647 542 542 Less than 0.001 No rust 0.2 2 2213 1922 663 568 Less than 0.001 No rust 0.23 2198 1823 650 538 Less than 0.001 No rust 0.1 4 2251 1906 672 566 Less than 0.001 No rust 0.5 5 2170 1891 654 551 Less than 0.001 No rust 0.4 6 2148 1814 642 523 Less than 0.001 No rust 0.3 7 2166 1882 653 549 Less than 0.001 No rust 0.18 2125 1817 635 538 Less than 0.001 No rust 0.29 2164 1875 646 547 Less than 0.001 No rust 0.2 10 2137 1838 641 542 Less than 0.001 No rust 0.3 11 2202 1889 658 550 Less than 0.001 No rust 0.3 12 2076 1743 615 505 Less than 0.001 No rust 0.6 13 2081 1755 619 511 Less than 0.001 No rust 0.4 14 2103 1801 624 522 Less than 0.001 No rust 0.2 15 2179 1908 657 556 Less than 0.001 No rust 0.5 16 2130 1810 639 532 Less than 0.001 No rust 0.2 17 2142 1346 642 544 Less than 0.001 No rust 0.3 18 2159 1817 651 533 Less than 0.001 No rust 0.1 19 2185 1898 658 557 Less than 0.001 No rust 0.2 20 2198 1905 660 565 Less than 0.001 No rust 0.5 21 2173 1886 648 551 Less than 0.001 No rust 0.4

【0031】 表 5 試験結果(比較例) No. 引張り強度 硬 さ 透磁率μ-1 塩水噴霧 酸化増量 室温 700℃ 室温 700℃ (emu) 後の外観 (mg/cm2) 1 1368 1101 443 342 0.001未満 発錆なし 1.5 2 1224 966 385 297 0.001未満 発錆なし 1.2 3 1087 790 342 248 0.001未満 発錆なし 0.7 4 2152 609 607 197 3.47 全面に錆発生 38.2 5 2246 693 687 226 3.32 全面に錆発生 40.8 6 1811 456 512 158 0.004 発錆なし 6.3 7 1924 468 529 169 0.003 僅かに錆発生 26.4 Table 5 Test Results (Comparative Example) No. Tensile Strength Hardness Permeability μ-1 Salt Spray Oxidation Weight Increase Room Temperature 700 ° C. Room Temperature 700 ° C. (emu) Appearance (mg / cm2) 1 1368 1101 443 342 Less than 0.001 No rust 1.5 2 1224 966 385 297 Less than 0.001 No rust 1.2 3 1087 790 342 248 Less than 0.001 No rust 0.7 4 2152 609 607 197 197 3.47 Rust on entire surface 38.2 5 2246 693 687 226 3.32 Rust on entire surface 40.8 6 1811 456 512 158 0.004 No rust 6.3 7 1924 468 529 169 0.003 Slight rust 26.4

【0032】[0032]

【発明の効果】本発明のNi基高強度合金は、γ´相お
よびα相の複合析出による強化を利用して、室温で20
00MPaを超える高強度を確保するとともに、それが
高温でも安定して維持され、温度の上昇にともなう強度
の低下が少ない。硬さも、室温でHV600を十分に上
回る高硬度であり、高温でもあまり低下しない。常温お
よび高温の耐食性もすぐれており、とくに高温の酸化性
雰囲気によく耐える。その上、この合金は非磁性であ
る。
As described above, the Ni-based high-strength alloy of the present invention has a strength of 20% at room temperature by utilizing the strengthening by the composite precipitation of the γ ′ phase and the α phase.
While ensuring high strength exceeding 00 MPa, it is stably maintained even at high temperatures, and there is little decrease in strength with increasing temperature. The hardness is high enough to exceed HV600 at room temperature, and does not decrease much even at high temperatures. It also has excellent corrosion resistance at normal and high temperatures, and withstands particularly high-temperature oxidizing atmospheres. Moreover, this alloy is non-magnetic.

