JP2002062330A - Apparatus and method for evaluating integrity of insulation between coil turns - Google Patents

Apparatus and method for evaluating integrity of insulation between coil turns

Info

Publication number
JP2002062330A
JP2002062330A JP2000248401A JP2000248401A JP2002062330A JP 2002062330 A JP2002062330 A JP 2002062330A JP 2000248401 A JP2000248401 A JP 2000248401A JP 2000248401 A JP2000248401 A JP 2000248401A JP 2002062330 A JP2002062330 A JP 2002062330A
Authority
JP
Japan
Prior art keywords
partial discharge
surge voltage
coil
turns
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000248401A
Other languages
Japanese (ja)
Inventor
Yutaka Higashimura
東村  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000248401A priority Critical patent/JP2002062330A/en
Publication of JP2002062330A publication Critical patent/JP2002062330A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To evaluate integrity of inter-coil turns between insulation layers high sensitivity in a dynamo-electric machine, such as an electric motor having a winding comprising a plurality of turns of coil. SOLUTION: In the dynamo-electric machine, having a winding comprising a plurality of turns of coils, it is arranged so to include a power source unit (an inverter driver 11) for generating a surge voltage 4, a partial charge detection means 2 (through-type high-frequency current transformer 12) for detecting partial charge in an inter-turn insulation layers and a measurement judging means 3 for evaluating the value of the detected partial discharge. The surge voltage is applied to a circuit line side terminal of the winding, to generate a partial charge in the inter-turn insulation layer by a high voltage produced between the turns of coil near the circuit line side of the winding and the relation is measured between the value of the detected partial charge, the magnitude of the surge voltage and the steepness of the rising part thereof. Thus, the partial charge in the inter-turn insulation layer is judged being distinguished from the partial charge in the insulation layer to the ground of the coil from the relation obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数回のターン数
のコイルからなる巻線を有する電動機等の回転電機装置
に係り、特に、コイルターン間絶縁層の健全性を評価す
るコイルターン間絶縁健全性評価装置及び方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating electric machine such as a motor having a winding composed of coils having a plurality of turns, and more particularly to an insulation between coil turns for evaluating the soundness of an insulation layer between the turns. The present invention relates to a soundness evaluation device and method.

【0002】[0002]

【従来の技術】複数回のターン数のコイルからなる回転
電機巻線にサージ電圧が印加されると、大部分の電圧は
線路側のコイルのターン間に印加される。したがって、
インバータ駆動の高電圧回転電機巻線のように多数のサ
ージ電圧が印加される巻線の線路側コイルのターン間絶
縁層は、従来の熱的な劣化のみでなく、電圧による劣化
も著しく進展し、ついには絶縁破壊事故に至ることもあ
る。かかるターン間絶縁層の健全性を評価できれば、事
故の前に未然に保全することが可能になる。従来、ター
ン間絶縁層の健全性を評価する装置として、特開平9―
257862号号公報に記載のような装置がある。しか
し、この従来装置では、ターン間に電圧を発生させるパ
ルス電圧を診断対象とする相の巻線に直接印加し、かか
る巻線のパルス電圧印加端子近傍のターン間のみで発生
する部分放電電流を、その発生位置より遠く離れた他の
相の巻線の端子で測定していた。また、さらにかかる部
分放電電流が検出部を流れるための回路を特に設けてい
ない。したがって、部分放電電流の検出感度はきわめて
低い、という問題点があった。一方、他のターン間絶縁
層の健全性を評価する装置として、巻線にサージ電圧を
印加してその電圧波形の変歪度を評価する装置もある
が、この装置ではターン間絶縁層が絶縁破壊しているよ
うな重大な故障でないと検出できない、という問題点が
あった。
2. Description of the Related Art When a surge voltage is applied to a rotating electric machine winding composed of coils having a plurality of turns, most of the voltage is applied between turns of a line side coil. Therefore,
The insulation layer between turns of the line-side coil of a winding to which a large number of surge voltages are applied, such as a winding of a high-voltage rotating electric machine driven by an inverter, is not only thermally deteriorated, but also significantly deteriorates due to voltage. Eventually, a dielectric breakdown accident may occur. If the soundness of such an inter-turn insulating layer can be evaluated, it is possible to conserve it before an accident. Conventionally, an apparatus for evaluating the soundness of an inter-turn insulating layer has been disclosed in
There is an apparatus as described in Japanese Patent No. 257862. However, in this conventional device, a pulse voltage for generating a voltage between turns is directly applied to a winding of a phase to be diagnosed, and a partial discharge current generated only between turns near a pulse voltage application terminal of the winding is applied. The measurement was performed at the terminals of the windings of the other phase far away from the position where the occurrence occurred. Further, a circuit for allowing the partial discharge current to flow through the detection unit is not particularly provided. Therefore, there is a problem that the detection sensitivity of the partial discharge current is extremely low. On the other hand, as another device for evaluating the soundness of the inter-turn insulating layer, there is a device for applying a surge voltage to the winding and evaluating the degree of distortion of the voltage waveform, but in this device, the inter-turn insulating layer is insulated. There has been a problem that the failure cannot be detected unless the failure is a serious failure such as destruction.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、複数
回のターン数のコイルからなる巻線を有する電動機等の
回転電機装置において、コイルターン間絶縁層の健全性
を高感度で評価することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to evaluate the soundness of an insulation layer between coil turns with high sensitivity in a rotating electric machine such as a motor having a winding composed of a plurality of turns. It is in.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、複数回のターン数のコイルからなる巻線を有する回
転電機装置において、サージ電圧を発生する電源装置
と、ターン間絶縁層の部分放電を検出する部分放電検出
手段と、検出した部分放電量を評価する測定判定手段を
具備し、前記巻線の線路側端子にサージ電圧を印加し、
前記巻線の線路側に近いコイルのターン間に高い電圧を
生じさせてターン間絶縁層に部分放電を発生させ、検出
した部分放電量とサージ電圧の大きさ及びその立ち上が
り部分の急峻度との関係を測定し、この関係よりターン
間絶縁層の部分放電を他の絶縁層の部分放電と区別して
判定する。
In order to solve the above-mentioned problems, in a rotating electrical machine having a winding composed of a coil having a plurality of turns, a power supply device for generating a surge voltage and a portion of an inter-turn insulating layer are provided. A partial discharge detection means for detecting discharge, and a measurement determination means for evaluating the detected partial discharge amount, applying a surge voltage to the line side terminal of the winding,
A high voltage is generated between turns of the coil close to the line side of the winding to generate a partial discharge in the inter-turn insulating layer, and the detected partial discharge amount and the magnitude of the surge voltage and the steepness of the rising portion thereof The relationship is measured, and the partial discharge of the inter-turn insulating layer is distinguished from the partial discharge of the other insulating layer based on the relationship.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明のコイルターン間絶縁
健全性評価装置及び方法の一実施形態を示す。本実施形
態は、インバータ装置によって駆動される電動機装置に
適用した例である。図1において、11はインバータ駆
動装置であり、測定用サージ電圧4を発生する電源装置
1を兼ねる。電源装置1を兼ねるインバータ駆動装置1
1は、電動機6の任意の2相の巻線に電圧Vp及び立ち
上がり部の急峻度dV/dtを変えた測定用サージ電圧
を印加することができる構成にしている。この電源装置
1と電動機6との間に放電検出部2を配置する。この放
電検出部2は貫通型の高周波変流器12で構成する。こ
の高周波変流器12の出力を測定判定回路3に入力す
る。インバータ駆動装置11は、運転時には所定の制御
された電圧を出力し、電動機6を駆動している。所定の
タイミング又は手動の測定開始信号入力時には、図1の
ように駆動ケーブル13を介して電動機6の診断対象と
する所定の2相の巻線に電動機6の接地電位に対して正
負逆極性で対称な波形の測定用サージ電圧を加え、残り
の1相の巻線には電動機6の接地電位もしくは一定レベ
ルの電位に保ったままとする。サージ電圧印加時に電動
機6の各相の巻線に流れる電流は、主として巻線絶縁層
が形成する静電容量の充電電流からなるが、巻線絶縁層
が形成する静電容量は、各相の巻線においてほぼ等しい
ので、所定の2相の巻線に印加した正負逆極性の測定用
サージ電圧による、巻線絶縁層が形成する静電容量の充
電電流は互いに逆極性で同じ値となる。したがって、各
相の巻線へのケーブルが同方向に貫通している貫通型高
周波変流器12の出力には、かかる充電電流はキャンセ
ルされて出力しない。すなわち、貫通型高周波変流器1
2は充電電流のキャンセル回路も兼ねる。一方、このサ
ージ電圧印加により、診断対象とする巻線のコイル対地
絶縁層に高い電圧がかかるとともに、ターン間絶縁層に
も高い電圧がかかる。この電圧レベルが一定以上になれ
ば、これら絶縁層で部分放電が発生する。この部分放電
による電流の一部はパルスとなり、駆動電源ケーブル1
3を伝播する。インバータ駆動装置11と電動機6とを
接続する駆動用電源ケーブル13にシースがある場合、
このシースの接地線23は貫通型高周波変流器12を貫
通させない配置にする。したがって、電動機内部で発生
し、駆動ケーブル13に伝播する部分放電電流パルスは
貫通型高周波変流器12を貫通しない接地線23を通し
て帰還することになり、貫通型高周波変流器12で部分
放電電流パルスを検出することができる。シースがない
場合は、駆動ケーブル13に伝播した部分放電電流パル
スはインバータ駆動装置11の接地回路を通して帰還す
ることになり、同様に貫通型高周波変流器12で部分放
電パルスを検出することができる。この貫通型高周波変
流器12の出力は、巻線絶縁層の大きな充電電流がキャ
ンセルされているので、測定判定回路3において部分放
電電流パルスのみを所定の周波数範囲で高く増幅するこ
とができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the apparatus and method for evaluating insulation integrity between coil turns according to the present invention. This embodiment is an example applied to a motor device driven by an inverter device. In FIG. 1, reference numeral 11 denotes an inverter driving device, which also functions as a power supply device 1 for generating a surge voltage 4 for measurement. Inverter driving device 1 also serving as power supply device 1
Reference numeral 1 denotes a configuration in which a voltage Vp and a surge voltage for measurement in which the steepness dV / dt of a rising portion is changed can be applied to an arbitrary two-phase winding of the electric motor 6. The discharge detection unit 2 is disposed between the power supply device 1 and the electric motor 6. The discharge detector 2 is constituted by a through-type high-frequency current transformer 12. The output of the high-frequency current transformer 12 is input to the measurement determination circuit 3. The inverter driving device 11 outputs a predetermined controlled voltage during operation to drive the electric motor 6. At a predetermined timing or at the time of input of a manual measurement start signal, a predetermined two-phase winding to be diagnosed of the electric motor 6 is connected to the electric motor 6 via the drive cable 13 with a polarity opposite to the ground potential of the electric motor 6 as shown in FIG. A surge voltage for measurement having a symmetrical waveform is applied, and the remaining one-phase winding is kept at the ground potential of the electric motor 6 or at a certain level of potential. The current flowing through the winding of each phase of the motor 6 when the surge voltage is applied mainly consists of the charging current of the capacitance formed by the winding insulating layer, but the capacitance formed by the winding insulating layer is Since the windings are substantially equal, the charging currents of the capacitances formed by the winding insulating layers due to the positive and negative polarities of the measuring surge voltages applied to the predetermined two-phase windings have the same value in opposite polarities. Therefore, the charging current is canceled and is not output to the output of the feedthrough type high-frequency current transformer 12 in which the cables to the windings of the respective phases pass in the same direction. That is, the penetration type high-frequency current transformer 1
Reference numeral 2 also serves as a charge current cancel circuit. On the other hand, by applying the surge voltage, a high voltage is applied to the coil-to-ground insulating layer of the winding to be diagnosed, and a high voltage is also applied to the inter-turn insulating layer. When this voltage level becomes higher than a certain level, partial discharge occurs in these insulating layers. Part of the current due to this partial discharge becomes a pulse, and the drive power cable 1
Propagate 3. When the drive power cable 13 connecting the inverter drive device 11 and the motor 6 has a sheath,
The ground wire 23 of the sheath is arranged so as not to penetrate the high-frequency current transformer 12. Therefore, the partial discharge current pulse generated inside the motor and propagated to the drive cable 13 returns through the ground wire 23 that does not penetrate the through-type high-frequency current transformer 12, and the partial discharge current pulse Pulses can be detected. If there is no sheath, the partial discharge current pulse propagated to the drive cable 13 will be fed back through the ground circuit of the inverter drive device 11, and the through discharge high-frequency current transformer 12 can similarly detect the partial discharge pulse. . In the output of the through-type high-frequency current transformer 12, since the large charging current of the winding insulating layer is canceled, the measurement determination circuit 3 can amplify only the partial discharge current pulse in a predetermined frequency range.