【0033】したがって本発明のNi基高強度合金は、
これらの特性の一部または全部を備えていることを要求
される種々の部品、代表的には前記したエンジン排気系
やガスタービン周辺の部品、軸受、シャフトやボルトな
どの部品の材料として、広い用途がある。
Therefore, the Ni-based high-strength alloy of the present invention
Various parts required to have some or all of these characteristics, typically parts for the engine exhaust system and gas turbine, parts for bearings, shafts and bolts, etc. There are uses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例No.2の合金についてX線回
折分析を行なって得たチャート。
FIG. 1 is a chart obtained by performing an X-ray diffraction analysis on an alloy of Example No. 2 of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.1%以下,Si:
2.0%以下,Mn:2.0%以下,Cr:30〜45
%およびAl:1.5〜5%を含有し、残部が不可避的
不純物およびNiからなる合金組成を有し、γ’相およ
びα相の複合析出により強化されているNi基高強度合
金。
C .: 0.1% by weight or less, Si:
2.0% or less, Mn: 2.0% or less, Cr: 30 to 45
% And Al: Ni-based high-strength alloy containing 1.5 to 5%, the balance having an alloy composition consisting of unavoidable impurities and Ni, and strengthened by composite precipitation of γ ′ phase and α phase.
【請求項2】 請求項1に規定した合金成分に加えて、
Ti,ZrおよびHfの1種または2種以上(2種以上
の場合は合計で):3.0%以下含有する合金組成を有
し、γ’相およびα相の複合析出により強化されている
Ni基高強度合金。
2. In addition to the alloy component specified in claim 1,
One, two or more of Ti, Zr and Hf (in the case of two or more, in total): has an alloy composition containing 3.0% or less, and is strengthened by the composite precipitation of γ ′ phase and α phase. Ni-based high-strength alloy.
【請求項3】 請求項1または2に規定した合金成分に
加えて、Nb,TaおよびVの1種または2種以上を
(2種以上の場合は合計で):3.0%以下含有する合
金組成を有し、γ’相およびα相の複合析出により強化
されているNi基高強度合金。
3. In addition to the alloy components as defined in claim 1 or 2, one or more of Nb, Ta and V (in the case of two or more, in total): not more than 3.0%. A Ni-based high-strength alloy having an alloy composition and strengthened by composite precipitation of a γ 'phase and an α phase.
【請求項4】 請求項1ないし3のいずれかに規定した
合金成分に加えて、Co:10%以下、Mo:10%以
下および(または)W:10%以下を、Mo+0.5
W:10%であるように含有する合金組成を有し、γ’
相およびα相の複合析出により強化されているNi基高
強度合金。
4. In addition to the alloy components defined in any one of claims 1 to 3, Co: 10% or less, Mo: 10% or less and / or W: 10% or less, Mo + 0.5
W: has an alloy composition containing 10%, and γ ′
Ni-base high-strength alloy strengthened by combined precipitation of α and α phases.
【請求項5】 請求項1ないし4のいずれかに規定した
合金成分に加えて、Cu:5%以下、B:0.015%
以下、Mg:0.01%以下、Ca:0.01%以下お
よびREM:0.1%以下の1種または2種以上を含有
する合金組成を有し、γ’相およびα相の複合析出によ
り強化されているNi基高強度合金。
5. In addition to the alloy components defined in any one of claims 1 to 4, Cu: 5% or less, B: 0.015%
Hereinafter, it has an alloy composition containing one or more of Mg: 0.01% or less, Ca: 0.01% or less, and REM: 0.1% or less, and composite precipitation of γ ′ phase and α phase Ni-based high-strength alloy reinforced by
JP2000261636A 2000-08-30 2000-08-30 Mechanical structural member made of Ni-based high strength heat-resistant alloy Expired - Lifetime JP4419298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261636A JP4419298B2 (en) 2000-08-30 2000-08-30 Mechanical structural member made of Ni-based high strength heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261636A JP4419298B2 (en) 2000-08-30 2000-08-30 Mechanical structural member made of Ni-based high strength heat-resistant alloy

Publications (2)

Publication Number Publication Date
JP2002069557A true JP2002069557A (en) 2002-03-08
JP4419298B2 JP4419298B2 (en) 2010-02-24

Family

ID=18749446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261636A Expired - Lifetime JP4419298B2 (en) 2000-08-30 2000-08-30 Mechanical structural member made of Ni-based high strength heat-resistant alloy

Country Status (1)

Country Link
JP (1) JP4419298B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698708A1 (en) 2005-03-03 2006-09-06 Daido Tokushuko Kabushiki Kaisha Nonmagnetic high-hardness alloy
US7119400B2 (en) 2001-07-05 2006-10-10 Isonics Corporation Isotopically pure silicon-on-insulator wafers and method of making same
JP2007289993A (en) * 2006-04-24 2007-11-08 Daido Steel Co Ltd Die for powder molding
CN100378331C (en) * 2006-09-30 2008-04-02 刘朝晖 Non-magnetic alloy balance block for compressor use
JP2008144260A (en) * 2006-11-16 2008-06-26 Mitsubishi Materials Corp HIGH Cr-CONTAINING Ni-BASED ALLOY EXCELLENT IN HIGH TEMPERATURE PHASE STABILITY
JP2010024544A (en) * 2008-06-16 2010-02-04 Daido Steel Co Ltd Warm-hot forging die
WO2014208734A1 (en) * 2013-06-27 2014-12-31 大同精密工業株式会社 Unison ring provided with sliding member, sliding member using same, method for manufacturing unison ring provided with sliding member
CN103469011B (en) * 2013-08-16 2016-02-10 广东华鳌合金新材料有限公司 Nickel chromium high-temperature alloy and preparation method thereof
CN105369070A (en) * 2015-12-29 2016-03-02 常熟市良益金属材料有限公司 Thermal treatment technology of nickel-based high temperature alloy casting
CN112458351A (en) * 2020-10-22 2021-03-09 中国人民解放军陆军装甲兵学院 High compressive strength nickel-cobalt-based high temperature alloy
US20210108294A1 (en) * 2019-10-11 2021-04-15 Schlumberger Technology Corporation Hard nickel-chromium-aluminum alloy for oilfield services apparatus and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240141459A1 (en) 2022-10-31 2024-05-02 Daido Steel Co., Ltd. Ni-BASED ALLOY AND METHOD FOR MANUFACTURING THE SAME, AND Ni-BASED ALLOY MEMBER