【0006】この増幅後の値を予め模擬の部分放電電流
パルスにより測定した値と比較する方法により、部分放
電の大きさすなわち部分放電量Qを測定する。部分放電
量Qは、図2の実線31のようにサージ電圧の電圧Vp
が高くなると、増大する。一定の放電量の敷居値Qsを
定め、この敷居値Qsの部分放電量を発生させるときの
サージ電圧の電圧Vpsを求めた。同じ電圧Vpのサー
ジ電圧でも、サージ電圧の立ち上がり部の急峻度dV/
dtが高くなると、巻線の線路側に近いターン間絶縁層
にかかる電圧が高くなるので、立ち上がり部の急峻度d
V/dtが大きなサージ電圧に対する電圧Vpと部分放
電量Qとの関係は図2の二点鎖線32のようになる。す
なわち、二点鎖線32の場合の敷居値Qsの部分放電量
を発生するサージ電圧の電圧Vpsは、実線31の場合
のVpsより小さな値となる。ここで、図2は、サージ
電圧と部分放電量の関係を示し、31はターン間絶縁層
での部分放電において、サージ電圧の電圧Vpと部分放
電量Qとの関係(立ち上がり部の急峻度dV/dtが3
2より小さな場合)、32はターン間絶縁層での部分放
電において、サージ電圧の電圧Vpと部分放電量Qとの
関係(立ち上がり部の急峻度dV/dtが31より大き
な場合)を示す。
The magnitude of the partial discharge, that is, the amount of partial discharge Q is measured by a method of comparing the amplified value with a value previously measured by a simulated partial discharge current pulse. The partial discharge amount Q is equal to the surge voltage Vp as indicated by the solid line 31 in FIG.
Increases with increasing. A threshold value Qs of a constant discharge amount was determined, and a voltage Vps of a surge voltage when a partial discharge amount of the threshold value Qs was generated was obtained. Even with the surge voltage of the same voltage Vp, the steepness dV /
When dt increases, the voltage applied to the inter-turn insulating layer near the line side of the winding increases, so that the steepness d of the rising portion increases.
The relationship between the voltage Vp and the partial discharge amount Q with respect to a surge voltage having a large V / dt is as shown by a two-dot chain line 32 in FIG. That is, the voltage Vps of the surge voltage that generates the partial discharge amount of the threshold value Qs in the case of the two-dot chain line 32 is smaller than Vps in the case of the solid line 31. Here, FIG. 2 shows the relationship between the surge voltage and the amount of partial discharge, and 31 shows the relationship between the voltage Vp of the surge voltage and the amount of partial discharge Q (the steepness dV of the rising portion) in the partial discharge in the inter-turn insulating layer. / Dt is 3
Reference numeral 32 denotes the relationship between the voltage Vp of the surge voltage and the amount of partial discharge Q (when the steepness dV / dt of the rising portion is larger than 31) in the partial discharge in the inter-turn insulating layer.

【0007】したがって、敷居値Qsの部分放電量を発
生するようになるサージ電圧の電圧Vpsとサージ電圧
の立ち上がり部の急峻度dV/dtとの関係を示すと、
図3の実線36のようになり、サージ電圧の立ち上がり
部の急峻度dV/dtが高くなる程、敷居値Qsの部分
放電量を発生するようになるサージ電圧の電圧Vpsが
低くなる。一方、コイルの対地絶縁層の場合、対地絶縁
層にかかる電圧はサージ電圧の急峻度dV/dtが変わ
っても一定である。また、部分放電量も1KV/μs付
近の高い領域までサージ電圧の急峻度dV/dtに依存
せず一定である。1KV/μs以上の高い領域では、放
電の時間遅れの影響のため、サージ電圧の急峻度dV/
dtが高くなるにしたがい、絶縁層の部分放電は発生し
にくくなる。すなわち、この領域以上ではサージ電圧の
立ち上がり部の急峻度dV/dtが高くなる程、同じサ
ージ電圧の電圧Vpに対する部分放電量Qが小さくなる
ので、一定の敷居値Qsの部分放電量を発生するサージ
電圧の電圧Vpsは立ち上がり部の急峻度dV/dtが
大きくなる程わずかに高くなる。したがって、コイルの
対地絶縁層で部分放電が発生していた場合、サージ電圧
の立ち上がり部の急峻度dV/dtと敷居値Qsの部分
放電を発生するサージ電圧の電圧Vpsの関係は図4の
実線38のようになり、サージ電圧の立ち上がり部の急
峻度dV/dtに対し、敷居値Qsの部分放電を発生す
るサージ電圧の電圧Vpsは一定で、サージ電圧の立ち
上がり部の急峻度dV/dtのかなり大きなところでわ
ずかに高くなる。以上、図3は、ターン間絶縁層の部分
放電を判定するサージ電圧の電圧Vpsと立ち上がり部
の急峻度dV/dtの関係、また、図4は、コイル対地
絶縁層の部分放電を判定するサージ電圧の電圧Vpsと
立ち上がり部の急峻度dV/dtの関係であり、この図
3、図4に示したような一定の敷居値Qsの部分放電を
発生するサージ電圧の電圧Vpsと立ち上がり部の急峻
度dV/dtの関係より、ターン間絶縁層またはコイル
対地絶縁層のどちらで放電しているかを判定することが
できる。測定判定回路3は、以上述べた関係でターン間
絶縁層の部分放電であることを判定し、かつ、この関係
が図3の一点鎖線37のようになり、×印で示す、使用
時にターン間にかかる電圧条件に一定の裕度を考慮した
レベルと同等もしくは下回る場合、要補修の判定を出力
する構成にする。ここで、図3において、30は使用時
にターン間絶縁層にかかる電圧条件に一定の裕度を考慮
したレベル、35はターン間絶縁層での部分放電におい
て、一定の放電量の敷居値Qsに達するサージ電圧Vp
と立ち上がり部の急峻度dV/dtの関係(測定値)、
36はターン間絶縁層での部分放電において、一定の放
電量の敷居値Qsに達するサージ電圧Vpと立ち上がり
部の急峻度dV/dtの関係(測定値近似線)、37は
ターン間絶縁層での部分放電において、一定の放電量の
敷居値Qsに達するサージ電圧Vpと立ち上がり部の急
峻度dV/dtの関係(絶縁層度が低下している状態)
(補修要のレベル)を示す。また、図4において、38
はコイル対地絶縁層での部分放電において、一定の放電
量の敷居値Qsに達するサージ電圧Vpと立ち上がり部
の急峻度dV/dtの関係(測定値)、39はコイル対
地絶縁層での部分放電において、一定の放電量の敷居値
Qsに達するサージ電圧Vpsと立ち上がり部の急峻度
dV/dtの関係(測定値近似線)を示す。なお、本実
施形態では、の敷居値Qsを1000pCに設定し、裕
度を2倍とした。
Therefore, the relationship between the voltage Vps of the surge voltage that generates the partial discharge amount of the threshold value Qs and the steepness dV / dt of the rising portion of the surge voltage is shown as follows.
As shown by the solid line 36 in FIG. 3, as the steepness dV / dt of the rising portion of the surge voltage increases, the voltage Vps of the surge voltage that causes the partial discharge amount of the threshold value Qs decreases. On the other hand, in the case of the ground insulating layer of the coil, the voltage applied to the ground insulating layer is constant even if the steepness dV / dt of the surge voltage changes. Also, the partial discharge amount is constant without depending on the steepness dV / dt of the surge voltage up to a high region around 1 KV / μs. In a high region of 1 KV / μs or more, the steepness dV /
As dt increases, partial discharge of the insulating layer becomes less likely to occur. In other words, above this region, the higher the steepness dV / dt of the rising portion of the surge voltage, the smaller the partial discharge amount Q for the same surge voltage Vp, so that a partial discharge amount with a constant threshold value Qs is generated. The voltage Vps of the surge voltage slightly increases as the steepness dV / dt of the rising portion increases. Accordingly, when a partial discharge has occurred in the ground insulating layer of the coil, the relationship between the steepness dV / dt of the rising portion of the surge voltage and the voltage Vps of the surge voltage that generates the partial discharge having the threshold value Qs is shown by a solid line in FIG. 38, the voltage Vps of the surge voltage that generates the partial discharge of the threshold value Qs is constant with respect to the steepness dV / dt of the rising portion of the surge voltage, and the steepness dV / dt of the rising portion of the surge voltage is constant. It is slightly higher in a fairly large area. FIG. 3 shows the relationship between the voltage Vps of the surge voltage for determining the partial discharge of the inter-turn insulating layer and the steepness dV / dt of the rising portion, and FIG. 4 shows the surge for determining the partial discharge of the coil-to-ground insulating layer. There is a relationship between the voltage Vps of the voltage and the steepness dV / dt of the rising portion, and the voltage Vps of the surge voltage and the steepness of the rising portion which generate the partial discharge with the constant threshold value Qs as shown in FIGS. From the relationship of the degree dV / dt, it can be determined whether the discharge is occurring in the inter-turn insulating layer or the coil-to-ground insulating layer. The measurement determination circuit 3 determines the partial discharge of the inter-turn insulating layer based on the relationship described above, and the relationship becomes as shown by a dashed line 37 in FIG. If the voltage condition is equal to or lower than a level in which a certain margin is taken into consideration, a determination is made that repair is required. Here, in FIG. 3, reference numeral 30 denotes a voltage level applied to the inter-turn insulating layer at the time of use in consideration of a certain margin, and reference numeral 35 denotes a threshold value Qs of a constant discharge amount in partial discharge in the inter-turn insulating layer. Surge voltage Vp reached
And the steepness dV / dt of the rising portion (measured value),
36 is a relationship between a surge voltage Vp reaching a threshold value Qs of a constant discharge amount and a steepness dV / dt of a rising portion in a partial discharge in the inter-turn insulating layer (measured value approximation line), and 37 is an inter-turn insulating layer. Relationship between the surge voltage Vp reaching the threshold value Qs of a constant discharge amount and the steepness dV / dt of the rising portion in the partial discharge (state in which the degree of insulation is reduced)
(Repair level). Also, in FIG.
Is a relationship (measured value) between a surge voltage Vp reaching a threshold value Qs of a fixed discharge amount and a steepness dV / dt of a rising portion in a partial discharge in the coil-to-ground insulating layer, and 39 is a partial discharge in the coil-to-ground insulating layer. 5 shows a relationship (measured value approximation line) between a surge voltage Vps reaching a threshold value Qs of a constant discharge amount and a steepness dV / dt of a rising portion. In the present embodiment, the threshold value Qs is set to 1000 pC, and the margin is doubled.