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119400B2 (en) 2001-07-05 2006-10-10 Isonics Corporation Isotopically pure silicon-on-insulator wafers and method of making same
EP1698708A1 (en) 2005-03-03 2006-09-06 Daido Tokushuko Kabushiki Kaisha Nonmagnetic high-hardness alloy
JP2006274443A (en) * 2005-03-03 2006-10-12 Daido Steel Co Ltd Nonmagnetc high-hardness alloy
US8696836B2 (en) 2005-03-03 2014-04-15 Daido Tokushuko Kabushiki Kaisha Nonmagnetic high-hardness alloy
JP2007289993A (en) * 2006-04-24 2007-11-08 Daido Steel Co Ltd Die for powder molding
CN100378331C (en) * 2006-09-30 2008-04-02 刘朝晖 Non-magnetic alloy balance block for compressor use
JP2008144260A (en) * 2006-11-16 2008-06-26 Mitsubishi Materials Corp HIGH Cr-CONTAINING Ni-BASED ALLOY EXCELLENT IN HIGH TEMPERATURE PHASE STABILITY
JP2010024544A (en) * 2008-06-16 2010-02-04 Daido Steel Co Ltd Warm-hot forging die
WO2014208734A1 (en) * 2013-06-27 2014-12-31 大同精密工業株式会社 Unison ring provided with sliding member, sliding member using same, method for manufacturing unison ring provided with sliding member
JP2015010512A (en) * 2013-06-27 2015-01-19 大同特殊鋼株式会社 Unison ring with slide member, slide member used in the same, and manufacturing method of unison ring with slide member
CN103469011B (en) * 2013-08-16 2016-02-10 广东华鳌合金新材料有限公司 Nickel chromium high-temperature alloy and preparation method thereof
CN105369070A (en) * 2015-12-29 2016-03-02 常熟市良益金属材料有限公司 Thermal treatment technology of nickel-based high temperature alloy casting
US20210108294A1 (en) * 2019-10-11 2021-04-15 Schlumberger Technology Corporation Hard nickel-chromium-aluminum alloy for oilfield services apparatus and methods
US11898227B2 (en) * 2019-10-11 2024-02-13 Schlumberger Technology Corporation Hard nickel-chromium-aluminum alloy for oilfield services apparatus and methods
CN112458351A (en) * 2020-10-22 2021-03-09 中国人民解放军陆军装甲兵学院 High compressive strength nickel-cobalt-based high temperature alloy
CN112458351B (en) * 2020-10-22 2021-10-15 中国人民解放军陆军装甲兵学院 High compressive strength nickel-cobalt-based high temperature alloy

Also Published As

Publication number Publication date
JP4419298B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
EP0327053B1 (en) Duplex stainless steel with high manganese
JP5217576B2 (en) Austenitic stainless steel for heat-resistant parts and heat-resistant parts using the same
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP2006225756A (en) Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
KR20090031858A (en) Ferritic stainless steel sheet having excellent heat resistance
JPS6156304B2 (en)
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2011219864A (en) Heat resistant steel for exhaust valve
JP2002069557A (en) Ni BASED HIGH STRENGTH ALLOY
JP2000256770A (en) LOW THERMAL EXPANSION Ni BASE SUPERALLOY
JP2004269979A (en) Heat resistant cast steel, heat resistant member made of cast steel, and production method therefor
KR100258128B1 (en) Ferritic stainless steel for exhaust system equipment of vehicle
JP3128233B2 (en) Nickel-based alloy with good corrosion resistance
JP2002167655A (en) Stainless cast steel having excellent heat resistance and machinability
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPS61163238A (en) Heat and corrosion resistant alloy for turbine
JP3424314B2 (en) Heat resistant steel
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JP2001158943A (en) Heat resistant bolt
JP2005082885A (en) Component of diesel engine
JPH08100243A (en) Highly heat resistant iron-bas alloy
JPH07331370A (en) Cobalt-chrominum-nickel-aluminum alloy for ultrahigh temperature use
JPS63145752A (en) Austenitic iron alloy having strength and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4419298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

EXPY Cancellation because of completion of term