【0008】本実施形態では、巻線のコイル絶縁層が形
成する静電容量の充電電流をキャンセルするため、2相
の巻線にサージ電圧を印加するので、絶縁層の健全性評
価は各2相の組み合わせで評価されることになる。した
がって、相毎の健全性は分離して評価できない。しか
し、例えば、各相をA、B、Cとし、かつ、A相の部分
放電量が最も大きい場合、AとB、BとC、CとAにつ
いての測定結果において、AとB及びAとCの組み合わ
せた場合の部分放電量はBとCを組み合わせた場合の部
分放電量より大きくなるので、最も部分放電量が大きい
相すなわち最も健全でない相を決定できる。一般には、
ターン間絶縁層に比してコイル対地絶縁層の絶縁厚みが
厚い場合が多く、ターン間絶縁層での部分放電が主であ
る。したがって、立ち上がり部の急峻度dV/dtが使
用時と同じであるサージ電圧でVpsを測定し、Vps
と使用時の電圧条件に一定の大きさの裕度を考慮したレ
ベルとの比較で補修の要否を判定する簡易的な方法でも
同等の効果が得られる。また、電動機装置の要補修の判
定がでた場合でも、インバータ駆動装置11が運転時に
発生するサージ電圧の立ち上がり部の急峻度dV/dt
を小さくして運転できるのであれば、図3において×印
で示すターン間に使用時にかかる電圧条件に一定の裕度
を考慮したレベルはdV/dtが小さな位置に移動する
ことになり、その条件にて運転を継続することが可能に
なる。本実施形態は、電動機装置の運転時にも瞬時に測
定用サージ電圧を印加して測定することも可能である
が、一般には電動機停止中に運転時と同じ配線のまま、
何ら変更することなく、コイルターン絶縁の健全性を評
価している。
In this embodiment, a surge voltage is applied to the two-phase winding in order to cancel the charging current of the capacitance formed by the coil insulating layer of the winding. It will be evaluated by the combination of phases. Therefore, the soundness of each phase cannot be evaluated separately. However, for example, when the phases are A, B, and C, and the partial discharge amount of the A phase is the largest, in the measurement results of A and B, B and C, and C and A, A and B and A and Since the partial discharge amount in the case of combining C is larger than the partial discharge amount in the case of combining B and C, the phase having the largest partial discharge amount, that is, the phase having the least sound can be determined. Generally,
In many cases, the insulation thickness of the coil-to-ground insulation layer is larger than that of the inter-turn insulation layer, and partial discharge in the inter-turn insulation layer is mainly performed. Therefore, Vps is measured at a surge voltage at which the steepness dV / dt of the rising portion is the same as in use, and Vps is measured.
The same effect can be obtained by a simple method of determining the necessity of repair by comparing the voltage condition at the time of use with a level in which a certain degree of tolerance is taken into consideration. Further, even when it is determined that the motor device needs repair, the steepness dV / dt of the rising portion of the surge voltage generated during the operation of the inverter drive device 11.
If the operation can be performed with a small value, the level in consideration of a certain margin in the voltage condition applied during use during the turn indicated by the mark x in FIG. 3 will move to a position where dV / dt is small. It is possible to continue the operation. In the present embodiment, it is possible to apply a surge voltage for measurement instantaneously even during operation of the motor device and perform measurement, but generally, the same wiring as during operation while the motor is stopped is used.
Without any changes, the soundness of the coil turn insulation is evaluated.

【0009】図5は、本発明の他の実施形態を示す。1
は測定用サージ電圧を発生することができる電源装置で
ある。この電源装置1と電動機6との間に部分放電検出
部2を配置する。この部分放電検出部2は貫通型の高周
波変流器12で構成し、この高周波変流器12の出力を
測定判定回路3に入力する。電源装置1は、電動機6の
任意の2相の巻線に電圧Vp及び立ち上がり部の急峻度
dV/dtを変えた測定用サージ電圧を印加する。電源
装置1から各相巻線への接続線25は貫通型高周波変流
器12において互いに逆方向に貫通させる。測定用サー
ジ電圧印加時に、電動機6の各相の巻線に流れる電流
は、主として巻線絶縁層が形成する静電容量の充電電流
からなるが、巻線絶縁層が形成する静電容量は、各相の
巻線においてほぼ等しいので、所定の2相の巻線に印加
した測定用サージ電圧による巻線絶縁層が形成する静電
容量の充電電流は、貫通型高周波変流器12において互
いに逆方向に流れてキャンセルされる。すなわち、貫通
型高周波変流器12は充電電流のキャンセル回路も兼ね
る。一方、このサージ電圧印加により、巻線のコイル絶
縁層に高い電圧がかかるとともに、ターン間にも高い電
圧がかかる。このレベルが一定以上になれば、これら絶
縁層で放電が発生する。この部分放電による電流の一部
はパルスとなり、電源装置1からの各相の巻線への接続
線25を伝播する。接続線25を伝播する部分放電によ
る電流パルスは電源装置1の接地回路を帰還するが、こ
の接地回路のインピーダンスが大きいと、測定感度が低
下するので、電源装置1と放電検出部2との間に帰還用
のカップリングコンデンサ24を配置する。このように
して、貫通型高周波変流器12で部分放電の電流パルス
を検出することができる。この貫通型高周波変流器12
の出力は、巻線絶縁層の大きな充電電流がキャンセルさ
れているので、測定判定回路3において部分放電電流パ
ルスのみを所定の周波数範囲で高く増幅することができ
る。
FIG. 5 shows another embodiment of the present invention. 1
Is a power supply device capable of generating a surge voltage for measurement. The partial discharge detection unit 2 is arranged between the power supply device 1 and the electric motor 6. The partial discharge detector 2 is constituted by a through-type high-frequency current transformer 12, and outputs the output of the high-frequency current transformer 12 to a measurement determination circuit 3. The power supply device 1 applies a measurement surge voltage in which the voltage Vp and the steepness dV / dt of the rising portion are changed to arbitrary two-phase windings of the electric motor 6. The connection lines 25 from the power supply device 1 to the respective phase windings are made to pass through the through-type high-frequency current transformer 12 in opposite directions. The current flowing through each phase winding of the electric motor 6 when the measurement surge voltage is applied mainly consists of a charging current of the capacitance formed by the winding insulating layer, but the capacitance formed by the winding insulating layer is: Since the windings of each phase are substantially equal, the charging currents of the capacitance formed by the winding insulating layer due to the measurement surge voltage applied to the predetermined two-phase windings are opposite to each other in the feedthrough type high frequency current transformer 12. It flows in the direction and is canceled. That is, the feedthrough type high frequency current transformer 12 also functions as a charge current cancel circuit. On the other hand, by applying the surge voltage, a high voltage is applied to the coil insulating layer of the winding, and a high voltage is applied between turns. If this level exceeds a certain level, discharge occurs in these insulating layers. A part of the current due to the partial discharge becomes a pulse and propagates through the connection line 25 from the power supply device 1 to the winding of each phase. The current pulse due to the partial discharge propagating through the connection line 25 returns to the grounding circuit of the power supply 1. If the impedance of the grounding circuit is large, the measurement sensitivity is reduced. , A feedback coupling capacitor 24 is disposed. Thus, the current pulse of the partial discharge can be detected by the through-type high-frequency current transformer 12. This through-type high-frequency current transformer 12
Since the large charge current of the winding insulating layer is canceled in the output of (3), the measurement determination circuit 3 can amplify only the partial discharge current pulse in the predetermined frequency range.

【0010】以下、図1の実施形態と同様に、この増幅
後の値を予め模擬の部分放電電流パルスにより測定した
値と比較する方法により、部分放電の大きさすなわち部
分放電量Qを測定する。そして、測定した部分放電量
Q、印加したサージ電圧の電圧Vpおよびサージ電圧の
立ち上がり部の急峻度dV/dtの関係より、図3のよ
うに、一定の放電量の敷居値Qsに達するサージ電圧V
psと立ち上がり時間の関係dV/dtを決定する。本
実施形態ではこの敷居値Qsを1000pCに設定して
いる。測定判定回路3は、この関係が上述した特性より
ターン間絶縁層の部分放電であることを判定し、かつ、
この関係が図3の一点鎖線37のようになり、×印で示
す、使用時にターン間にかかる電圧条件に一定の裕度を
考慮したレベルと同等もしくは下回る場合、要補修の判
定を出力する構成にする。本実施形態ではこの裕度とし
て2倍を考慮した。
Hereinafter, as in the embodiment of FIG. 1, the magnitude of the partial discharge, that is, the partial discharge amount Q is measured by a method of comparing the amplified value with a value measured in advance by a simulated partial discharge current pulse. . Then, based on the relationship between the measured partial discharge amount Q, the applied voltage Vp of the surge voltage, and the steepness dV / dt of the rising portion of the surge voltage, as shown in FIG. 3, the surge voltage reaching the threshold value Qs of the constant discharge amount is obtained. V
The relationship dV / dt between ps and the rise time is determined. In the present embodiment, the threshold value Qs is set to 1000 pC. The measurement determination circuit 3 determines that this relationship is a partial discharge of the inter-turn insulating layer from the above-described characteristics, and
If this relationship is as shown by the dashed line 37 in FIG. 3 and is equal to or less than the level indicated by the crosses, taking into account a certain margin for the voltage condition applied between turns during use, a determination is made as to whether a repair is required. To In the present embodiment, twice is considered as the margin.

【0011】本実施形態でも、図1の実施形態で述べた
通り、最も部分放電量が大きい相すなわち最も健全でな
い相が決定できる。また、一定の放電量の敷居値Qsに
達するサージ電圧Vpsと立ち上がり部の急峻度dV/
dtの関係より、ターン間絶縁層またはコイル対地絶縁
層のどちらが放電しているかが判定できる。
Also in this embodiment, as described in the embodiment of FIG. 1, the phase having the largest partial discharge amount, that is, the phase having the least sound can be determined. Further, the surge voltage Vps reaching the threshold value Qs of a constant discharge amount and the steepness dV /
From the relationship of dt, it can be determined which of the inter-turn insulating layer and the coil-to-ground insulating layer is discharging.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
複数回のターン数のコイルからなる巻線を有する電動機
等の回転電機装置において、ターン間絶縁層の部分放電
を他の絶縁層(コイル対地絶縁層)の部分放電と区別し
て判定するので、コイルターン間絶縁層の健全性を高感
度で評価することができ、また、回転電機のターン間絶
縁層の破壊を未然に防止することができ、回転電機装置
の信頼性を向上させることができる。
As described above, according to the present invention,
In a rotating electric machine such as an electric motor having a winding composed of a plurality of turns of a coil, a partial discharge of an insulating layer between turns is determined separately from a partial discharge of another insulating layer (coil-to-ground insulating layer). The soundness of the inter-turn insulating layer can be evaluated with high sensitivity, and the destruction of the inter-turn insulating layer of the rotating electric machine can be prevented beforehand, and the reliability of the rotating electric machine device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のコイルターン間絶縁健全性評価装置の
一実施形態
FIG. 1 is an embodiment of a device for evaluating insulation integrity between coil turns according to the present invention.

【図2】サージ電圧と部分放電量の関係を示す図FIG. 2 is a diagram showing a relationship between a surge voltage and a partial discharge amount.

【図3】本発明のコイルターン間絶縁健全性評価法を説
明する図
FIG. 3 is a diagram illustrating a method for evaluating insulation integrity between coil turns according to the present invention.

【図4】本発明のコイルターン間絶縁健全性評価法でコ
イル対地絶縁層の部分放電を区別する方法を説明する図
FIG. 4 is a diagram for explaining a method for distinguishing partial discharges of a coil-to-ground insulating layer by the method of evaluating insulation integrity between coil turns according to the present invention.

【図5】本発明の他の実施形態FIG. 5 shows another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電源装置、2…部分放電検出部、3…測定判定回
路、4…測定用サージ電圧、6…回転電機、11…イン
バータ駆動装置、12…貫通型高周波変流器、13…駆
動ケーブル、23…駆動ケーブルシース接地線、24…
カップリングコンデンサ、25…測定用サージ電圧印加
用接続線
DESCRIPTION OF SYMBOLS 1 ... Power supply device, 2 ... Partial discharge detection part, 3 ... Measurement judgment circuit, 4 ... Surge voltage for measurement, 6 ... Rotating electric machine, 11 ... Inverter drive device, 12 ... Through-type high frequency current transformer, 13 ... Drive cable, 23 ... drive cable sheath ground wire, 24 ...
Coupling capacitor, 25 ... Connection for applying surge voltage for measurement

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数回のターン数のコイルからなる巻線
を有する回転電機装置において、サージ電圧を発生する
電源装置と、ターン間絶縁層の部分放電を検出する部分
放電検出手段と、検出した部分放電量を評価する測定判
定手段を具備し、被測定対象の回転電機の巻線と前記電
源装置との間の接続線に前記部分放電検出手段を配置し
たことを特徴とするコイルターン間絶縁健全性評価装
置。
In a rotating electrical machine having a winding composed of coils having a plurality of turns, a power supply for generating a surge voltage, a partial discharge detecting means for detecting a partial discharge of an insulating layer between turns, Insulation between coil turns, comprising: a measuring and judging means for evaluating a partial discharge amount, and arranging the partial discharge detecting means on a connection line between a winding of a rotating electrical machine to be measured and the power supply device. Soundness evaluation device.
【請求項2】 請求項1において、前記部分放電検出手
段は、前記電源装置で発生したサージ電圧によって生ず
る回転電機巻線のコイル絶縁層が形成する静電容量の充
電電流をキャンセルする機能を有することを特徴とする
コイルターン間絶縁健全性評価装置。
2. The device according to claim 1, wherein the partial discharge detecting means has a function of canceling a charging current of a capacitance formed by a coil insulating layer of the winding of the rotating electrical machine caused by a surge voltage generated in the power supply device. An insulation integrity evaluation device between coil turns.
【請求項3】 請求項2において、前記部分放電検出手
段は、貫通型の高周波変流器からなり、前記電源装置か
らのサージ電圧を前記回転電機の任意に選んだ二相の巻
線に同時にかつ逆極性に印加するとともに、各相巻線へ
の接続線を同方向に前記貫通型の高周波変流器に貫通す
ることを特徴とするコイルターン間絶縁健全性評価装
置。
3. The partial discharge detection means according to claim 2, wherein said partial discharge detection means comprises a through-type high-frequency current transformer, and simultaneously applies a surge voltage from said power supply device to an arbitrary selected two-phase winding of said rotating electric machine. An insulation soundness evaluation between coil turns, which is applied in the opposite polarity and penetrates a connection line to each phase winding in the same direction through the penetration type high-frequency current transformer.
【請求項4】 請求項3において、前記サージ電圧を発
生する電源装置は、前記回転電機の回転を制御するイン
バータ駆動電源を兼ね、通常の運転時の配線のままで所
定又は任意のタイミングで前記インバータ駆動によって
測定用のサージ電圧を発生することを特徴とするコイル
ターン間絶縁健全性評価装置。
4. The power supply device according to claim 3, wherein the power supply device that generates the surge voltage also serves as an inverter drive power supply that controls rotation of the rotating electric machine, and the wiring is kept at a predetermined or arbitrary timing during normal operation. An insulation integrity evaluation device between coil turns, wherein a surge voltage for measurement is generated by driving an inverter.
【請求項5】 請求項2において、前記部分放電検出手
段は、貫通型の高周波変流器からなり、前記電源装置か
らのサージ電圧を前記回転電機の任意に選んだ二相の巻
線に同時に印加するとともに、各相巻線への接続線を互
いに逆方向に前記貫通型の高周波変流器に貫通すること
を特徴とするコイルターン間絶縁健全性評価装置。
5. The partial discharge detection means according to claim 2, wherein said partial discharge detection means comprises a through-type high-frequency current transformer, and simultaneously applies a surge voltage from said power supply device to an arbitrary selected two-phase winding of said rotating electric machine. An insulation soundness evaluation device between coil turns, wherein the voltage is applied and connection wires to the respective phase windings are passed through the high-frequency current transformer of the penetration type in mutually opposite directions.
【請求項6】 請求項1において、前記サージ電圧を発
生する電源装置は、前記サージ電圧の大きさ及びその立
ち上がり部の急峻度を変化させる電源装置であることを
特徴とするコイルターン間絶縁健全性評価装置。
6. The insulation sound between coil turns according to claim 1, wherein the power supply device that generates the surge voltage is a power supply device that changes the magnitude of the surge voltage and the steepness of a rising portion thereof. Sex evaluation device.
【請求項7】 請求項1において、前記測定判定手段
は、前記部分放電検出手段の出力を入力し、コイル絶縁
層が形成する静電容量の充電電流をキャンセルして検出
した部分放電の電流パルスを増幅し、検出した部分放電
量と前記サージ電圧の大きさ及びその立ち上がり部分の
急峻度との関係を測定することを特徴とするコイルター
ン間絶縁健全性評価装置。
7. The partial discharge current pulse according to claim 1, wherein the measurement determination unit receives an output of the partial discharge detection unit, and cancels and detects a charge current of a capacitance formed by the coil insulating layer. Characterized in that the relationship between the detected partial discharge amount and the magnitude of the surge voltage and the steepness of the rising portion thereof is measured.
【請求項8】 請求項7において、前記測定判定手段
は、一定の部分放電量の敷居値を超える前記サージ電圧
の大きさ及びその立ち上がり部分の急峻度との関係よ
り、前記ターン間絶縁層とコイル対地絶縁層との部分放
電を区別判定することを特徴とするコイルターン間絶縁
健全性評価装置。
8. The inter-turn insulating layer according to claim 7, wherein the measuring and judging means determines a relationship between a magnitude of the surge voltage exceeding a threshold value of a fixed partial discharge amount and a steepness of a rising portion thereof. An apparatus for evaluating insulation integrity between coil turns, wherein a partial discharge between a coil and a ground insulating layer is distinguished and determined.
【請求項9】 複数回のターン数を有するコイルからな
る巻線の線路側端子にサージ電圧を印加し、前記巻線の
線路側に近いコイルのターン間に高い電圧を生じさせて
ターン間絶縁層に部分放電を発生させ、検出した部分放
電量と前記サージ電圧の大きさ及びその立ち上がり部分
の急峻度との関係を測定し、この関係よりターン間絶縁
層の部分放電を他の絶縁層の部分放電と区別して判定す
ることを特徴とするコイルターン間絶縁健全性評価方
法。
9. A turn-to-turn insulation by applying a surge voltage to a line side terminal of a winding composed of a coil having a plurality of turns to generate a high voltage between turns of the coil close to the line side of the winding. A partial discharge is generated in the layer, and the relationship between the detected partial discharge amount and the magnitude of the surge voltage and the steepness of the rising portion thereof is measured. A method for evaluating insulation integrity between coil turns, characterized by making a distinction from partial discharge.
JP2000248401A 2000-08-18 2000-08-18 Apparatus and method for evaluating integrity of insulation between coil turns Pending JP2002062330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248401A JP2002062330A (en) 2000-08-18 2000-08-18 Apparatus and method for evaluating integrity of insulation between coil turns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248401A JP2002062330A (en) 2000-08-18 2000-08-18 Apparatus and method for evaluating integrity of insulation between coil turns

Publications (1)

Publication Number Publication Date
JP2002062330A true JP2002062330A (en) 2002-02-28

Family

ID=18738317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248401A Pending JP2002062330A (en) 2000-08-18 2000-08-18 Apparatus and method for evaluating integrity of insulation between coil turns

Country Status (1)

Country Link
JP (1) JP2002062330A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240160A (en) * 2006-03-06 2007-09-20 Mitsubishi Electric Corp Partial discharge measuring device
JP2008022624A (en) * 2006-07-12 2008-01-31 Toyota Motor Corp Apparatus and method for controlling motor drive system
JP2008042958A (en) * 2006-08-01 2008-02-21 Mitsubishi Electric Corp Semiconductor module
JP2008301685A (en) * 2007-06-04 2008-12-11 Nippon Soken Inc Drive unit of power converter circuit, and power conversion system
WO2014083866A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Insulation inspection device for motors and insulation inspection method for motors
KR20160099966A (en) * 2015-02-13 2016-08-23 한국수력원자력 주식회사 Compensation system against power cable effect under moter turn insulation test and method using the system
JP2021056150A (en) * 2019-10-01 2021-04-08 トヨタ自動車株式会社 Insulation inspection method
CN113419148A (en) * 2021-06-30 2021-09-21 深圳市准点仪器有限公司 Testing method for motor winding insulation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240160A (en) * 2006-03-06 2007-09-20 Mitsubishi Electric Corp Partial discharge measuring device
JP4668813B2 (en) * 2006-03-06 2011-04-13 三菱電機株式会社 Partial discharge measuring device
JP2008022624A (en) * 2006-07-12 2008-01-31 Toyota Motor Corp Apparatus and method for controlling motor drive system
JP4628321B2 (en) * 2006-07-12 2011-02-09 トヨタ自動車株式会社 Control device and control method for motor drive system
JP2008042958A (en) * 2006-08-01 2008-02-21 Mitsubishi Electric Corp Semiconductor module
JP2008301685A (en) * 2007-06-04 2008-12-11 Nippon Soken Inc Drive unit of power converter circuit, and power conversion system
DE112013005707B4 (en) 2012-11-29 2018-12-27 Mitsubishi Electric Corporation Insulation inspection device for motors and insulation inspection method for motors
CN104797949A (en) * 2012-11-29 2015-07-22 三菱电机株式会社 Insulation inspection device for motors and insulation inspection method for motors
JP5995295B2 (en) * 2012-11-29 2016-09-21 三菱電機株式会社 Motor insulation inspection device and motor insulation inspection method
US9797955B2 (en) 2012-11-29 2017-10-24 Mitsubishi Electric Corporation Insulation inspection device for motors and insulation inspection method for motors
WO2014083866A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Insulation inspection device for motors and insulation inspection method for motors
KR20160099966A (en) * 2015-02-13 2016-08-23 한국수력원자력 주식회사 Compensation system against power cable effect under moter turn insulation test and method using the system
KR101651961B1 (en) 2015-02-13 2016-09-09 한국수력원자력 주식회사 Compensation system against power cable effect under moter turn insulation test and method using the system
JP2021056150A (en) * 2019-10-01 2021-04-08 トヨタ自動車株式会社 Insulation inspection method
JP7351699B2 (en) 2019-10-01 2023-09-27 トヨタ自動車株式会社 Insulation testing method
CN113419148A (en) * 2021-06-30 2021-09-21 深圳市准点仪器有限公司 Testing method for motor winding insulation

Similar Documents

Publication Publication Date Title
US4156846A (en) Detection of arcing faults in generator windings
US4356443A (en) Detection of arcing faults in polyphase electric machines
Tozzi et al. Monitoring off-line and on-line PD under impulsive voltage on induction motors-part 1: standard procedure
JPH0643204A (en) Insulation testing device for conductor passed through electrode
CN109075723B (en) Power electronic converter and method for controlling same
Kimura et al. PDIV characteristics of twisted-pair of magnet wires with repetitive impulse voltage
JP2002062330A (en) Apparatus and method for evaluating integrity of insulation between coil turns
JP4378478B2 (en) Method and apparatus for measuring partial discharge start voltage
JPH09257862A (en) Device for diagnosis of winding insulation
JPH06317625A (en) Partial discharge detecting device under operation of transformer
JP2590232B2 (en) Diagnosis method for electrical equipment insulation
JP3351304B2 (en) System for detecting the applied voltage polarity of a cable line and the system for detecting the breakdown position of a cable line
JP3308197B2 (en) Cable deterioration diagnosis method
JPH06138168A (en) Measuring device for maximum discharge of electric charge during operation of electric equipment
JP2002323533A (en) Partial discharge testing method for electric power equipment
JPH0827325B2 (en) Failure inspection device for power equipment
US6943567B2 (en) Method for detecting the operability of a number of identical zener diodes that are connected in parallel to one another and to a solenoid
JPH10282181A (en) Void-detecting apparatus
JPH08170975A (en) Partial discharge detector for electric apparatus
JPH0565112B2 (en)
JPH0640459Y2 (en) Insulation deterioration monitoring device
Schump Winding tests for" Drive duty" induction motor stators
JPH0526949A (en) Partial discharge position detecting device for stationary induction electric equipment
JPH0787653B2 (en) Abnormality detection device for reduction type switchgear
JPH03246473A (en) Partial discharge measuring method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325